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Human African trypanosomiasis

(HAT), also known as sleeping sickness, is

a neglected disease that impacts 70 million

people distributed over 1.55 million km2 in

sub-Saharan Africa [1]. Trypanosoma brucei

gambiense accounts for almost 90% of the

infections in central and western Africa,

the remaining infections being from T. b.

rhodesiense in eastern Africa [1]. Further-

more, the animal diseases caused by

related parasites inflict major economic

losses to countries already strained [2].

The parasites are transmitted to the

mammalian hosts through the bite of an

infected tsetse fly.

In the early part of the 20th century,

HAT epidemics decimated human popu-

lations in many parts of Africa. In the

1930s, systematic screening, treatment,

and follow-up of millions of individuals

by the colonial administrations led to a

dramatic decrease in disease transmission

(reviewed in [3]). Following independence

in the 1950–60s, HAT control efforts in

most African countries were relaxed and

taken over by other priorities in light of the

decline in disease incidence. Unfortunate-

ly, the disease slowly returned, with flare-

ups beginning to be reported throughout

the endemic areas by the late 80s and early

90s [4,5,6]. In a 1997 resolution, WHO

strongly advocated access to diagnosis and

treatment with surveillance and control

activities, concurrently setting up a network

to strengthen coordination among endemic

countries [7,8]. Sadly, the disease killed

thousands of people before control measures

began to take effect [9]. In 2006, 20 out of

the 36 endemic countries had achieved the

target of no new cases, and eight countries

reported fewer than 100 cases. In 2008,

WHO declared that the newly reported

cases had dramatically declined to fewer

than 10,000 continent-wide and called for

plans towards a HAT elimination policy

[10]. The gambiense form of the disease has

been targeted for elimination by 2020 [11].

It is important to note, however, that

estimating the true burden of HAT is

difficult, as the disease affects the most

neglected populations, living in remote and

rural settings where the majority of people

affected are beyond the reach of health care

systems and are not reported in the health

metrics [12]. It is also important to be

mindful of ongoing political conflicts, which

stand to refuel the emergence of epidemics

unless control measures continue to be

employed in endemic countries [13,14,15].

Thus, it is imperative that endemic coun-

tries must at least continue to retain

mechanisms and health personnel who can

recognize and report potential HAT cases to

prevent reemergence of the disease [16]. A

flexible set of control efforts needs to be

adapted to the different epidemiological

patterns in order to adopt the most adequate

strategies for maintaining cost-effectiveness

[17,18].

Achieving disease control in the mam-

malian host has been challenging given the

lack of effective mammalian vaccines and

cheap and easily deliverable drugs. Fur-

thermore, at times of low endemicity,

relying on active surveillance of human

infections is not cost-effective. The chal-

lenge now is to identify control methods

that will ensure that the continent remains

free of HAT. One approach that has

worked well to curb disease is the

reduction of tsetse vector populations.

This is due to the low reproductive rate

of tsetse resulting from its viviparous

biology. Improving the efficacy of the

currently available vector control tools

(targets, traps, and insecticide applications)

or enhancing the implementation of con-

trol programs that utilize this set of tools in

different ecological settings can improve

effectiveness. Also, the effectiveness of

these tools can be improved through a

better understanding of tsetse physiolo-

gy—a feature that has enabled the devel-

opment of these tools in the first place.

The complete genome sequence informa-

tion from Glossina morsitans morsitans, pub-

lished in Science this week, now provides a

unique opportunity to transform tsetse

research and disease control practices

[19]. Particularly important in this regard

is knowledge of tsetse’s vision, olfactory,

immune, digestive and reproductive phys-

iology. The eight research papers pub-

lished this week PLOS-wide that accom-

pany the tsetse genome paper already

point to unique opportunities for improv-

ing control (see Tsetse Genome Biology

Collection).

Getting at the genome data, however,

has not been an easy road. The Glossina

community was small, and many of the

facilities in Africa that maintained tsetse fly

colonies and conducted research on this

vector were beginning to downsize their

programs in the early 2000s due to

reduced research funds, despite the rising

disease incidence. A small group of

researchers, however, argued that moving
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tsetse research into the -omics era would

provide new stimulus that would give rise

to opportunities for control and, impor-

tantly, would attract young researchers to

the field of tsetse research [20]. The

Molecular Entomology work area of the

Special Programme for Research and

Training in Tropical Diseases (TDR) at

the World Health Organization (WHO)

funded the establishment of a consortium

(International Glossina Genome Initiative

[IGGI]) in 2004 that brought together an

interdisciplinary group of researchers from

multiple institutions to chart the course

towards the finish line [20,21]. The

consortium recruited global funds that

enabled the development of a molecular

toolbox, which initially included data from

several large expressed-sequence (EST)

libraries along with construction and

sequencing of a Bacterial Artificial Chro-

mosome (BAC) library. Given that the

tsetse vector and the disease is endemic to

sub-Sahara Africa, IGGI membership

chose to use this networking opportunity

to help build research capacity in Africa

on genetics and genomics aspects of tsetse

[21]. In the following seven years, the

IGGI consortium met yearly for coordi-

nation meetings, organized five bioinfor-

matics workshops that trained students

and junior faculty from endemic countries,

and set up exchange programs for students

and researchers from Africa to be trained

in research laboratories in Europe and the

United States. Over 40 African students

and researchers from African institutions

attended a transcriptome analysis jambo-

ree held at the South African National

Bioinformatics Institute (SANBI) in 2007.

The genome project led by the Sanger

Institute also benefited from the contribu-

tions of many genome centers, including

TIGR in the US, RIKEN in Japan, and

Genoscope in France. Two manual com-

munity annotation workshops and the 146

experts recruited from the broad vector

community helped the program to reach

the finish line this month. Building on

their success story with Glossina morsitans

genome, the consortium has now secured

funds from the National Institute of

Health in the US to sequence five

additional species of Glossina at the Uni-

versity of Washington Genome Center,

and this project is nearly complete.

The PLOS-wide collection, titled Tsetse

Genome Biology, accompanying this issue

presents two Historical Perspective articles

that review events related to the devastat-

ing HAT epidemics in the early years of

the 20th century [22,23]. In addition, the

collection has eight research articles that

expand on the genome discoveries and

report on several low hanging fruits that

are ready for exploitation for improved

vector control. One of these discoveries is

related to the tsetse olfactory system,

which appears to be significantly stream-

lined when compared to other disease

vectors, such as mosquitoes [24]. At the

core of the success of the trapping devices

is the ability of tsetse to recognize the color

blue and be attracted to certain smells,

which are used as bait. The availability of

the full spectrum of olfactory components

now stands to provide new or more effective

species-specific attractants that can improve

the efficacy of traps. Another area that is

unique among disease vectors is tsetse’s

viviparous reproductive system, which in-

volves the production of one progeny at a

time that is nourished by the milk secretions

of the mother during intrauterine develop-

ment. Each female can produce on average

eight to ten progeny, and she remains

fecund during much of her adult life. This

low reproductive capacity is at the core of

the success of strategies that aim to reduce

tsetse populations. To nurture its developing

larva, the tsetse female lactates and produc-

es milk. Researchers have now identified a

previously unknown group of indispensable

milk proteins that are coordinately synthe-

sized during the lactation phase. Without

these proteins, the female cannot support

her developing larva [25]. Interestingly, a

single transcription factor, the homeobox

factor Ladybird Late, may be responsible

for the coordinated expression of all milk

proteins, opening the way for future novel

biological strategies that target tsetse’s

lactation cycle and associated reproductive

capacity [26]. In addition, lactation-specific

aquaporin proteins were also identified and

are needed for water transport and hydra-

tion during milk synthesis [27]. Finally,

comparison of before and after pregnancy

transcriptomes indicates that prevention of

oxidative stress may be the key for the

success of the prolonged reproductive

output and longevity associated with tsetse

female physiology [28].

Tsetse carries with it multiple symbiotic

microbes, one of which is called Wolba-

chia. Wolbachia has been shown to manip-

ulate host reproductive physiology in

many insects, including in tsetse [29].

One of the research papers in the

collection describes the Whole Genome

Sequence of the Wolbachia symbiont

obtained from the same Glossina morsitans

species [30]. This study also reports that

unusually large sections of the genome of

the Wolbachia symbiont have been trans-

ferred to the host tsetse genome, partic-

ularly residing in the sex chromosomes

[30].

Finally, although extensive research has

been conducted on African trypanosomes

in the mammalian host, knowledge of

tsetse–parasite interactions remains sparse.

An area of interest has been discovery of

tsetse mechanisms that can block parasite

transmission either in the midgut or in the

salivary glands. This is of interest to both

basic and applied research since the ability

to engineer greater resistance in flies could

solve the problem of disease transmission.

Researchers characterized important tset-

se genes whose products are components

of physical and immunological barriers in

the gut Peritrophic Matrix (PM) to try-

panosome infections [31]. Another study

has compared trypanosome and tsetse

transcriptomes from normal and parasit-

ized salivary glands, as well as from

normal and parasitized mammalian blood

[32]. This study reports on parasite

adaptations that may enable its survival

in the two different host environments and

host gene expression modifications that

may help parasite survival in either the

salivary gland or, possibly, in the mam-

malian bite site [32].

The wealth of information that is

revealed from the genome and func-

tional genomics data is now ready to be

explored and exploited. The soon-to-be-

available additional Glossina genomes

will shed light onto the species-specific

habitat and vertebrate host require-

ments and varying vector competence

associated with the different species.

Thus, money was well spent on the

small investment made by WHO-TDR

to bring together IGGI. An important

goal of the genome project was expan-

sion of the community of tsetse re-

searchers—the consortium now invites

all interested researchers, particularly

junior scientists, to take a look at

research opportunities on tsetse and

trypanosomes. The consortium hopes

that while HAT is a neglected tropical

disease, vector tsetse research may enjoy

broader participation from the vector

community and lead to improved and/

or novel methods to eliminate disease.
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