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An important task within conservation genetics consists

in defining intraspecific conservation units. Most concep-

tual frameworks involve two steps: (i) identifying demo-

graphically independent units, and (ii) evaluating their

degree of adaptive divergence. Whereas a plethora of

methods are available for delineating genetic population

structure, assessment of functional genetic divergence

remains a challenge. In this issue, Tymchuk et al. (2010)

study Atlantic salmon (Salmo salar) populations using

both microsatellite markers and analysis of global gene

expression. They show that important gene expression

differences exist that can be interpreted in the context of

different ecological conditions experienced by the popu-

lations, along with the populations’ histories. This dem-

onstrates an important potential role of transcriptomics

for designating conservation units.
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The correspondence between neutral genetic differentiation

as measured by molecular markers, and adaptive diver-

gence, such as that identified by analysis of quantitative

traits is still not well established (Reed & Frankham 2001;

Leinonen et al. 2008). Hence, defining conservation units

based solely on neutral genetic variation reflects the degree

of reproductive isolation and demographic history of popu-

lations, but does not necessarily capture components of

differentiation resulting from adaptive divergence (Waples

1991; Crandall et al. 2000; Fraser & Bernatchez 2001). On

the other side, analysing adaptive divergence is a challeng-

ing task. Testing local adaptation at the quantitative genetic

level using, e.g. a QST–FST approach (Leinonen et al. 2008)

requires common garden experimental set-ups that may

become unfeasible depending on the life history of the spe-

cies and the number of populations to be tested. Resorting
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to identification of adaptive variation at the genome level

is a very promising avenue (Luikart et al. 2003), but cur-

rent low-resolution genome scans typically identify only a

handful of genes under possible selection (Vasemägi et al.

2005; Namroud et al. 2008). As a result, many studies

attempting to define conservation units do a good job in

testing demographic independence, but provide more

circumstantial evidence regarding adaptive variation (see

Hansen et al. (2008) for an example and discussion).

Analysing divergence among populations at the tran-

scriptome level provides phenotypic data, but also repre-

sents a first step on the pathway from genotype towards

functional phenotype (Fay & Wittkopp 2008). Hence, gene

expression variation among individuals and populations

can be interpreted as physiological acclimation and ⁄ or

adaptation of individuals and populations. This dual

nature of the data is reflected in different studies which on

the one side use transcriptome level analyses for studying

phenotypic plasticity (e.g. Giger et al. 2006; Aubin-Horth &

Renn 2009) and on the other side, use transcriptome varia-

tion as indicators of adaptive divergence (e.g. Derome et al.

2006; Larsen et al. 2007; Roelofs et al. 2009). Could tran-

scriptome data assist in the designation of conservation

units? This is ultimately the question Tymchuk et al. (2010)

set out to address.

Tymchuk et al. focused on 12 Atlantic salmon popula-

tions in the Bay of Fundy region and the Southern Uplands

region of Nova Scotia, Canada. Important environmental

variation exists throughout these regions which may have

involved adaptive divergence among populations. In par-

ticular, it is known that populations from the Outer Bay of

Fundy undertake marine feeding migrations to Greenland

waters, whereas populations from the Inner Bay of Fundy

undertake shorter migrations. Important heritable compen-

satory growth response differences have been observed

between these population groups (Fraser et al. 2007b).

Moreover, the populations are declining and of consi-

derable conservation concern (Fraser et al. 2007a), which

highlights the need for defining conservation units.

Neutral genetic population structure was analysed using

seven microsatellite loci. Global gene expression was stud-

ied using a 16K cDNA salmonid microarray and based on

RNA extracted from whole fry. The fry represented hatch-

ery-reared offspring of wild parents that had spent at least

part of their life cycle in the wild, and in four populations

analyses were replicated over 2 years. Significant gene

expression differences among populations were observed

at 389 genes (22%) in the year where most populations

were sampled and after controlling for rearing of fry in

two different hatcheries. Hierarchical clustering based on

these genes revealed a distinct grouping of populations

from the southern Uplands, the inner and the outer Bay of
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Fundy. Important expression differences were also evident

within regions. These patterns corresponded well with the

relationships inferred from microsatellite markers. The

combined microsatellite and transcriptome data would sug-

gest that groups of populations at the regional level consti-

tuted evolutionarily significant units, although in the inner

Bay of Fundy, the presence of two or more evolutionarily

significant units might be argued.

Tymchuk et al. further noted that hatchery supplementa-

tion or introgression by escaped farmed salmon could have

affected patterns of gene expression. This issue has been

treated in more detail in another recent study, incidentally

focusing on two of the same populations (Normandeau

et al. 2009). This study confirms on the one side that spawn-

ing intrusion by farmed salmon may lead to homogeniza-

tion of transcriptome variation among populations. On the

other side, changes of gene expression profiles in admixed

individuals may differ considerably among populations,

suggesting that differences among wild populations in the

genetic architecture underlying gene expression may cause

unpredictable effects of introgression by farmed salmon.

The interesting study by Tymchuk et al. clearly suggests

a potential for using transcriptome variation to assist in

defining conservation units, but also highlights some

important challenges in this respect. First, since the data is

essentially phenotypic, evidence for the genetic basis of

interpopulation variation should be provided by rearing or

at the very least acclimating the individuals to be studied

in a common garden set-up. The populations studied were

reared in captivity but in two different hatcheries, thus

potentially confounding different hatchery environments

and real genetically based differences in gene expression.

This problem was accommodated by removing genes

showing different expression between the two hatcheries.

In general, however, this is an example of a problem that

is likely to arise in other studies encompassing a large

number of populations where rearing in a single common

garden is not feasible.

Second, even if the data have a genetic basis, a case has

to be made that transcriptome variation among populations

reflect selection as opposed to drift. This could not be spe-

cifically tested in Tymchuk et al.’s study, although there

was a tendency that differences in gene expression and in

the functional categories of genes showing expression dif-

ferences coincided with environmental conditions and

migratory life histories. A number of approaches have been

applied for identifying the evolutionary forces underlying

gene expression differences (Fay & Wittkopp 2008), but rel-

atively few methods are suitable for fine-scale population

studies. Rigorous testing could be conducted by comparing

FST and gene expression QST, or by identifying the quanti-

tative trait loci underlying gene expression (eQTL) and

analyse eQTLs within a genome scan framework; both

approaches have been applied in non-model organisms

(Roberge et al. 2007; Whiteley et al. 2008), but would be

resource-demanding for analysing many populations. An

alternative approach consists in testing correlation between

gene expression and environmental parameters (e.g. tem-
perature) and control for population history based on

neutral molecular markers (Whitehead & Crawford 2006).

This sort of ‘landscape transcriptomics’ analysis appears to

be a realistic option for testing adaptive divergence at the

gene expression level and integrating the results into the

designation of conservation units.
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