1. Ιστόγραμμα

Δεδομένα από το αρχείο Data_for_SPSS.xls

Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale

Αλλαγή πάλι σε Data View.

NormData	Variable:	Titles
	Display normal curve	
	Panel by	1
	Rows:	
	•	
	Nest variables (no empty rows)	
	Columns:	
	Nest variables (no empty columns)	
Template		1
Use chart spe	cifications from:	
File		

Graphs \rightarrow Legacy Dialogs \rightarrow Histogram

Μετακινούμε την μεταβλητή NormData στο πεδίο **Variable**, κάνουμε κλικ στο Display normal curve και πατάμε <mark>ΟΚ</mark>.

ΕΞΑΓΟΜΕΝΟ:

Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά στην θέση του βέλους.

Στις επιλογές που εμφανίζονται επιλέγουμε την καρτέλα <mark>Binning</mark>, X Axis Custom και Number of intervals 5 και μετά Apply.

	1			Ĩ.
umber Form	hat Binning	Data Value	e Labels	Variables
X axis of X	only			
© Z axis (only			
X Axis	2 axes			
O Autor	atic			
© Custo	m			
Nu	mber of inter	vals: 5		
O Inte	erval width:			
Custo	m value for a	inchor:		
Z Axis-				
Autom	atic			
© Custo	m			
@ <u>N</u> u	mber of inter	vals:		
© inte	erval width:			
Custo	m value for a	inchor:		

2. BOXPLOT

Graphs → Legacy Dialogs → Boxplot

Επιλέγουμε Simple και Summaries of separate variables και πατάμε Define.

Στο πλαίσιο που εμφανίζεται μετακινούμε την μεταβλητή NormData στο πεδίο **Boxes Represent**: και πατάμε <mark>ΟΚ</mark>.

ΕΞΑΓΟΜΕΝΟ:

Case Processing Summary

	Cases							
	Valid		Missing		Total			
	N	Percent	Ν	Percent	N	Percent		
NormData	73	100,0%	0	0,0%	73	100,0%		

3. Δοκιμασία t του Student (κατά ζεύγη)

Δύο δίαιτες Α,Β εφαρμόσθηκαν σε 5 ποντίκια επί μια εβδομάδα. Υποθέτοντας ότι η αύξηση του βάρους τους ακολουθεί την κανονική κατανομή, να εξετασθεί εάν η αύξηση του βάρους διαφέρει σε στάθμη σημαντικότητας 0.05.

Α	В
Αύξ. Βάρ. [gr]	Αύξ. Βάρ. [gr]
78,1	79,1
72,4	81,0
76,2	77,3
74,3	79,1
77,4	80,0
78,4	79,1
76,0	79,1

$H_0: \mu_A = \mu_B, H_1: \mu_A \neq \mu_B$

Εισαγωγή των δεδομένων τύπου scale στο SPSS και μετονομασία των μεταβλητών σε Α και Β.

To SPSS διεξάγει προεπιλεγμένα την αμφίπλευρη δοκιμασία σημαντικότητας σε σ.σ. 0.05.

Analyze \rightarrow Compare means \rightarrow Paired-Samples t-test

Μεταφέρουμε τις μεταβλητές Α και Β στα πεδία Variable1 και Variable2 δεξιά και πατάμε <mark>ΟΚ</mark>.

ΕΞΑΓΟΜΕΝΟ:

Paired Samples Statistics								
	Mean	N	Std. Deviation	Std. Error Mean				
Pair 1 A	76,114	7	2,1575	,8155				
В	79,243	7	1,1193	,4231				

Paired Samples Correlations						
		N	Correlation	Sig.		
Pair 1	A & B	7	-,418	,351		

		Paired Differences						Sig. (2-tailed)
				95% Confide				
			Std. Error	of the Difference				
	Mean	Std. Deviation	Mean	Lower Upper		t	df	
Pair 1 A	- B -3,1286	2,8153	1,0641	-5,7323	-,5249	-2,940	6	,026

Paired Samples Test

Mε p-value (sig) = 0.026 και για στάθμη σημαντικότητας α=0.05 απορρίπτεται η μηδενική υπόθεση.

4. Δοκιμασία t του Student (ανεξάρτητα δείγματα)

Το ίδιο πρόβλημα με προηγουμένως αυτή τη φορά με δεδομένα από ανεξάρτητα δείγματα:

Α	В
Αύξ. Βάρ. [gr]	Αύξ. Βάρ. [
78,1	79,1
72,4	81,0
76,2	77,3
74,3	79,1
77,4	80,0
78,4	79,1
76,0	79,1
	77,3

В
Αύξ. Βάρ. [gr]
79,1
81,0
77,3
79,1
80,0
79,1
79,1
77,3
80,2

	1	V	131016. 2 01	Z vanabi
	Weight	Group	var	var
7	76,0	1		
8	79,1	2		
9	81,0	2		
10	77,3	2		
11	79,1	2		
12	80,0	2		
13	79,1	2		
14	79,1	2		
15	77,3	2		
16	80,2	2		
17				
18				
	4			1

🏰 *Untitled1 [DataSet0] - IBM SPSS Statistics Da... 💶 🔲 🗙 File Edi Vie Dat Transf Analy Direct VUntitled1 [DataSet0] - IBM SPS

 $H_0: \mu_A = \mu_B, H_1: \mu_A \neq \mu_B$

Οι μετρήσεις στα δύο ανεξάρτητα δείγματα τοποθετούνται σε μια στήλη με το όνομα Weight και διαχωρίζονται με την βοήθεια της μεταβλητής ομαδοποίησης Group. Η μεταβλητή ομαδοποίησης μπορεί να είναι και type: string και Measure: Nominal.

Analyze \rightarrow Compare means \rightarrow Independent-Samples t-test

Μεταφέρουμε την μεταβλητή Weight στο πεδίο Test Variable(s) δεξιά και την μεταβλητή Group στο πεδίο Grouping Variable.

🔄 Define Groups	
Use specified values	
Group <u>1</u> : 1	
Group 2: 2	
© Cut point:	
Continue Cancel	Help

Από το <mark>Define Groups</mark> δηλώνουμε στις αριθμούς που αντιστοιχίσαμε στα δείγματα.

Πατάμε Continue και στο πλαίσιο Independent-Samples T Test <mark>ΟΚ</mark>.

EEAFOMENO:

Group Statistics								
	Group	N	Mean	Std. Deviation	Std. Error Mean			
Weight	1	7	76,114	2,1575	,8155			
	2	9	79,133	1,2298	,4099			

Independent	Samples	Test

		Levene's Test for Equality of Variances				t-tes	t for Equality of	of Means		
							Mean	Std Error	95% Confic of the D	lence Interval Difference
		F	Sig.	т	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Weight	Equal variances assumed	2,108	,169	-3,543	14	,003	-3,0190	,8521	-4,8467	-1,1914
	Equal variances not assumed			-3,308	8,986	,009	-3,0190	,9127	-5,0842	-,9539

Με p-value (sig) = 0.003 και για στάθμη σημαντικότητας α=0.05 απορρίπτεται η μηδενική υπόθεση.

5. ANOVA

Μετρήθηκε η ποσότητα πρωτεΐνης σε gr/100 ml στο αίμα ατόμων που ζουν σε διαφορετικές περιοχές Α, Β, Γ και οι τιμές που βρέθηκαν δίνονται στον πίνακα που ακολουθεί. Μπορούμε να ισχυρισθούμε ότι η ποσότητα πρωτεΐνης στο αίμα είναι η ίδια και στις τρεις περιοχές;

α/α	A, n₁=7	B, n ₂ =8	Γ, n₃=9
1	7,64	7,67	7,98
2	7,07	7,58	7,91
3	7,43	7,04	7,11
4	7,57	6,69	7,65
5	7,74	7,32	8,17
6	7,63	7,12	8,28
7	8,06	7,46	7,21
8		7,21	7,41
9			6,37

 H_0 : μ_A = μ_B = μ_{Γ} , H_1 : Τουλάχιστον ένας μέσος διαφέρει

2 H					H
			Visib	le: 2 of 2 Va	riable
	ProtConc	Group	var	var	
1	7,6	1			
2	7,1	1			
3	7,4	1			
4	7,6	1			
5	7,7	1			
6	7,6	1			
7	8,1	1			
8	7,7	2			
9	7,6	2			
10	7,0	2			
11	6,7	2			
12	7,3	2			
13	7,1	2			
14	<mark>7,</mark> 5	2			
15	7,2	2			
16	8,0	3			
17	7,9	3			
18	7,1	3			
19	7,7	3			
20	8,2	3			
21	8,3	3			
22	7,2	3			
	1				Þ
Data View	Variable View				

Εισάγονται οι μετρήσεις σε μια στήλη του SPSS και διαχωρίζονται μεταξύ τους με την βοήθεια της μεταβλητής Group. ΠΡΟΣΟΧΗ η μεταβλητή Group πρέπει να ορισθεί ως Type: Numeric και Measure: Scale.

Analyze \rightarrow Compare means \rightarrow One-Way ANOVA

Μεταφέρουμε την μεταβλητή Weight στο πεδίο Dependent List δεξιά και την μεταβλητή Group στο πεδίο Factor. Πατάμε <mark>ΟΚ</mark>.

 	Dependent List:	Contrasts
	Proteone	Post Hoc
		Options
	Factor:	

ΕΞΑΓΟΜΕΝΟ:

Woight

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	,534	2	,267	1,330	,286
Within Groups	4,214	21	,201		
Total	4,748	23			

Mε p-value (sig) = 0.286 και για στάθμη σημαντικότητας α=0.05 δεν απορρίπτεται η μηδενική υπόθεση.

6. χ^{2}

Σε 346 αυτοκινητιστικά δυστυχήματα με αυτοκίνητα διαφόρων μεγεθών (μικρό, μεσαίο, μεγάλο) καταγράφηκαν θανατηφόρα και μη ατυχήματα σύμφωνα με τον πίνακα που ακολουθεί. Μπορούμε να συμπεράνουμε ότι το είδος του ατυχήματος έχει σχέση με το μέγεθος του αυτοκινήτου; (a=0.05)

H₀ : Τα ποσοστά των θανατηφόρων ατυχημάτων δεν σχετίζονται με το μέγεθος του αυτοκινήτου H₁ : Τα ποσοστά των θανατηφόρων ατυχημάτων σχετίζονται με το μέγεθος του αυτοκινήτου

	Μικρό αυτ. 1	Μεσαίο αυτ. 2	Μεγάλο αυτ. 3	Σύνολο
Θανατηφόρα 1	67	26	16	109
Μη Θανατηφόρα 2	128	63	46	237
Σύνολο	195	89	62	346

Πίνακας συνάφειας

Columns (Μέγεθος αυτοκινήτου): 1 (Μικρό), 2 (Μεσαίο), 3 (Μεγάλο)

Raws (Σοβαρότητα ατυχήματος): 1 (Θανατηφόρα), 2 (Μη θανατηφόρα)

Observed (πλήθος περιπτώσεων σε κάθε σειρά και στήλη)

🔚 *Untitle	d1 [DataSet0]	- IBM SPSS S	tatistics Data E	ditor	_ 🗆 🗙
File Edil Vie	ev Data Transfc	Analy: Direct M	lark Grapt Utiliti	e Add- <u>o</u> l <u>M</u>	(indc Help
) 😂 H					H
			Visi	ble: 3 of 3	Variables
	Columns	Raws	Observed	var	sv
1	1	1	67		
2	1	2	128		
3	2	1	26		
4	2	2	63		
5	3	1	16		
6	3	2	46		
7					
8	4	-			-
Data View	Variable View				
	IBM SPSS S	tatistics Proces	sor is ready	Weig	ht On

🖣 *Untitle	d1 [DataSet0] -	IBM SPSS St	atistics Data	Editor	_ 🗆 🗙			
File Edit Vie	ew Data Transfo	Analy: Direct	Mark Graph	Jtilitie Add-or	Windc Help			
😑 🗄 🖨 💷 🖛 🛥 🎬 📥 📰 🛤 📕								
	Name	Туре	Width	Decimals	Lí			
1	Columns	Numeric	8	0	-			
2	Raws	Numeric	8	0				
3	Observed	Numeric	8	0				
•	1				E E			
Data View	Variable View							
	IBM SPSS :	Statistics Proce	ssor is ready	We	ight On			

🖣 *Untitle	d1 [DataS	et0] - IBM SPS	6 Statistics D	ata Editor		_ [] ×
File Edit	View Dat	ta Transform	Analyze Dire	ct Marketing Grap	hs Utilities Add-or	ns <u>W</u> indow <u>H</u> elp
🗃 🔚		📮 🗠 🤉			# 1	
	Values	Missing	Columns	Align	Measure	Role
1	е	None	8	Center	\delta Nominal	N Input
2	e	None	8	Center	\delta Nominal	S Input
3	е	None	8	Center	🛷 Scale	S Input
4	4					*
Data View	Variable	View				
			IBM SPS	SS Statistics Proce	essor is ready	Weight On

Data → Weight Cases

Analyze → Descriptive Statistics → Crosstabs

📽 *Output15 [Document15] - IBM SPSS Stati	tics Viewer	_ D ×	
File Edit View Data Transform Insert Forma	Analyze Direct Markelini Graphs Ut	ilities Add-ons Window Help	K Crosstabs
	Regorts Pescriptive Statistics Tables Tables Comgare Means General Linear Models General Linear Models Generalized Linear Models Migod Models Generalized Linear Models Correlate Regression Loginear Classify Dimension Reduction Scale Koparametric Tests Forecasting Survival Mutiple Response	Ercquencies	Raws Exact. Column(s): Cells Column(s): Eormat Layer 1 of 1 Eormat Image: Column (s): Eormat Display clustered bar charts Display clustered bar charts Suppress tables OK
Crosstabs	Simulation	cs Processor is ready	Conner (March Conner)

Στο πλαίσιο Crosstabs που εμφανίζεται μεταφέρουμε τις μεταβλητές Raws και Columns στα αντίστοιχα πεδία δεξιά. Κλικ στο Statistics

Crosstabs: Statistics	×	1		
✓ Chi-square	Correlations	Επιλέγουμε	Chi-Square και <mark>Cor</mark>	<mark>ntinue</mark> για επιστροφή σ
Nominal	Ordinal	πλαίσιο Cross	stabs όπου επιλέγου	με <mark>Cells</mark> .
Contingency coefficient	🗏 Gamma		briddan and a start of the star	
Phi and Cramer's V	Somers' d		👘 Crosstabs: Cell Dis	play 🔀
📃 Lambda	📃 Kendall's tau-b		Counts	-z-test
Uncertainty coefficient	Kendall's tau-c		☑ Observed	Compare column proportions
			Expected	Adjust p-values (Bonferroni method)
Nominal by Interval	🗾 Карра		Hide small counts	
Eta	Risk		Less than 5	
	McNemar		Percentages	Residuals
Cochran's and Mantel-Ha	enszel statistics		Row	Unstandardized
Test common odds ratio s			Column	Standardized
	queis.		✓ Total	Adjusted standardized
Continue Cancel	Help		-Noninteger Weights-	
,			Round cell counts	Round case weights
			C Truncate cell cour	nts O Truncate case weights
			O No adjustments	
			Conti	nue Cancel Help
			Conti	nue Cancel Help

Συμπληρώνουμε το πλαίσιο Cell Display, και <mark>Continue</mark> για επιστροφή στο πλαίσιο Crosstabs. Στο πλαίσιο Crosstabs πατάμε <mark>ΟΚ</mark>.

ΕΞΑΓΟΜΕΝΟ:

Case Processing Summary

	Cases						
	Valid		Mis	sing	Total		
	N	Percent	N	Percent	Ν	Percent	
Raws * Columns	346	100,0%	0	0,0%	346	100,0%	

				Columns		
			1	2	3	Total
Raws	1	Count	67	26	16	109
		Expected Count	61,4	28,0	19,5	109,0
		% within Raws	61,5%	23,9%	14,7%	100,0%
		% within Columns	34,4%	29,2%	25,8%	31,5%
		% of Total	19,4%	7,5%	4,6%	31,5%
	2	Count	128	63	46	237
		Expected Count	133,6	61,0	42,5	237,0
		% within Raws	54,0%	26,6%	19,4%	100,0%
		% within Columns	65,6%	70,8%	74,2%	68,5%
		% of Total	37,0%	18,2%	13,3%	68,5%
Total		Count	195	89	62	346
		Expected Count	195,0	89,0	62,0	346,0
		% within Raws	56,4%	25,7%	17,9%	100,0%
		% within Columns	100,0%	100,0%	100,0%	100,0%
		% of Total	56,4%	25,7%	17,9%	100,0%

Raws * Columns Crosstabulation

Chi-Square Tests				
	Value	df	Asymp Sig (2-sided)	
	Value	ui -	Asymp. olg. (2-sided)	
Pearson Chi-Square	1,886 ^a	2	,390	
Likelihood Ratio	1,912	2	,384	
Linear-by-Linear Association	1,859	1	,173	
N of Valid Cases	346			

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is

19,53.

Για p-value = 0.390 > 0,05 δεν μπορούμε να απορρίψουμε την μηδενική υπόθεση σε σ.σ 0,05.

7. Γραμμική παλινδρόμηση

Μετρήθηκε το βάρος σε kg και ο αριθμός των cal/ημέρα σε ενήλικα κορίτσια και βρέθηκαν οι τιμές του πίνακα που ακολουθεί. Να εκτιμηθεί η ευθεία παλινδρόμησης του βάρους στις cal/ημέρα.

Μετά την εισαγωγή των δεδομένων στις στήλες Cal και Weight, ορίζουμε τον τύπο τους (Measure) να είναι Scale και μετά Analyze -> Regression -> Linear

Cal/ημέρα	Weight [kg]		
2680	60,4		
3280	81,1		
3890	94,9		
3170	86,4		
3390	90,3		
2670	60,4		
2790	77,8		
3330	85,0		
2710	71,6		
2600	64,6		
2880	75,1		
3430	89,6		
3160	84,4		
3330	93,0		
2360	61,3		

<u>)</u> 			Reports Descriptive Statistics Tables	* * *		Visible: 2	tof 2 Varia	ble
	Cal	Weight	Compare Means		var	Var	VBF	
1	2680	60,4	General Linear Model					1
2	3280	81,1	Generalized Linear Models					
3	3890	94,9	Mixed Models					
4	3170	86,4	Correlate		111			
5	3390	90,3	Regression	,	Automa	atic Linear M	Modeling	
6	2670	60,4	Loglinear		Linear.			
7	2790	77,8	Classify		Curve Estimation Partial Least Squares Binary Logistic Multinomial Logistic Ordinal			
8	3330	85,0	Dimension Reduction					
9	2710	71,6	Scale					
10	2600	64,6	Nonparametric Tests	,				
11	2880	75,1	Forecasting	,				
12	3430	89,6	Survival	*				
13	3160	84,4	Multiple Response	*	Probit.	Dit		
14	3330	93,0	Simulation		Nonline	ar		
15	2360	61,3	Quality Control	*	Weight	Estimation		
16			ROC Curve		2-Stage	e Least Squ	Jares.	
17					Optima	I Scaling (C	ATREG)	
	1					-	1	el.
B-11-10	Variable View							-

	Dependent:	Statistics
Cal	Meight	Containe of
	Block 1 of 1	Plots.
		Save
	Proviours	Ontions
	independent(s):	- Copilional
	/ Cal	
	Mothant Entry a	
	merrou. Erner	
	Selection Variable	
	H Rule	
	Cone Labole	
	Case Labels	
	WLS Weight	
	No	

Στο πλαίσιο Linear Regression που εμφανίζεται μεταφέρουμε την μεταβλητή Weight στο πεδίο **Dependent** δεξιά και την μεταβλητή Cal στο πεδίο **Independent(s)**.

Πατάμε <mark>ΟΚ.</mark>

EEAFOMENO 1:

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Cal ^b		Enter

a. Dependent Variable: Weight

b. All requested variables entered.

		Γ	Nodel Summary	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	<mark>,921^ª</mark>	,848	,836	4,9477

a. Predictors: (Constant), Cal

	ANOVAª							
Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	1773,407	1	1773,407	72,442	,000 ^b		
	Residual	318,243	13	24,480				
	Total	2091,649	14					

a. Dependent Variable: Weight

b. Predictors: (Constant), Cal

-			Coefficients	à		
_		Unstandardiza	d Coefficients	Standardized Coefficients		
		Ulistanuaruizet		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-4,833	9,861		-,490	,632
	Cal	,027	,003	,921	8,511	,000

a. Dependent Variable: Weight

weight = 0.027×cal - 4.833

Προκειμένου να δημιουργήσουμε ένα Scatter Plot της Weight(Cal):

$\textbf{Graphs} \rightarrow \textbf{Legacy Dialogs} \rightarrow \textbf{Scatter/Dots}$

Επιλέγουμε Simple Scatter και πατάμε Define.

Στο πλαίσιο Simple Scatter Plot που εμφανίζεται μεταφέρουμε την μεταβλητή Weight στο πεδίο **Υ Axis** δεξιά και την Cal στο **Χ Axis** και πατάμε <mark>ΟΚ.</mark>

Για να εμφανισθεί η ευθεία γραμμικής παλινδρόμησης κάνουμε διπλό κλικ κάπου στην επιφάνεια του διαγράμματος και στο πλαίσιο Chart Editor που εμφανίζεται κάνουμε κλικ στην θέση του βέλους.

Στο πλαίσιο Properties που εμφανίζεται επιλέγουμε Fit Method Linear και Confidence Intervals None και πατάμε Apply.

8. Mann-Whitney

Διεξήχθη μια σύγκριση με σκοπό να διαπιστωθεί αν υπάρχει διαφορά μεταξύ των συγκεντρώσεων του αζώτου ουρίας αίματος (BUN, blood urea nitrogen) σε 12 ασθενείς αποδοχείς νεφρικών μοσχευμάτων με σταθερή λειτουργία μοσχεύματος και σε 14 ασθενείς με εκτεταμένες μολύνσεις του ουροποιητικού (a=0.05).

Μεταμόσχευση (n _A =12)	UTI (n _B =14)
190	150
200	170
210	180
220	190
220	200
240	200
240	210
250	220
260	230
270	240
310	240
320	260
	280
	290

$H_0: M_{BUN} = M_{UTI}, H_1: M_{BUN} \neq M_{UTI}$

Εισάγονται οι μετρήσεις σε μια στήλη του SPSS και διαχωρίζονται μεταξύ τους με την βοήθεια της μεταβλητής Group. ΠΡΟΣΟΧΗ η μεταβλητή Group πρέπει να ορισθεί Type: Numeric, Measure: Ordinal

2 H		5	Reports Descriptive Statistics	• •	
1	BUN 190	Groi 1	Compare Means General Linear Model		var var
2	200	1	Generalized Linear Models Milled Models	*	
4 5	220 220	1	Correlate Regression	3	
6 7	240 240	1	Loginear Classify	;	
8 9	250 260	1	Dimension Reduction Scale	;	
10	270	1	Nonparametric Tests	*	A One Sample
11 12	310	1	Survival Multiple Response	2	Related Samples
13 14	150	2	Simulation		Legacy Dialogs
15 16	180	2	ROC Curve		
17 18	200	2			
**	d				(P

dentifies differences data follow the norm	between two or more groups using nonparametric tests. Nonparam al distribution.	etric tests do not assume your
What is your object	twe?	
Each objective con desired.	esponds to a distinct default configuration on the Settings Tab that	you can further customize. If
O Automatically	compare distributions across groups	
Compare me	dians across groups	
O Customize a	alysis	
Description		
Company mediant	across groups using the Median Test for k samples.	

Μεταφέρουμε την μεταβλητή BUN στο πεδίο Test Fields και την Group στο Groups.

Από την καρτέλα Settings και ορίζουμε να γίνει η δοκιμασία Mann-Whitney U (2 sample).

Πατάμε <mark>Run</mark>.

ΕΞΑΓΟΜΕΝΟ:

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The medians of BUN are the same across categories of Group.	Independent- Samples Median Test	,695 ^{1,2}	Retain the null hypothesis.
2	The distribution of BUN is the sam across categories of Group.	Independent- Samples Mann- Whitney U Test	,145 ¹	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is ,05.

¹Exact significance is displayed for this test.

²Fisher Exact Sig.

Με p-value 0,695 δεν μπορούμε να απορρίψουμε την μηδενική υπόθεση σε σ.σ 0.05, όπως άλλωστε λέει και η Decision.

9. Wilcoxon Signed Ranks Test

Η διάρκεια της εγκυμοσύνης προσδιορίσθηκε σε δείγμα 10 εγκύων με 2 διαφορετικές μεθόδους, την μέθοδο της τελευταίας περιόδου (LMP), και του υπερηχογραφήματος (US). Δίνουν ίδια ή διαφορετική διάρκεια;

LMP[d]	US[d]	ELEC VII Da	11 [DataSet0]	IBM SP	
275	273			*Untitled1 [Da	ataSet0]
292	285	1:		sible: 2 of 2 V	ariables
281	270		LMP	US	
284	272	1	275 292	273 285	-
285	278	3	281	270	
205	270	4	284	272	
283	276	5	285	278	
290	291	6	283	276	
		7	290	291	
294	290	8	294	290	
200	270	9	300	279	
300	279	10	284	292	
284	292	11			-
			4		•
		Data View	Variable View		
		IBM SPSS St	atistics Process	or is r	

$H_0: M_{LMP} = M_{US}, H_1: M_{LMP} \neq M_{US}$

Εισαγωγή των δεδομένων τύπου scale στο SPSS και μετονομασία των μεταβλητών σε LMP και US.

					TAPHS guildes /	
		Values	Missing	Columns	Align	Measure
1		None	None	8	# Center	🖋 Scale
2		None	None	8	E Center	& Scale
3						
_	41	-				!
ata View	Varia	ble View				

Analyze → Nonparametric Tests → Legacy Dialogs → 2 Related Samples

ie .	Edit	View	Data	Transform	Analyze	Direct Marketing	Graphs	U	nities	Add	ons	Window	W He	(p			
	Н			50	Repo	rts	1			11111	53	=	1114	0	-	MG	
			1		Dest	Descriptive Statistics				(Second	DALFER		110000111		Visib	e 2 of 2	Variab
	1	1444	-	int	Table				1	. 1	Long		a line	1	10000	inter a	
14	-	9981		100	Comp	are Means	- 31		90		4101		9101		enter (4.00	1
- 0	-				Gene	rai Linear Model											
0	-				Gene	railgeo Linear wooei	в <u>(</u>										
4	-				Corte	Colors -	1										
4	-				Dear	aceston .	1										
8	-				Look	100//11	- S										
2	-				Class	ity .											
	-				Dimes	nsion Reduction	3										
0	-				Scale	Scale											
10					tionp	arametric Tests			One S	amnia	16						
11					Fore	asting			indene	indent	Samo						
-					Survi	vati			Delate	d Sam	ries						
	12				Mutte	de Résponse			Lenar	v Diak	vino.			1 44.00	101242		_
11					The Senus	ation.			Teðar	y crian	als:	-		Chi-	iquare.		
	1				Qual	ty Control	1						-	BNO	10.00		
	P.				ROC	ROC Curve							- 3	Ente	tore us		
					Translational		1							1-5a	mple K	5	
2	1	4		_				_		_	- 4	-		2 ind	epende	ent Samp	les_
LA.	View	Variab	le view											Kind	lepende	ent Samp	ies
		COLUMN TO A	man devis											2 Re	lated S	amples	

ΕΞΑΓΟΜΕΝΟ:

		Ranks		
		N	Mean Rank	Sum of Ranks
US - LMP	Negative Ranks	8 ^a	5,88	47,00
	Positive Ranks	2 ^b	4,00	8,00
	Ties	0°	t.	
	Total	10		

Test Statistics ^a						
	US - LMP					
Z	-1,993 [♭]					
Asymp. Sig. (2-tailed)	,046					

a. Wilcoxon Signed Ranks Test

b. Based on positive ranks.

a. US < LMP

b. US > LMP

c. US = LMP

Mε p-value = 0,046 < 0,05 μπορούμε να απορρίψουμε την H_0 σε σ.σ 0,05.

10. Krouskal-Wallis

Από τέσσερα σημεία ενός θαλασσίου κόλπου πήραμε δείγματα νερού και μετρήσαμε την συγκέντρωση ενός είδους μικροβίων. Οι μετρήσεις έδωσαν τις τιμές του πίνακα που ακολουθεί. Να εξετασθεί σε σ.σ. 0.05 αν η μόλυνση είναι ομοιόμορφα κατανεμημένη στον κόλπο αυτόν.

		к=4,	n=25	
	n _A =6	n _B =6	n _Γ =6	n_=7
α/α	Α	В	Г	Δ
1	4	2	8	7
2	8	2	10	8
3	10	7	10	9
4	10	7	10	10
5	10	9	10	10
6	12	10	15	15
7				15

Η₀: Τα 4 δείγματα προέρχονται από τον ίδιο πληθυσμό

Εισάγουμε τα δεδομένα σε μια στήλη του SPSS και τα

a H		5 7		
		Visit	le 2 of 2 Va	aria
	Conc	Group	157	
1	4	1		
2	8	1		
3	10	1		
4	10	1		
5	10	1		
6	12	1		
7	2	2		
8	2	2		
9	7	2		
10	7	2		
11	9	2		
12	10	2		
13	8	3		
14	10	3		
15	10	3		
16	10	3		
17	10	3		
18	15	3		
19	7	4		
20	8	4		
**	4			
Data View	Variable View	-		

* U	Intitle	d1 [D	ataSet0]	- IBM	SPSS	Statistics	5 Data Edito	r						×
ile	Edit	View	<u>D</u> ata	Trans	sform	Analyze	Direct Mar	keting	Graphs	Utilities	Add-ons	Window	Help	5
				5	7			M	MI		4	2		
			Valu	es	Mi	ssing	Columns		Align	Me	asure	Role	е	
1			None		None		8	E Ce	enter	& Scal	e	> Input		4
2			None		None		8	≣ Ce	enter	🚽 Ordi	nal	💊 Input		
3														
4														
5														
0		41											,	*
Data	View	Varia	able View	,										_
							IB	M SPS	S Statistics	Processo	r is ready			

διαχωρίζουμε με την βοήθεια της μεταβλητής Group (1,2,3,4), Type: Ordinal

Analyze \rightarrow Nonparametric Tests \rightarrow Independent Samples

Ξ

Run Paste Reset Cancel @ Help

Hodges-Lehman estimate (2 samples)

Στο πλαίσιο που εμφανίζεται και στην καρτέλα Fields, μεταφέρουμε τις μεταβλητές Conc και Group στο πεδίο **Test Field** και **Groups** αντιστοίχως.

a *Untitle	d1 [DataSet0]	TBM SPSS	Statistics Data Editor	_IO ×	🕼 Nonparametric Tests: Two or More Independent Samples
File Edit	View Data	Transform	Analyze Direct Marketing Graphs	Utities Add-ons Window Help	Opertue Felds Settions
26		5 3	Descriptive Statistics		Q Lise predefined roles
			Tables +	Visible: 2 of 2 Variables	Use prevenieu roles Use custom field assignments
	Conc	Group	Compare Means +	viar viar	Fields Test Fields
1	4	1	General Linear Model		Sort hone * Conc
2	8	1	Generalized Linear Models		
4	10	1	Correlate		
5	10	1	Regression +		
6	12	1	Loginear P		
7	2	2	Classify		
8	2	2	Dimension Reduction		
9	7	2	Scale +		
10	7	2	Economic rests	A One Sample	
11	9	2	Survival	A Independent Samples	
12	8	3	Multiple Response +	Lease Distance	
14	10	3	Reputation	Eclacy surveys	
15	10	3	Quality Control +		
16	10	3	ROC Curve		Groups.
17	10	3			Group
18	15	3			
19	7	4			
-	4		No.	15	Run Paste Reset Cancel @ Help
Data View	Variable View				
onparame	tric Tests		IBM SPSS Statisti	s Processor is ready	
Nonpar	ametric Tests	Two or Me	ve Independent Samples	and the second	📰 Στην καρτέλα που εμφανίζεται με Settings -
Chiertium	Ender Settin	an l			
alest an it	1 KOROO COM				
Choose To	pete	Significan	e level: 0 06		του οριοπό οριζούμε την στασμ
Test Onto	105		0,00		
User-Missi	ing Values	Confidenc	e interval (%). 95,0		σημαντικότητας.
		-	Conta		
		(B Earls	via caper last by feet		Ακολούθως στην καρτέλα Choose Test
		O Exch	ide cases listwise		
		-			
					οριζούμε Kruskai-wailis και πατάμε <mark>κun</mark> .
			Run Paste Reset Cano	et 😔 Help	
					ΕΞΔΓΟΜΕΝΟ·
Nonpara	ametric Tests:	Two or Mo	re Independent Samples		
Objective	Fields Settin	9 5			
elect an it	em.				
Choose Te	ests	O Automati	cally choose the tests based on the o	tata	Himotheeis Test Summary
est Optio	ins	Customia	e tests		hypothesis rest summary
ser-Missi	ing Values	Compa	re Distributions across Groups		Null Hypothesis Test Sig. Decision
		100.45	w	Kruskal-Walls 1-way ANOVA (k samples)	Independent-
		L. Ma	nn-winney o (2 samples)	Multiple comparisons All pairwise	The distribution of Conc is the sam@amples 083 null
		ET KO	monorov-Sittirnov (2 samples)	Test for ordered alternatives	across categories of Group. Kruskal- ,000 India Wallis Test hypothesis.
			The summer of some set	(Jonckheere-Terpstra for k samples)	
		Te	st seguence for randomness	Hypothesis order: Emailest to larg	Asymptotic significances are displayed. The significance level is ,05.
		(1	raio-wolfowitz for 2 samples)	Multiple comparisons. All pairwise	E .
		Come	re Ranges across Groups	Compare Medians across Groups	
		Southe	a condica accesa connela	contract measure on trace country	
				Marting fast /k complex)	
		E Mo	ses extreme reaction (2 samples)	Median test (k samples)	

απορρίψουμε την μηδενική υπόθεση σε σ.σ. 0,05.

11. Δοκιμασία προσήμου (Sign test)

Προκειμένου να διαπιστωθεί αν υπάρχουν σημαντικές διαφορές μεταξύ των συγκεντρώσεων του Καλίου στο πλάσμα και στον ορό, ελήφθησαν δείγματα και των δύο τύπων από 18 εθελοντές.

[K _{πλ}]/mM	[K _{op}]/mM
4,0	4,2
3,8	3,8
3,6	3,7
3,9	3,8
4,4	4,5
4,6	4,4
4,8	4,9
4,5	4,7
4,3	4,5
4,0	3,9
4,1	4,1
4,0	4,1
3,5	3,6
3,7	3,7
3,6	3,7
4,2	4,2
4,1	4,0
4,5	4,5

 $H_0: M_A = M_B, H_1: M_A \neq M_B$

Εισαγωγή των δεδομένων τύπου scale στο SPSS και μετονομασία των μεταβλητών σε Plasma και Serum.

Analyze \rightarrow Nonparametric Tests \rightarrow 2 Related Samples

Από το μενού της καρτέλας που εμφανίζεται επιλέγουμε την καρτέλα Fields και μεταφέρουμε τις μεταβλητές Plasma και Serum στα πεδία **Test Fields**.

Fil Ec Vie Da	Tran: Ana *Untr	tled1 [DataSet0] - IBM SP			
e H						
Visible: 2 of 2 Variabl						
	Plasma	Serum	var			
1	4,0	4,2	1			
2	3,8	3,8				
3	3,6	3,7				
4	3,9	3,8				
5	4,4	4,5				
6	4,6	4,4				
7	4,8	4,9				
8	4,5	4,7				
9	4,3	4,5				
10	4,0	3,9				
11	4,1	4,1				
12	4,0	4,1				
13	3,5	3,6				
14	3,7	3,7				
15	3,6	3,7				
16	4,2	4,2				
17	4,1	4,0				
18	4,5	4,5				
10	1					
Data View	Variable View					

<u>a</u> H		12	Reports Descriptive Statistics	;	Vieible:	2 of 2 Mariable	
	Plasma	Seru	Tables Compare Means	;	Visit	Viti	
1	4,0	4,2	General Linear Model	,		1	
2	3,8	3,8	Generalized Linear Models	,			
3	3,6	3,7	Mixed Models				
4	3,9	3,8	Correlate				
5	4,4	4,5	Regression				
6	4,6	4,4	Loglinear				
7	4,8	4,9	Classify				
8	4,5	4,7	Dimension Reduction				
9	4,3	4,5	Scale				
10	4,0	3,5	Nonparametric Tests		A One Samp	le	
11	4,1	4,1	Forecasting		/ Independe	nt Samples	
12	4,0	4,*	Survival		Related Samples		
13	3,5	3,6	Multiple Response	1	Legacy Di	alogs	
14	3,7	3,7	📆 Simulation				
15	3,6	3,7	Quality Control	,			
16	4,2	4,2	ROC Curye				
17	4,1	4,0					
	a			_		15	
Data View	Variable View						

Nonparametric Test	ts: Two or More Related Samples	🔜 Στην καρτέλα Settings καθορίζουμε την
Select an item Choose Tests Test Options User-Missing Values	Significance level: 0.05 Cgnfidence interval (%): 95.0 Excluded Cases Excluded cases test-by-test Disclote cases test-by-test Disclote cases test-by-test	στάθμη σημαντικότητας (έστω 0,05) κα πατάμε <mark>Run</mark> . ΕΞΑΓΟΜΕΝΟ:
		Hypothesis Test Summary Null Hypothesis Test Sig. Decision 1 The median of differences betwee & lated
	Run Paste Reset Cancel O Help	

Έτσι με p-value = 0,267 > 0,05 δεν απορρίπτουμε την μηδενική υπόθεση σε σ.σ 0,05.

12. Πολλαπλή γραμμική παλινδρόμηση

Σε κάθε άτομο μιας ομάδας 11 ασθενών καταγράφηκαν η συστολική πίεση (SBP), η ηλικία (Age) καθώς και το βάρος του (Weight) σε kg. Υπάρχει σχέση της συστολικής πίεσης με την ηλικία και το βάρος; Μπορεί ένα γραμμικό μοντέλο να προβλέψει την τιμή της συστολικής πίεσης εάν δίνεται η ηλικία και το βάρος;

H_0 : Η συστολική πίεση είναι ανεξάρτητη από την ηλικία και το βάρος

Η₁: Η συστολική πίεση εξαρτάται από την ηλικία και το βάρος

Εισαγωγή των δεδομένων τύπου scale στο SPSS και μετονομασία των μεταβλητών σε SBP (dependent), Age (independent) και Weight (independent).

		5 3	- 📳 🏪 🗄	
3 : Weight			Visible: 3 of 3	Variable
	SBP	Age	Weight	V٤
1	132	52	78,5	2
2	143	59	83,5	
3	153	67	88,0	
4	162	73	95,7	
5	154	64	88,9	
6	168	74	99,8	
7	137	54	85,3	
8	149	61	85,3	
9	159	65	93,9	
10	128	46	75,8	
11	166	72	98,4	
12				-
-	1	***		M

* *mir.sav [DataSet0] - IBM SPSS Statistics Data Editor Elle Edit View Data Transfo Analyz Direct Mark Graph Utilitie Add-or Windo Help Image: Statistics Data Editor Im								
	olumns	Align	Measure	Role				
1		E Center	Scale Scale	N Input				
2		■ Center	Scale 🖉	S Input				
3		E Center	scale Scale	➤ Input				
4								
	4			-				
Data View	Variable	e View						
		IBM SPSS Statist	ics Processor is rea	dy				

a minsav	[DataSet0] -	IBM SPSS S	atistics Data Editor			_ ×			
<u>Elle E</u> dit	<u>View</u> Data	Transform	Analyze Direct Marketing G	Braphs	Utilities Add-ons Wir	dow <u>H</u> elp	🝓 Linear Regression		×
13 : Weight		I C 3	Reports Descriptive Statistics Tables	* * *	Visible 3	of 3 Variables	Age	Dependent:	Statistics
	SBP	Age	Compare Means	- 80	ar var vi	ar v	Weight	Block 1 of 1	Plois
1	132	52	General Linear Model	×.		-			Save
2	143	59	Generalized Linear Models	1				Previous Next	Ontions
3	153	67	Mixed Models	1				Independent/s):	Options
4	162	73	Correlate	¥.,				A second cin(3).	
5	154	64	Regression	- F.	Automatic Linear Mode	eing		Age	
6	168	74	Loginear	- t:	Linear			Weight	
7	137	54	Classify	1	Curve Estimation				
8	149	61	Dimension Reduction	- 51	Partial Least Squares	22 J		Method: Enter	
9	159	65	Scale		Binary Logistic				
10	128	46	Nonparametric Tests	×.	Multinomial Logistic			Selection Variable:	
11	166	72	Forecasting	- 13	Ordinal			Rule	
12			Survival		Prohit				
13			Multiple Response	0				Case Labels:	
114			Simulation		ma recentre af			*	
15			Quality Control		weight estimation.			WI S Weight	
44		_	ROC Curve		2-Stage Least Square	s		W The magne	
Data View	Variable View	1	444	3	Optimal Scaling (CATE	EG)			
	Chinese Contraction						OK	Paste Reset Cancel Help	
Linear.			IBM SPSS S	Statistic	s Processor is ready				

Στο πλαίσιο Linear Regression που εμφανίζεται μεταφέρουμε την εξαρτημένη μεταβλητή SBP στο πεδίο Dependent και τις ανεξάρτητες μεταβλητές Age και Weight στο πεδίο Independent(s). Πατώντας Statistics βγαίνουμε στο πλαίσιο Linear Regression: Statistics το οποίο συμπληρώνουμε ως εξής:

Regression Coefficients	MC MC	odel fit
	K R	squared change
Confidence intervais	<u>∎</u> De	escriptives
Level(%): 95	Pa	rt and partial correlation
Covariance matrix	Co	llinearity diagnostics
Residuals Durbin-Watson Casewice diagnostics		
Outliers outside:	3	standard deviations
All cases		

ΕΞΑΓΟΜΕΝΟ:

Descriptive Statistics							
	Mean	Std. Deviation	N				
SBP	150,09	13,627	11				
Age	62,45	9,114	11				
Weight	88,451	7,8536	11				

Correlations

		SBP	Age	Weight
Pearson Correlation	SBP	1,000	,979	,971
	Age	,979	1,000	,946
	Weight	,971	,946	1,000
Sig. (1-tailed)	SBP		,000	,000
	Age	,000		,000
	Weight	,000	,000	
Ν	SBP	11	11	11
	Age	11	11	11
	Weight	11	11	11

Variables Entered/Removed^a

Mode	Variables	Variables	
1	Entered	Removed	Method
1	Weight, Age ^b		Enter

a. Dependent Variable: SBP

b. All requested variables entered.

	Model Summary											
					Change Statistics							
			Adjusted R	Std. Error of	R Square							
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Sig. F Change			
1	,988 ^a	,977	,971	2,319	,977	168,603	2	8	,000			

a. Predictors: (Constant), Weight, Age

	ANOVA											
Model		Sum of Squares	df	Mean Square	F	Sig.						
1	Regression	1813,876	2	906,938	168,603	,000 ^b						
	Residual	43,033	8	5,379								
	Total	1856,909	10									

a. Dependent Variable: SBP

b. Predictors: (Constant), Weight, Age

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Correlations		
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	31,004	11,951		2,594	,032			
	Age	,862	,248	,576	3,469	,008	,979	,775	,187
	Weight	,738	,288	,425	2,560	,034	,971	,671	,138

a. Dependent Variable: SBP

Moντέλο: SBP = 0,862×Age + 0,738×Weight + 31,0