Θαλάσσια Υδραυλική και Λιμενικά Έργα

Ειδικά θέματα Λιμενικών Έργων: Αγωγοί Ανανέωσης

V.K. Tsoukala, K. Belibassakis, V. Katsardi Th. Pyrpiri, M. Chondros, G. Boundris

Laboratory of Harbour Works School of Civil Engineering National Technical University of Athens

Flushing Culverts

- Water quality within the basin preserved water periodic exchange between harbour and open sea
- placement of *flushing culverts* across the breakwaters
- The <u>axis of the culverts</u>, in regions where the ranges of tides are low (e.g. the Mediterranean), is constructed at the sea water level
- Flushing culverts allow water recirculation:
 - [+] ensure water quality
 - [-] increase the wave disturbance into the basin (problem with: navigation, mooring of vessels)

Αγωγοί Ανανέωσης στον Ελλαδικό χώρ

- 600 λιμάνια στην Ελλάδα, ανάγκη για αγωγούς ανανέωσης
- Επικρατεί η ανεμογενής
 κυκλοφορία των υδάτων →
 διαμήκης άξονας στη
 στάθμη ηρεμίας ύδατος

Κυματοθραύστης με αγωγό ανανέωσης στην Καλαμάτα.

Κυματοθραύστης με αγωγό ανανέωσης στο <mark>Μάτι.</mark>

Αγωγοί ανανέωσης στη Μυτιλήνη.

Υπολογισμός του Κτ μέσω ΤΝΔ & Πειραμάτων, 3ο Κοινό Συνέδριο ΕΥΕ-ΕΕΔΥΠ-ΕΥΣ 2015

Flushing Culverts

- - partial reflection
 - diffraction
 - production of evanescent modes
 - wave breaking
 - generation of higher order harmonics
- Main non-dimensional parameters concerning the water quality within the harbour basin \rightarrow the wave transmission coefficient, K_t

 $K_t = H_t/H_i$

 H_t :transmitted wave height through the flushing culvert

 H_i :incident wave height

- The K_t is correlated with:
 - the wave characteristics
 - the geometrical characteristics of the culvert
 - the water depth

Numerical Methods

- Boussinesq models not appropriate as they assume a depth-average velocity profile \rightarrow does not allow the detailed description of the evanescent modes that arise due to the abrupt changes in water depths.
- ▶ Boundary element methods (BEM) → good in the isolation of each harmonic
- Reynolds Averaged Navier-Stokes RANS and change in mean water level
 - Volume- Averaged (VA)RANS e.g. Garci andLiu,1998)
 - Large Eddy Simulation (LES) e.g. Losada
- 2D linear coupled-mode system Athanassouns α bendassakis (1999)
- extended to second-order Belibassakis & Athanassoulis (2002)
 - Limitations concerning nonlinearity of the wave field & as the culvert width decreases
- 3D linear coupled-mode model, based on eigen-functions expansions of the Laplace equation Belibbasakis, Tsoukala & Katsardi (2014)
 - Much improved compared with 2D concerning diffraction but again limitations concerning nonlinearity

Computationally expensive Understanding of physics rather than investigate the effectiveness of FCs

The development of Artificial Neural Networks ANNs

Tools that combine the experimental results with some kind of error correction algorithm \rightarrow accomplish a more accurate prediction of the target value

► Van den Boogaard et al. (2009) → numerical model, powered by a limited number of experimental measurements - calculate the loads exerted on the toe of breakwaters under critical wave conditions

Closer to the present work:

- Panizzo and Briganti (2007) ANN fed by a large number of experimental measurements, estimating wave transmission coefficient over low-crested structures
- Castro et al. (2011) → investigated the reflection coefficient of submerged breakwaters by using ANN
- Chondros and Memos (2012) → ANN based on a small experimental database & a Boussinesq-type model derive a compound tool for prediction of wave transmission coefficient over submerged breakwaters

Semi- empirical Formulas

Tsoukala et al. (2010) - experimental measurements, were carried out in the wave flume at the Laboratory of Harbor Works at the National Technical University of Athens

$$K_{t} = \frac{H_{t}}{H_{i}} = \left(0.135 \frac{b}{H_{i}} + 0.048 \frac{2h_{s}}{H_{i}} 0.030 \frac{h_{f}}{H_{i}} 0.026 \frac{d}{H_{i}} 0.036 \frac{l}{H_{i}}\right) *\mu^{-0.681}$$

 h_f : the water depth at the toe of the flushing culvert b: the width of the flushing culvert h_s : the half of the height of the flushing culvert d: the water depth l: the length of the flushing culvert H_i : the incident wave height T: the wave period tana: the breakwater's slope $\mu = \sin \alpha / \sqrt{2\pi H_i / gT^2}$

The scaled *breakwater* with a vertical forehead:

- 1.00 m height
- 0.50 m length
- 0.60 m width
- 0.60 m water depth

Side-view of the wave flume and the experimental setup showing wave probe locations

time series of water surface elevation were measured

Experimental Data - 2D wave flume

The flushing culvert - with the center of their axes at the SWL:

Case	h	L	b
	cm	cm	cm
Α	12	50	18
В	12	50	24

The measurements were performed for:

- 15 different incident regular waves
- 3 different periods [T= 1.48s 1.10s and 0.90 s]
- variation of the mean wave height $\rightarrow 2 \le H \le 13$ cm

Transmission Coefficient

Transmission Coefficient

Experimental Data - 3D wave basin

The <u>3D wave basin:</u>

- 26.80 m × 24.30 m
- 1.00 m depth

The physical model:

- 0.86 m width
- 0.225 m height
- 3.87 m length

Flushing culvert's dimensions in the 3D basin:

Case	h	t	b
	cm	cm	cm
1	10	86	10
2	10	86	8.5

Sketch of the basin's plan view and the experimental set-up showing the 12 wave-probe locations

The measurements were performed for: 6 different incident regular waves - 2 wave periods [T= 0.60s and 0.75s] - variation of the mean wave height was $1.5 \le H \le 3.8$ cm

CMS calculations T=1.47s, H=0.027m, hf=0.18m

CMS calculations T=1.47s, H=0.027m, hf=0.15m

CMS-Experiments

Thank you for your attention..!

 $\label{eq:prediction} Prediction of wave transmission coefficient using neural networks, 16th International Congress of the IMAM 2015$