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Hyperexpression of biopharmaceuti-
cals in edible leaf chloroplasts docu-
ments a recent breakthrough in low-
cost oral delivery of biopharmaceuti-
cals that are bio-encapsulated in plant
cells. This will enable treating human
metabolic or genetic diseases, such as
Alzheimer's, diabetes, hypertension,
hemophilia, and retinal diseases.

New tools for smart chloroplast gen-
ome engineering are now available,
including Gateway/modular vectors,
Feature Review
The Engineered Chloroplast
Genome Just Got Smarter
Shuangxia Jin1,2 and Henry Daniell1,*

Chloroplasts are known to sustain life on earth by providing food, fuel, and
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genome has also been smartly engineered to confer valuable agronomic traits
and/or serve as bioreactors for the production of industrial enzymes, biophar-
maceuticals, bioproducts, or vaccines. The recent breakthrough in hyperex-
pression of biopharmaceuticals in edible leaves has facilitated progression to
clinical studies by major pharmaceutical companies. This review critically eval-
uates progress in developing new tools to enhance or simplify expression of
targeted genes in chloroplasts. These tools hold the promise to further the
development of novel fuels and products, enhance the photosynthetic process,
and increase our understanding of retrograde signaling and cellular processes.
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Two Decades of Chloroplast Genetic Engineering
Almost two decades ago, the tobacco (Nicotiana tabacum) chloroplast genome was engineered
to confer herbicide and insect resistance, outperforming nuclear transgene expression by
several hundred-fold [1,2]. Another milestone was engineering salt-tolerance in carrot (Daucus
carota), a species requiring somatic embryogenesis [3]. This was followed by several other
reports utilizing somatic embryogenesis including cotton (Gossypium hirsuturm) [4] and soybean
(Glycine max) [5,6]. Today, several edible crops have been transformed utilizing organogenesis,
including lettuce (Lactuca sativa), cabbage (Brassica oleraceavar), potato (Solanum tuberosum),
tomato (Lycopersicon esculentum), and sugar beet (Beta vulgaris) [7–11]. However, plastid
transformation of cereal crops remains elusive.

Current chloroplast genome-engineering projects have led to stable integration and expression
of transgenes from different kingdoms including bacterial, viral, fungal, animal, and human genes
to express biopharmaceutical proteins, antibiotics, vaccine antigens, industrial enzymes, and
biomaterials to confer valuable agronomic traits. High levels of expression, multigene engineer-
ing in a single transformation event, transgene containment via maternal inheritance, and minimal
pleiotropic effects due to subcellular compartmentalization of toxic transgene products are
typical advantages of transforming the chloroplast over the nuclear genome. In this review we
critically evaluate recent advances in this expanding field. Biopharmaceuticals expressed in
chloroplasts have advanced to clinical studies by the pharmaceutical industry, providing a clear
indication of the current maturity of this field and the importance of this approach. Hyper-
expression of biopharmaceuticals in healthy plants (making up to 70% of total leaf protein) and
the ability to express in edible leaves permits oral delivery and significantly reduces production
costs. Several metabolic and genetic diseases including Alzheimer's, diabetes, hypertension,
hemophilia, and retinal diseases have been successfully treated with therapeutic proteins made
in chloroplasts. Several new tools including Gateway/modular chloroplast vectors, splicing
exons to facilitate expression of eukaryotic genes using overlapping PCR primers, multigene
engineering concepts, and the application of species-specific vectors have significantly
improved the efficiency of chloroplast genome engineering. RNA interference has been explored
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Glossary
Blood–brain and blood–retina
barriers: highly-selective permeability
barriers that separate the circulating
blood from the extracellular fluid in
the central nervous system or retina,
and which only allow the passage of
small molecules (water, gas, glucose)
and lipid-soluble molecules by
passive diffusion.
Cholera toxin B (CTB): binds to
receptors for GM1 ganglioside on the
surface of target cells. Once bound,
the entire toxin complex and fused
proteins are endocytosed by that cell.
CTB is therefore used as a fusion tag
to facilitate protein drug delivery.
CO2 concentrating mechanism
(CCM): an effective adaptation that
increases the CO2 concentration
around the primary photosynthetic
enzyme ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco).
Cpn60 and Hsp93: heat-shock
proteins of different molecular sizes
(60 and 93 kDa) that are generally
for the first time via the chloroplast genome to silence genes in the insect gut. Single genes
conferring diverse agronomic traits including enhanced biomass and resistance to biotic/abiotic
stress have been explored. Most importantly, transgenes engineered via the chloroplast genome
can regulate nuclear gene expression, offering a valuable tool to understand retrograde
signaling and other cellular processes.

The Art of Chloroplast Genome Engineering – Evolving New Concepts
Chloroplast transformation requires double homologous recombination (Figure 1A) [12,13].
Therefore, two chloroplast DNA segments are used as flanking sequences in chloroplast vectors
to insert the transgene cassette into an intergenic spacer region, without disrupting any
functional genes. The first debate in this field was to find the ideal site for transgene integration.
Two opposing theories emerged: insertion of transgenes into transcriptionally-silent spacer
regions (in which chloroplast genes are located on opposite DNA strands and in opposite
orientations – the Maliga concept) or insertion into transcriptionally-active spacer regions (within
chloroplast operons – the Daniell concept). The advantages of each site were tested recently by
insertion of the lux operon with an identical expression cassette at both sites; the transcription-
ally-active spacer region was found to offer a 25-fold higher level of expression [14], and authors
attributed this to higher read-through transcriptional activity. To date, one of the most commonly
used site of transgene integration is the transcriptionally-active intergenic region between the
trnI–trnA genes (in the rrn operon) located within the inverted repeat regions of the chloroplast
genome [12,13,15–17], although several other sites have been explored (Figure 1B). With
responsible for preventing thermal
damage to proteins.
Homoplasmy: describes the
presence of only one type of
chloroplast genome in a genetically
modified plant cell.
Immunogobulins IgA and IgG1:
antibodies that develop after
immunization and that offer
protection against invading
pathogens by binding to their surface
proteins.
Inner envelope protein 37 kDa
(IEP 37): this chloroplast protein is
part of the protein import machinery
in the TIC–TOC (translocon inner/
outer membrane complexes) system.
Inner membrane (IM) of the
chloroplast envelope: chloroplasts
have a double membrane system:
the inner membrane and the outer
membrane.
Intercistronic expression element
(IEE): optional element in plastids
that produces monocistronic mRNAs
from polycistronic mRNAs.
Interleukin 10 (IL-10): also known
as human cytokine synthesis
inhibitory factor (CSIF), IL-10 is an
anti-inflammatory cytokine.
Light-harvesting chlorophyll
protein (LHCP): the LHCPa/b
protein is an integral membrane
protein.
Oxygen-evolving protein (OE23):
the 23 kDa subunit of the oxygen-
evolving complex is located deeply
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Figure 1. The Art of Chloroplast Genome Engineering. (A) Schematic representation of the chloroplast vector. The
vector includes at least two chloroplast DNA fragments as flanking sequences to facilitate insertion by double homologous
recombination, a selectable marker gene, and regulatory elements. (B) Examples of components commonly used in
chloroplast vectors. Abbreviations: cp, chloroplast; GOI, gene of interest for various biotechnology applications; P,
promoter; SMG, selective marker gene. 30-UTR, 30 untranslated region, used to enhance transcript stability; 50-UTR, 50

untranslated region, used to enhance ribosome binding.
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inside chloroplasts within the
thylakoid lumen.
Phosphoenolpyruvate
translocator (PPT): part of protein
import machinery located in the inner
chloroplast envelope membrane.
Renin–angiotensin system (RAS):
this system plays an important role in
cardiovascular homeostasis and in
the pathogenesis of inflammation and
autoimmune dysfunction. Angiotensin
II (Ang II, processed by angiotensin
converting enzyme, ACE) functions as
a proinflammatory effector via the
angiotensin type 1 receptor. RAS
imbalance results in development of
pulmonary hypertension, retinal
diseases, and muscular dystrophy.
Regulatory T cells (Tregs): T cells
that express immunosuppressive
cytokines.
Retrograde signaling: signaling
between different subcellular
organelles and the nucleus; protein
expression in the chloroplast has
been shown to regulate nuclear gene
expression.
Riboswitch: a regulatory fragment of
mRNA that binds to its effectors,
resulting in changes in its own
activity.
Transforming growth factor
b (TGF-b): an immunosuppressive
cytokine involved in induction of
tolerance.
Tic110, Tic40, Toc159: protein
translocons located at the inner (TIC)
and outer (TOC) chloroplast envelope
membranes.
g-Tocopherol methyltransferase
(gTMT): catalyzes the last step of
/-tocopherol biosynthesis and
converts g-tocopherol to
/-tocopherol.
Total soluble protein (TSP): the
total content of soluble protein in leaf
extracts.
insertion of seven transgenes at this site, up to 13 genes could be driven by two endogenous
16S rrn and psbA promoters [18,19]. The flanking sequences include the chloroplast origin of
replication (that provides more copies of templates for integration) and a copy-correction mecha-
nism within the inverted repeat regions that enhances homoplasmy (see Glossary) [20]. In
addition, introns present within these genes facilitate efficient processing of transgene transcripts.
Transgene expression levels inserted at this site are among the highest reported [21–23].

It is important to use species-specific endogenous regulatory sequences in transgene cassettes
to achieve high levels of expression [23]. The endogenous psbA promoter and 50 and 30

untranslated regions (UTRs) [24], and the heterologous bacteriophage T7 gene 10 [20,25],
continue to be widely used for transgene expression, but more regulatory sequences are
needed for multigene engineering. A chloroplast gene expression system driven by an inducible
promoter would reduce the pleiotropic effects of toxic foreign proteins expressed in trans-
plastomic plants. Such an inducible plastid gene expression system was first developed using a
inducible nuclear promoter. The T7 RNA polymerase was targeted to chloroplasts to drive
transgenes integrated into the chloroplast genome [25], and was used to express the phb
operon a decade later [26]. More recently, the riboswitch concept has been introduced to
regulate transgene expression in transplastomic plants [27]. Although this concept represents a
simple approach to turn an introduced transgene on or off, the switching efficiency is low and the
modulation of transgene expression after ligand addition or removal is poor; this strategy
requires further optimization for enhanced transgene expression.

Two new strategies for the construction of chloroplast vectors have been developed recently.
One method uses the Gateway system to simplify vector construction and improve vector
design [28]. Another group used modular design of genetic elements to construct chloroplast
vectors to build transcriptional units as well as target any homologous recombination site of
choice [29]. In addition, an intercistronic expression element (IEE) was introduced into the
spacer region between cistrons to enhance processing of polycistronic mRNA into monocis-
tronic mRNA to enhance translation [7]. However, this concept contradicts recent in-depth
ribosome profiling studies [30] that show similar translation efficiency in both spliced and
unspliced native chloroplast polycistronic mRNAs, as demonstrated previously by high-level
expression of several heterologous polycistrons via the chloroplast genome lacking an IEE
[21,31], or multigenes engineered recently via the chloroplast genome [18,19]. New PCR
methods using overlapping primers have been used to remove introns and permit the expres-
sion of eukaryotic genes without the need for cDNA libraries; this concept was successfully
employed to transform the chloroplast genome with fungal genes containing >10 introns [32].
Although codon optimization is desirable to enhance the expression level of eukaryotic genes
[33], the highest levels of expression have, ironically, been obtained with native human gene
sequences [23], suggesting that codon usage in chloroplast is much more flexible than in several
other recombinant protein expression systems.

One major limitation is the availability of selectable markers that impact only on chloroplast
protein synthesis and not on any other cellular compartment. The aadA gene, first successfully
used for Chlamydomonas chloroplast transformation [34], and later in tobacco chloroplasts [35]
on spectinomycin selection, is the only marker that has worked reproducibly to regenerate
transplastomic events in several different plant species. In recent years, several antibiotic-free
selectable markers based on D-amino acid oxidase [36], isopentenyl transferase (IPT) [37], and
the asanthranilate synthase /-subunit (ASA2) [38] have been developed (Figure 1B). Removal of
the selectable markers can be achieved using direct repeats or Cre-lox recombination
approaches [39]. Indeed, precise excision of a selectable marker gene (aadA) was accomplished
recently from the most commonly used transgene integration site (trnA/trnI) by using the
mycobacteriophage Bxb1 recombinase and attP/attB recognition sites [40].
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In the past two decades chloroplast genetic engineering has focused primarily on achieving
hyperexpression of foreign proteins. Although the chloroplast genome can produce abundant
transcripts, it has not yet been exploited to produce and deliver double-stranded (ds) RNA.
Application of RNAi technology via the plant nuclear genome has several limitations. Likewise,
delivery of small RNA prepared in other systems for human therapeutics is highly challenging [41].
In agriculture, there is a great need to downregulate harmful genes to protect plants from
pests. Similarly, downregulation of dysfunctional genes that cause cancer, autoimmune diseases,
or immune disorders could help in their treatment. Owing to the high level of chloroplast transcrip-
tion, dsRNA could be synthesized in large quantities and orally delivered via bio-encapsulation
in plant cells to target harmful genes [42]. In the examples described below, b-actin, lepidopteran
chitin synthase (Chi), cytochrome P450 monooxygenase (P450), and V-ATPase dsRNA made
in chloroplasts were used to silence these target genes in the insect gut [10,43].

Emerging New Concepts for Insect Control via the Chloroplast Genome
Although major advances have been made in hyperexpressing native biopesticide genes from
Bacillus thuringiensis via the chloroplast genome to form crystals of the B. thuringiensis toxin Bt
within chloroplasts [21], and even kill 40 000-fold resistant insects [44], plastid expression of Bt
genes in important major crops [45] has not yet reached commercial development, largely
because the market is already saturated with Bt crops that avoid the use of expensive chemical
pesticides. However, a recent report of alarming Bt resistance has led to new US Environmental
Protection Agency (EPA) requirements for planting Bt corn [46], and highlights the need for a high
dose or multigene strategy. Thus, recent focus in this field is shifting to identify novel traits or
methods to facilitate commercial development.

Recently, the RNA interference (RNAi) concept was used for the first time to engineer the
chloroplast genome (Figure 2I) [43]. In this study the lepidopteran chitin synthase (Chi), cyto-
chrome P450 monooxygenase (P450), and V-ATPase, were used as RNAi targets. The
abundance of cleaved dsRNA was greater than that of the highly expressed endogenous psbA
transcript. In insects feeding upon leaves expressing P450, Chi, and V-ATPase siRNAs,
transcript levels of the targeted genes were reduced to almost undetectable levels in the insect
midgut, most likely after further processing of siRNA in the insect gut. The net weight of the larvae
as well as growth and pupation rates were significantly reduced (Figure 2I) [43]. In a parallel
study, Bock and colleagues introduced dsRNA via the chloroplast genome to target the insect b-
actin gene and elicit resistance against potato beetle; this outstanding work demonstrated
efficacy against this important pest in field studies [10]. Taken together, successful expression of
dsRNAs via the chloroplast genome opens the door to the use of RNAi approaches to confer
desired agronomic traits or to downregulate dysfunctional genes in various biomedical appli-
cations following oral delivery of dsRNA bio-encapsulated within plant cells.

Broad-Spectrum Agronomic Traits Conferred via the Chloroplast Genome
Expression of b-glucosidase in chloroplasts has been developed as a novel method to release
active hormones (gibberellin, indolyl-3-acetic acid, zeatin) from inactive ester conjugates. Trans-
plastomic lines showed increased leaf area, height, biomass and internode length. Most
importantly, the density of globular trichomes containing sugar esters on the leaf surface
was dramatically increased, conferring protection against whitefly and aphid infestations. These
novel observations open new avenues to modify plants for enhanced biomass and to confer
novel traits such as insect resistance (Figure 2H,K) [47].

In addition, transplastomic plants expressing the Pinellia ternata agglutinin (pta) showed broad-
spectrum resistance to phloem-feeding pests as well as antiviral and antibacterial activity,
providing a new option to engineer protection against different types of biotic stress using a
single protein that is naturally present in medicinal plants (Figure 2B,C,G) [48]. Furthermore,
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Figure 2. Engineering the Chloroplast Genome to Confer Biotic/Abiotic Stress-Tolerance or Expression of
High-Value Products. (A) Antimicrobial peptide retrocyclin-101 fused with GFP expressed in chloroplasts displays strong
green florescence in contrast to untransformed leaves showing chlorophyll red fluorescence [50]. (B,C) The transplastomic
leaf expressing Pinellia ternata agglutinin shows high-level tolerance when challenged with bacterial (Erwinia) or viral
(tobacco mosaic virus, TMV) pathogens [48]. (D) Gel diffusion assay shows the zone of clearance of chloroplast-derived
endo-b-mannanase in crude plant extracts similar to purified recombinant commercial enzyme [52]. (E) Tobacco chloroplast
genome and integration of the expression cassette. (F) Enhanced accumulation of astaxanthin and carotenoids in
transplastomic lettuce [55]. (G) Transplastomic plants expressing the lectin gene show broad-spectrum resistance to
lepidopteran and homopteran (sap-sucking) insects as well as antibacterial (Erwinia) and antiviral (TMV) activities [48]. (H,K)
Chloroplast expression of b-glucosidase results in elevated phytohormone levels associated with significant increase in
biomass and trichome density [47]. (I) Cotton bollworm larvae with normal pupation or dead larvae when fed with
transplastomic tobacco leaves expressing dsRNAs [43]. (J) Overexpression of g-tocopherol methyl transferase chloroplasts
confers abiotic stress tolerance and nutritional enhancement [56].
‘gene stacking’ (combining two or more genes of interest) using protease inhibitors and chitinase
has been reported in tobacco; transplastomic tobacco displayed broad-spectrum resistance
against insects, pathogens, and abiotic stress [49]. A list of recent reports on enhancing
agronomic traits via the chloroplast genome is provided in Table 1. Other novel approaches
used to engineer protection against viral, bacterial, or fungal pathogens include the expression of
synthetic antimicrobial peptide genes [50,51] (Figure 2A) or bacterial/fungal enzymes [52,53], as
described below.

Metabolic Engineering via the Chloroplast Genome
In the first metabolic engineering study, bacterial chorismate pyruvate lyase was expressed from
the chloroplast genome; plants accumulated p-hydroxybenzoic acid liquid crystal polymers up
to 26.5% of dry weight with no pleiotropic effects [54]. Recently, the entire cytosolic mevalonate
pathway encoding six enzymes combined with a selectable marker (seven genes in total) were
inserted into the tobacco chloroplast genome. Despite lack of enhanced regulatory sequences
(promoters/UTRs), transplastomic plants accumulated significantly higher levels of mevalonate,
carotenoids, squalene, sterols, and triacyglycerols than control plants, successfully redirecting
metabolic fluxes for isoprenoid biosynthesis [18].
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Table 1. Recent Reports on Enhancement of Agronomic Traits Engineered via the Chloroplast Genome

Protein/enzyme Source of
Transgene

Plant Species Expression
Levels/Activities

Function/Phenotype Refs

Retrocyclin-101
and protegrin-1

Synthetic Tobacco 32–38% and
17–26% total
soluble protein
in leaves (TSP)

Enhanced resistance
to Erwinia soft
rot and TMV

[50]

b-Glucosidase Bgl1 T. reesei Tobacco Up to 44.41
units/g leaf

Whitefly and
aphid resistance

[47]

Metallothionein-1 Mouse Tobacco 183 000
transcripts/ng
of RNA

Phytoremediation
by Hg chelation

[93]

D-amino acid oxidase Schizosaccharomyces
pombe

Tobacco Not reported
(NR)

D-alanine-based
herbicide resistance

[36]

Agglutinin Pinellia ternata Tobacco 7.1–9.2% TSP Multiple resistance
against aphid,
whitefly, lepidopteran
insects, and bacterial
and viral pathogens

[48]

Thioredoxin f Tobacco Tobacco NRa Enhanced starch
accumulation in leaves

[94]

Toc cyclase and
g-tocopherol
methyltransferase

Arabidopsis Tobacco and
lettuce

3.05 nmol
h�1 mg�1

protein

Enhanced vitamin
E accumulation
in tobacco and lettuce

[9]

Homogentisate
phytyltransferase
tocopherol cyclase,
and g-tocopherol
methyltransferase

Synechocystis sp.
PCC6803

Tomato NR Enhanced vitamin E
accumulation in fruits.
Increased light and cold
stress tolerance

[7]

b,b-Carotenoid-
3,30-hydroxylase,
b,b-carotenoid 4,
40-ketolase
(4,40-oxygenase)

Brevundimonas sp.
strain SD212

Lettuce NR Increased astaxanthin
fatty acid esters
accumulation in
lettuce plants

[55]

Thioredoxins m Tobacco Tobacco NR Enhanced resistance
to oxidative stress
in tobacco plants

[95]

g-Tocopherol
methyltransferase

Arabidopsis Tobacco 7.7% of the
total leaf
protein

Enhanced
accumulation
of /-tocopherol
in seeds. Increased
salt and heavy
metal tolerance

[56]

Protease inhibitors
and chitinase

Paecilomyces
javanicus

Tobacco NR Broad-spectrum
resistance against
insects, pathogens,
and abiotic stresses

[49]

Chloroperoxidase
(CPO)

Pseudomonas
pyrrocinia

Tobacco 15 mg
CPO/ml
extract

Enhanced resistance
to fungal pathogens
in vitro and in planta

[96]

aNR, not reported.
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The natural pigment astaxanthin has attracted recent attention in view of its antioxidant activity
and color – astaxanthin underlies the red coloration of salmon and other organisms. Expression
of CrtW (b-carotene ketolase), CrtZ (b-carotene hydroxylase) and isopentenyl diphosphate
isomerase (Idi) gene from marine bacteria via the lettuce chloroplast genome led to the
accumulation of astaxanthin fatty acid esters and other key carotenoids (artificial ketocarote-
noids corresponded to 95% of total carotenoids) (Figure 2F) [55]. Tocopherols (the main forms of
vitamin E) are lipid-soluble antioxidants and play an important role in the plant antioxidant
network by eliminating reactive oxygen species (ROS). Expression of g-tocopherol methyl-
transferase (g-TMT) and tocopherol cyclase (TC) genes in chloroplasts resulted in /-Toc as a
major isoform and increased total tocopherol levels [9]. Similarly, expression of HPT (homoge-
ntisate phytyltransferase), TC, and g-TMT confirmed HPT as the rate-limiting enzymatic step and
increased total tocochromanol 10-fold [7]. More recently, g-TMT gene expression resulted in
massive proliferation of the inner chloroplast envelope membrane [56]. High-level accumulation
of /-Toc in transplastomic plants not only increased the nutritional value of plant but also
enhanced tolerance to abiotic stress by decreasing ROS (Figure 2J), lipid peroxidation, and ion
leakage [56]. These findings offer new insight into the regulation of vitamins or complex
metabolite biosynthesis and highlight the potential of chloroplast genetic engineering for the
nutritional enhancement of edible plants (Figure 2F).

Enhancing Photosynthetic Efficiency via the Chloroplast Genome
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), the key enzyme in the Calvin
cycle, has attracted attention for as a means to enhance carbon fixation efficiency, increase
catalytic activity, and/or reduce photorespiration. Early studies involved relocation of the small
subunit gene to the chloroplast genome to assemble fully functional Rubisco within chloro-
plasts [57]. More recent studies have focused on the expression of heterologous Rubisco
subunits in chloroplasts. Most recently, a breakthrough was made by introducing the CO2-
concentrating mechanism (CCM) from cyanobacteria into transplastomic plants [58]. The
native tobacco gene encoding the large subunit of Rubisco was knocked out by inserting the
large and small subunit genes of the Synechococcus elongates Se7942 enzyme. Se7942
Rubisco and CcmM35 (a b-carboxysomal protein) hybrid assembly within chloroplasts
resulted in higher rates of CO2 fixation efficiency but slowed growth. This represents a key
step towards improved photosynthesis by chloroplast genetic engineering. Whitney and
colleagues have also enhanced photosynthesis and growth by coexpressing the Rubisco
ancillary chaperone RAF1 together with Rubisco; this was reported to increase recombinant
Rubisco biogenesis [59].

Chloroplast Bioreactors for Biofuel Enzymes
The need for sustainable and renewable energy sources is an important global challenge
because of dwindling fossil fuel reserves and a growing population [60]. Production of cellu-
lose-derived ethanol is currently limited by the lack of infrastructure, technology, and the high
cost of enzymes. For most bioethanol process, 1 ton of biomass requires 15–25 kg cellulase
[61], or 11 million filter paper units (FPU) of cellulase (around 19 kg), to yield 84 gallons of ethanol.
More importantly, it is necessary to produce different types of enzymes and cocktails of enzymes
to efficiently hydrolyze different types of biomass based on their polymer compositions. There-
fore, the first and foremost requirement for ligno-cellulosic ethanol production is to develop an
efficient enzyme production system for economical and rapid biomass depolymerization. High
levels of expression and compartmentalization of toxic proteins within chloroplasts protect
transgenic plants from pleiotropic effects, making the chloroplast an ideal bioreactor for
industrial enzyme production.

Although single biofuel enzymes were expressed a decade ago [62], followed by other studies
[15,16], total biomass hydrolysis was not feasible because of the number of enzymes required. A
628 Trends in Plant Science, October 2015, Vol. 20, No. 10



major recent advance has been the development of chloroplast-derived enzyme cocktails for the
production of fermentable sugars from different sources of ligno-cellulosic biomass. Most
notably, nine different genes from bacteria or fungi (acetylxylan esterase, cutinase, endoglu-
canases, exoglucanase, pectate lyases, xylanase, lipase, etc.) were expressed in Escherichia
coli or/and tobacco chloroplasts. The cost of chloroplast-derived endoglucanase was estimated
to be 1000–3000-fold lower than for the same recombinant enzymes sold commercially [32].
This is the first report of using plant-derived enzyme cocktails for the production of fermentable
sugars from ligno-cellulosic biomass.

However, overexpression of the enzymes (5–40% of total leaf protein) resulted in pigment-
deficient mutant phenotypes, especially for enzymes such as swollenin and expansin that
destabilize membranes [53]. Intertwined cotton fibers were irreversibly unwound when treated
with chloroplast-derived swollenin. Likewise, recombinant cutinase effectively hydrolyzed diga-
lactosyldiacylglycerol (DGDG) to monogalactosyldiacylglycerol (MGDG), showing /-galactosi-
dase activity and demonstrating DGDG as a novel substrate [53]. Mannan is the major backbone
of woody biomass, and b-mannanase can efficiently catalyze endohydrolysis of this constituent.
Therefore, the addition of chloroplast-derived mannanase to other enzymes in the cocktail
further enhanced biomass hydrolysis [52], and gel diffusion assay for endo-b-mannanase
confirmed the functionality of the chloroplast-derived enzyme (Figure 2D). Another advance
is the production of thermostable enzymes in chloroplasts to enable biomass hydrolysis [63]. A
list of recent chloroplast-derived biofuel enzymes is summarized in Table 2. These studies are
promising and have advanced the use of chloroplast-derived enzyme cocktails for biofuel
production.

Chloroplast Bioreactors for Biopharmaceuticals
The first biopharmaceutical (a recombinant protein) expressed from recombinant plants is now
FDA approved and marketed by Pfizer [64]. Recombinant glucocerebrosidase made in carrot
cells is now used as a replacement therapy to treat Gaucher's disease, a rare lysosomal storage
disorder. More recently, plant-based production of the Ebola vaccine (three humanized mono-
clonal antibodies) has been used successfully to treat infected individuals in the West African
outbreak [64,65]. These protein drugs lead the way for producing biopharmaceuticals in plants.
Biopharmaceuticals produced in current fermentation systems are very expensive and are not
affordable for the large majority of the global population. In the USA, the average annual cost of
protein drugs is 25-fold greater than for small-molecule drugs. This is because their production
requires prohibitively expensive fermenters, purification, cold storage, and sterile delivery meth-
ods (via injection). However, oral delivery of protein drugs in genetically modified plant cells is
now emerging as a new platform for inducing tolerance against autoimmune disorders, to
eliminate the toxicity of injected protein drugs, or to deliver functional blood proteins [66–69].
Plant cells expressing high levels of therapeutic proteins can be lyophilized and stored at room
temperature for several years [42]. These approaches should improve patient compliance in
addition to lowering the cost of healthcare.

These studies point out the importance of oral delivery of protein drugs, which has been elusive
for decades because of their degradation in the digestive system and inability to cross the gut
epithelium. The first concern has been addressed by expression of protein drugs via the
chloroplast genome in edible plant cells, taking advantage of the several thousand genome
copies present in each plant cell. Although early efforts to express therapeutic proteins in lettuce
chloroplasts were unsuccessful [70], extensive optimization was undertaken to develop a
reproducible expression system utilizing species-specific chloroplast vectors, endogenous
regulatory sequences, and optimal organogenesis/hormone concentrations to directly generate
transplastomic lines without callus induction [23]. Today, lettuce serves as the only reproducible
transplastomic system for oral delivery of vaccines and biopharmaceuticals (Table 3).
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Table 2. Chloroplast Bioreactors for Proteins/Enzymes for Biofuel Production

Protein/Enzyme Source of
Transgene

Enzyme Activity Refs

b-Glucosidase
Swollenin
Xylanase
Acetyl xylan esterase
Endoglucanase
Endoglucanase
Exoglucanase
Lipase
Pectate lyase A
Pectate lyase A
Pectate lyase A
Cutinase

Trichoderma reesei
T. reesei
T. reesei
T. reesei
T. reesei
C. thermocellum
C. thermocellum
M. tuberculosis
F. solani
F. solani
F. solani
F. solani

Chloroplast-derived enzymes showed wider pH optima and
higher temperature stability than enzymes expressed in E. coli.
Chloroplast-derived crude-extract enzyme cocktails yielded
more (up to 3625%) glucose from citrus peel, filter paper, or pine
wood than commercial cocktails

[32]

b-Glucosidase BglC T. fusca Chloroplast-produced BglC was active against both cellobiose
and lignocellulose

[88]

b-Glucosidase Bgl1 T. reesei Chloroplast-produced Bgl1 can digest pNPG substrate and
release p-nitrophenol

[47]

Xylanase Xyl10B T. maritima Catalytic activity of chloroplast-derived Xyl10B in poplar,
sweetgum and birchwood xylan and stable in dry leaves

[63]

b-Glucosidase Bgl1C
Endoglucanase Cel9A
Exoglucanase Cel6B
Xyloglucanase Xeg74

T. fusca
T. fusca
T. fusca
T. fusca

All four enzymes were highly active and hydrolyzed their
synthetic test substrates in a dose-dependent manner. The
enzyme cocktail also triggered efficient sugar release from straw

[97]

b-Mannanase T. reesei Chloroplast-derived mannanase showed 6–7-fold higher
enzyme activity than E. coli extracts. The enzyme cocktail with
chloroplast -derived mannanase yielded 20% more glucose
equivalents from pinewood than the cocktail without
mannanase

[52]

Cutinase or swollenin Fusarium solani
T. reesei

Cotton fiber treated with chloroplast-derived swollenin showed
enlarged segments, and the intertwined inner fibers were
irreversibly unwound due to the expansin activity of swollenin.
Chloroplast-derived cutinase showed esterase and lipase
activity

[53]

b-1,
4-Endoglucanase
(EGPh)

Pyrococcus
horikoshii

Chloroplast-derived EGPh was recovered from dry leaves and
digested carboxymethyl cellulose (CMC) substrate

[98]

Xylanase Bacillus sp. Catalytic activity of chloroplast-produced xylanase was
detected with birch wood xylan as substrate

[99]
Upon oral delivery, the plant cell wall protects expressed protein drugs from acids and enzymes
in the stomach via bio-encapsulation. However, when intact plant cells containing protein drugs
reach the gut, commensal microbes are able to digest the plant cell wall and release the protein
drugs. In addition, tags such as CTB (cholera toxin B) bind to the GM1 (monosialotetrahex-
osylganglioside) receptor expressed on the gut epithelium; fusion of CTB to protein drugs leads
to efficient crossing of the intestinal epithelium and delivery to the circulatory or immune system.
In addition, the GM1 receptor is also expressed in the retina and nervous system, and can aid
tagged protein drugs to cross the blood–brain (BBB) and blood–retina barriers (BRB),
thereby facilitating delivery to the brain and retina [66,74]. These steps are explained in detail in
Figure 3. More than 40 biopharmaceuticals and vaccine antigens have been expressed via the
chloroplast genome (Table 3, Figure 3).
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Table 3. Chloroplast Bioreactors for Functional Biopharmaceuticals and Vaccine Antigens

Biopharmaceutical/Vaccine Antigen Expression
System

Expression
Level

Functional Evaluation Refs

CTB–AMA1 (malarial vaccine antigen
apical membrane antigen-1)

Lettuce
Tobacco

7.3% TSP
13.2% TSP

Long-term dual immunity against two
major infectious diseases – cholera
and malaria

[79]

CTB–MSP1 (malarial vaccine antigen
merozoite surface protein-1)

Lettuce
Tobacco

6.1% TSP
10.1 TSP

Long-term dual immunity against two
major infectious diseases – cholera
and malaria

[79]

EDA (extra domain A-fibronectin) Tobacco 2.0% TSP Retains the proinflammatory
properties of the EDA produced
in E. coli

[100]

Parvovirus immunogenic peptide
2L21 fused to a tetramerization
domain

Tobacco 6% TSP Immunogenic response in mice [101]

Immunogenic fusion protein F1-V
from Y. pestis

Tobacco 14.8% TSP Oral delivery of F1-V protected 88% of
mice against aerosolized Yersinia
pestis; F1-V injections protected only
33% and all control challenged mice
died. Oral boosters conferred
protective immunity against plague

[80]

Coagulation factor IX Tobacco 3.8% TSP Prevents inhibitor formation and fatal
anaphylaxis in hemophilia B mice

[76]

BACE (human b-site APP cleaving
enzyme)

Tobacco 2.0% TSP Immunogenic response against the
BACE antigen in mice

[102]

Human papillomavirus L1 protein Tobacco 21.5% TSP Confirmed the formation of
capsomeres

[103]

Proinsulin Tobacco 47% TSP Oral delivery of proinsulin in plant cells
or injectable delivery into mice showed
reduced blood glucose levels

[71]

PA(dIV) (domain IV of Bacillus
anthracis protective antigen)

Tobacco 5.3% TSP Demonstrates protective immunity in
mice against anthrax

[104]

Human thioredoxin 1 protein Lettuce 1% TSP Protected mouse insulinoma line 6
cells from hydrogen peroxide

[105]

Thioredoxins–human serum albumin
fusions

Tobacco 26% TSP The in vitro chaperone activity of Trx m
and f was demonstrated

[92]

HPV16 L1 antigen fused with LTB Tobacco 2% TSP Proper folding and display of
conformational epitopes

[106]

Exendin 4 (EX4) fused to CTB Tobacco 14.3% TSP CTB–EX4 showed increased insulin
secretion similar to the commercial
EX4 in b-TC6

[67]

CTB–ESAT-6 (6 kDa early secretory
antigenic target)

Tobacco
Lettuce

Up to 7.5%;
0.75%

Hemolysis assay and GM1-binding
assay confirmed functionality and
structure of the ESAT-6 antigen

[81]

CTB–Mtb72F (a fusion polyprotein
from two tuberculosis antigens,
Mtb32 and 39)

Tobacco Up to 1.2% Not reported [81]

CTB fused to MBP (myelin basic
protein)

Tobacco 2% TSP Amyloid loads were reduced in vivo in
brain regions of 3�TgAD mice fed with
bio-encapsulated CTB–MBP. Ab(1–
42) accumulation was reduced in
retinae and loss of retinal ganglion
cells was prevented in 3�TgAD mice
treated with CTB–MBP

[66]

Tobacco 80 or 370 mg/g
in fresh leaves

Feeding of the HC/C2 mixture
substantially suppressed T helper cell

[78]

Table 3. (continued)
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Figure 3. Oral Drug Delivery for Treatment of Metabolic Disorders or Induction of Tolerance. (A) Therapeutic
proteins expressed in chloroplasts and bio-encapsulated in plant cells when orally delivered (step 1) go through the following
process. (2) Protein drugs are protected from acids/enzymes in the digestive system because human enzymes do not break
down glycosidic bonds of plant cell wall components. (3) Microbes colonizing the gut break down the plant cell wall,
releasing therapeutic proteins into the gut. (4) The transmucosal carriers cholera toxin B (CTB) fused to protein drugs
facilitates their delivery to the blood by binding to gut epithelial receptors for GM1. (5) Protein drugs in the blood are delivered
to different organs including heart, lung, pancreas, and directly to immune modulatory cells. (6) Proteins fused with CTB also
cross the blood–brain or blood–retina barriers via GM1 receptors present in these barriers. (B) Metabolic disorders caused
by unbalanced renin–angiotensin system are prevented or delayed by oral delivery of bio-encapsulated angiotensin
converting enzyme 2 (ACE2) and angiotensin-(1–7) [Ang-(1–7)]. Delivery of ACE2 and Ang-(1–7) to circulatory system
reversed or prevented pulmonary hypertension by shifting the RAS axis to a protective state, resulting in decrease of fibrosis,
improvement of cardiopulmonary structure and function, and restoration of right heart function. Oral protein drug delivery
across the blood–brain and blood–retina barriers: (C) Ocular inflammation caused by decreased activity of the protective
axis of RAS was improved by oral delivery of bio-encapsulated ACE2 and Ang-(1–7) across the blood–retina barrier that
entered the retina and reduced endotoxin-induced uveitis and experimental autoimmune uveoretinitis. (D) Likewise, oral
delivery of myelin basic protein fused with CTB (CTB–MBP) entered the brain by crossing the blood–brain barrier and
reduced Ab plaques in advanced Alzheimer's brain. (E) Oral delivery of exendin expressed in chloroplasts increased insulin
secretion and regulated blood sugar levels. (F) Oral tolerance induction: blood coagulation factor expressed in chloroplasts
delivered into gut-associated lymphoid tissue (GALT) of hemophilia A mice induces immune regulatory cells and pathways.
Upregulation of Treg markers (CD25, FoxP3, CTLA-4) and suppressive cytokines (IL-10 and TGF-b) is observed in
hemophilia A mice fed with plant FVIII. After induction of oral tolerance, injection of recombinant FVIII into hemophilia A
mice suppressed anti-clotting factor antibodies.
Type 2 diabetes is more prevalent than type 1 and affects significant proportion of the global
population; a cost-effective treatment will be needed to deal with this global pandemic. Oral
delivery of human proinsulin, expressed in chloroplasts and bio-encapsulated in plant cells (or
purified from chloroplasts and delivered by injection), into mice decreased blood glucose levels
with a similar efficiency to commercial insulin treatment [71].

Glucagon-like peptide (GLP-1) increases insulin secretion, but this peptide has a very short half-
life (only 2 min in the circulatory system). The exenatide (an analog of GLP-1) has a much longer
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half-life (3.3–4 h) and strong insulinotropic effects, but requires cold storage and daily abdominal
injections with short shelf-life [67]. Oral delivery of chloroplast-derived CTB–EX4 (CTB fused to
exendin 4) increased insulin secretion similarly to commercial EX4 (Figure 3A,E), which could
eliminate injections, increase patient compliance/convenience, and significantly lower the cost of
treatment [67].

Antimicrobial peptides (AMP) have an advantage over current antibiotics because they are
effective against drug-resistant microbes. However, the high cost of producing AMPs is a major
barrier for their clinical development and commercialization. Therefore, two important AMPs:
retrocyclin 101 (RC-101) and protegrin 1 (PG1), were expressed in chloroplasts [50] for clinical
development. Despite the requirement for complex post-translational modifications including
cyclization, both AMPs were active against bacterial and viral pathogens. Transplastomic plants
showed normal growth. Similarly, a phage lytic protein was also expressed in transplastomic
tobacco plants and accumulated to high levels (>70% of total soluble protein, TSP); however,
transplastomic plants showed retarded growth [72]. In a follow-up study a toxin shuttle strategy
was used to address this concern [73].

Delivering neuro-therapeutics to target brain-associated diseases is a major challenge. Alz-
heimer's disease (AD) is the most common neurodegenerative genetic disorder and the sixth
leading cause of death in the USA, affecting �5.4 million Americans and 36 million patients
globally. Oral delivery of CTB fused with myelin basic protein (MBP) to healthy and AD model
mice increased MBP levels in different regions of the brain, effectively crossing the BBB. When
sections of human and mouse AD were incubated with CTB–MBP ex vivo, the intensity of
amyloid plaque was reduced by up to 60%. Moreover, bio-encapsulated CTB–MBP treatment in
vivo decreased amyloid loads by 70% in the cortex and hippocampus of AD mice. CTB–MBP
oral delivery also reduced accumulation of plaque in retinae. Thus, low-cost oral delivery of
therapeutic proteins across the blood–brain and blood–retina barriers has been demonstrated
(Figure 3A–D) [66].

Retinal inflammation is the main cause of visual impairment and is responsible for several retinal
diseases. In the USA, 5–15% of all blindness is caused by uveitis, an intraocular inflammatory
disorder. The protective axis of the RAS (renin–angiotensin system) was activated by oral
delivery of chloroplast-derived angiotensin converting enzyme 2 (ACE2) and angiotensin 1–7
[Ang-(1–7)] fused to CTB; this was found to confer protection against ocular inflammation
(Figure 3A). With this treatment, retinal vasculitis, cellular infiltration, and damage were dramati-
cally decreased in experimental autoimmune uveoretinitis (EAU) [74] (Figure 3 A,C), further
confirming that CTB facilitates delivery of protein drugs across the blood–retina barrier.

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood
pressure in the pulmonary arteries. Oral delivery of plant cells expressing ACE2 or Ang-(1–7)
significantly improved cardiopulmonary structure and function in rats with monocrotaline (MCT)-
induced PAH in both prevention and reversal protocols. Not only was the elevated right
ventricular systolic blood pressure decreased but pulmonary blood flow was also improved
(Figure 3 A,B) [69].

Chloroplast Bioreactor for Induction of Oral Tolerance
Long-term delivery of several protein drugs by injection can lead to adverse effects. One such
complication is the development of antibodies to injected proteins, thereby neutralizing the
effects of injected drug or, in some cases, leading to toxic antibodies (such as immunoglobulin
IgE) that cause allergies, anaphylaxis, or even death. Treatment of the genetic disease hemo-
philia A or B is severely hampered by antibody (‘inhibitor’) formation against the infused
therapeutic clotting factors [75].
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Oral tolerance induced by coagulation factor antigens bio-encapsulated in plant cells is emerging
as an alternative cost-effective and promising strategy to eliminate this problem while avoiding
the side effects of immune-suppressive drugs. In a murine model of hemophilia B that mimics the
human inhibitor and anaphylactic responses to coagulation factor IX (FIX) replacement therapy,
repeated oral delivery of plant cells expressing human FIX fused to CTB effectively prevented
pathogenic antibody formation against FIX, and this treatment eliminated fatal anaphylactic
reactions that occurred after four to six exposures to intravenous FIX [76,77]. More recently, this
approach was tested for hemophilia A, the most prevalent form of the disease with a high
incidence of inhibitor formation. Oral delivery of a mixture of plant cells expressing either the
entire heavy chain or the C2 domain of human coagulation factor VIII (FVIII), suppressed inhibitor
formation against FVIII in two different strains of hemophilia A mice. This study provided the first
evidence that the plant-based oral tolerance protocol could reverse pre-existing responses and
generated data on the underlying tolerance mechanisms [78] (Figure 3A,F). Delivery of antigen to
dendritic cells (in the lamina propria and Peyer's patches) throughout the small intestine results in
a complex immune regulatory mechanism. Adoptive transfer studies showed that, in addition to
CD4+CD25+FoxP3+ regulatory T cells (Tregs), CD4+CD25�LAP+ Tregs are induced that
potently suppress antibody formation. These studies for the first time demonstrate the ability
of LAP+ Treg cells to suppress inhibitor formation. These cells are also the primary T cell source
of the immune-suppressive cytokines transforming growth factor b (TGF-b) and interleukin
(IL)-10 in response to coagulation factor antigen during oral tolerance. Because similar results
were obtained for both FVIII and FIX antigen delivery, the same tolerance mechanism,may apply
generally to the plant cell-based protocol [77,78].

Chloroplast Bioreactors for Infectious Disease Vaccines
Although the field of plant-based vaccines started two decades ago, with the promise of
developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around
the globe, this goal has not yet been realized. There are several major technical hurdles to be
overcome in achieving this goal, including inadequate levels of expression in edible plant
systems and the failure of oral priming to induce adequate immunity against pathogens.
Currently, no method is available to induce oral priming, and the only reproducible priming
strategy is to deliver antigens by injection in association with adjuvants. However, the major
advantage of the oral vaccination system is that it can stimulate both mucosal (immunoglobulin
IgA) and systemic (IgG1) immunity; this is presently achieved by priming using vaccine antigens
delivered by injection, followed by oral boosting with antigens bio-encapsulated in plant cells. In
addition, oral antigen delivery requires fusion with transmucosal carriers to cross the gut
epithelium for delivery to the immune system [79]. Very few vaccine candidates listed in Table 3
meet all these requirements, and therefore their efficacy has not been tested in suitable animal
models or they failed such tests. By contrast, candidates that meet these criteria have suc-
cessfully demonstrated efficacy as oral vaccines to boost the immune system and confer
greater/prolonged protection against pathogen challenge. However, all these studies require
priming by injection, and therefore are not entirely free of cold storage, and sterility requirements.
Furthermore, only a few vaccine antigens have been expressed in edible crops (lettuce) [79–81],
and those expressed in tobacco would face challenge by the FDA approval process because of
concerns of nicotine in orally delivered drugs.

Chloroplast Genome Engineering Enables the Understanding of Complex
Cellular Processes
Studies on the native chloroplast genome and endogenous regulatory sequences contribute
greatly to our understanding of the molecular biology, physiology, and biochemistry of chlor-
oplasts. Transplastomic lines contribute to resolving complex processes that are difficult to
study in native systems or when such results are inconclusive. For example, it was challenging to
determine the precise site of cleavage of transit peptides after import of precursor proteins into
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chloroplasts, but this could be clearly resolved by expressing precursor proteins via the
chloroplast genome, demonstrating that this step takes place in the stroma and not in the
chloroplast envelope [2]. Most importantly, the role of nucleus-encoded cytosolic proteins that
bind to regulatory sequences and their species specificity could be clearly studied using
transgene expression [23]. For example, the regulatory sequence of lettuce psbA decreased
transgene expression >90% in tobacco chloroplasts, and vice versa, underscoring the impor-
tance of the species-specificity of chloroplast regulatory sequences [23]. Such studies are not
possible using native genes. This may explain the failure of several laboratories to transform
unrelated crop species using tobacco chloroplast vectors. Likewise, details of the homologous
recombination process and the deletion of mismatched nucleotides were evident using heter-
ologous flanking sequences [23]. Translation of polycistronic mRNAs without the need for
monocistronic processing has been studied using ribosome profiling [30]. However, the use
of heterologous polycistrons engineered via the chloroplast genome has offered even more
direct evidence for this process [21,31], and the insertion of replication origins into chloroplast
vectors has offered further insight into minimal sequences required [24].

Plastid and nuclear genomes require frequent and accurate signaling to coordinate the assembly
of multisubunit complexes or enzymes involved in biosynthetic pathways. The nucleus-encoded
plastid protein subunits are regulated by anterograde signaling pathways, which have been
studied in depth. Interestingly, plastid-derived signals can also coordinate the expression of
nuclear genes encoding plastid-localized proteins via retrograde signaling [82,83]. Several
recent publications reveal that both transcripts and proteins can be exported from plastids.
For example, expression of Tic40 (a translocation protein of the import complex localized in the
inner plastid envelope) via the chloroplast genome resulted in massive proliferation of the inner
membrane (IM) (up to 19 layers in electron micrographs of transformed chloroplasts) without
any impact on plant growth or reproduction. Consistent with IM proliferation, the expression of
several other inner envelope proteins (phosphoenolpyruvate translocator PPT, IEP 37,
Tic110) was upregulated, but none of the outer membrane (Toc159), stromal (Hsp93, Cpn60)
or thylakoid (light-harvesting chloroplast protein LHCP, oxygen-evolving protein OE23)
proteins were increased, suggesting specific retrograde signal(s) [84]. This phenomenon is
highly reproducible and takes place in the absence of any environmental stress. Expression of g-
TMT (inserted into the IM) via the chloroplast genome again resulted in massive proliferation of
the inner envelope membrane (up to eight layers, Figure 4A,B) [56]. When lectin or AMP genes
were expressed via the chloroplast genome, they conferred broad protection against bacterial or
viral pathogens [48,50]. Release of AMPs from chloroplasts could possibly be explained by lysis
of plastids; indeed, retention of AMPs within intact plastids seems unlikely because invading
pathogens are in the cytosol [50]. NRIP1 (a chloroplast-localized receptor interacting protein)
was found to interact with a cytoplasmic P50 helicase enzyme following infection by tobacco
mosaic virus (TMV) [85], and several nucleotide-binding receptors are localized within the
chloroplasts. Caplan and his colleagues showed that most secreted proteins of Pseudomonas
syringae contain chloroplast targeting signal sequences, and these proteins require retrograde
signaling to the nucleus to elicit defense responses [86].

To date, the mechanistic details of the retrograde signaling pathway have remained elusive.
There are several proposed retrograde signaling pathways [82,87], and a novel operational
retrograde signaling pathway was recently described by Xiao et al. [83]. Methylerythritol cyclo-
diphosphate (MEcPP) is the precursor for the isoprenoids generated by the plastid methyler-
ythritol phosphate (MEP) pathway, and MEcPP accumulation in plastids leads to activation of
nuclear stress-responsive genes. The redox state of photosynthetic electron transport compo-
nents and ROS levels in plastids may provide another important retrograde signal. Unfortunately,
none of these proposed candidates to date have been unequivocally tested. To investigate the
potential role of ROS in the retrograde signaling pathway and transmembrane transport,
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Figure 4. Chloroplast Genome Engineering Facilitates Study of Retrograde Signaling. (A) Expression of g-
tocopherol methyl transferase via the chloroplast genome results in massive proliferation of the inner envelope membrane
(up to eight layers) [56], very similar to 19 layers observed when the inner membrane (IM) protein Tic40 was overexpressed
[84]. While several IM proteins encoded by the nuclear genome are upregulated, none of the outer membrane, stromal, or
thylakoid proteins are affected, suggesting specificity of retrograde signaling. (B) Note a single inner envelope membrane in
control chloroplasts [56]. (C) GFP fused with an antimicrobial peptide (AMP) is released from intact chloroplasts when the
leaf discs were infected with Erwinia carotovora and plant cells were imaged by confocal microscopy ([51] for time-lapse
images of GFP–AMP). Transient release of GFP–AMP triggered by Erwinia infection stops soon after conferring protection
against the invading pathogen, further confirming protein export from chloroplasts. Light and paraquat stress modifies the
structure of chloroplast envelope, leading to increased ion leakage and facilitates AMP release [51]. These results suggest
novel retrograde signaling mechanisms triggered by foreign proteins expressed in chloroplasts and offer new opportunities
to study pathways outside chloroplasts. (D) Proposed signaling mechanisms between plastid and nuclear genome are
shown. (1) Mg-protoporphyrin IX (Mg-proto IX) pathway: Mg-proto IX is an intermediate of tetrapyrrole pathway, which is
suggested to be exported from chloroplasts to bind to HSP90 in the cytoplasm, resulting in a HY5-dependent activated
repression and/or inhibited activation of nuclear expression [87]; (2) Heme, specifically produced by the plastid ferroche-
latase (FC1) has been suggested to coordinate photosynthesis-associated nuclear gene expression with chloroplast
development [107]; (3) tetrapyrrole or other signals may work on genome uncoupled 1, which could either generate or
transmit a second signal, thereby activating N-PTM protein. The processed PTM may modulate nuclear gene expression by
inducing the ABA-insensitive 4 transcription factor [87]; (4) MEcPP (methylerythritol cyclodiphosphate), a precursor of
isoprenoids produced by the plastid methylerythritol phosphate (MEP) pathway, accumulates during stress. MEcPP
destabilizes histone-like protein–DNA complexes in bacteria, suggesting a possible model for gene regulation [82]. The
redox state of photosynthetic electron transport components of the plastids and the levels of reactive oxygen species (ROS)
in plastids may be another candidate for retrograde signaling. ROS accumulate promptly when plants cells are exposed to
stress. ROS alter the membrane structure and increase membrane penetrability, which is helpful for the transmission of
signal molecules from plastids. More importantly, ROS may be directly involved in other retrograde signaling pathways such
as the MEcPP pathway as well as the plastid gene expression pathway [51,82].
transplastomic plants expressing a GFP–AMP fusion polypeptide were developed. This study
revealed that chloroplast GFP is gradually released from intact chloroplasts into the cytoplasm
after abiotic and biotic stress [51] (Figure 4C). Light and paraquat stress modified the structure of
chloroplast envelope, resulting in increased ion leakage and facilitated protein release. Release
of the AMP (GFP–RC101) triggered by Erwinia infection conferred protection against the
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Outstanding Questions
What are the limitations in transforming
the chloroplast genome of cereals?
While regeneration via somatic
embryogenesis is feasible in dicots,
homoplasmic transplastomic plants
have not yet been created after two
decades of research. Because pro-
plastids or non-green plastids in carrot
or soybean have been transformed
successfully, it is unlikely that gene
delivery or regeneration processes will
provide a hurdle, but there is need to
identify suitable selectable markers.

What are the limitations in transforming
the chloroplast genome of new crop
species? There is a great need to trans-
form edible leafy crops, especially for
oral drug delivery or enhanced nutri-
tion. Edible non-green parts of plants
(e.g., tomato fruits) have very low levels
of foreign protein accumulation com-
pared to transplastomic leaves. With
the exception of lettuce chloroplasts,
no other edible system has yielded
reproducible results so far. Lessons
learned from optimization of lettuce
plastid transformation, especially spe-
cies-specific chloroplast vectors and
endogenous regulatory sequences,
should offer some guidance.

Is it possible to achieve inducible
expression? Constitutive expression
of particular proteins can be problem-
atic. Although the T7 RNA polymerase
system was introduced in 1994, it is still
challenging to regulate transgene
expression and synthesize products
on demand.

Can the chloroplast serve as bioreactor
for RNA synthesis and delivery? While
chloroplasts are ideal for protein
expression and delivery, could this sys-
tem be used for RNA silencing, a major
need in agriculture and medicine?
Indeed, chloroplasts are capable of
producing highly-abundant transcripts,
but heterologous RNA processing is
poorly understood.

Can a synthetic plastome be engi-
neered? Foreign operons or new path-
ways have been engineered via the
chloroplast genome with great suc-
cess, even including the formation of
protein crystals. However, several chal-
lenges need to be overcome to use
chloroplasts for synthetic biology appli-
cations, including the introduction of
large DNA fragments.
pathogen, further confirming protein export from the chloroplast [51]. These results suggest that
novel retrograde signaling mechanisms may be triggered by chloroplast proteins and offer new
opportunities to study pathways outside chloroplasts (Figure 4D). Thus chloroplast genetic
engineering offers an ideal new tool to study interactions with other cellular compartments or
within chloroplasts.

Concluding Remarks and Future Perspectives
Although hundreds of foreign proteins have been expressed in chloroplasts, and have often
achieved much higher levels of expression than nuclear expression systems, in a few cases
the desired levels of expression were not achieved. N-terminal degradation of proteins in
heterologous systems is a well-known phenomenon. Indeed, the oldest and best-known
recombinant human blood protein, insulin, has never been expressed in any expression
system without N-terminal fusion proteins. Many human therapeutic proteins have therefore
been successfully expressed in chloroplasts by fusion with GFP [50] to confer stability, or
with CTB to facilitate stability and oral delivery [66–69]. Several upstream and downstream
transcriptional and translational regulatory sequences have been used to enhance transgene
expression via the chloroplast genome [15–17,88]. In addition, reduced expression could be
due to misfolding of proteins. Indeed, this was clearly evident with human FIX fused with CTB
with or without a furin cleavage site; when the furin cleavage site was eliminated, expression
levels decreased 50-fold and homoplasmy could not be achieved [76]. For the expression of
toxic proteins, inducible expression system would be ideal to synthesize foreign proteins only
when needed, conserving cellular resources for normal growth and development. However,
further research will be necessary to develop highly-efficient inducible systems in chloro-
plasts. Transformation of the lettuce chloroplast genome is the only reproducible system
currently used for oral delivery of therapeutic proteins. Further studies will be needed to
develop chloroplast transformation in other leafy edible systems that could be orally delivered
with minimal processing. Most importantly, further studies are needed to understand post-
translational modifications of proteins within chloroplasts. Recent studies have shown that
human blood proteins with disulfide bonds (such as insulin, interferon, etc.) are properly
folded and are fully functional in the chloroplast [71,89]. Chloroplasts are also capable of
assembling multimeric structures (such as CTB) with disulfide bonds that bind to GM1
receptors [66–69,74,76,77]. Likewise, the assembly of virus-like particles has been observed
in chloroplasts [90,91]. Protein disulfide isomerase/thioredoxin expression has been shown
to enhance the folding and assembly of human serum albumin within chloroplasts [92].
Cyclization with disulfide bonds is required for the antimicrobial activity of retrocyclin, and
chloroplasts synthesize and fold such cyclic proteins [50]. However, several complex post-
translational modifications take place within chloroplasts. Human blood proteins correctly
expressed in chloroplasts should facilitate our understanding of the hitherto unknown post-
translational modifications that take place within chloroplasts.

There is enormous potential for synergistic utilization of chloroplast genome engineering with
synthetic biology, opening ways to introduce entire genomes. While current approaches facili-
tate engineering pathways, introducing synthetic genomes would be revolutionary. Therefore,
further research could advance chloroplast engineering towards clinical products, improved
agronomic traits, metabolic engineering to produce novel fuels, enhanced nutrition, and also
advance our understanding of basic cellular signaling and metabolic processes.
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