

Early AES students describe the first dirt molecule

Management Zones

Topic 9

- Before large machinery, farmers worked the land behind a mule and harvested by hand
 - they knew land intimately
 - understood yield potential of areas within fields
 - applied fertilizers (manures) variably

Recent Past

- Advent of large farm machinery resulted in uniform management of large fields
 - uniform application of inexpensive fertilizers
 - evaluating yield potential of entire fields rather than areas within

Future...

Precision Ag allows us to
 make decisions at the scale used by our ancestors
 continue to farm large acreages with big equipment

Future...

- Precision Ag fundamentally requires matching inputs to need
 - If a part of a field requires more fertilizer, apply more
 - If a part of a field matures sooner, harvest it sooner
- Common sense ideas, but how do you implement them on the farm?

How to Implement Precision Ag?

OF CEOD

 Implementation best achieved through Management Zones

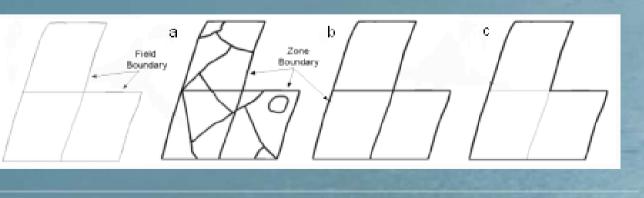
What are Management Zones?

 Regions or areas of field which have been differentiated from the rest of the field for the purpose of receiving individual management attention

History of Management Zones

- Within the Precision Ag community, there has been some reluctance to accept Management Zones (MZs)
 - "not a high-tech solution"
 - not cookbook are not created using formulas or software and thus labeled unscientific
 - requires intellectual horsepower

Management Zones & Technology


- Management Zones have been, and continue to be, used on farms that do not use GPS, GIS, and other Precision Ag technologies
- Using Precision Ag technologies makes implementing Management Zones easier

Creating Management Zones

- No set rules for creating MZs
- Management Zones are created by evaluating all the information that is available for a field
 - physical properties of the field
 - management abilities of the farmer
 - potential return of implementing MZs

Number of Management Zones

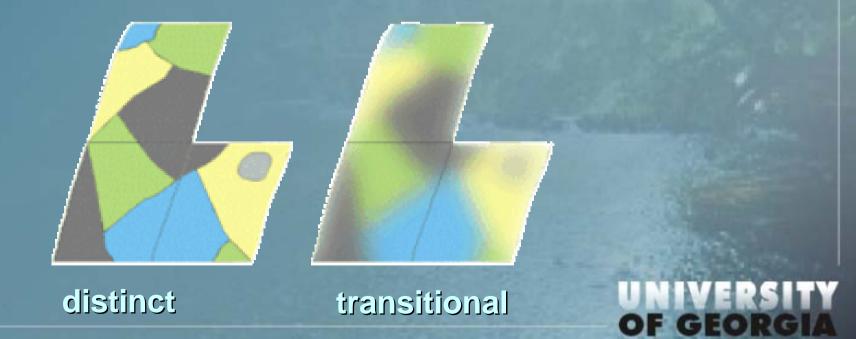
- Number within a field will vary from zero to many
- Number is a function of
 - field size
 - field variability
 - ability of farmer to vary management

Size of Management Zones

- Generally, minimum size is determined by the ability of the farmer to differentially manage within a field
- This is usually a function of equipment size
 - example if swath of fertilizer spreader is 50ft
- Maximum size is set by field boundaries

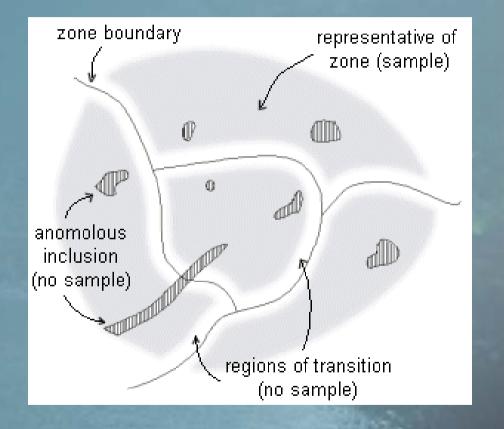
Shape of Management Zones

- If GPS is used to guide implements, shape is not limited theoretically
- Practically, shape should match application abilities
 - overly narrow zones perpendicular to the line of travel result in zone within which equipment does not have the time to make changes
- Shape of MZs should be practical

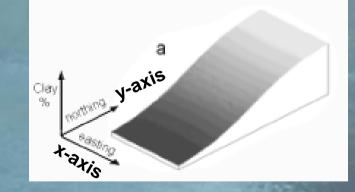


Management Zone Boundaries

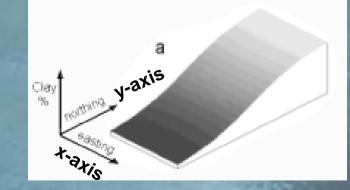
- Changes of field physical properties occur gradually
- Similarly, changes in application rates require transition time
 - equipment response times are not instantaneous
 - frequently require several seconds to switch from one rate to the next


Management Zone Boundaries

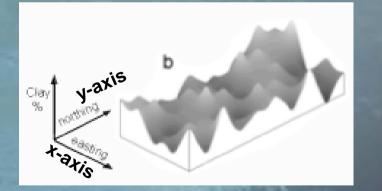
- In reality, boundaries between management zones are transitional
- In practice, it is easier to give MZs distinct boundaries


Example of Management Zones

- Allow for transitional boundaries
- Small areas which are impractical as MZs are identified but are not sampled for field management


OF GEOD

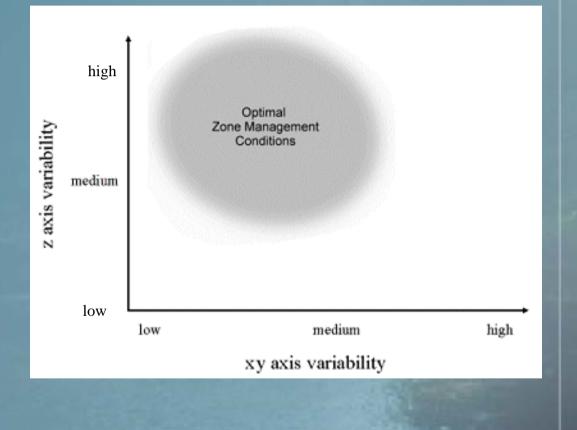
- Management Zones are useful only if there is variability
- There are two kinds of field variability
- z-axis variability
 - the magnitude of the difference between regions with respect to the value of a given attribute


z-axis variability <u>example</u>

- clay content of a field varies from 2% to 40%
- variability only in one direction
- this is 2-dimensional variability (z and y axes)
- z-axis variability means variability is easily understood and measured
 - easy to delineate Management Zones

xy-axis variability

- rate at which z-axis variability occurs spatially
- variability in two directions
- this is 3-dimensional variability (z and x & y axes)
- clay content may vary between 2 and 40% several times within a short distance in both the x and y directions
- xy-axis variability means variability is more complex and less easily measured
 - may be difficult to delineate Management Zones



- A field with high xy variability may not have high z variability
- A field with high z variability may not have high xy variability

OF GEORG

- Optimal Zone Management conditions
 - moderate to high amount of z variability
 - low to moderate amount of xy variability

OF GEOR

- No standard methods for delineating Management Zones
- Tools used should match resources and skills available
- Quality of delineated zones will be a function of:
 - tools, resources, and skills used
 - nature of the field

- Methods used for one field may not work for other fields
- If tools, resources, and information are not available
 - do not delineate Management Zones
- If field is too complex
 do not delineate Management Zones

- Resources and information useful for delineating Management Zones
 - bare soil aerial images (wet, dry)
 - field boundaries
 - topographic maps
 - soil surveys (marginal use for small fields)
 - yield maps
 - vegetation imagery
 - vegetation indices

- <u>More</u> resources and information useful for delineating Management Zones
 - soil test results
 - minimum zone size estimation (equipment limitations)
 - Iocation of field anomalies
 - pest reports (maps, scouting)
 - tile drain locations

- <u>Even more</u> resources and information useful for delineating MZs
 - management history information
 - > position of old roads, houses
 - > maps of past earthmoving operations
 - fertilization records (conventional and variable rate)
 - > cropping records
 - > irrigation coverage
 - > field divisions
 - > location of old wetlands
 - > eroded areas

- Knowledge helpful in creating Management Zones
 - agronomy
 - farm management and economics
 - field history
 - equipment capabilities and limitations

A Plan for Creating Management Zones

- Create a field template
 - field boundary
 - georeferenced bare soil aerial image is best
- Use as much of the information discussed earlier as you possibly can
- Start by defining areas that most obviously will benefit from differential management

A Plan for Creating Management Zones

- Establish additional meaningful zones making sure this process is driven by available information
- Outline the Management Zones on the aerial image or field boundary
- Establish appropriate yield goals for each zone
- Monitor the performance of established MZs over time and attempt to understand the dynamics of each

OF GEOD

 Fine tune the system as more information becomes available