Lecture 2 Canonical Forms or Normal Forms

By a suitable change of the independent variables we shall show that any equation of the form

$$
\begin{equation*}
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u+G=0 \tag{1}
\end{equation*}
$$

where A, B, C, D, E, F and G are functions of the variables x and y, can be reduced to a canonical form or normal form. The transformed equation assumes a simple form so that the subsequent analysis of solving the equation will be become easy.

Consider the transformation of the indpendent variables from (x, y) to (ξ, η) given by

$$
\begin{equation*}
\xi=\xi(x, y), \quad \eta=\eta(x, y) \tag{2}
\end{equation*}
$$

Here, the functions ξ and η are continuously differentiable and the Jacobian

$$
J=\frac{\partial(\xi, \eta)}{\partial(x, y)}=\left|\begin{array}{cc}
\xi_{x} & \xi_{y} \tag{3}\\
\eta_{x} & \eta_{y}
\end{array}\right|=\left(\xi_{x} \eta_{y}-\xi_{y} \eta_{x}\right) \neq 0
$$

in the domain where (1) holds.
Using chain rule, we notice that

$$
\begin{aligned}
u_{x} & =u_{\xi} \xi_{x}+u_{\eta} \eta_{x} \\
u_{y} & =u_{\xi} \xi_{y}+u_{\eta} \eta_{y} \\
u_{x x} & =u_{\xi \xi} \xi_{x}^{2}+2 u_{\xi \eta} \xi_{x} \eta_{x}+u_{\eta \eta} \eta_{x}^{2}+u_{\xi} \xi_{x x}+u_{\eta} \eta_{x x} \\
u_{x y} & =u_{\xi \xi} \xi_{x} \xi_{y}+u_{\xi \eta}\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+u_{\eta \eta} \eta_{x} \eta_{y}+u_{\xi} \xi_{x y}+u_{\eta} \eta_{x y} \\
u_{y y} & =u_{\xi \xi} \xi_{y}^{2}+2 u_{\xi \eta} \xi_{y} \eta_{y}+u_{\eta \eta} \eta_{y}^{2}+u_{\xi} \xi_{y y}+u_{\eta} \eta_{y y}
\end{aligned}
$$

Substituting these expression into (1), we obtain

$$
\begin{equation*}
\bar{A}\left(\xi_{x}, \xi_{y}\right) u_{\xi \xi}+\bar{B}\left(\xi_{x}, \xi_{y} ; \eta_{x}, \eta_{y}\right) u_{\xi \eta}+\bar{C}\left(\eta_{x}, \eta_{y}\right) u_{\eta \eta}=F\left(\xi, \eta, u(\xi, \eta), u_{\xi}(\xi, \eta), u_{\eta}(\xi, \eta)\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{A}\left(\xi_{x}, \xi_{y}\right) & =A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
\bar{B}\left(\xi_{x}, \xi_{y} ; \eta_{x}, \eta_{y}\right) & =2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
\bar{C}\left(\eta_{x}, \eta_{y}\right) & =A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2}
\end{aligned}
$$

An easy calculation shows that

$$
\begin{equation*}
\bar{B}^{2}-4 \bar{A} \bar{C}=\left(\xi_{x} \eta_{y}-\xi_{y} \eta_{x}\right)^{2}\left(B^{2}-4 A C\right) \tag{5}
\end{equation*}
$$

The equation (5) shows that the transformation of the independent variables does not modify the type of PDE.

We shall determine ξ and η so that (4) takes the simplest possible form. We now consider the following cases:

Case I: $B^{2}-4 A C>0 \quad$ (Hyperbolic type)
Case II: $B^{2}-4 A C=0 \quad$ (Parabolic type)
Case III: $B^{2}-4 A C<0 \quad$ (Elliptic type)
Case I: Note that $B^{2}-4 A C>0$ implies the equation $A \alpha^{2}+B \alpha+C=0$ has two real and distinct roots, say λ_{1} and λ_{2}. Now, choose ξ and η such that

$$
\begin{equation*}
\frac{\partial \xi}{\partial x}=\lambda_{1} \frac{\partial \xi}{\partial y} \text { and } \frac{\partial \eta}{\partial x}=\lambda_{2} \frac{\partial \eta}{\partial y} . \tag{6}
\end{equation*}
$$

Then the coefficients of $u_{\xi \xi}$ and $u_{\eta \eta}$ will be zero because

$$
\begin{aligned}
& \bar{A}=A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2}=\left(A \lambda_{1}^{2}+B \lambda_{1}+C\right) \xi_{y}^{2}=0, \\
& \bar{C}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2}=\left(A \lambda_{2}^{2}+B \lambda_{2}+C\right) \eta_{y}^{2}=0 .
\end{aligned}
$$

Thus, (5) reduces to

$$
\bar{B}^{2}=\left(B^{2}-A C\right)\left(\xi_{x} \eta_{y}-\xi_{y} \eta_{x}\right)^{2}>0
$$

as $B^{2}-4 A C>0$. Note that (6) is a first-order linear PDE in ξ and η whose characteristics curves are satisfy the first-order ODEs

$$
\begin{equation*}
\frac{d y}{d x}+\lambda_{i}(x, y)=0, \quad i=1,2 . \tag{7}
\end{equation*}
$$

Let the family of curves determined by the solution of (7) for $i=1$ and $i=2$ be

$$
\begin{equation*}
f_{1}(x, y)=c_{1} \quad \text { and } \quad f_{2}(x, y)=c_{2}, \tag{8}
\end{equation*}
$$

respectively. These family of curves are called characteristics curves of PDE (5). With this choice, divide (4) throughout by \bar{B} (as $\bar{B}>0$) and use (7)-(8) to obtain

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \xi \partial \eta}=\phi\left(\xi, \eta, u, u_{\xi}, u_{\eta}\right), \tag{9}
\end{equation*}
$$

which is the canonical form of hyperbolic equation.
Example 1. Reduce the equation $u_{x x}=x^{2} u_{y y}$ to its canonical form.
Solution. Comparing with (1) we find that $A=1, B=0, C=-x^{2}$.
The roots of the equations $A \alpha^{2}+B \alpha+C=0$ i.e., $\alpha^{2}+x^{2}=0$ are given by $\lambda_{i}= \pm x$. The differential equations for the family of characteristics curves are

$$
\frac{d y}{d x} \pm x=0 .
$$

whose solutions are $y+\frac{1}{2} x^{2}=c_{1}$ and $y-\frac{1}{2} x^{2}=c_{2}$. Choose

$$
\xi=y+\frac{1}{2} x^{2}, \quad \eta=y-\frac{1}{2} x^{2}
$$

An easy computation shows that

$$
\begin{aligned}
u_{x} & =u_{\xi} \xi_{x}+u_{\eta} \eta_{x} \\
u_{x x} & =u_{\xi \xi} \xi_{x}^{2}+2 u_{\xi \eta} \xi_{x} \eta_{x}+u_{\eta \eta} \eta_{x}^{2}+u_{\xi} \xi_{x x}+u_{\eta} \eta_{x x} \\
& =u_{\xi \xi} x^{2}-2 u_{\xi \eta} x^{2}+u_{\eta \eta} x^{2}+u_{\xi}-u_{\eta} \\
u_{y y} & =u_{\xi \xi} \xi_{y}^{2}+2 u_{\xi \eta} \xi_{y} \eta_{y}+u_{\eta \eta} \eta_{y}^{2}+u_{\xi} \xi_{y y}+u_{\eta} \eta_{y y} \\
& =u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta} .
\end{aligned}
$$

Substituting these expression in the equation $u_{x x}=x^{2} u_{y y}$ yields

$$
\begin{array}{ll}
& 4 x^{2} u_{\xi \eta}=\left(u_{\xi}-u_{\eta}\right) \\
\text { or } & 4(\xi-\eta) u_{\xi \eta}=\frac{1}{4(\xi-\eta)}\left(u_{\xi}-u_{\eta}\right) \\
\text { or } & u_{\xi \eta}=\frac{1}{4(\xi-\eta)}\left(u_{\xi}-u_{\eta}\right)
\end{array}
$$

which is the required canonical form.
CASE II: $B^{2}-4 A C=0 \Longrightarrow$ the equation $A \alpha^{2}+B \alpha+C=0$ has two equal roots, say $\lambda_{1}=\lambda_{2}=\lambda$. Let $f_{1}(x, y)=c_{1}$ be the solution of $\frac{d y}{d x}+\lambda(x, y)=0$. Take $\xi=f_{1}(x, y)$ and η to be the any function of x and y which is independent of ξ.

As before, $\bar{A}\left(\xi_{x}, \xi_{y}\right)=0$ and hence from equation (5), we obtain $\bar{B}=0$. Note that $\bar{C}\left(\eta_{x}, \eta_{y}\right) \neq 0$, otherwise η would be a function of ξ. Dividing (4) by \bar{C}, the canonical form of (2) is

$$
\begin{equation*}
u_{\eta \eta}=\phi\left(\xi, \eta, u, u_{\xi}, u_{\eta}\right) \tag{10}
\end{equation*}
$$

which is the canonical form of parabolic equation.
Example 2. Reduce the equation $u_{x x}+2 u_{x y}+u_{y y}=0$ to canonical form.
Solution. In this case, $A=1, B=2, C=1$. The equation $\alpha^{2}+2 \alpha+1=0$ has equal roots $\lambda=-1$. The solution of $\frac{d y}{d x}-1=0$ is $x-y=c_{1}$ Take $\xi=x-y$. Choose $\eta=x+y$. proceed as in Example 1 to obtain $u_{\eta \eta}=0$ which is the canonical form of the given PDE.

CASE III: When $B^{2}-4 A C<0$, the roots of $A \alpha^{2}+B \alpha+C=0$ are complex. Following the procedure as in CASE I, we find that

$$
\begin{equation*}
u_{\xi \eta}=\phi_{1}\left(\xi, \eta, u, u_{\xi}, u_{\eta}\right) \tag{11}
\end{equation*}
$$

The variables ξ, η are infact complex conjugates. To get a real canonical form use the transformation

$$
\alpha=\frac{1}{2}(\xi+\eta), \quad \beta=\frac{1}{2 i}(\xi-\eta)
$$

to obtain

$$
\begin{equation*}
u_{\xi \eta}=\frac{1}{4}\left(u_{\alpha \alpha}+u_{\beta \beta}\right), \tag{12}
\end{equation*}
$$

which follows from the following calculation:

$$
\begin{aligned}
u_{\xi} & =u_{\alpha} \alpha_{\xi}+u_{\beta} \beta_{\xi}=\frac{1}{2} u_{\alpha}+\frac{1}{2 i} u_{\beta} \\
u_{\xi \eta} & =\frac{1}{2}\left(u_{\alpha \alpha} \alpha_{\eta}+u_{\alpha \beta} \beta_{\eta}\right)+\frac{1}{2 i}\left(u_{\beta \alpha} \alpha_{\eta}+u_{\beta \beta} \beta_{\eta}\right) \\
& =\frac{1}{4}\left(u_{\alpha \alpha}+u_{\beta \beta}\right) .
\end{aligned}
$$

The desired canonical form is

$$
\begin{equation*}
u_{\alpha \alpha}+u_{\beta \beta}=\psi\left(\alpha, \beta, u(\alpha, \beta), u_{\alpha}(\alpha, \beta), u_{\beta}(\alpha, \beta)\right) . \tag{13}
\end{equation*}
$$

Example 3. Reduce the equation $u_{x x}+x^{2} u_{y y}=0$ to canonical form.
Solution. In this case, $A=1, B=0, C=x^{2}$. The roots are $\lambda_{1}=i x, \lambda_{2}=-i x$. Take $\xi=i y+\frac{1}{2} x^{2}, \eta=-i y+\frac{1}{2} x^{2}$. Then $\alpha=\frac{1}{2} x^{2}, \beta=y$. The canonical form is

$$
u_{\alpha \alpha}+u_{\beta \beta}=-\frac{1}{2 \alpha} u_{\alpha} .
$$

Practice Problems

1. Reduce the following equations to canonical/normal form:
(A) $2 u_{x x}-4 u_{x y}+2 u_{y y}+3 u=0$.
(B) $u_{x x}+y u_{y y}=0$.
(C) $u_{x y}+u_{x}+u_{y}=2 x$.
2. Show that the equation

$$
u_{x x}-6 u_{x y}+12 u_{y y}+4 u_{x}-u=\sin (x y)
$$

is of elliptic type and obtain its canonical form.
3. Determine the regions where Tricomi's equation $u_{x x}+x u_{y y}=0$ is of elliptic, parabolic, and hyperbolic types. Obtain its characteristics and its canonical form in the hyperbolic region.

