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3.0 Wave Loading 
 
3.1 Fundamentals 
 
We will first consider a cylindrical structure subject to a uniform current 
u  (i.e. the flow is steady and there is no wave motion). 
 
(i) Inviscid Solution 
 
If the flow is assumed to be inviscid ( 0 ) the equations derived at the 

beginning of the lecture course apply: 
 

 mass continuity   0









y

v
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u
   Equation (5a) 

 
 

 irrotationality  0
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





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v
   Equation (5b) 

If a solution is found in terms of a velocity potential , such that 
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u
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
   Equation (5c) 

 
equation (5b) is satisfied immediately and the continuity expression 
gives: 
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   Equation (5d) 

  
     Laplace’s Equation 
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The boundary conditions require the velocity normal to the cylinder is 
to be zero on the surface of the cylinder.  Hence,  

0ru  on  
2

D
r   

  
where D is the diameter of the cylinder and ur  the radial velocity 
component. 
 
Clearly, the solution is best obtained in polar co-ordinates (easy to 
satisfy the boundary condition).  The resulting solution is of the form: 
 
       

   
2

cos for
4 2

D D
u r r

r
 

 
   

 
    Equation (5e) 

    
  Potential flow around a cylinder 
 
where the two velocity components are given by: 
 

   
1

andru u
r r



 



 
 
 

   Equation (5f) 

 
  Velocity components in Polar Co-ordinates 
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When plotted out, the so-called potential-flow solution looks like: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Potential-flow solution is inviscid and irrotational. 

U 
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The velocity on the surface of the cylinder is: 
 

 


sin2uu   

 
Using Bernoulli’s equation in its steady form: 
 

  gyup  2

2

1
constant  i.e. set 0

dt

d
 

 
gives the pressure distribution as: 
 

      22 sin41
2

1
 up  Equation (5g) 

 
Inviscid Pressure Distribution 

 
Since the predicted pressure distribution is symmetric, it implies that 
the total drag force must be zero (i.e. integrate pressure round the 
surface of a cylinder gives zero net effect). 
 
This is clearly incorrect!! 
 
(ii) Incorporating the effects of viscosity  
 
When we considered wave motion in the near-bed region (p19) we 
noted that because the bed was impermeable the velocity 
perpendicular to the bed must be zero ( 0v  at dy  ).  In addition, 

we decided that because of viscosity (friction) the horizontal velocity 
component must also reduce to zero at the bed.  This change takes 
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place within the so-called boundary layer where friction is important.  
This produces a no-slip condition in which fluid in contact with a 
stationary body must also be stationary. 
 
This same argument applies to the movement of a real fluid around a 
cylinder.  If we consider the case of a very small u , 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

‘No slip’ boundary condition gives 0


uu
r

 at 
2

D
r   

 

Within the boundary layer the shear stress  velocity gradient: 
 

    or
u u

r r

   
 

 
 

   Equation (5h) 

 

s 
 

u 

(small) 

 

 

 

B 

boundary layer – region within which viscosity 
produces strong shear 

r = D/2 

 
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Definition of dynamic viscosity 
 

Note, 
11310  skgm  for water.  Alternatively, one might work in 

terms of kinematic viscosity, 
12610  sm  for water. 

 
Incorporating the effects of viscosity gives a total drag force of: 
 

Drag force = ds
S Dr



2

   , where the integral is taken round the surface of 

the cylinder. 
 
Typical pressure gradient 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

P 

Front Edge Back Edge 

C A 

B 

Potential Solution 

(incorrect) 

Real Solution 

(dependent on 

velocity u or 

Reynolds’ 

Number) 

    2,0
 

 2,  

2/3,2/    
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In real flows the fluid is unable to cope with the adverse pressure 

gradient between 
2

3   and 2 .  This causes the boundary layer to 

separate from the cylinder, resulting in the development of a low 

pressure region at the back of the cylinder. 

 
 
 

 
 
As the velocity increases further, the point of separation moves further 
around the cylinder and an unsteady wake develops: 
 

Flow 

separation 
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In this case the large pressure differences between the front and the 
back of the cylinder produces a significant drag force.  It is usual to 

define this force in terms of a drag coefficient 
d

C  such that: 

 

     
 Au

F
C d

d 221 
   Equation (5i) 

 
    Definition of Drag Coefficent 
 

where  
d

F   is the drag force, u the incident velocity and A the projected 

area.  In the case of a vertical circular cylinder A=DL, where L is the 
length of the cylinder and D the diameter of the cylinder. 
 

Unsteady  

Wake 
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This is analogous to the Lift Coefficient 
L

C , commonly adopted in 

aeronautics and also applicable in some Civil Engineering flows. 
   

    
 Au

F
C L

L 221 
    Equation (5j) 

 
Definition of Lift Coefficient 

 

Where 
L

F  is the Lift Force. 

Experimental measurements indicate that the drag coefficient, 
d

C , 

varies with the Reynolds Number 



D

uRe , according to: 

 

 
 

/Re Du  
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Laboratory observations confirm that the nature of the flow around a 
cylinder is strongly dependent upon the Reynolds Number, Re , of the 
flow (remember slides). 
 

uD



                   





  dynamic viscocity 

      
Kinematic viscocity 

 
 
Vortex Shedding 
 
Consider the case of flow around a cylinder at a relatively large 

Reynolds Number ( )10Re 3 .  In this case flow separation occurs and 

this can produce an unsteady “lift” force. 
 

 
 
 
The vorticity within the strongly sheared layers will merge into vortices. 
These vortices tend to shed from alternate sides of the cylinder leading 
to the formation of a so-called Kármán vortex street. 

High velocity 

High velocity 

Low velocities in  

wake 

Strong Shear 

Free Shear Layers 
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Kármán vortex street  
 

 
The pressure within a flow depends upon the radius of curvature of the 
streamlines.  It can be shown that a large streamline curvature (small 
radius) produced smaller pressures.  Hence, the above cylinder will tend 
to move downwards.  When the vortex is shed from the opposite side 
of the cylinder, the pressures will be reverse, and the cylinder will move 
upwards. 
 
   Vortex-Induced Vibrations VIV 
 
 
 
 
 
 
 
 
 
 
 

Large radius, 

high pressure 

Small radius, 

low pressure 

https://en.wikipedia.org/wiki/Vortex-induced_vibration#/media/File:FIV_cylindre.gif
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5.2. Fluid loading in Unsteady Flow 
 
 
We shall now consider the fluid loading produced by a time-dependent 
flow.  The most important example of this type of loading is that due to 
waves where the velocity components are given by: 
 

)sin(
)sinh(

)(cosh
kxt

kd

dyk
au 


   

 

 
)cos(

)sinh(

sinh
kxt

kd

dyk
av 


   

 
If we return to our initial example of potential flow round a cylinder, the 
streamline pattern was given by: 
 

 cos
4

2











r

D
ru      

 

and the velocity components: 
r

u
r







 and 











r
u

1
 

 
In the previous example, we applied the steady form of the Bernoulli 
equation, found that the pressure distribution was symmetric and thus 
that there was no force applied. 
 
In the present case we must use the unsteady Bernoulli equation, since 
the velocity is a function of time, u(t). 
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


 2

2

1
ugyP

t



 constant. 

 
Hence, 
 

 
t

uP









 22 sin41

2

1
 

 
 
 
  
 
 
We now require an expression for F, the total force in the x-direction.  
Since the pressure distribution is given by: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Integrating the pressure round the cylinder gives: 

Previous symmetric term  Additional 

unsteady term 

u(t) 

x 

P 

r = D/2 

θ 

 

s 

s  

P 

r=D/2 

θ 

θ 
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











d
D

t
sPF

x

2
coscos

2

0

2

0















  

 
Notes  
- cosθ is used because x axis always forms an angle θ with δs. 
- We have neglected the symmetric term since its integral round the 
surface of the cylinder will be zero. 
 
However, on the surface of the cylinder: 
 

 coscos)
4

(
2

Du
r

D
ru    on  2/Dr   

 
Hence, 
 

2
Drt 













 = 

t

u
D




cos  

 
Substituting into the above expression gives: 
 






d
D

t

u
F

x

2

2
2

0

cos
2











 

 
Hence:  

t

uD
F

x






4
2

2
  Equation (5k) 

Definition of inertia force 
(Note Fx is a force/unit length with units N/m). 
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This is the so-called inertia force and is associated with the unsteady 

pressure distribution 












t


. 

This solution corresponds to the very simple case in which separation 
does not occur.  However, at practical values of the Reynolds number, 
separation does occur and must be taken into account within the 
description of the inertia force. 
Experimental measurements show that the inertia force is given by: 
 

t

uD
CF

MM






4

2
 

 
where CM is the inertia coefficient which varies depending upon the 
degree of flow separation and wake formation. 
 
Combining both the drag force (FD) and the inertia force (FM) we obtain 
Morrison’s equation: 
 

  
t

uD
CDuuCF

MD






42

1 2
  Equation  (5l) 

 
   Morison’s Equation 
Note: 
 

 F units Nm-1 

 1st term Drag force per unit length 

 2nd term Inertia force per unit length 
 
Note – the modulus sign is used in the drag term to ensure that the 
force is always in the direction of the flow. 
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Keulegan – Carpenter Number (KC) 
 
Experimental measurements have shown that the amplitude of the fluid 
motion relative to the diameter of the cylinder has an important effect 
on the nature of the induced loading.  This ratio is defined as the  
Keulegan - Carpenter number: 
 

     
D

UT
KC     Equation (5m) 

 
Keulegan – Carpenter Number 

 
where: U = velocity amplitude 
  T = period of oscillatory motion 
  D = diameter of cylinder 
 
Experimental measures indicate that: 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

1.0 

2.0 

10 20 30 40 50 

KC 

CD 

CM CM, CD 

 
 

inertia dominated drag dominated 

Potential 

solution 
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IMPORTANT POINTS 
 
(i) Small values of KC: (< 5) 

 Velocity amplitude is small relative to diameter of cylinder 

 Flow does not separate fully 

 In the limiting case where KC is very small, the flow becomes 
almost “potential flow”.  

 In this limiting case, CD → zero and CM → 2.0 (Idealised case)  
 
(ii) Large values of KC:  (> 20) 

 Velocity amplitude  is large in comparison to the cylinder 
diameter 

 Both inertial and drag forces are important 

 However, since the drag force is proportional to U2, this will 
produce the dominant contribution to Morison’s equation. 

 
 
5.3 Applications of Morison’s Equation 
 

t

uD
CDuuCF

MD






42

1 2
  

 

where: 
 
 F  - Force per unit length (Nm-1) 
 CD - Drag coefficient 
 CM - Inertia coefficient 

  - Density of the fluid (kgm-3) 
D  - Diameter of cylinder (m) 

 

dimensionless 
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Example 1 
 
Vertical Cylinder in a Steady Current 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

In a steady current  0
dt

du
    No inertia forces (irrespective of D) 

(a)  If the current is uniform with depth,  zu constant. 

 

  

DduuCF

DdzuuCFdzF

DX

dz

z
D

dz

z
X





2

1

2

1

00












 

 

z 

u 

F 

z 

FX 

MX 

d 

Base shear 

over-turning moment 
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222

1

2

1

2

00

d
F

d
DuuCM

zdzDuuCFzdzM

XDX

dz

z
D

dz

z
X
















 

 
 

(b) If the current is non-uniform with depth  zu  constant. 

 

 

zdzuDCdzFzM

dzuDCF

dzuuDCFdzF

dz

z
D

dz

z
X

dz

z
DX

dz

z

dz

z
DX





 





















0

2

0

0

2

00

2

1

2

1

2

1







 Be careful about the sign! 

 
If the current varies with depth, you must integrate over the length of 
the cylinder to calculate the total horizontal force. 

effective moment arm 
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Example 2 
 
Horizontal Cylinder is Steady Current 
 

Again, only drag forces are important, 












0

t

u
. 

 
 
 

 
 
 
 
 
 
 
For a cylinder of length l, 
 

DluuCF
DX


2

1
  

 
where the velocity (u) is determined at the centerline elevation (Z) and 
is taken as the valve perpendicular to the cylinder axis. 
 
Note: If the horizontal cylinder forms part of a space frame (or jacket-
structure) the force FX will contribute to the total base shear and over-
turning moment.  In the latter case an appropriate moment arm must 
be defined. 
 

 

FX 

l 

D 

Z 

u 

Length of cylinder  
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Example 3 
Vertical Cylinder in Waves 
 
 
 
 
 
 
 
 
 
 
 
 
 
If possible, use KC number to determine the dominant forces: 

Small KC ( 5)  -  
t

uD
CF

M






4

2
   inertia dominated 

     (N/m) 

Large KC (20)  - DuuCF
D


2

1
      drag dominated 

     (N/m) 

Not always possible since both forces may be important (5  KC < 20). 
In this case: 
 

dz
t

uD
CdzuDCF

dz

z
M

dz

z
DX 












 0

2

0

2

42

1 
  

where 
 

)(sinh

sin)(cosh
2

2222

2

kd

kxtkza
u





 

FX 

y 

F 

z 

MX 

v 

u 

z = y + d 

dz = dy 

KC = UT 

 D 
d  
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)sinh(

)cos()cosh(2

kd

kxtkza

dt

du 



 

 
Note: 

 
k

kz
dzkz

)sinh(
)cosh(  

24

)2sinh(
)1)2(cosh(

2

1
)(cosh 2 z

k

kz
dzkzdzkz    

Alternatively, express hyperbolic functions in exponential form: 
 








 








 




2
)cosh(;

2
)sinh(

kzkzkzkz ee
kz

ee
kz  

This approach is particularly useful in deep water 

)cos(;)sin( kxteavkxteau kyky      

In this form the equations are very easy to integrate. 
Having integrated Morison’s equation: 
 

)cos()sin()sin( kxtFkxtkxtFF
IDX

   -----  Eq. (5o) 

where 
D

F  - amplitude of the drag force 

  
I

F  - amplitude of the inertia force 

To find maximum total force take 
 

0





X

F
  where  kxt    - phase angle 

Solve for , and substitute in (5o) to find (FX)max 
Note:  So far we have taken the upper limit of the integral as: 

 




0
2 .......

2

1 y

dy
DX

dzuDCF     



23 Κυματομηχανική και Έργα Ανοικτής Θάλασσας 

                                                                             

Dr. Vasiliki Katsardi 

 
 

However, it might be argued that we should integrate to the 
instantaneous water surface: 
 

 







y

dy
DX

dzuDCF .......
2

1 2
  

 
In fact, this will introduce higher-order terms, O(a3), several 
components of which have already been ignored.  Hence, integration to 
the water surface is: 
 

 Not strictly correct, but often applied 

 There is concern regarding the ability of linear wave theory to 
predict velocities close to the water surface 

 Best approach is to use a nonlinear wave theory and integrate to 

. 



24 Κυματομηχανική και Έργα Ανοικτής Θάλασσας 

                                                                             

Dr. Vasiliki Katsardi 

 
 

Example 4 
 
Horizontal Cylinder in Waves 
 
Again, use the KC number to determine relative importance of drag and 
inertia. 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming that the waves are perpendicular to the axis of the cylinder (if 
not, take the component of the velocity that is). 
Horizontal force: 
 

l
t

uD
CluDuCF

Zz

MZzZzDX

1

2

11 42

1











  

 
Vertical force: 
 

l
t

vD
ClvDvCF

Zz

MZzZzDZ

1

11 42

1 2











  

 

FX 

l 

D 

Z1

2 

v 

u 

 

Assuming the cylinder 

is perpendicular to the wave! 
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Note:  In calculating 
z

F  

 

 Be careful with the choice of CD and CM (under some 
circumstances a circulation may be established). 

 Be careful not to confuse vertical forces and lift forces (in the 
same direction!). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


