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There is a powerful weight of evidence that
many water bodies receive significant inputs of
natural and synthetic chemicals (from both
diffuse and point sources) that act as endocrine
disrupting chemicals (EDCs), which constitute
a threat to the reproductive health of fish pop-
ulations. The modes of action of concern
include androgen and estrogen agonists and
antagonists, aromatase inhibitors, and also thy-
roid disruptors [reviewed by Fairbrother et al.
(1999); Tyler et al. (1998); Vos et al. (2000)].
Sources of EDCs include municipal sewage
discharges and some industrial effluent (e.g.,
pulp mills), as reported by scientists in Europe
(Hecker et al. 2002; Jobling et al. 1998),
North America (Parks et al. 2001), and Japan
(Hashimoto et al. 2000). This situation gave
rise to research efforts, both nationally and
internationally, on the development of testing
strategies for EDCs [U.S. Environmental

Protection Agency (U.S. EPA) 1998; Fenner-
Crisp et al. 2000; Huet 2000; Hutchinson
et al. 2000]. From an international context,
the Organisation for Economic Co-operation
and Development (OECD) seeks to ensure,
for example, that proposed fish test guidelines
on EDCs measure biologically relevant end
points and that these end points are repro-
ducible between laboratories. From an inter-
national perspective, the OECD has formed a
special subcommittee to oversee the identifi-
cation and validation of internationally har-
monized test guidelines to assess EDCs in
both humans and wildlife (Huet 2000). A
major test method validation program was
also launched in the United States following
the 1996 U.S. Congress mandate for the U.S.
EPA to develop and implement a screening
and testing program to detect certain types of
EDCs (U.S. EPA 1998a). Recommendations

from an advisory body to the U.S. EPA
(1998b) include expansion of the scope of the
program to a) include not just estrogens but
also chemicals that affect any aspect of the
hypothalamic–pituitary–gonadal (HPG) and
thyroid axes; b) consider wildlife, in addition
to human health effects; and c) expand the
chemical universe of concern to all chemicals
on the U.S. EPA TSCA (Toxic Substances
Control Act) inventory (> 80,000 chemicals).
For practical reasons, in this article we focus on
the fish species currently included in OECD
chronic test guidelines, particularly fathead
minnow (Pimephales promelas), medaka
(Oryzias latipes), rainbow trout (Oncorhynchus
mykiss), sheepshead minnow (Cyprinodon var-
iegatus), and zebrafish (Danio rerio) (OECD
1992). However, the concepts derived and
proposed can be applied to other fish species.

Biomarkers for EDCs in Fish

Definitions. Biomarkers are broadly defined as
a change in a biological response (ranging from
molecular through cellular and physiological
responses) that can be related to exposure to or
toxic effects of environmental chemicals
[Peakall 1994; see also Huggett et al. (1992)
and van der Oost et al. (2003)]. The integrated
use of biomarkers such as plasma steroid hor-
mones, vitellogenin (VTG), and gonad histol-
ogy has advanced the understanding of fish
reproductive toxicology in both field and labo-
ratory studies, as well as provided mechanistic
alerts for other aquatic taxa (e.g., amphibians,
echinoderms, and mollusks) that may share
similar reproductive hormone systems.

Biomarkers for EDC assessments. Although
potentially useful for predicting possible
adverse effects of chemicals at the population
level, an exclusive focus on apical (whole ani-
mal) end points can result in shortcomings in
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Biomarkers are currently best used as mechanistic “signposts” rather than as “traffic lights” in the
environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomark-
ers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single
substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory
data, thereby playing an important role in directing the need for and design of fish chronic tests for
EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction)
from such tests that are most valuable for calculating adverseNOEC (no observed effect oncentration)
or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no
effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data
should not be used in isolation to derive PNECs. In the future, however, there may be scope to
increasingly use biomarker data in environmental decision making, if plausible linkages can be made
across levels of organization such that adverse outcomes might be envisaged relative to biomarker
responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and repro-
ducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example
of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to
fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent
comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of
38–55% (comparable to published CVs of 19–58% for fish survival and growth end points used in
regulatory test guidelines). While concern over environmental xenoestrogens has led to the evalua-
tion of reproductive biomarkers in fish, it must be remembered that many substances act via diverse
mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex
issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma
steroids, and gonadal histology have significant potential for guiding interspecies assessments of
EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need
to establish a historical control database (also considering natural variability) to help differentiate
between statistically detectable versus biologically significant responses. In conclusion, as research
continues to develop a range of useful EDC biomarkers, environmental decision-making needs to
move forward, and it is proposed that the “biomarkers as signposts” approach is a pragmatic way for-
ward in the current risk assessment of EDCs. Key words: aquatic, biomarkers, ecotoxicology, fish,
endocrine disruptor, estrogen, vitellogenin. Environ Health Perspect 114(suppl 1):106–114 (2006).
doi:10.1289/ehp.8062 available via http://dx.doi.org/ [Online 21 October 2005]



both diagnostic and predictive risk assessments.
Specifically, apical end points (e.g., growth,
development, and reproduction) lend little
insight as to causative modes of action (MOA),
which can only be understood through the col-
lection of information on biomarker responses.
This principle is particularly critical to the
assessment of EDCs, for which there is an
explicit regulatory focus on specific MOAs. To
address this issue, fish assays that are being
developed for EDC testing feature a suite of
end points at multiple levels of biological orga-
nization that are indicative both of possible
adverse outcomes and MOA. These measure-
ments include adverse effect end points (i.e.,
survival, growth, morphological development,
and reproduction) and EDC biomarkers
(including secondary sexual characteristics,
gonadosomatic index, plasma steroids, VTG,
and gonad histology) (Ankley and Johnson
2004; Hutchinson 2004). In some cases, for
example, gonadal histology, it is possible that
microscopic observations would suggest a sig-
nificant potential for adverse effects. For
instance, if a fish exposed to a substance has no
Sertoli cells as a consequence of an endocrine
disruption during early life, then those animals
are almost certainly infertile. Similarly, if
chemically exposed fish do not develop a
gonadal duct, the gametes cannot be trans-
ported to the exterior and, thus, these fish can-
not breed successfully. Finally, if developing
fish were exposed to an EDC during the criti-
cal life stages of sexual development that led to
complete functional sex reversal, then gonad
histology may not show an adverse impact on
the individual, whereas there would be a major
adverse effect on the population. Moving these
issues forward requires the development of a
toxicological pathology atlas for fish to help
better classify and understand the importance
of such observations [for broader discussion of
the value of fish histopathology, see Au (2004);
Maack and Segner (2003); van der Ven et al.
(2003)]. For examples of fish histology atlases,
see van der Ven and Wester (2004) and
Yonkos et al. (2000).

VTG—a biomarker for estrogenic disrup-
tion. Both field and laboratory studies have
shown the value of VTG as a rapidly inducible
biomarker for estrogens and antiestrogens in
both adult and juvenile fish (Jobling et al.
1998; Nilsen et al. 2004; Panter et al. 2002;
Sumpter and Jobling 1995; Thorpe et al.
2000). VTG is normally synthesized in
response to endogenous estrogen and is the pre-
cursor for egg yolk. It is usually present only in
the plasma of female fish, although males do
possess the VTG gene, which can be readily
induced by exposure to exogenous estrogens.
Importantly, VTG is a large glycol-lipid protein
and, in some species, is particularly labile. The
susceptibility of VTG to cleavage can lead to
products with distinct antigenic profiles, which

potentially can cause problems with accurate
VTG quantification using immunology-based
detection methods [excellent overviews of these
matters are provided by Folmar et al. (1996);
Hiramatsu et al. (2005); Larsson et al. (1999);
Tatarazako et al. (2004)]. Useful features of
VTG induction as a biomarker are the speci-
ficity for estrogens, the sensitivity, and the
magnitude of the response possible [plasma
VTG may increase by up to a millionfold,
from nanograms per milliter to milligrams per
milliliter concentrations (Tyler et al. 1990)].
Assays for VTG are available for a wide range
of fish species. Measurement of VTG mRNA
has also been used recently for quantifying the
potency of estrogens (Inui et al. 2003; Larkin
et al. 2003; Thomas-Jones et al. 2003), and its
measurement has proved to be equally as effec-
tive in this capacity as the measurement of
VTG protein (Folmar et al. 2000; Hemmer
et al. 2002; Schmid et al. 2002; Thomas-Jones
et al. 2003). Partial- or full-length VTG
cDNAs have been cloned in 20 different
species of fish [available from the National
Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/)], thereby pro-
viding the potential for a wide application of
the VTG transcript(s) as an estrogen bio-
marker. The VTG mRNA transcript is
induced rapidly (within a few hours of estrogen
exposure), which provides the potential to
develop its use for very short-term screens.
VTG protein, in contrast with VTG mRNA,
can be measured nondestructively in fish,
which favors it for use in monitoring estrogen
exposure in wild populations and for studies
that require repetitive sampling from the same
individual. Under maximal stimulation, the
VTG protein also undergoes a level of induc-
tion up to a 1,000-fold higher than that with
the VTG mRNA transcript (Thomas-Jones
et al. 2003).

Established relationships between VTG
induction and adverse health in fish are lim-
ited. Very high levels of VTG synthesis in
adult fish can induce kidney failure (Herman
and Kincaid 1988) and cause disruption in
blood dynamics and function (Scholz and
Gutzeit 2000). The impact of lower-level
inductions of VTG, however, is not well
defined. Theoretically, precocious VTG syn-
thesis caused by estrogen exposure could
reduce the survival capability of young fish
that are at a life stage where the energy budget
is critically balanced (Länge et al. 2001). Field
studies on wild roach in U.K. rivers have also
shown an increased content of plasma VTG in
intersex fish (Jobling et al. 1998) and that
there exists a correlation (not necessarily a
causation) between elevated VTG levels and
the presence of intersex gonads. More long-
term studies are needed to define better the
association between VTG induction and
reduced reproductive capacity in fish. The

application of VTG as a biomarker for estro-
gen exposure and potential adverse health
effects is complicated by the fact that some fish
species have more than one VTG (Hiramatsu
et al. 2002; Trichet et al. 2000). In the
zebrafish, where the full genome has been
sequenced, nine distinct VTG mRNAs have
been identified. For the medaka, two subtypes
of VTG (1 and 2) have been shown to have
different sensitivities to weak xenoestrogens
(Hiramatsu et al. 2005; Inui et al. 2003).

Other estrogen and androgen biomarkers.
A second set of biomarkers that has been devel-
oped for detecting estrogen exposure in fish is
the vitelline envelope proteins (VEPs) (Arukwe
et al. 1997; Celius and Walther 1998). These
glycoproteins are egg envelope components
that form the chorion of the developing egg.
Three such proteins (VEP1, 2, and 3) have
been identified in fish. The VEPs are normally
synthesized in females only [during oogenesis,
starting before the onset of vitellogenesis; how-
ever, as is true for VTG, male fish may synthe-
size VEPs following exposure to xenoestrogens
(Arukwe et al. 1997, 2000)]. However, VEPs
are extremely hydrophobic proteins, and they
are difficult to measure using conventional
techniques. In contrast, VEP mRNA can be
measured with relative ease for the cloned
sequences. VEP mRNAs have been shown to
be responsive to estrogen exposure in several
fish species (Arukwe et al. 2000; Lee et al.
2002; Thomas-Jones et al. 2003). It should be
noted that in the Arctic char (Salvelinus
fontinalis), VTG and VEPs are not mediated
via same mechanism because VEP induction
can be regulated by cortisol in addition to
estrogens (Berg et al. 2004).

Androgen biomarkers in laboratory fish to
date have focused on characteristics of male
gender development that are controlled by
androgens. These characteristics include the
facial tubercles and nuptial pads in fathead
minnow (Ankley et al. 2001, 2003; Harries
et al. 2000) and induction of spiggin in stickle-
backs (Gasterosteus sp.) (Katsiadaki et al. 2002).
These biomarkers have been shown to be
highly responsive to a range of environmental
androgens and antiandrogens. It is important
to note that while emphasis in this article is on
OECD fish species, work on wild fish has
shown that biomarkers of the type discussed
here (secondary sex characteristics) are useful
for detecting environmental contaminants. As
an example, early work on mosquitofish
(Gambusia affinis holbrooki) demonstrated the
value of morphological features for detecting
environmental androgens (Bortone et al. 1989;
Bortone and Davis 1994; Howell et al. 1980).

Additional molecular biomarkers for
EDCs. Other genes central in the estrogen
response pathway that have been studied with
a view to unraveling the mechanisms of estro-
genic disruption in fish include estrogen
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receptors (esr1, esr2a, and esr2b, previously
known as estrogen receptors α, β, and γ,
respectively); various enzymes involved with
sex hormone biosynthesis [including cyto-
chrome P450 (CYP)19 aromatase and C17
lyase]; and gonadotrophins (follicle-stimulat-
ing hormone and luteinizing hormone, hor-
mones derived from the pituitary gland and
control gonad development and sex steroid
synthesis). Estrogen receptor (ER) β mRNA
regulation has been shown to be affected by
xenoestrogens for exposure within in vitro
studies using fish hepatocytes (Flouriot et al.
1996) and within in vivo studies using
medaka (Inui et al. 2003), rainbow trout
(Vetillard et al. 2003), and zebrafish (Islinger
et al. 2003). Filby and Tyler (2005) have also
shown that fathead minnows have three estro-
gen receptors that are differentially regulated
by estrogen exposure. In vivo studies have
shown that exposure to exogenous steroid
estrogens and fadrozole alters gene expression
of both brain and gonad aromatases (a key
enzyme in the biosynthesis of estrogens from
androgens). Exposure to pharmacological
doses of fadrozole during the window of sex-
ual differentiation in the zebrafish results in a
depressed aromatase mRNA expression subse-
quently in all-male fish populations (Fenske
and Segner 2004). Exposure to steroidal
estrogens in adult fish alters gene expression
of brain aromatase, but the significance of this
for reproduction has not been determined in
the fathead minnow (Halm et al. 2002), in
medaka (Contractor et al. 2004), or in
zebrafish (Kishida et al. 2001). Exposure to
the estrogen mimic nonylphenol disrupts
pituitary synthesis of gonadotrophin mRNA,
and, thus, disrupts gonadal development at a
pivotal level in the endocrine control pathway
for sexual development (Harries et al. 2001).
These examples illustrate that molecular biol-
ogy, specifically studies on single specific gene
transcripts, is increasingly important in
unraveling the pathways and mechanisms of
estrogenic disruption in fish. Moreover,
because evidence shows that some chemicals
can act at multiple targets to disrupt physio-
logical function in fish [e.g., nonylphenol acts
as an estrogen agonist, androgen antagonist
and can alter gonadotrophin synthesis and
secretion (Scholz and Gutzeit 2000)], more
comprehensive molecular approaches (beyond
assessing effects at single gene targets) are
needed to identify pathways and mechanisms
of endocrine disruption.

The potential for omics technologies to
help unravel how EDCs interact in fish and
mediate their effects is now well recognized;
however, the practical science is still in its
infancy. For example, with the availability of
the genome sequences for zebrafish (Rasooley
et al. 2003) and medaka (Henrich et al.
2003), DNA microarrays are now available

for application to EDC research. A limited
number of cDNA macroarrays are now avail-
able for other fish species, including fathead
minnow (Miracle et al. 2003) and sheepshead
minnow (Larkin et al. 2003). Larkin and co-
workers recently conducted studies using
cDNA macroarrays to investigate the responses
of 30 genes in the sheepshead minnow (Larkin
et al. 2003). They observed that exposure to
17β-estradiol, ethinylestradiol, diethylstilbe-
strol, and methoxychlor gave similar genetic
signatures for the 30 (estrogen-responsive)
genes studied. The gene response patterns,
however, differed from the effects of steroid
estrogens in fish exposed to nonylphenol
or endosulfan.

Design of fish tests for EDCs. For more
than 20 years, testing for fish reproductive
effects has typically exploited one of two (or,
in the case of full life-cycle tests, both) life
stages where chemicals that affect the HPG
axis produce adverse outcomes such as early
development (covering the window of sexual
differentiation) and active reproduction. The
effects of EDCs during gonadal development
and sexual differentiation can be manifested in
intersex gonads and/or skewed phenotypic sex
ratios in fish [examples using fathead minnows
(Pimephales promelas), medaka (Oryzias
latipes), and zebrafish (Danio rerio) are given
by Maack and Segner (2003); Örn et al.
(2003); Seki et al. (2002); van Aerle et al.
(2002)]. In species with prominent secondary
sexual characteristics, such as the fathead min-
now or medaka, skewed sex ratios (typically
deviation from 50:50% male:female) can be
readily identified visually at sexual maturation.
Identification of intersex gonads (often
referred to as ova–testis) requires histological
analysis. Changes in sex ratios or the occur-
rence of intersex gonads could clearly have
consequences in terms of maintenance of sta-
ble populations, and both end points have
some level of diagnostic capability with respect
to identifying an underlying endocrine-medi-
ated MOA. Hence, early developmental tests
clearly have value with respect to screening
and testing EDCs. However, a drawback of
these types of tests is their duration, not so
much in terms of chemical exposure time but
in the amount of time the fish must be held
after the exposure in order to reach the point
of maturation where phenotypic sex can be
determined and/or gonads can be examined
histologically [see reviews by Ankley and
Johnson (2004) and Hutchinson (2002)].

Another critical window of sensitivity
regarding chemical disruption of the HPG axis
in fish is the period of active reproduction. This
period has been exploited with respect to EDC
testing through use of short-term reproduction
assays in several small fish species (Ankley and
Johnson 2004). There is some variation in the
test design and end points between laboratories;

however, a relatively similar design has been
employed for the fathead minnow, medaka,
and zebrafish (Ankley et al. 2001; Harries et al.
2000; Seki et al. 2002; van der Ven et al.
2003). Tests are usually started with animals
that have an established history of successful
reproduction. After a short period of acclima-
tion, chemical exposure is initiated, generally
via water and typically for 21 days. During the
exposure, a number of apical (adverse) effects
can be assessed, including survival and size
(of the adults), fecundity (number of eggs
spawned), fertility (number of fertile eggs pro-
duced), hatch (number of fertile eggs that
produce larvae), and larval viability (e.g., occur-
rence of malformations in hatched animals).
This type of information can be useful for sub-
sequent population modeling. At the conclu-
sion of the assay, a number of biomarker
responses more diagnostic for specific EDC-
related MOAs can be assessed, including status
of secondary sex characteristics, gonad histol-
ogy, concentrations of VTG in plasma or liver,
and plasma sex steroid (17β-estradiol, testos-
terone, 11-ketotestosterone) concentrations.

Although more limited, a number of full
life cycle studies have been conducted with
EDCs in small fish models. The advantage of
these types of tests is that they capture all
potential windows of sensitivity, and they are
suitable for quantitative risk assessments.
Their disadvantage is, of course, their duration
and expense. Life cycle tests with EDCs have
been described for the fathead minnow (e.g.,
Länge et al. 2001), medaka (e.g., Yokota et al.
2001) and zebrafish (e.g., Fenske et al. 2005;
Nash et al. 2004; Segner et al. 2003). Life
cycle tests can capture all the end points col-
lected during the shorter-term developmental
and reproduction assays described previously;
as such, these tests provide information that
can be used for population modeling as well as
for diagnosing endocrine MOA. Moreover,
effects may not be evident in the F0 generation
but may appear only in the F1 generation, or
organizational effects of EDCs induced early
in life may become detectable only during
later stages (Bigsby et al. 1999; Stahl and
Clark 1998).

Species Selection and
Interspecies Comparisons
Selection of test species. Fish are the most
numerous class of vertebrates, and because of
their diversity, it is impossible to identify any
one species as an ideal test model. Many
different fish species have been used for short-
term lethality assays. Test species have been
selected mostly for ease of culture, ecological
relevance and, occasionally, economic impor-
tance. A much smaller range of species, how-
ever, has been employed in partial and full life
cycle toxicity testing, namely, the type of tests
needed to detect EDC effects, because
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endocrine disruptors are more likely to cause
long-term, sublethal rather than acute effects
(Ankley and Johnson 2004). Salmonids such as
the rainbow trout (Oncorhynchus mykiss) that
have received historical attention regarding
toxicology research in North America and
Europe are not conducive to routine partial or
full life cycle testing because of their compara-
tively long life cycle and large size. Because of
these types of logistic constraints, most current
toxicology testing with fish uses small (usually
freshwater) species such as the fathead min-
now, medaka, and zebrafish (Ankley and
Johnson 2004). Although current emphasis in
EDC testing and research is on these small lab-
oratory fish species, the importance of includ-
ing other freshwater or marine fish species in
EDC research should not be overlooked
(Folmar et al. 2000; Hashimoto et al. 2000;
Jobling et al. 1998; Katsiadaki et al. 2002).

Although small fish models offer a number
of practical advantages for EDC laboratory
testing, their biology is rather different than
that of some of the wild fish species that regu-
lations are seeking to protect. While the fat-
head minnow, medaka, and zebrafish are
short-lived and start to spawn early in their life,
many wild fish species are long-lived and take
1 or 2 years until they first spawn. The model
species are fractional spawners, whereas many
fish species from temperate zones are periodic
annual spawners. This disparity implies impor-
tant differences in the fluctuation of hormone
levels, VTG synthesis, and gonad maturation
(Jensen et al. 2001). It is therefore important
to exploit the value of EDC biomarkers as
signposts for interspecies extrapolation from
laboratory fish species to wild fish populations.

EDC responses across species. At the molec-
ular level, MOAs of EDCs are highly conserved
among vertebrates (Tyler et al. 1998; Vos et al.
2000). A compound that acts as an estrogen
receptor ligand in mammals will often also bind
to these receptors of fish, and available evidence

suggests that binding affinities can be compara-
ble among species (Tollefsen et al. 2002;
Urushitani et al. 2003; Wilson et al. 2004). It is
possible, however, that an EDC could show an
identical molecular action in two species but
still evoke different physiological, morphologi-
cal, or biological responses. For example,
whereas xenoestrogen action leads to VTG
induction in both medaka and zebrafish, it
appears to evoke intersex formation in the
medaka but not in the zebrafish (Gray et al.
1998; Örn et al. 2003; Seki et al. 2002; van der
Ven et al. 2003). Similarly, life cycle exposure
of fathead minnow and zebrafish to ethinyl-
estradiol at concentrations of 4 and 3 ng/L,
respectively, results in a 100% inhibition of
reproduction; but in fathead minnow this effect
is caused by a complete feminization of the
gonads (Länge et al. 2001), whereas in zebrafish
it seems to be caused by arrested testicular
development (Fenske et al. 2004). It is also nec-
essary to consider that some hormones have
wider functional roles in some fish species. For
instance, while the main role of estrogen in all
teleost species is to regulate sexual differentia-
tion and reproduction, in migratory salmon, it
is also involved in the smoltification process
(Madsen et al. 1996). Therefore, estrogen expo-
sure during the parr-smolt transition period
could modify the success of smoltification and
lead to reduced smolt survival in seawater
(Fairchild et al. 1999). Hence, extrapolation
may become more difficult at the level of meta-
bolic, physiological, or systemic responses to
EDCs (Hornung et al. 2004; James et al. 1988;
Kawai et al. 2003). This possibility is particu-
larly likely when there is insufficient knowledge
of the basic endocrinology and physiology of
model fish species.

The qualitative extrapolation of effects
across fish species is one problem; another is the
interspecies extrapolation of quantitative effect
concentrations. When comparing for different
fish species the threshold concentrations for

induction of VTG, it appears, for example, that
for ethinylestradiol, the lowest observed effect
concentration for a biomarker (biomarkerLOEC)
(values (based on VTG) are usually within one
order of magnitude (Table 1). It should also be
noted that different fish species respond at dif-
ferent rates to stimulation (differences in
responsiveness). For example, sewage effluent
exposures produce more rapid VTG induction
in rainbow trout compared with that in carp or
roach; however, the effective concentration of
effluent to induce VTG is essentially the same
(Jobling et al. 2004; Tyler et al. 2005). There is
also the issue that some fish have a greater
capacity for VTG induction compared with
others, which probably reflects differences in
their normal, basic physiology. For example,
rainbow trout may produce tens of milligrams
of VTG in response to an estrogen dose,
whereas roach or carp may produce only hun-
dreds of micrograms in response to that same
dose (Tyler et al. 1998). Interspecies differences
in responsiveness of VTG induction and in the
resulting magnitude of VTG levels after induc-
tion may occur for several reasons, some of
which include the underlying endocrine status
of semelparous versus iteroparous species, the
study temperature versus the environmental
temperature normally conducive to sexual mat-
uration and spawning, or indeed, other unrec-
ognized factors. What is clear is that for the
species of concern (in both laboratory and field
studies), we need to develop a more compre-
hensive understanding of their temporal repro-
ductive cycles, especially where VTG is being
used as a biomarker of estrogen exposure in fish
(Hiramatsu et al. 2002).

Protecting Fish Populations

Extrapolating laboratory data to the field.
Unless a species is considered endangered, eco-
logical risk assessments with toxic chemicals,
including EDCs, are focused not on the indi-
vidual but rather on impacts at the population
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Table 1. Examples of interspecies comparison of VTG induction in fish exposed to 17α-ethinylestradiol.

Species Range tested (ng/L) Exposure period (days) Age (sex) BiomarkerLOEC or EC50 Reference

Fathead minnow 0.2–64 172 (life cycle) Indeterminate (U) LOEC = 4 ng/L Länge et al. 2001
2/5/20 ≤ 21 Juvenile (U) LOEC = 2 ng/L at 14 days Panter et al. 2002

LOEC = 5 ng/L at 21 days
Medaka 32.6–488 21 Adult (M) LOEC = 63.9 ng/L Seki et al. 2002

32–488 21 Adult (M) LOEC = 63.9 ng/L Seki et al. 2002
Adult (F) No VTG induction

0.1–100 21 Adult (M) LOEC = 1 ng/L in both sexes Pawlowski et al. 2004
Adult (F)

Rainbow trout 1/10/100 14 Juvenile (U) LOEC = 1 ng/L at 14 days Verslycke et al. 2002

5/10/25 21 Juvenile (U) LOEC = 5 ng/L van den Belt et al. 2003
Zebrafish 5/10/25 21 Adult (M) LOEC = 5 ng/L van den Belt et al. 2003

2–1,000 21 Adult (F) EC50 = 6.2 ng/L van den Belt et al. 2004
9/17 (measured concentrations; 24 Adult (M) LOEC = 9 ng/L van den Belt et al. 2002

nominal: 10 and 25 ng/L)
1–100 8 Adult (M) LOEC = 3 ng/L Rose et al. 2002

1.67, 3.5, 7, 10, 20 21 Adult (M) LOEC = 1.67 ng/L Fenske et al. 2001
Sheepshead minnow 20–1,000 1–16 Adult (M) LOEC = 100 ng/L Folmar et al. 2000

Abbreviations: EC50, median effect concentration; F, female, M, male, U, unknown phenotypic sex.



level. As a result, end points most commonly
assessed in regulatory fish testing are those that
can be interpreted relative to population vital
statistics. They include survival, growth (gener-
ally during early-life stages), and measures of
reproductive success (e.g., gonadal condition,
egg production, fertility, hatching success).
Environmentally adverse concentrations of a
given chemical have generally been defined sta-
tistically on the basis of performance of fish in
an assay. These concentrations are often sum-
marized as the LOEC and the no observed
effect concentration (NOEC), or sometimes as
the EC10 (effective concentration for a 10%
response) value [European Commission (EC)
2003]. However, some environmental scien-
tists feel that this regulatory approach is
overly simplistic with respect to protecting
populations in the field. For example, some
researchers assume that sensitivity of fish tested
in a laboratory adequately reflects the sensitiv-
ity of untested species in the field. An aspect of
this assumption is the differing life history pat-
terns of fish, namely the K- and r-strategies
(Stearns 1976). For North American fish,
interspecies patterns of life histories were ana-
lyzed in detail by Winemiller and Rose (1992).
Fish species with an opportunistic strategy are
characterized by early maturation, frequent
reproduction over an extended spawning sea-
son, rapid larval growth, and high adult mor-
tality. In contrast, species with an equilibrium
strategy are characterized by intermediate-sized
fish that produce small numbers of large eggs
and provide high parental investment in their
young. Finally, species with a periodic strategy
are characterized by fish that show low adult
mortality and that delay maturation until body
size is sufficient for the production of large egg
batches; usually they are perennial spawners
that spread reproductive efforts over several
years. Such fundamental differences in life
strategies are likely to have a major bearing on
the potential impacts of EDCs. In turn, using
fish species with an opportunistic life history
(as most of the laboratory test fish species have)
to predict the response of and to protect a
species of fish with a periodic life history (as
many fish species of temperate zones have) is
certainly open to question. This comparison
illustrates further the limitations of any test sys-
tem applied in a wide generic context in risk
assessment to protect wild fish.

Population modeling. Models offer one
solution to dealing with uncertainties in the
extrapolation of data generated from individu-
als in the laboratory to field populations
(Hurley et al. 2004). Through the use of mod-
els it is possible to consider the long-term
population implications of changes in parame-
ters such as survival or reproductive output at
the individual level. A number of recent stud-
ies have been conducted concerning the effects
of EDCs in fish from a population-modeling

perspective. In one example Grist et al. (2003)
evaluated data generated in a full life cycle test
conducted with fathead minnows exposed to
ethinylestradiol (Länge et al. 2001), and they
concluded that reductions in population
growth rate caused by the estrogen would be
due to effects on fertility rather than on sur-
vival. Gleason and Nacci (2001) provided an
example of the use of a matrix model for the
fathead minnow to relate a decreased popula-
tion growth rate in fish exposed to estradiol to
vitellogenin induction (in males). Miller and
Ankley (2004) expanded on this approach by
developing a model based on the Leslie matrix
and logistic equation to predict the effects of
the androgen 17β-trenbolone (Ankley et al.
2003) on dynamics of a fathead minnow pop-
ulation in a closed system. A more advanced
example of population modeling of EDC
effects on fish populations has been described
by Brown et al. (2003), who evaluated the
likely effects of 4-nonylphenol and methoxy-
chlor on fathead minnow and brook trout
populations. A significant element of that
analysis was the consideration of differential
impacts of the estrogenic EDCs on fish species
with markedly different reproductive strate-
gies, that is, discrete (trout) versus continual
spawners (minnows). Jobling et al. (2006)
have recently adopted a modeling approach to
predict roach populations most at risk from
the effects of steroid estrogens in U.K. rivers.
Subsequent biological sampling at the study
sites specified to probe the model showed a
highly significant correlation between predic-
tion (based on steroid estrogen exposure) and
impacts on gonad histopathology.

Interpretation of effects data. The calcula-
tion of robust population predicted no-effect
concentrations (PNECs) from NOEC or
EC10 values is a continual challenge in ecotox-
icology, and several methods are used tackle it
(EC 2003; Selck et al. 2002). In the most
widely used approach, constant application
factors are applied to the available toxicity data
to account for different sensitivities of other
untested species in the ecosystem. In Europe,
for example, application factors are used for
single substances to estimate an environmental
concentration that presumably will protect the
wildlife species from adverse effects. In this
process the lowest effect concentration meas-
ured in a laboratory test is divided by an appli-
cation factor (usually between 10 and 1,000,
depending on pragmatic assumptions relating
to single substances versus real world mixtures,
acute–chronic ratios, and interspecies differ-
ences). Alternatively, species sensitivity distrib-
utions (SSDs) may be used (e.g., both in
Europe and North America to derive water
quality criteria) (EC 2003).

Application factors are used most often
when few toxicity data are available. We pro-
pose, in keeping with the principles of EDC

assessment in mammals and the valuable
concept of the NOAEL (no observed adverse
effect level) (Foster and McIntyre 2002; Lewis
et al. 2002), that fish chronic testing data be
expressed as adverseNOEC or adverseEC10 values,
which in turn should be used to derive PNECs.
Similarly, biomarker responses such as VTG
could be expressed in terms of biomarkerNOEC
or biomarkerEC10 values; however, at the current
time it is prudent not to use these data alone for
calculating PNECs for individual substances.
Currently, it is difficult to incorporate EDC
biomarker data directly within fish population
modeling and to discern between potential
causative factors versus data association
(Gleason and Nacci 2001). For complex mix-
tures such as municipal and industrial effluents,
at this time there is clearly a proven role for
using VTG and other biomarkers (e.g., gonad
histology) in fish to prioritize discharges of
concern (Jobling et al. 1998; Sumpter and
Jobling 1995). As recommended by Handy
et al. (2003), it is currently inappropriate to use
biomarker data alone to curtail discharges rou-
tinely (“a red traffic light” scenario), but rather
their value is greater as scientific signposts to
help target detailed chemical and biological
analyses of water, sediment, and biota. The use
of EDC biomarkers will improve, pending fur-
ther research and knowledge regarding their
functional relevance for reproductive toxicity.

Standardization of End Points
As the science concerning EDC testing
progresses, it will be necessary to evaluate the
variability in different biomarker responses and
adverse effect end points. The same approach
exists in other areas of ecotoxicology and mam-
malian toxicology (Dave 1993; Environment
Canada 1990; Mitchell et al. 1990). Relative to
this point, the OECD (2003) guidance docu-
ment on the validation of test methods defines
the following terms (with the current addition
of the last point on interassay comparability):
• Relevance: the description of the relationship

of the test to the effect of interest and
whether it is meaningful and useful for a
particular purpose. It is the extent to which
the test correctly measures or predicts the
biological effect and species of interest

• Reliability: the extent of reproducibility of
results from a test over time within and
among laboratories when performed using
the same protocol

• Reproducibility: the agreement among
results obtained from testing the same sub-
stance using the same test protocol (see
“Reliability”)

• Repeatability: the agreement among test
results obtained within a single laboratory
when the procedure is performed on the
same substance under identical conditions

• Robustness: the insensitivity of a test to
departure from the specified test conditions;
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the ability of a test to provide similar results
over a range of test conditions under which
the test may be used in different laboratories

• Transferability: the ability of a test method
or procedure to be accurately and reliably
performed in independent, competent
laboratories

• Comparability: the comparison of results
from laboratories measuring the same end
point using different protocols

Table 2 presents data currently available for
some biomarkers used in EDC assessments
with fish. Taking the example of the use of a
heterologous fathead minnow VTG immuno-
assay when exactly the same protocol was used
in different laboratories, the coefficient of vari-
ation (CV) for interlaboratory reproducibility
was 38–55% (Panter et al. 1999). A more
recent study using a homologous enzyme-
linked immunosorbent assay for fathead min-
now gave intralaboratory repeatability and
interlaboratory reproducibility CVs of 16.4
and 18.4%, respectively (Eidem et al., in
press). In contrast, when a variety of different
methods were compared for measuring VTG
in OECD species (reflecting interassay compa-
rability but not interlaboratory reproducibil-
ity), the data resulted in CVs of up to 1,873%
in medaka (Battelle 2003) or 263% in

zebrafish (Porcher 2003). Such wide variability
in data is an additional reason why VTG can-
not be easily used to predict adverse effects
accurately at this time. Other comparative
exercises of different immunoassay methods
have been conducted for plasma sex steroids,
and they showed CVs of 60 and 70% for estra-
diol and testosterone, respectively (McMaster
et al. 2001). What is notable in Table 2 is that
CVs for VTG reproducibility are relatively
similar to those for survival, growth, and
fecundity from a range of laboratory studies.

Use of Biomarkers in EDC
Screening and Testing
In the tiered approach to assessing possible
EDCs, which has been suggested by the U.S.
EPA (1998; Fenner-Crisp et al. 2000), the ini-
tial step would be prioritization of chemicals
for testing based, for example, on existing toxi-
cological data, structural characteristics, pro-
duction volume, etc. Chemicals would then be
subjected to tier 1 tests designed to provide evi-
dence as to whether a chemical has the poten-
tial to act as an EDC in a whole animal. The
U.S. EPA (1998) recommended consideration
of five tier 1 tests: three with rats, one with an
amphibian (to detect thyroid-active chemicals),
and one with fish to identify chemicals that

affect reproductive function through alter-
ations in the HPG axis. Chemicals identified as
positives through the tier 1 tests would proceed
on to more extensive tier 2 testing designed to
define human health and/or ecological risk
quantitatively. Tier 2 tests are full life cycle and
multigenerational tests with potentially a vari-
ety of species, including mammals (rats), birds,
amphibians, and fish (U.S. EPA 1998).
Outside the United States, other countries
have proposed modifications to this approach,
and some suggest a three-tier method that can
be applied to different aquatic exposure sce-
narios (tier 1: fish screening; tier 2: fish partial
life cycle; and tier 3: fish full life cycle)
(Hutchinson et al. 2000). Whatever approach
to tiered testing is used, there is need for a tool-
box of validated OECD test guidelines that
encompass both biomarker and adverse effect
end points that have been validated using a
range of substances (Huet 2000).

In general, it is agreed that only through
the application of a tiered strategy can the test-
ing of the huge number of candidate chemicals
be practically and economically feasible. The
primary purpose of screening is to have rapid
assays (with efficient use of animals, laboratory
resources, and money) that ideally can detect
all EDCs of concern, avoid false negatives, and
act as signposts for the road ahead toward
higher tier testing. It is therefore not the pur-
pose of fish screening assays to provide data for
direct use in calculating PNECs. Guided by
the information from screening, the higher-tier
fish tests are primarily devoted to identifying
adverse effects of concern and to providing
data to calculate the PNEC (Figure 1). As an
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Table 2. Overview of repeatability, reproducibility, and comparability of endocrine biomarkers versus apical
end points in fish.

Organism End point Variablea CV (%)b Reference

Fathead minnow Juvenile whole-body VTG Reproducibility 55 Panter et al. 1999
Female plasma VTG Reproducibility 45 Panter et al. 1999
Male plasma VTG Reproducibility 38 Panter et al. 1999
Plasma VTG Repeatability 3–14 Nilsen et al. 2004
Plasma VTG Repeatability 16.4 Eidem et al., in press
Plasma VTG Reproducibility 18.6 Eidem et al., in press
Plasma VTG Repeatability 32 Battelle 2005
Plasma testosterone Repeatability 46 Battelle 2005
Plasma estradiol Repeatability 64 Battelle 2005

Medaka Liver VTG Comparability 52–863 Battelle 2003
Whole-body VTG 100–1873 Battelle 2003
Liver VTG Repeatability < 7 Tatarazako et al. 2004

Zebrafish Whole-body VTG Comparability 70.2–269 Porcher 2003, Table 7
Whole-body VTG Repeatability 14–18 Nilsen et al. 2004

White sucker Plasma testosterone Comparability 70 McMaster et al. 2001
Plasma oestradiol 60 McMaster et al. 2001

Fathead minnow 7-day dry weight Repeatability 24 Pickering 1988
7-day dry weight Reproducibility 36 Pickering 1988
Larval LC50 Repeatability 15–23 Pickering 1988
Larval LC50 Reproducibility 24–44 Dave 1993
Fecundity (group breeding) Repeatability 20 Battelle 2005
Fecundity (pair breeding) Repeatability 24 Thorpe et al., in press

Medaka Fecundity Repeatability 35.7 Seki M, personal 
communication, 2005

Rainbow trout 28-day growth LOEC Repeatability — Ashley and Mallett 1990
28-day growth LOEC Reproducibility 19–58 Ashley and Mallett 1990

Sheepshead minnow Larval IC25 Repeatability 28–42 Dave et al. 1993
Larval IC25 Reproducibility 44 Dave et al. 1993

Zebrafish Survival NOEC Repeatability 26–33 Dave et al. 1993
Survival NOEC Reproducibility 35–52 Dave et al. 1993
Fecundity Repeatability 26–63 Wenzel et al. 2001

Abbreviations: —, no data; IC25, 25% inhibitory concentration; LC50, 50% lethal concentration. aRepeatability” describes the
variation among repeated tests of the same protocol in the same laboratory. This variation is also called intralaboratory vari-
ability. Reproducibility” describes the variation between repeated tests of the same protocol in different laboratories. This
variation is also called “interlaboratory variability” (Dave (1993). Comparability” describes the variation for the same end
point measured using different protocols. CV = 100 × SD/mean. The CV is sometimes referred to as the relative standard
deviation (RSD).

Figure 1. Conceptual approach to fish screening
and testing for EDCs. Fish screening assays often
use adult fish but can also involve juvenile fish on a
case-by-case basis.
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illustrative example for fish screening, the most
rapidly assessed biomarkers (e.g., secondary
sexual characteristics or VTG) could be evalu-
ated first, and more complex biomarkers such
as gonad histology could be addressed later
(Figure 2).

Conclusions and
Recommendations
Given the exponential increase in data on
screening and testing of EDCs in fish, it is
important to identify key points of learning
to guide future science in both the laboratory
and field, and also to aid risk managers in
government and industry. At present, it is our
view that this process can be summarized in
five essential conclusions: 
• There is a need for a validated “toolbox” of

fish screening and chronic testing methods
within a flexible framework. A basic require-
ment here is the need for more published data
on normal patterns of biomarker expression
along with exposure studies using a wide
range of both potent and weakly acting
EDCs. Where mechanistically appropriate,
the use of positive controls within research
studies can add value to some studies [e.g., for
estrogens and antiestrogens, 17α-ethinyl-
estradiol was used by Panter et al. (2002)]. A
historical control database needs to be estab-
lished for fish species with the most promise
in EDC screening and testing (e.g., fathead
minnow, medaka, zebrafish) for the biomark-
ers and adverse effect end points of interest.
Our effort to apply this approach to VTG
suggests that this biomarker has an inter-
laboratory CV for reproducibility similar to
those for traditional ecotoxicology end points
(survival and growth).

• Biomarkers provide valuable data for
extrapolating from laboratory and field stud-
ies to the effects of EDCs on fish. It is doubt-
ful whether the scientific understanding of
environmental estrogens could have pro-
gressed this far were it not for the use of the

fish VTG biomarker for monitoring effluents
in many countries; its use led to the efficient
focusing of analytical chemistry on key
chemical suspects (Tyler et al. 1998; Vos
et al. 2000). In parallel, the inclusion of bio-
markers in screening and chronic testing with
fish has provided essential data for verifying
alerts from the field, and it has helped lead to
a rational prioritization of natural and syn-
thetic estrogens as key substances of concern
for the reproductive health of fish popula-
tions. As more data become available for
other classes of EDCs (e.g., androgen-active
compounds and aromatase inhibitors), it is
anticipated that the same principles will hold
true and be productive in protecting and
improving ecological quality (Ankley et al.
2002, 2003; Parks et al. 2001; Zerulla et al.
2002) and also in linking to mammalian
systems (Gray et al. 1998).

• For prospective risk assessment, biomarkers
can be used as signposts to design better and
more cost-effective fish chronic tests. Many
scientists recognize that a modest but
detectable increase of VTG in male fish may
not directly predict quantifiable impairment
of reproduction, although very high levels of
VTG can cause severe growth retardation
associated with renal damage (Hermann
and Kincaid 1988; Länge et al. 2001). In
terms of reproducibility, VTG biomarker
measurement appears to perform in a man-
ner similar to survival and growth in fish
(Dave 1993). More data are needed on the
repeatability and reproducibility of sex hor-
mone measurements to evaluate further
their general use as mechanistic endocrine
biomarkers (Ankley et al. 2001; McMaster
et al. 2001).

• For whole effluent assessment, biomarker
data can be used to design cost-effective bio-
logical and chemical monitoring programs to
reduce ecological impacts in receiving waters.
As observed by Handy et al. (2003), it would
be inappropriate for biomarker data alone to

be used to curtail effluent discharges or to
justify the imposition of penalties on the
municipal or industrial discharger. Instead, as
EDC biomarker data improve, site-specific
goals could be set as a by-product of under-
standing impacts from a weight-of-evidence
(including biomarker data) perspective, fol-
lowed by dialogue involving all parties. Given
the high cost of chemical analyses to quantify
trace levels of toxicants in complex mixtures,
biomarkers may well prove to be the most
effective and economical approach (van der
Oost et al. 2003).

• Calculation of PNEC values should be
based primarily on adverse effect end points
that are directly relevant to protecting popu-
lations. Communication of this population
relevance concept could be aided by ecotox-
icologists adopting the NOAEL from mam-
malian toxicology. Based on current
regulatory terminology, data could be
expressed as the adverseEC10, adverseNOEC,
and adverseLOEC (as distinct from
biomarkerEC10 or biomarkerNOEC values)
(Figure 3). This proposal may help achieve
improved consistency in EDC risk assess-
ment between mechanistic or mode-of-
action ecotoxicology (Escher and Hermanns
2002) and mammalian toxicology (Ashby
et al. 2004; Foster and McIntyre 2002;
Lewis et al. 2002). As our understanding of
EDC biomarkers develops, there is future
scope for their increasing role to guide envi-
ronmental risk assessment, and investment
in fish biomarker research should therefore
remain a priority.
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