
Math 201 Lecture 28: Sturm-Liouville Theory

Mar. 19. 2012

• Many examples here are taken from the textbook. The first number in () refers to the problem number
in the UA Custom edition, the second number in () refers to the problem number in the 8th edition.

0. Review

• Method of Separation of Variables.

Given equation

∂u

∂t
= β

∂2u

∂x2
+P (x, t), a < x< b; u(x, 0)= f(x), +boundary conditions (1)

1. Require X(x) T (t) to solve the homogeneous equation

∂u

∂t
= β

∂2u

∂x2
(2)

which leads to eigenvalue problem for X :

X ′′−KX =0+ boundary conditions. (3)

Solve it to get Xn and Kn. Note that the natural range of n is not always 1, 2, 3,	
2. Expand

f(x)=
∑

n

fnXn. (4)

Expand

P (x, t)=
∑

n

pn(t)Xn. (5)

3. Solve

Tn
′ − βKTn= pn(t), Tn(0)= fn (6)

to obtain Tn.

4. Write down the solution

u(x, t)=
∑

n

Tn(t)Xn(x). (7)

• We have seen how this method works when f(x) and P (x, t) are already given in the form

f(x) =
∑

n

fnXn; P (x, t) =
∑

n

pn(t)Xn. (8)

However in general this is not the case.

• Question: For arbitrary f(x), is it possible to write it as f(x)=
∑

n
fnXn with Xn’s the eigenfunctions

obtained in Step 1? If so, how?

• Answer: Yes. See below.

1. Sturm-Liouville Theory

• Sturm-Liouville theory, developed almost 200 years ago by Jacques Charles François Sturm (1803
– 1855) and Joseph Liouville (1809 – 1882) studies the following problem: Given an general eigenvalue
problem

−(p(x)X ′)′+ q(x)X =λw(x)X, a<x<b (9)
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with boundary conditions

α1X(a)+ β1X
′(a) = 0; α2X(b)+ β2X(b)= 0. (10)

What can we say about the eigenvalues/eigenfunctions?

Theorem 1. (Sturm-Liouville, Woolly version) The following hold true:

1. The eigenvalues are countable, and can be ordered by their sizes.

2. For each eigenvalue λn, the eigenfunction can be written as C Xn, where C is an arbitrary
constant.

3. The Xn’s are “orthogonal” in the following sense:

∫

a

b

Xm(x)Xn(x)w(x) dx=0 whenever m� n. (11)

4. The Xn’s are “complete” in the following sense: Any reasonable f(x) (for example, bounded)
has exactly one representation as linear combination of Xn’s:

f(x)=
∑

n

fnXn. (12)

The “=” here means

lim
N→∞

∫

∣

∣

∣

∣

∣

f(x)−
∑

n<N

fnXn

∣

∣

∣

∣

∣

dx=0. (13)

Remark 2. We intentionally choose not to present the precise version.

Example 3. Consider the eigenvalue problem

X ′′−KX =0; X(0)=X(L)= 0; (14)

We know that the eigenfunctions are

Xn= sin
(

nπx

L

)

, n=1, 2, 3,	 (15)

Then from the above theorem we know that any f(x) can be written as

f(x) =
∑

n=1

∞

fn sin
(

nπ x

L

)

. (16)

We will see later that this expansion has a name: Fourier Sine Series.

Example 4. Consider the eigenvalue problem

X ′′−KX =0; X ′(0)=X ′(L)= 0. (17)

We know that the eigenfunctions are

Xn= cos
(

nπx

L

)

, n=0, 1, 2, 3,	 (18)

So the above theorem tells us any f(x) can be written as

f(x)=
∑

n=0

∞

fn cos
(

nπx

L

)

. (19)

Such expansion is called: Fourier Cosine Series.

Remark 5. It should be emphasized that, naturally, the fn’s change when we pick a different set of
Xn’s.
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• How to compute fn’s.

◦ Problem: Determine fn’s in

f(x)=
∑

n

fnXn. (20)

◦ Idea: Use “orthogonality”:

∫

a

b

Xm(x)Xn(x)w(x) dx=0 when m� n. (21)

◦ Let’s set a particular n0 and try to find out fn0
. As we try to use the above orthogonality,

naturally we multiply both sides of

f(x)=
∑

n

fnXn. (22)

by Xn0
(x)w(x), and then integrate from a to b. We have

∫

a

b

f(x)Xn0
(x)w(x) dx =

∫

a

b [
∑

n

fnXn

]

Xn0
(x)w(x) dx

=
∑

n

fn

∫

a

b

Xn(x)Xn0
(x)w(x) dx. (23)

As
∫

a

b

Xn(x)Xn0
(x)w(x) dx=0 for all n� n0 (24)

we see that the right hand side in fact has exactly one nonzero term:
∫

a

b

Xn0
(x)2w(x)dx. (25)

Thus we reach
∫

a

b

f(x)Xn0
(x)w(x) dx= fn0

∫

a

b

Xn0
(x)2w(x)dx. (26)

and consequently

fn0
=

∫

a

b
f(x)Xn0

(x)w(x) dx
∫

a

b
Xn0

(x)2w(x)dx
. (27)

• Special cases most relevant to us:

◦ In all our problems the equation in the eigenvalue problem is

X ′′−KX =0� w(x)= 1. (28)

So the formula becomes

fn=

∫

0

L
f(x)Xn(x) dx

∫

0

L
Xn(x)2 dx

. (29)

◦ Fourier Cosine and Fourier Sine Series.

Note that, as soon as we know Xn’s, the denominator
∫

0

L
Xn(x)

2 dx can be calculated
beforehand, without knowledge of f(x).

− Fourier Cosine Series.
In this case

Xn= cos
(

nπx

L

)

. n=0, 1, 2, 3,	 (30)

We have
∫

0

L [

cos
(

nπx

L

)]

2

dx =

∫

0

L cos
(

2nπx

L

)

+1

2
dx=

L

2
. (31)
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Note that the above calculation is wrong when n=0. We have to calculate the
n=0 case separately:

∫

0

L

12 dx=L. (32)

So the fn’s in the Fourier Cosine expansion

f(x)=
∑

n=0

∞

fn cos
(

nπ x

L

)

(33)

are given by

f0=
1

L

∫

0

L

f(x) dx; fn=
2

L

∫

0

L

f(x) cos
(

nπ x

L

)

dx, for n=1, 2, 3,	 (34)

A more popular way of writing it is setting a0 = 2 f0, and an = fn to get a universal
formula

an=
2

L

∫

0

L

f(x) cos
(

nπx

L

)

dx, n=0, 1, 2, 3,	 (35)

The Fourier cosine series then reads

a0
2
+

∑

n=1

∞

an cos
(

nπ x

L

)

. (36)

− Fourier Sine Series.

In this case

Xn= sin
(

nπx

L

)

, n=1, 2, 3,	 (37)

Similar calculation as in the previous case gives

f(x)=
∑

n=1

∞

fn sin
(

nπx

L

)� fn=
2

L

∫

0

L

f(x) sin
(

nπx

L

)

dx, n=1, 2, 3,	 (38)

◦ Notation: Often, to emphasize the relation between Fourier Cosine/Sine series and Fourier
series, the following notation is used:

− Fourier Cosine:

f(x) =
a0
2
+

∑

n=1

∞

an cos
(

nπx

L

)

, an=
2

L

∫

0

L

f(x) cos
(

nπ x

L

)

dx, n=0, 1, 2, 3,	 (39)

− Fourier Sine:

f(x) =
∑

n=1

∞

bnsin
(

nπ x

L

)

, bn=
2

L

∫

0

L

f(x) sin
(

nπx

L

)

dx, n=1, 2, 3,	 (40)

We will see in the next two lectures the reason of choosing the letters a, b.

2. Examples

• Fourier Cosine:

Example 6. (10.4.13; 10.4 13) Compute the Fourier cosine series for

f(x)= ex, 0<x< 1. (41)

Solution. We have T =1. First

a0=
2

1

∫

0

1

exdx=2 (e− 1). (42)
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next

an = 2

∫

0

1

ex cos (nπ x) dx

= 2

∫

0

1

cos (nπx) dex

= 2

[

cos (nπ x) exN 01+nπ

∫

0

1

ex sin (nπx) dx

]

= 2 [e (−1)
n
− 1]+ 2nπ

∫

0

1

sin (nπx) dex

= 2 [e (−1)
n
− 1]+ 2nπ

[

ex sin (nπ x)N 01−nπ

∫

0

1

ex cos (nπx) dx

]

= 2 [e (−1)
n
− 1]− 2 (nπ)

2

∫

0

1

ex cos (nπ x) dx

= 2 [e (−1)
n
− 1]− (nπ)

2
an. (43)

Therefore

an=
2 [e (−1)

n
− 1]

1+ (nπ)2
. (44)

So the Fourier cosine series is given by

ex= e− 1+
∑

n=1

∞

2 [e (−1)
n
− 1]

1+ (nπ)2
cos (nπ x). (45)

• Fourier Sine:

Example 7. (10.4.7; 10.4 7) Compute the Fourier sine series for

f(x)= x2, 0<x<π. (46)

Solution. We have T =π. Compute

bn =
2

π

∫

0

π

x2 sin (nx) dx

= −
2

nπ

∫

0

π

x2 dcos (nx)

= −
2

nπ

[

x2 cos (nx)N 0π −2

∫

0

π

cos (nx)x dx

]

= −
2

nπ

[

π2 (−1)
n
−

2

n

∫

0

π

xdsin (nx)

]

= −
2

nπ

[

π2 (−1)
n
−

2

n

(

x sin (nx)N 0π − ∫

0

π

sin (nx) dx

)]

= −
2

nπ

[

π2 (−1)
n
−

2

n

1

n
cos (nx)N 0π ]

= −
2

nπ

[

π2 (−1)
n
−

2

n2
[(−1)

n
− 1]

]

=
2π

n
(−1)

n+1
+

4

n3π
[(−1)

n
− 1]. (47)

Therefore the Fourier sine series is

x2=
∑

n=1

∞ [

2π

n
(−1)

n+1
+

4

n3 π
[(−1)

n
− 1]

]

sin (nx). (48)

• More exotic examples.

Example 8. (Mixed boundary conditions) Expand f(x)= x into
∑

fnXn with Xn eigenfunc-
tions of

X ′′−KX =0, 0<x<π; X(0)=X ′(π)= 0. (49)
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Solution. We have already solved (in the previous lecture) the eigenfunctions:

Xn= sin

(

2n+1

2
x

)

, n=0, 1, 2, 3,	 (50)

Now prepare:
∫

0

π

Xn
2=

∫

0

π 1− cos ((2n+1) x)

2
dx=

π

2
−

1

2 (2n=1)
[sin (2n+1) π− cos 0]=

π

2
=

π

2
. (51)

Thus

fn =
2

π

∫

0

π

x sin

(

2n+1

2
x

)

dx

=
2

π

∫

0

π

x d

[

−
2

2n+1
cos

(

2n+1

2
x

)]

= −
4

π (2n+1)

[(

x cos

(

2n+1

2
x

))N 0π −∫

0

π

cos

(

2n+1

2
x

)

dx

]

= −
4

π(2n+1)

[

π cos

(

2n+1

2
π

)

−
2

2n+1
sin

(

2n+1

2
x

)N 0π ]

= −
4

π (2n+1)

[

π ·0−
2

2n+1

[

sin

(

2n+1

2
π

)

− 0

]]

=
8

π (2n+1)2
sin

(

2n+1

2
π

)

=
8

π (2n+1)2
(−1)n. (52)

So the expansion is

x=
∑

n=0

∞

8

π (2n+1)2
(−1)n sin

(

2n+1

2
x

)

. (53)

3. Pointwise Convergence?

• Recall that f(x)=
∑

fnXn in the above means

lim
N→∞

∫

∣

∣

∣

∣

∣

f(x)−
∑

n<N

fnXn

∣

∣

∣

∣

∣

dx=0. (54)

However in some applications we would like to know for a particular x0, what is the value of
[

∑

n

fnXn

]

(x0)= lim
N→∞

∑

n<N

fnXn(x0) (55)

and

lim
N→∞

∫

∣

∣

∣

∣

∣

f(x)−
∑

n<N

fnXn

∣

∣

∣

∣

∣

dx=0 does not imply lim
N→∞

∑

n<N

fnXn(x0)= f(x0). (56)

Therefore we need to study “pointwise convergence” property of the expansions.

• For general Xn in the Sturm-Liouville Theorem, the situation seems quite complicated and I am yet
to be sure of the existence of a complete theory.

• However, for the Xn’s obtained from the eigenvalue problem X ′′ −KX = 0 + boundary conditions,
we know exactly what limN→∞

∑

n<N
fn Xn(x0) is. In the next lecture we will reveal this through

the study of Fourier series, which is the expansion of f(x) using cos
(

2nπx

L

)

and sin
(

2nπx

L

)

.

• Note that cos
(

2nπx

L

)

and sin
(

2nπ x

L

)

are actually eigenfunctions to

X ′′−KX =0 (57)

with periodic boundary condition (which is not included in the standard Sturm-Liouville theorem!),
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4. Orthonormal Set of Functions

• Any set of nonzero functions {fn}n=1

∞

satisfying, for some w> 0

∫

a

b

fm fnw dx=0 whenever n� m (58)

is said to be an orthogonal system with respect to weight w on the interval [a, b].
If furthermore we have

∫

a

b

fn
2w dx=1, n=1, 2, 3,	 (59)

then {fn} is called an orthonormal system.
The main property of an orthogonal system is that if

f(x)∼ c1 f1+ c2 f2+
 (60)

then the coefficients can be determined through

cm=

∫

f(x) fm(x)w(x) dx
∫

fm
2 (x) dx

. (61)

If {fn} is furthermore orthonormal, then

cm=

∫

f(x) fm(x)w(x) dx. (62)

•

Example 9. (10.3.26, 10.3.27) Show that the set of functions
{

cos
π

2
x, sin

π

2
x,	 , cos

(2n− 1) π

2
x, sin

(2n− 1)π

2
x,	}

(63)

is an orthonormal system on [−1, 1] with respect to the weight function w(x)≡ 1.
Then find the orthogonal expansion for

f(x)=

{

0 −1<x< 0
1 0<x< 1

(64)

in terms of this orthonormal system.
Solution.

◦ Verify orthonormality.

1. Integrating product of different functions gives 0.
We compute for n� m, n,m=1, 2,	 (note that w=1)

∫

−1

1

cos
(2n− 1)π x

2
cos

(2m− 1) πx

2
· 1 dx =

1

2

∫

−1

1

cos ((n+m− 1)πx) dx

+
1

2

∫

−1

1

cos ((n−m)π x) dx (65)

As neither n+m− 1 nor n−m is zero, we have
∫

−1

1

cos ((n+m− 1)πx) dx=
1

(n+m− 1) π
sin ((n+m− 1)π x)N −1

1 =0, (66)

∫

−1

1

cos ((n−m)π x) dx=
1

(n−m) π
sin ((n−m)πx) dx=0. (67)

Similarly we compute

∫

−1

1

sin
(2n− 1) πx

2
sin

(2m− 1)πx

2
· 1 dx=0 (68)
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for n� m.

Finally we can compute

∫

−1

1

cos
(2n− 1)π x

2
sin

(2m− 1) πx

2
· 1 dx=0 (69)

Note that this time n=m is OK.

2. Integrating the square of any function in the list gives 1.

We compute

∫

−1

1
(

cos
(2n− 1)πx

2

)2

· 1 dx=
1

2

∫

−1

1

[1+ cos ((2n− 1)πx)] dx=1. (70)

Similarly we have
∫

−1

1
(

sin
(2n− 1)π x

2

)2

dx=1. (71)

Thus the set of functions is an orthonormal system.

◦ Orthogonal expansion for

f(x)=

{

0 −1<x< 0
1 0<x< 1

(72)

Recall that if

f(x)∼ c1 f1+ c2 f2+
 (73)

then the coefficients can be determined through

cm=

∫

f(x) fm(x)w(x) dx
∫

fm
2 (x) dx

. (74)

In case of our system we write

f(x)=
∑

n=1

∞ {

an cos
(2n− 1)π x

2
+ bn sin

(2n− 1)πx

2

}

(75)

and compute

an =

∫

−1

1

f(x) cos
(2n− 1)πx

2
dx

=

∫

0

1

cos
(2n− 1)π x

2
dx

=
2

(2n− 1)π
sin

(2n− 1)πx

2
N 01

=
2

(2n− 1)π
sin (nπ−π/2)

=
2 (−1)

n+1

(2n− 1)π
. (76)

and

bn =

∫

−1

1

f(x) sin
(2n− 1)π x

2
dx

=

∫

0

1

sin
(2n− 1) πx

2
dx

= −
2

(2n− 1)π
cos

(2n− 1) πx

2
N 01

=
2

(2n− 1)π
. (77)
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Thus finally we have

f(x)∼
∑

n=1

∞

2

(2n− 1)π

[

(−1)
n+1

cos
(2n− 1)πx

2
+ sin

(2n− 1) πx

2

]

. (78)

5. Notes and Comments

• Note that the boundary conditions

α1 y(0)+ β1 y
′(0)= 0; α2 y(L)+ β2 y(L)= 0. (79)

covers Dirichlet, Neumann, and Mixed boundary conditions, but not periodic boundary conditions.
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