Lecture 2 Canonical Forms or Normal Forms

By a suitable change of the independent variables we shall show that any equation of the form

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0,$$
(1)

where A, B, C, D, E, F and G are functions of the variables x and y, can be reduced to a canonical form or normal form. The transformed equation assumes a simple form so that the subsequent analysis of solving the equation will be become easy.

Consider the transformation of the indpendent variables from (x, y) to (ξ, η) given by

$$\xi = \xi(x, y), \quad \eta = \eta(x, y). \tag{2}$$

Here, the functions ξ and η are continuously differentiable and the Jacobian

$$J = \frac{\partial(\xi, \eta)}{\partial(x, y)} = \begin{vmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{vmatrix} = (\xi_x \eta_y - \xi_y \eta_x) \neq 0$$
(3)

in the domain where (1) holds.

Using chain rule, we notice that

$$u_{x} = u_{\xi}\xi_{x} + u_{\eta}\eta_{x}$$

$$u_{y} = u_{\xi}\xi_{y} + u_{\eta}\eta_{y}$$

$$u_{xx} = u_{\xi\xi}\xi_{x}^{2} + 2u_{\xi\eta}\xi_{x}\eta_{x} + u_{\eta\eta}\eta_{x}^{2} + u_{\xi}\xi_{xx} + u_{\eta}\eta_{xx}$$

$$u_{xy} = u_{\xi\xi}\xi_{x}\xi_{y} + u_{\xi\eta}(\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + u_{\eta\eta}\eta_{x}\eta_{y} + u_{\xi}\xi_{xy} + u_{\eta}\eta_{xy}$$

$$u_{yy} = u_{\xi\xi}\xi_{y}^{2} + 2u_{\xi\eta}\xi_{y}\eta_{y} + u_{\eta\eta}\eta_{y}^{2} + u_{\xi}\xi_{yy} + u_{\eta}\eta_{yy}$$

Substituting these expression into (1), we obtain

 $\bar{A}(\xi_x,\xi_y)u_{\xi\xi} + \bar{B}(\xi_x,\xi_y;\eta_x,\eta_y)u_{\xi\eta} + \bar{C}(\eta_x,\eta_y)u_{\eta\eta} = F(\xi,\eta,u(\xi,\eta),u_{\xi}(\xi,\eta),u_{\eta}(\xi,\eta)), \quad (4)$

where

$$\bar{A}(\xi_x, \xi_y) = A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2$$
$$\bar{B}(\xi_x, \xi_y; \eta_x, \eta_y) = 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y$$
$$\bar{C}(\eta_x, \eta_y) = A\eta_x^2 + B\eta_x\eta_y + C\eta_y^2.$$

An easy calculation shows that

$$\bar{B}^2 - 4\bar{A}\bar{C} = (\xi_x \eta_y - \xi_y \eta_x)^2 (B^2 - 4AC).$$
(5)

The equation (5) shows that the transformation of the independent variables does not modify the type of PDE.

We shall determine ξ and η so that (4) takes the simplest possible form. We now consider the following cases:

Case I: $B^2 - 4AC > 0$ (Hyperbolic type)Case II: $B^2 - 4AC = 0$ (Parabolic type)Case III: $B^2 - 4AC < 0$ (Elliptic type)

Case I: Note that $B^2 - 4AC > 0$ implies the equation $A\alpha^2 + B\alpha + C = 0$ has two real and distinct roots, say λ_1 and λ_2 . Now, choose ξ and η such that

$$\frac{\partial \xi}{\partial x} = \lambda_1 \frac{\partial \xi}{\partial y} \text{ and } \frac{\partial \eta}{\partial x} = \lambda_2 \frac{\partial \eta}{\partial y}.$$
 (6)

Then the coefficients of $u_{\xi\xi}$ and $u_{\eta\eta}$ will be zero because

$$\bar{A} = A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2 = (A\lambda_1^2 + B\lambda_1 + C)\xi_y^2 = 0,$$

$$\bar{C} = A\eta_x^2 + B\eta_x\eta_y + C\eta_y^2 = (A\lambda_2^2 + B\lambda_2 + C)\eta_y^2 = 0.$$

Thus, (5) reduces to

$$\bar{B}^2 = (B^2 - AC)(\xi_x \eta_y - \xi_y \eta_x)^2 > 0$$

as $B^2 - 4AC > 0$. Note that (6) is a first-order linear PDE in ξ and η whose characteristics curves are satisfy the first-order ODEs

$$\frac{dy}{dx} + \lambda_i(x, y) = 0, \quad i = 1, 2.$$

$$\tag{7}$$

Let the family of curves determined by the solution of (7) for i = 1 and i = 2 be

$$f_1(x,y) = c_1$$
 and $f_2(x,y) = c_2$, (8)

respectively. These family of curves are called characteristics curves of PDE (5). With this choice, divide (4) throughout by \overline{B} (as $\overline{B} > 0$) and use (7)-(8) to obtain

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = \phi(\xi, \eta, u, u_{\xi}, u_{\eta}), \tag{9}$$

which is the canonical form of hyperbolic equation.

EXAMPLE 1. Reduce the equation $u_{xx} = x^2 u_{yy}$ to its canonical form.

Solution. Comparing with (1) we find that A = 1, B = 0, $C = -x^2$.

The roots of the equations $A\alpha^2 + B\alpha + C = 0$ i.e., $\alpha^2 + x^2 = 0$ are given by $\lambda_i = \pm x$. The differential equations for the family of characteristics curves are

$$\frac{dy}{dx} \pm x = 0.$$

whose solutions are $y + \frac{1}{2}x^2 = c_1$ and $y - \frac{1}{2}x^2 = c_2$. Choose

$$\xi = y + \frac{1}{2}x^2, \quad \eta = y - \frac{1}{2}x^2,$$

An easy computation shows that

$$u_{x} = u_{\xi}\xi_{x} + u_{\eta}\eta_{x},$$

$$u_{xx} = u_{\xi\xi}\xi_{x}^{2} + 2u_{\xi\eta}\xi_{x}\eta_{x} + u_{\eta\eta}\eta_{x}^{2} + u_{\xi}\xi_{xx} + u_{\eta}\eta_{xx}$$

$$= u_{\xi\xi}x^{2} - 2u_{\xi\eta}x^{2} + u_{\eta\eta}x^{2} + u_{\xi} - u_{\eta},$$

$$u_{yy} = u_{\xi\xi}\xi_{y}^{2} + 2u_{\xi\eta}\xi_{y}\eta_{y} + u_{\eta\eta}\eta_{y}^{2} + u_{\xi}\xi_{yy} + u_{\eta}\eta_{yy},$$

$$= u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}.$$

Substituting these expression in the equation $u_{xx} = x^2 u_{yy}$ yields

$$4x^{2}u_{\xi\eta} = (u_{\xi} - u_{\eta})$$

or
$$4(\xi - \eta)u_{\xi\eta} = \frac{1}{4(\xi - \eta)}(u_{\xi} - u_{\eta})$$

or
$$u_{\xi\eta} = \frac{1}{4(\xi - \eta)}(u_{\xi} - u_{\eta})$$

which is the required canonical form.

CASE II: $B^2 - 4AC = 0 \implies$ the equation $A\alpha^2 + B\alpha + C = 0$ has two equal roots, say $\lambda_1 = \lambda_2 = \lambda$. Let $f_1(x, y) = c_1$ be the solution of $\frac{dy}{dx} + \lambda(x, y) = 0$. Take $\xi = f_1(x, y)$ and η to be the any function of x and y which is independent of ξ .

As before, $\bar{A}(\xi_x, \xi_y) = 0$ and hence from equation (5), we obtain $\bar{B} = 0$. Note that $\bar{C}(\eta_x, \eta_y) \neq 0$, otherwise η would be a function of ξ . Dividing (4) by \bar{C} , the canonical form of (2) is

$$u_{\eta\eta} = \phi(\xi, \eta, u, u_{\xi}, u_{\eta}). \tag{10}$$

which is the canonical form of parabolic equation.

EXAMPLE 2. Reduce the equation $u_{xx} + 2u_{xy} + u_{yy} = 0$ to canonical form.

Solution. In this case, A = 1, B = 2, C = 1. The equation $\alpha^2 + 2\alpha + 1 = 0$ has equal roots $\lambda = -1$. The solution of $\frac{dy}{dx} - 1 = 0$ is $x - y = c_1$ Take $\xi = x - y$. Choose $\eta = x + y$. proceed as in Example 1 to obtain $u_{\eta\eta} = 0$ which is the canonical form of the given PDE.

CASE III: When $B^2 - 4AC < 0$, the roots of $A\alpha^2 + B\alpha + C = 0$ are complex. Following the procedure as in CASE I, we find that

$$u_{\xi\eta} = \phi_1(\xi, \eta, u, u_{\xi}, u_{\eta}). \tag{11}$$

MODULE 3: SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS

The variables ξ , η are infact complex conjugates. To get a real canonical form use the transformation

$$\alpha = \frac{1}{2}(\xi + \eta), \quad \beta = \frac{1}{2i}(\xi - \eta)$$
$$u_{\xi\eta} = \frac{1}{4}(u_{\alpha\alpha} + u_{\beta\beta}), \quad (12)$$

to obtain

$$u_{\xi} = u_{\alpha}\alpha_{\xi} + u_{\beta}\beta_{\xi} = \frac{1}{2}u_{\alpha} + \frac{1}{2i}u_{\beta}$$
$$u_{\xi\eta} = \frac{1}{2}(u_{\alpha\alpha}\alpha_{\eta} + u_{\alpha\beta}\beta_{\eta}) + \frac{1}{2i}(u_{\beta\alpha}\alpha_{\eta} + u_{\beta\beta}\beta_{\eta})$$
$$= \frac{1}{4}(u_{\alpha\alpha} + u_{\beta\beta}).$$

The desired canonical form is

$$u_{\alpha\alpha} + u_{\beta\beta} = \psi(\alpha, \beta, u(\alpha, \beta), u_{\alpha}(\alpha, \beta), u_{\beta}(\alpha, \beta)).$$
(13)

EXAMPLE 3. Reduce the equation $u_{xx} + x^2 u_{yy} = 0$ to canonical form.

Solution. In this case, A = 1, B = 0, $C = x^2$. The roots are $\lambda_1 = ix$, $\lambda_2 = -ix$. Take $\xi = iy + \frac{1}{2}x^2$, $\eta = -iy + \frac{1}{2}x^2$. Then $\alpha = \frac{1}{2}x^2$, $\beta = y$. The canonical form is

$$u_{\alpha\alpha} + u_{\beta\beta} = -\frac{1}{2\alpha}u_{\alpha}.$$

PRACTICE PROBLEMS

- 1. Reduce the following equations to canonical/normal form:
 - (A) $2u_{xx} 4u_{xy} + 2u_{yy} + 3u = 0.$
 - (B) $u_{xx} + yu_{yy} = 0.$
 - (C) $u_{xy} + u_x + u_y = 2x.$
- 2. Show that the equation

$$u_{xx} - 6u_{xy} + 12u_{yy} + 4u_x - u = \sin(xy)$$

is of elliptic type and obtain its canonical form.

3. Determine the regions where Tricomi's equation $u_{xx} + xu_{yy} = 0$ is of elliptic, parabolic, and hyperbolic types. Obtain its characteristics and its canonical form in the hyperbolic region.