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Cultural–Historical Theory and Mathematics
Education

Jean Schmittau

Mathematics education in the United States is currently undergoing an at-
tempt at reform. In this chapter an alternative in the form of a Vygotskian-
based approach to mathematics pedagogy is explored. While embracing
teaching methods similar to those advocated within the reform movement,
the Vygotskian-based curriculum, in its genetic analysis of mathemat-
ics concepts, their derivation from measurement, and representation by
schematic modeling, differs substantively from both historical and current
U.S. reform efforts. The teaching and curricular similarities and differences
of reform practices and Vygotskian-based pedagogy reflect their respec-
tive grounding in divergent theoretical perspectives – the former in con-
structivism and the latter in cultural–historical theory. Here the cultural–
historical approach is addressed, and some of the effects of these two ped-
agogical approaches on the adequacy of mathematical understanding is
explored. It is necessary, however, to begin with a summary consideration
of the antecedents of the current reform effort.

Mathematics education throughout the past century has come under
the dominance of several learning paradigms. First was the early period
of behaviorist pedagogy, succeeded by the formalism of the “new math,”
then the rapid reversion to “basics,” and finally the emergence of con-
structivism, which continues to maintain its pedagogical hegemony to the
present day. It is curious that throughout these periods of changing peda-
gogical approaches, all grounded in different philosophies of mathematics
(Schmittau, 1991), a single practice persisted unchallenged. This was the
practice of building children’s understanding of the real number system,
which Davydov (1990) asserts is the dominant subject matter of school
mathematics, on the activity of counting.

The continuance of this practice is partly the result of a certain am-
bivalence with respect to concept development that has characterized the
history of mathematics education in the United States. Behaviorism, af-
ter all, was not concerned with concept development, and the “back to

225



226 Jean Schmittau

basics” movement that reverted to it characteristically focused on procedu-
ral rather than conceptual competence. The “vulgar formalism” (Browder
& MacLane, 1979, p. 344; cited in Hanna, 1983, p. 88) of the “new math”
virtually reduced mathematics to a syntactic system, and formalist math-
ematics, in which the “new math” was grounded, actually generates the
real numbers from the positive integers through an axiomatic system. So
it is obvious why formalism not only failed to question, but actually rati-
fied an approach to number centered on the counting numbers. The final
and present period in mathematics education, unlike previous periods in
which procedural competence or logical deduction was emphasized, is
marked by an awareness of the importance of concepts. When clinical in-
terviewing, a research method of choice by the mid-1980s, revealed that
the direct transmission of mathematical understanding from teacher to
student was not occurring despite clear explanations of mathematical con-
tent, the notion that students must “construct their own knowledge” took
center stage in mathematics education. It is perhaps significant that it did
so in the absence of any competing paradigm. The pendulum swing from
the transmission model with its grounding in behaviorism (with some
surviving formalist contaminants) was, to all appearances, extreme. Yet
constructivism, as did its pedagogical predecessors, continues to ground
number in counting. The fact that children typically enter school with some
more or less valid knowledge of counting is doubtless a consequence of
the fact that we live in a world of “stuff,” most of it eminently count-
able. And since constructivism posits that children must construct their
own concepts, what better basis could there be on which to build future
mathematical understanding than children’s own spontaneous counting
concepts?

Unlike the mathematics teacher, the science teacher realizes that it is
dangerous to assume that children’s spontaneous concepts constitute an
adequate basis on which to develop further understandings. When she asks
these same children why a cork floats in a tub of water and a nail sinks, she
may hear that it is because the nail is long and thin and the cork is more
round. Now disconfirming evidence is called for, and the teacher may place
a wooden matchstick and a steel ball bearing in the water, clearly challeng-
ing the children’s naı̈ve concepts by the fact that the match floats and the
bearing sinks. At this point, however, the children are still very far from
an understanding of density, which is a concept that cannot be grasped
empirically but requires a theoretical mode of thinking for its appropria-
tion (cf. Davydov, 1990). It is one of the concepts Vygotsky called scientific
to distinguish them from the spontaneous concepts children form through
their interactions within their everyday environment. Scientific concepts
(which are not limited to the field of science) require pedagogical media-
tion for their appropriation. It is important to mention that only scientific
concepts were considered to be true concepts by Vygotsky (Kozulin, 1990),
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and that virtually all mathematics concepts fit this designation (Schmittau,
1993a).

The difficulty of trying to ground children’s mathematical development
in their spontaneous notions of number emanating from counting, rather
than reorienting them (as the science teacher must) to a more adequate the-
oretical development of the concept, is illustrated by Davydov (1991). He
cites the fact that since number becomes identified for children with the ac-
tion of counting, which only generates the positive integers, and formalist
mathematics generates real numbers from these as well, a rational number
(and hence a fraction) is defined as a quotient of two integers a/b such that
b �= 0. (This allows, for example, for 2/3, and 5/4, while properly exclud-
ing 2/0 from the realm of number.) Fractions, of course, did not evolve in
this manner any more than language evolved from the rules of grammar
(cf. Riegel, 1979; Schmittau, 1993b). This is a formalist definition and is
in keeping with the axiomatic integer genesis of real number within that
paradigm. However, since such a designation makes very little sense to
children, educators divide circles into sectors and illustrate fractions from
the ratios formed, thereby providing a visual interpretation of a formal def-
inition. That this visual representation leads to less than an accurate grasp
of the concept of fraction is the subject of meticulous scrutiny by Davydov,
who indicts this approach on a number of counts, not the least of which is
that it separates fractions from their historical origin in measurement.

Historically fractions clearly were not developed as quotients of inte-
gers. The axiomatization and formalization of mathematics that occurred
in the 19th and early 20th centuries represented an attempt to reestablish
mathematics on a foundation that was rigorously deductive. Hence, for-
malism may appropriately be viewed as a cognitive reflection – occurring
very late in mathematics history – on a body of knowledge that actually
developed in a very different way over a period of several thousand years.
The fallacy of the “new math” was the assumption that formalist notions
could be directly learned by students, who could skip the development
of concepts as they had actually occurred, and instead learn mathemat-
ics by beginning at the end, so to speak, of the history of mathematical
development. The primary reason for the failure of the “new math” was
that ordinary students could not learn mathematics in this way. Rigorous
deduction and formal logic were not the paths of conceptual genesis.

Further, it is significant that the formalist reestablishment of the category
of real number as an emanation of the positive integers (or counting num-
bers) has the character of a generative metonymy. In his provocative book
Women, Fire, and Dangerous Things: What Categories Reveal About the Mind,
Lakoff (1987) discusses the manner in which the real numbers constitute
a generative category, that is, one characterized by its generation from a
member or subgroup of members according to rules. Lakoff observes that
the set of single-digit numbers generates all the counting numbers through



228 Jean Schmittau

the rules of positionality in our base 10 numeration system. The rational
numbers are then defined as quotients of these, and the irrationals as in-
finite nonrepeating decimals composed of the digits 0 through 9. Lakoff
further notes that generative categories tend toward metonymy, as the
generative subcategory becomes representative of the category as a whole.

Our research (Schmittau, 1994) indicates that this development of the
real numbers as a generative category is not confined to formalism, but
occurs whenever the counting numbers are taken as primary, that is, when
the concept of number is allowed to develop from the action of counting.
Consequently the entire category of real numbers may be interpreted by
students in terms of the counting numbers, and the smaller the represen-
tatives, the better. There are, moreover, other far-reaching consequences of
the acceptance of the counting numbers as a basis for the development of
the concept of number. Since fractions and irrational numbers cannot be
generated through counting, not only do many students – and even adults –
fail to see fractions and irrationals as numbers (Skemp, 1987; Schmittau,
1994), but they may inadequately conceptualize the so-called fundamen-
tal operations (i.e., addition, subtraction, multiplication, and division) on
these numbers as well. By way of illustration, we shall focus on one of
these, the operation (or more properly the action) of multiplication.

Conventional pedagogical practice in the United States (by which we
shall mean common textbook approaches that in practice become the
basis for curriculum) define multiplication as repeated addition. Hence,
5 × 4 means 5 + 5 + 5 + 5. This is, of course, an extension of the genera-
tive metonymic, since one can repeat an action such as adding 5 to itself
only an integral (but not a fractional or irrational) number of times. Text-
books sometimes present other “models” of multiplication, such as arrays
in which circles, squares, or other symbols appear in equal groups. It is
generally unclear whether these constitute the same notion – that is, one
is just repeatedly adding the same number of objects in each group – or
whether they represent disparate concepts (in which case one might well
wonder why they are both called multiplication). Increasingly, rectangular
models are finding their way into textbooks as well and often prove helpful
in providing meaning to the operation, but again absent the requisite con-
ceptual connections, it is unclear whether in and of themselves they will
be sufficient to transform the learning of multiplication from instrumental
(a collection of rules) to relational (an integrated system of knowledge)
(Skemp, 1978).

a vygotskian learning paradigm for number
and multiplication

However, in the curriculum developed and researched by V. V. Davydov
and his colleagues in Russia for more than 40 years and grounded in
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Vygotskian cultural–historical psychology, a very different approach to the
genesis of both number and fundamental actions such as multiplication is
taken. Number is developed out of the action of measurement rather than
counting.

Generation of Number fromMeasurement

Preparatory activities for the development of measurement in Davydov’s
curriculum reflect the essence of mathematics as the science of quantity and
relation. The first-grade course (Davydov, Gorbov, Mikulina, & Saveleva,
1999) begins with the comparison of two quantities (length, area, volume,
or weight), which differ sufficiently to permit a visual determination of
their equality or inequality without placing them in spatial proximity. In
the case of weights, merely hefting them in the hands is sufficient to de-
termine which is greater. Next children are presented with quantities that
do not differ so significantly and therefore require alignment to effect a
determination as to which is greater. They may be asked to compare the
length of a pencil and a pen, for example, or the area of a textbook and
a notebook, or the volume of liquid in two identically shaped contain-
ers. Two weights may be so close that a balance is necessary to make a
determination about which of them is greater. No sooner have students
mastered these requisite alignments than they are confronted with a task
requiring them to compare quantities that cannot be aligned. They might be
asked to compare the height of a bookcase and the length of the teacher’s
desk, the area of the classroom door and that of the overhead projector
screen, or the volume of liquid in two containers having very different
shapes. Now the children must find an intermediary, such as a piece of
rope to compare the lengths, or a third container into which to pour the
original liquids to determine which of them has greater volume.

Once children have become comfortable with these methods, they will
then be confronted with the task of comparing two long line segments
with only an intermediary unit such as a short strip of paper to use for this
purpose. They must now lay off the strip on each of the segments as many
times as required: That is, they must measure each one. The measure is then
expressed as a ratio of the length of the original segment to the length of the
unit. For example, if the length of the original segment is designated Aand
the length of the strip of paper is designated U, then A/U is the required
measure. This measure may be a whole number or a fraction, or even an
irrational number. Measurements resulting in fractions (or irrationals) are
not encountered in the first grade, of course, but occur later in the child’s
education and significantly do not require a reconceptualization of number
when they do occur. In curricula where number develops from the action
of counting, however, successive reconceptualizations of both the concept
of number and the various operations performed on numbers are required
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each time a new type of number is introduced. Thus the genesis of number
from measure gives greater coherence to the category of real number and
spares the student such successive conceptual upheavals, which as Skemp
(1987) attests and our own research (Schmittau, 1994) shows, are rarely
accomplished.

Progressive Task Difficulty

The first-grade curriculum of Davydov not only is grounded in cultural–
historical theory, following the anthropological and historical development
of mathematics and framing significant moments in this development in
ways psychologically accessible to children, but accomplishes this through
a stream of progressively more difficult problems, without demarcation
into chapters or sections. The teaching methods employed greatly resem-
ble those advocated by constructivism, but with very different theoretical
foundations. Vygotsky and Luria (1993) carried out an extensive investiga-
tion of the development of primates, traditional peoples, and children and
concluded that cognitive development occurs only when members of these
groups are confronted with a problem for which previous solution methods
are inadequate. Hence, the progressively more difficult problems of com-
parison of quantity in the first-grade curriculum described above reflect
this view. No sooner do children master one solution method than they are
confronted with a problem for which this method is no longer adequate.

The following classroom episode described by Lee (2002) is illustrative.
The first graders have just learned that if A > B, they can conclude that
B < A without reverting to concrete objects. The teacher cuts a paper plate
into three parts labeled A, B, and C (with areas A > B > C) and places them
into an envelope out of sight of the students. She then presents the task:
If A > B, then B C . All children write B < C and cite their previous
conclusion from A > B (viz., B < A) as the reason. They have drawn a false
conclusion based on syntactic similarity. The teacher points out that C does
not appear in the initial inequality, but the children are unmoved. They see
their error when presented with the plate pieces, but the teacher’s attempts
to elicit a correct conclusion without such concrete aids are unsuccessful.
So the teacher tries another approach.

She asks the children to compare the height of classmates Mike (T) and
Sue (C), eliciting T > C . She then inquires as to how T compares with the
height of an unknown first grader, Ellen (E). Mike promptly writes T > E ,
explaining that this must be true since he is the tallest first grader! Having
made an obviously ineffective choice of students, the teacher then asks
the children to compare Mike’s height with the height B of another child,
Bobby, whom they do not know. A flurry of questions about Bobby’s grade,
age, and so on, ensues, to which the teacher responds that she either does
not know or cannot tell. The children finally agree that the correct answer
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is T ? B, since they do not know Bobby and cannot conclude anything
about the relationship between the heights of the two boys. And the fact
that T > C was of no importance to their argument.

Clearly Davydov’s curriculum is anything but didactic. At this writing,
we have completed the implementation of the first 3 years of his program
in a school setting in the Northeast (to our knowledge a first in the United
States), and we have found the problem solving–inquiry focus challenging
for both students and teacher. It has typically taken our American children
a year to develop the intense focus and sustained concentration required
consistently and productively to engage with the problems, which appear
to continuously expand their zones of proximal development (Vygotsky,
1934/1986). The problems themselves are very interesting to the children,
but the challenge is unrelenting, and there is never a day when they can
simply “kick back” and do “fun stuff” or drill on “facts.” After Vygotsky,
for whom learning leads development, Davydov’s program, in both cur-
riculum and teaching methodology, has as its intended goal not only a
deep understanding of mathematics but cognitive development itself.

Genetic Analysis of Concepts

In his Types of Generalization in Instruction: Logical and Psychological Prob-
lems in the Structuring of School Curricula, Davydov (1990) explains this
orientation toward cognitive development. He cites a study of Krutetskii
in which students unfamiliar with the square of a sum were presented
with the basic example (a + b)2 and taught its meaning. They were then
presented with another square of a sum, (C + D + E)(E + C + D), whose
surface features were very different from those of the original example.
Many students, whom Krutetskii identified as average, had to be given in-
termediate examples such as (3x − 6y)2 and 512 before they were able to dis-
cern the conceptual structure of (C + D + E)(E + C + D) as the square of
a sum (i.e., [(C + D) + E][(C + D) + E], which, if C + D = K , is (K + E)2).
A few students immediately grasped the theoretical essence of the first exam-
ple (a + b)2 and easily discerned it in (C + D + E)(E + C + D), which was
judged to be the most syntactically different example in the series (there
were eight examples in all). Rather than labeling these students “gifted,”
Davydov noted that their mental activity was qualitatively different from
that of the less capable students.

Confronting a specific problem they primarily tried to discover its “essence,” to
distinguish the main lines by abstracting themselves from its particular features –
from its concrete form . . . striving to delineate the internal connections among its
conditions (this is peculiar to theoretical generalization). (Davydov, 1990, p. 133)

Davydov observed that theoretical generalization is necessary for the
appropriation of Vygotskian scientific concepts and set about the task of
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attempting to develop in ordinary students this ability, which is generally
evidenced by only the most capable. Hence, his curriculum is a rich syn-
ergy of content and method designed not only to enable students to grasp
mathematics at a deep conceptual level, but to develop their ability to think
theoretically.

Before such a curriculum can be created, however, there must be an
epistemological analysis of the concepts in question that encompasses
both historical and conceptual analyses. This often entails a lengthy and
arduous process, but a necessary one, since symbolic forms of thought
(typical of mathematics) “absorb” the genesis of a concept, making it
“necessary to trace all of the historically available methods of solving the
same problems in order to see the initial forms behind the abbreviated
curtailed thought processes [represented symbolically], to find the laws
and rules for this curtailment and then to detail the complete structure
of the thought processes being analyzed” (Davydov, 1990, p. 322). This
genetic analysis is reflected in the development of number from measure
in Davydov’s curriculum, since historically it became necessary to admit
the results of measure, such as irrational numbers, into the system of real
numbers (otherwise such common quantities as the diagonal of a unit
square or the circumference of a circle could not be designated numer-
ically). This was not accomplished without upheaval, since the Greeks
had relegated irrationals to the category of “magnitudes” while admitting
only integers as numbers. By developing the real numbers through mea-
surement, this historically Herculean cognitive restructuring by students is
avoided.

The approach to multiplication in Davydov’s curriculum also reflects
the understanding gained from a genetic analysis of the concept. The first-
grade curriculum actually lays the groundwork for multiplication by pre-
senting children with many tasks that require them both to build and to
measure quantities. And they use a schematic form to designate these ac-
tions. For example, the designation

U
|||

- - - -→ A

indicates that three units have been used to build or measure quantity A.
The symbol U

||||
- - - -→? indicates that the student must build a quantity us-

ing four units. The unit is specified and may be one or more line segments,
squares, or other shapes, which then must be combined to build the quan-
tity. Alternately, the symbol U

?
- - - -→ A indicates that the student must

measure quantity Ausing unit U, and thereby determine the value of the ?.
The students do many varieties of such problems. Then they are confronted
in the second grade with a situation in which they must do a measurement
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of a very large quantity with a very small unit, and the process is thus a
deliberately tedious one (Davydov, 1992).

For example, following Davydov (1992), children may be told to pre-
tend that they are working for the local animal shelter and must give each
kitten a very small paper cup of water poured from a large pitcher. They
need to know how many kittens will receive water. The process is tedious,
and there are other larger glasses on the table, but no mention is made of
them. Eventually a child will suggest that we find out how many little
paper cups of water one of the larger glasses will hold and then determine
how many of the larger glasses we can fill from the pitcher. For example, a
glass may hold five of the paper cups, and the pitcher may hold six glasses.
Now the situation must be schematized a bit differently. Since we found it
too tedious to do a straightforward measure of the volume of the pitcher
with the unit paper cup, we cannot represent our measure as we did pre-
viously, by designating the number of units U in quantity A. Now our
schematic must represent the change in unit from a smaller unit U (here
the little paper cup) to a larger unit G (the glass) with which we then mea-
sured the volume of water. The children therefore indicate this action as
follows:

5 x 6
U A

G

-------→
\
\↘ \

\
↘

5 6

Multiplication is now defined as a method for taking an indirect mea-
surement by means of a change in unit (from a smaller to a larger unit)
(Davydov, 1992). This reflects Lebesgue’s (1960; cited in Davydov, 1992)
stress on multiplication as a change in the system of units. One can see
how the need for such a process as multiplication arose historically as the
numerosity of quantities increased with cultural complexity. Here multipli-
cation is not reduced to addition, which is a different action (of composition
rather than of measurement).

It is important to note the use made of mathematical models or schemat-
ics, such as the building, measurement, and multiplication models, in
Davydov’s curriculum, which preserve in representational form the math-
ematical action that constitutes the essence of the concept in question. In
my research in Russia with Davydov and his colleagues, I saw the power
of such models in classrooms where I observed Davydov’s program being
taught and have now observed it even more extensively in our implemen-
tation of the program here in the United States. A particularly powerful
(albeit deceptively simple) schematic is the part–whole model from which
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first graders write three equations derived from their actions with quanti-
ties before numbers are introduced. This model suggests putting together
or taking apart a set of objects or quantities.

A
\
\
\

\
\

\

B C

A = B + C

A− B = C

A− C = B

Since this schematic represents the essence of actions of composing and
decomposing quantities, adding and subtracting are not perceived as for-
mally separated operations, but as complementary actions. The whole (A)
must be found from composing the parts (B and C); a part must be the
difference between the whole and the remaining part(s). Children have
no difficulty with missing addend problems as a result. Children in the
United States, however, typically find missing addend problems such as
the following difficult: “John has 14 baseball cards. Eric gave him 6 cards.
How many cards did John have originally?” The sentence representing
this problem appears to indicate addition: ? + 6 = 14. However, it is neces-
sary to subtract 6 from 14 to obtain the solution. No such confusion arises
if the preceding schematic is employed to analyze and represent such a
problem, as 14 is the whole, 6 is one part, and the other part is found by
subtraction.

Now that we have completed the implementation of the first 3 years
(these years constitute the 3 years of Russian elementary school) of
Davydov’s curriculum in a U.S. setting, our research has confirmed the
effects of these models firsthand. The power to analyze situations such
models afford children cannot be overstated. Neither can their ability to
connect the conceptual content of mathematics at very deep and important
levels. The function of a model is, after all, either to render hidden features
visible or to render particular (or essential) features salient. Hence, appro-
priately constructed models might be expected to give students the ability
to grasp conceptual structure at its most abstract level, thereby enabling
them to ascend from the abstract to the concrete, as Hegel, whose influence
on Vygotsky was considerable, advocated. In addition, these schematics
allow conceptual connections (the sine qua non of learning) between math-
ematical actions previously viewed as separate operations. Finally, they
provide students with the tools of analysis required for problem solving.

Although with the publication of the National Council of Teachers
of Mathematics (NCTM, 1989, 2000) standards, the U.S. curriculum has
shifted in recent years from procedural and algorithmic dominance to more
work with concrete materials, it lacks the critical intermediate work with
schematic models, the genetic analysis, and the emphasis on conceptual
essence that are so central to Davydov’s curriculum.
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a cross-cultural study of the conceptual structure
of multiplication

How does the understanding of students who experience a curriculum
designed in such a way as to foster the development of a generative
metonymic structure for the categories of real number and multiplication
differ from that of students instructed in Davydov’s curriculum, which
develops the concepts of number and multiplication very differently?

A comparative study conducted with 40 secondary and university stu-
dents in the United States and 24 elementary and secondary students in
Russia addressed this question (Schmittau, 1994). The U.S. university stu-
dents represented a diversity of course majors and varying backgrounds in
mathematics (high school geometry through calculus, statistics, and linear
algebra). The secondary student component consisted almost entirely of
high school students, 90% of these rated “very good” or high-achieving in
mathematics by teachers and mathematics grades. The Russian students
consisted of fourth and fifth graders and a cohort of ninth- and tenth-
grade students, all of whom had experienced Davydov’s curriculum dur-
ing their elementary years, the first 3 years of Russian schooling. After these
3 years, the older students had experienced a variety of mostly traditional
approaches to the teaching of mathematics. The Russian elementary stu-
dents were rated either good or average by their teachers, and all Russian
secondary students were rated average.

Our investigation of conceptual structure took into account the fact
that commonly held assumptions in psychology predicating the structure
of conceptual categories on genus and differentia have given way in re-
cent years to massive evidence of family resemblance and comparison-to-
exemplar structures (Lakoff, 1987). Rosch (1973) was the first to establish
evidence of such category organization. She found that when subjects were
asked to rate instances of fruit on a scale of 1 to 7 for degree of membership
in the category, a prototypic instance emerged to which all other instances
were compared. An apple, for example, might receive a rating of 1, des-
ignating it as an exemplary member of the category “fruit,” and an olive
might receive a 7, indicating that the subject did not regard it as a good ex-
ample of a fruit or perhaps did not consider it to be a fruit at all. The rating
for “fig” might fall somewhere between these two instances. Rosch deter-
mined that the characteristics of the apple, especially that it was juicy and
sweet, were believed by subjects to be essential to fruit. Hence, they judged
all other instances of the category on this basis, and the apple functioned as
a prototype for the category. Her work has been widely replicated, and evi-
dence of prototypicality has been confirmed even in such highly structured
domains as science and mathematics. Armstrong, Gleitman, and Gleitman
(1983), for example, extended Rosch’s work to the categories of odd and
even numbers and found prototype effects for both.
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Subjects in our study were assigned the task of rating instances of multi-
plication (on a scale of 1 to 7) for degree of membership in the category. The
instances to be rated included integers, fractions, irrationals, monomial and
binomial products, and a product of length and width yielding rectangular
area. Upon completion of the rating task, subjects were asked the question
“What is multiplication?” This question emanates from the Vygotskian
method of concept definition (Luria, 1981, p. 56), in which subjects are asked,
“What is – ?” with respect to the concept of interest. After this, subjects were
asked with respect to each instance of multiplication appearing on the rat-
ing task, “In what sense do you consider this (particular instance of integer,
irrational, or binomial multiplication, for example) to be multiplication?”
A flexible clinical interview format was employed in probing subjects’ re-
sponses. This third measure was a variant of the Vygotskian comparison and
differentiation method (Luria, 1981, p. 58), in which the designated instance
and the subject’s own meaning for multiplication are juxtaposed.

Results on the rating task indicated that for the American students
multiplication possessed a prototypic structure. Every U.S. student as-
signed the positive integer instance 4 × 3 a rating of 1 but rated other
instances as considerably less representative of multiplication, thereby in-
dicating the exemplariness of the cardinal instance. Triangulation of the
data yielded confirmation from the second measure. In response to the
question “What is multiplication?” all the U.S. subjects stated that it was
repeated addition. Finally, on the third measure, in more than 90% of the
cases in which students gave evidence that an instance of multiplication
had any meaning for them, this meaning was linked to the exemplar or
prototypic instance. For example, after the cardinal instance 4 × 3, the
monomial product ab received the most favorable ratings. Twenty-three
of the U.S. students found it meaningful, and all substituted small positive
integers for a and b, thereby establishing linkage to the positive integer
prototype for multiplication. Only one student noted that a and b could
represent any real numbers, and that the substitution of positive integers
did not resolve whatever conceptual difficulties existed for the multipli-
cation of other types of real numbers (fractions, for example). The results
were similar for the instance of binomial multiplication (2x + y)(x + 3y);
only 12 of the U.S. students reported that binomial multiplication had
any meaning for them at all. Of those for whom it did, all illustrated its
meaning by substituting small whole numbers for x and y. The most pop-
ular choices among the university students were 1 and 2, which yielded a
product of 4 × 7 and effected a reduction to the counting number proto-
type. In effect, these subjects deformed the generalized algebraic product
into their limited understanding of binomial multiplication predicated on
cardinality.

Another disturbing finding was that half of the U.S. university students
and two-thirds of the secondary students indicated that they did not see
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the area of a rectangle as multiplication. These subjects were unable to
draw a grid in a rectangle that would illustrate how its area is a product
of length and width. They could not go beyond the simple substitution
of small whole numbers for b and h in the formula A = bh (area = base ×
height), whereby they again effected a reduction to the cardinal number
prototype. Moreover, they accomplished this merely by substitution of
counting numbers into the formula, which they were able to do in order
to produce a value for A without perceiving any apparent connection to a
rectangle at all. They also gave evidence of considerable confusion between
area and perimeter.

By way of contrast, the Russian students did not give evidence of pro-
totypicality on the ratings task. The younger students actually rated the
rectangular area instance A = bh as more exemplary of the category than
4 × 3, and many commented that this counting number instance was too
easy and, therefore, uninteresting to them. Nor did they characterize the
meaning of multiplication as repeated addition; rather the essential change
in the system of units was reflected in their conceptualization of area.
None of the Russian students confused area with perimeter, and even
the youngest students were very explicit about the conceptual transitions
necessary to establish rectangular area as multiplication. All were explicit
about the change of unit, from a small square to a row of such squares,
which then must be repeated to form the rectangle. This is the essence of
rectangular area, and it emanates directly from the conceptual essence of
multiplication. None of the U.S. students had this understanding. The pro-
tocols of virtually all of the Russian students, however, even the youngest,
consistently identified first the change in quantity from the base b (or height
h) of the rectangle to the area of a rectangular strip having dimensions
b × 1 (or h × 1). They also explicitly noted the change in unit from a sin-
gle unit square within the rectangle to a rectangular strip of such squares
(Fig. 11.1).

Similarly, every Russian student, including beginning fourth graders
who had never been introduced to binomial multiplication, was able to
obtain the product of two binomials and explain in what sense it repre-
sented multiplication. Unlike the U.S. students, they did not reduce either
the monomial or the binomial factors to small whole numbers in order
to understand the action to be performed as multiplication. Instead, they
expressed this understanding at a higher level of generalization, that of
algebraic abstraction. Only later, when requested to do so, did they sub-
stitute specific numbers to obtain a product. This typifies the ascent from
the abstract to the concrete advocated by Hegel. Unlike the U.S. university
students who substituted the smallest whole numbers they could think of
for x and y, the Russian children, when asked to illustrate their abstract un-
derstandings with a concrete solution, chose numbers such as 64, 206, and
103.9 as factors. These children evidenced a confidence not found in the
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6

3

figure 11.1a Model of area by a Russian student illustrating change in unit from a
single square to a rectangular strip of such squares.

b

1

h

figure 11.1b Model of area by a Russian student illustrating transition from linear
dimension b to a rectangular strip of dimensions b × 1.

American subjects, whose age and subject matter background advantages
might have been expected to result in the generalized understandings ac-
tually shown by the Russian children who were uninstructed in binomial
multiplication. Some of the Russian students explained binomial prod-
ucts by drawing a rectangular model with dimensions 2x + y and x + 3y,
then showing a strip of dimensions 2x + y by 1 repeating x + 3y times.
(Fig. 11.2).

The U.S. students who converted fractions to decimals reported that
they mentally removed the decimal points (thereby effecting a reduction
to the positive integer prototype), multiplied the resulting integers, and
then invoked the “rule” to reposition the decimal point in the product.
None knew how or why the “rule” worked. A fifth-grade Russian student
made a similar transition from fractions to decimals, writing:

2
3

= 20
30

= .6 and
4
5

= 40
50

= .8 Then 0.6 × 0.8 = .48

In contrast to his U.S. counterparts, this child, when questioned about how
he saw this as multiplication, explained without hesitation, “.08 repeats
6 times.”

The product of irrationals (� and
√

2) had meaning for only one sec-
ondary and two U.S. university students, who explained it correctly by suc-
cessive approximation of two nonrepeating decimals. For many students,
however, the multiplicative difficulties were compounded by the added
failure to understand the irrational numbers themselves. Some regarded
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(2  .  x   +   y)  .  (x   +   3  .  y)   =  (2  .  4   +  2)   .   (4   +  3  .  2)

8

10

100

6

10

figure 11.2a Model of binomial multiplication by a Russian fourth-grade student.

2x

x 3y

2x2 6xy 2x

x 3y

y3y2xyy

figure 11.2b Model of binomial multiplication by a Russian student showing rep-
etition of a rectangular strip of dimensions 2x + y by 1.

A = √2 . π

π

√2 
1

1

figure 11.3 Russian ninth-grade student’s model of
√

2 · � as the area of a
rectangle.

� and
√

2 as “mere symbols” to be consigned to a calculator for solution;
others insisted that 2 does not have a square root. The older Russian stu-
dents used successive decimal approximation as well as area models for
this problem. One sketched

√
2 · � as the area of a circle having radius

4√2; another marked off
√

2 as the diagonal of a unit square, then drew a
rectangle using this as one side and � as the other. The area she identified
as

√
2 · � (Fig. 11.3). Those who used successive approximation were chal-

lenged to explain how 1.4 (an approximation for
√

2) could repeat 3.14 (an
approximation for �) times. Their immediate explanation was that first
314 was multiplied by 14 (or repeated 14 times), and then the required
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divisions by 10 and 100 were performed, resulting in the relocation of
the decimal point. The Russian students never mentioned “rules”; they
spoke of “actions” instead, and the meaning of such actions was consistent
throughout a variety of algorithmic reformulations (cf. Schmittau, 1993b,
for a more extensive discussion of grounding mathematical meaning in
action).

Davydov’s curriculum maintains students’ mathematical actions at
Leontiev’s (1983) level of goal-directed action, whereas the “rules” U.S. stu-
dents referred to occur at the operational level where actions have become
routinized. The algorithm for multiplication of decimals is one example.
Fortunately, constructivist influences are focusing more attention on goal-
directed action in U.S. classrooms, but difficulty in linking conceptualiza-
tion to the algorithm often occurs, with computation consigned to a calcula-
tor. Dependency on a calculator for the simplest computations has fueled
the current “back to basics” movement in the United States. Ironically,
while constructivism rails appropriately against mindless drill on algo-
rithms, it promotes calculator usage, which is the ultimate mechanization
of human action, “transmitting to the machine those elements that begin to
be formalized in human activity itself” (Tikhomirov, 1981, p. 275). From a
Vygotskian perspective, the algorithm is an important cultural–historical
product, and great pains are taken in Davydov’s curriculum to trace its
historical and conceptual links to fundamental mathematical actions, of
which the algorithm is a symbolic trace. As a result, our children who
have completed 3 years of Davydov’s curriculum here in the northeast-
ern United States not only have a deep conceptual understanding of the
mathematics involved, but are accurately multiplying three-digit numbers
and dividing three-digit numbers into six- and seven-digit numbers. The
conceptual versus procedural debate in the United States reflects a false
dichotomy; an algorithm is a symbolic trace of the meaningful mathematical
actions required to solve a problem. We move to manipulation of the sym-
bols (such as numerals) when cultural factors bring about an increase in
complexity whereby action on objects becomes tedious and consequently
prone to error.

The dysfunctional manner in which American students reduced concep-
tually complex structures to cardinal instances reflected the fact that this
category was for them structured around the counting number prototype.
We originally anticipated that this category, developed pedagogically in
the form of a generative metonymy, might have a formalistic structure, but
we found no evidence that any student had succeeded in apprehending it
as a generative metonymy with formalist connections among the instances.
(None, for example, defined a fraction as a quotient of two integers a/b,
such that b �= 0.) Perhaps this, together with the difficulties encountered
by students during the “new math” era, reflects the human need to tra-
verse individually a cognitive path similar to that taken by the culture as
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a whole in the original development of these concepts (Vygotsky & Luria,
1993). Clearly, the cultural-historical development followed by Davydov’s
curriculum resulted in far greater conceptual coherence for the category of
multiplication for real numbers.

multiplication as a vygotskian scientific concept

There is, however, one final and extremely important consideration.
Davydov (1990) extended Vygotsky’s research into spontaneous and scien-
tific concepts, finding a primary distinction in their manner of formation.
The process of empirical abstraction, of identifying similarities and dif-
ferences at the level of appearances, is sufficient only for the formation
of spontaneous concepts. What can be empirically abstracted concern-
ing a phenomenon such as the diurnal cycle, for example, is the “fact”
of the Sun’s revolution about the Earth. The rotation of the Earth on its
axis, the real cause of the Sun’s “rising” in the east and “setting” in the
west, cannot be apprehended at the phenomenological level (Lektorsky,
1984; Kozulin, 1990), but requires the development of a theoretical mode
of thought (Davydov, 1990). This is the case for mathematical concepts as
well, but Davydov observes that because pedagogy has for the most part
advanced no further than the level of Lockean empiricism, such empirical
methods as comparison and contrast are reinforced throughout schooling.

What our combination of Rosch’s and Vygotsky’s research methods de-
tected in the U.S. subjects were the results of attempts at formation of a
scientific concept through the cognitively dysfunctional means of empiri-
cal abstraction. Prototypic organization, a common occurrence in genera-
tive metonymic categories (Lakoff, 1987), develops empirically on the basis
of representativeness of features and is extended through a comparison-
to-exemplar process. We may consider the construction of the category
“fruit” investigated by Rosch (1973). One who has appropriated the sci-
entific concept as “that which contains the seeds” has apprehended a the-
oretical essence that is not apparent among a variety of surface features.
Such an individual might be expected to approach pertinent new botanical
knowledge in a fundamentally different way than those to whom a fruit is
quintessentially an apple.

In the case of mathematics the consequences of empirical abstraction
are more devastating, however. Once a premature cognitive commitment
(Langer, 1989) has been made to a cardinal structure, one cannot deter-
mine empirically by a process of comparison of their differential features
what multiplication might mean for various types of numbers, such as
fractions, irrationals, and their algebraic formulations (Schmittau, 1993b).
The result is not a true scientific concept but a pseudoconceptual gener-
alization, the Vygotskian designation for many of the so-called alternate
conceptualizations or misconceptions found in the data of U.S. subjects,
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but conspicuously absent in the protocols of the Russian students. We saw
no evidence, for example, of such common misconceptions as “multiplica-
tion makes bigger,” the apparent result of conceptualizing multiplication
within the framework of cardinality. Because the Russian children appre-
hended the theoretical essence of multiplication, the concept retained its
constancy of meaning across contexts and, hence, could confidently be
extended into new ones.

The pedagogical experiences of the Russian students, however, were
the result of an extensive historical, conceptual, and psychological analy-
sis on the part of Davydov and his colleagues. The generation of the real
numbers through actions of measuring (rather than their derivative forma-
tion as “quotients,” for example, of numbers that arise through actions of
counting) avoids the scholastic repetition of the historical development of
the concept of real number, in which 2,000 years were required to unite the
products of counting and the products of measuring into one conceptual
system. It is here that considerations of Davydov’s work and its theoret-
ical basis have the potential to open up new perspectives in our own re-
form process. In addition to providing a prototype of pedagogy informed
by Vygotskian psychology, they have much to contribute to considera-
tions of epistemological and psychological foundations for curriculum and
instruction.

the extension of multiplication to exponentiation:
another generative metonymy

It is significant that the generative metonomy is not confined to multi-
plication in American mathematics pedagogy. When multiplication is ex-
tended to exponentiation, for example, the basis of this extension is again
the counting numbers. Typically the textbook and classroom treatment of
this subject begins with the definition of an exponent as repeated multipli-
cation. That is, x3 is defined as x · x · x, or the repeated multiplication of x
by itself. Consequently 54 = 5 × 5 × 5 × 5, which is analogous to the defi-
nition of multiplication as repeated addition. Hence, as multiplication was
defined as a simple extension of addition, rather than a separate mathemat-
ical action or operation, we now have exponentiation as a simple extension
of multiplication, and another category that is developed as a generative
metonymy. However, just as with multiplication, students must encounter
and be able to understand exponents that are fractional or irrational, and
the generative metonymic approach is not sufficient to account for these
since it is predicated on counting numbers.

We researched the understanding of university students with respect
to this category and found so little understanding of this concept among
students who were not mathematics majors that often they told us that
an exponent was a little number in the upper-right-hand corner next to
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another number or letter, but they did not know what this little number
meant. We presented a “fantasy” problem of plant growth, which was not
designed to mimic botanical reality, but to explore the concept of exponen-
tiation from a cultural–historical perspective rather than as the generative
metonymic category it has become. The plant is first noticed (on day 1) and
found to be 3 cm in height. It is measured at the same time on successive
days and found to have heights of 9, 27, and 81 cm, respectively. Students
are asked to assume this pattern is representative and to give the heights on
several days previous to the first day on which the plant was observed. This
yields heights of 1, 1/3, 1/9, and so on, and generates the nonpositive in-
teger exponents for powers of 3 (30, 3−1, 3−2, etc.). Then students are asked
the plant’s height 12 hours before it was first measured. Even students who
have nearly completed master’s degrees in mathematics find this surpris-
ingly difficult. They want to say that the height is 31/2, which they “know”
(i.e., have been told and accepted) is

√
3, but find this difficult to establish.

This problem follows the cultural–historical development of exponents
and logarithms, which involved mathematicians in the juxtaposition of
arithmetic and geometric sequences similar to those that constitute the do-
main and range of the plant growth function. In solving the problem, which
approaches the development of exponents through the analysis of an expo-
nential function, a student is constantly working back and forth across these
two sequences, the arithmetic representing time and the geometric, growth.
Such a development is consistent with cultural–historical theory, provides
greater conceptual coherence for the category, and prevents its develop-
ment as a generative metonymy emanating from the positive integers.

conclusion

I have noted several differences between constructivism and cultural–
historical theory, especially as these pertain to mathematics pedagogy.
There is another important difference. From a Vygotskian perspective, the
scientific concept has been constructed historically by the culture, a product
of “universal generic thought” (Davydov, 1990, p. 311). In order to allow its
appropriation by the individual, such a concept must be subjected to ge-
netic and psychological analyses and pedagogically mediated. A student
has very little chance of “constructing” the scientific concept of multipli-
cation independently. Further, “within the theoretical learning approach,
‘the child as an independent learner is considered to be a result, rather than
a premise of the learning process’” (Kozulin, 1995, p. 121; cited in Karpov
& Haywood, 1998, p. 33). This explains the underlying difference beneath
the surface similarities in classroom teaching from a constructivist and a
cultural–historical perspective. Because the problem solving done within
the curricular structure in Davydov’s program is designed to develop the
cognitive abilities of theoretical generalization, the approach to the subject
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matter is fundamentally different, although in both cases the teacher may
function as a facilitator and the instruction is in neither case didactic.

It is scarcely possible to close this discussion without commenting
on currently popular attempts within mathematics education to frame
Vygotsky as a “social constructivist.” In light of all that has been said
here, it would appear that such attempts not only are ill conceived, but,
in fact, miss the mark by a wide margin. At the very least, they ob-
scure the deep theoretical and pedagogical differences between construc-
tivism and cultural–historical theory that are reflected both in the con-
struction of curricula and in the actual processes of teaching and learning
mathematics.
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