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1 What are Partial Differential Equations?

Solving ordinary differential equations involves finding a function (or a set of func-
tions) of one independent variable but partial differential equations are for functions
of two or more variables. Examples of physical models using partial differential equa-
tions are the heat equation for the evolution of the temperature distribution in a
body, the wave equation for the motion of a wavefront, the flow equation for the
flow of fluids and Laplace’s equation for an electrostatic potential or elastic strain
field. In such cases we need to have not only the initial conditions, but also bound-
ary conditions for the region in which the model applies; thus we have to solve
boundary value problems.

As with ODEs, we call a PDE linear homogeneous if a linear combination of deriva-
tives is equal to zero—and then a linear combination of solutions is another solution.
Here are typical examples of the commonest types of linear homogeneous PDEs, for
the simplest case—just two independent variables (x, t or x, y—it is easy to see how
they would generalize to more variables x, y, z, t)

Flow Equation c
∂u

∂x
+
∂u

∂t
= 0, given initial or boundary values for u(1.1)

Heat Equation c2
∂2u

∂x2
− ∂u

∂t
= 0, given initial or boundary values for u(1.2)

Wave Equation c2
∂2u

∂x2
− ∂2u

∂t2
= 0, given initial or boundary values for u(1.3)

Laplace′s Equation
∂2u

∂x2
+
∂2u

∂y2
= 0, given boundary values for u. (1.4)

An example of a linear but non homogeneous PDE—Poisson’s equation:

∂2u

∂x2
+
∂2u

∂y2
= f(x, y). (1.5)

An example of a nonlinear PDE—a nonlinear heat equation:

c2
∂2u

∂x2
− u

∂u

∂t
= 0. (1.6)
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Figure 1: A snapshot of a particular solution of the wave equation, for a vibrating
drum.

1.1 Notation

Sometimes we denote partial differentiation by subscripts, as in ux for ∂u
∂x

or utt for
∂2u
∂t2
. So, for example, the heat equation can be written

c2uxx − ut = 0.

If we have more variables, or need to write programs for solving a PDE, then often
we use numbered variables, such as, x1, x2, . . . , xn and then we denote a partial
derivative by the subscript number. For example, u22 is the second partial derivative
of u with respect to x2.

1.2 Exercises

Note that the Exercises in these lecture notes are intended to be done, since the
results they give are often used in the theory we develop.

1. Sketch the graph of the function u(x, y) = x2+y2, and find a partial differential
equation of which it is a solution. Can you find other solutions?

2. Write out in subscript form for partial derivatives the other PDEs we have
mentioned.

3. Look up other examples of PDEs, from engineering books—or final year exams!

4. Think about how Laplace’s equation changes its appearance when you change
from Cartesian coordinates, (x, y), to polar coordinates, (r, θ). Certainly, polar
coordinates would be a good choice if we had to solve an equation in a 2-
dimensional circular region. A snapshot in time of one such solution, of the
2-dimensional wave equation

c2(uxx + uyy)− utt = 0
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for the displacement of a vibrating drum, is shown in Figure 1. The boundary
condition is for zero displacement round the circular rim of the drumskin and
the initial condition would have specified the state of the membrane at t = 0,
a deformation of some sort such as caused by striking it with drumsticks. The
graphic shown is at one instant of time; the solution will of course change with
time so to show it properly it needs a movie.

2 Classification of PDEs

The general form of a linear second order PDE, in the two variables x1, x2, is given
by

Au11 + 2Bu12 + Cu22 +Du1 + Eu2 + Fu = f (2.7)

where A,B,C,D,E, F and f all depend only on x1, x2. There is a classification
scheme depending on the values of A,B,C; we say that PDE (2.7) is:

Hyperbolic if B2 − AC > 0 (2.8)

Parabolic if B2 − AC = 0 (2.9)

Elliptic if B2 − AC < 0. (2.10)

If f = 0 then the PDE (2.7) is homogeneous.

If PDE (2.7) is to represent a nonlinear PDE, then some of the functionsA,B,C,D,E, F
depend on u, as well as on x1, x2. We do not consider nonlinear PDEs in detail in
this course.

3 Solutions to PDEs

Solutions to practical models using these equations are usually very difficult to obtain
analytically and computers are used to obtain numerical approximate solutions by
standard iterative procedures. You can see examples of some numerical programs
in BASIC and C for solving simple PDEs via the webpage:
http://www.ma.umist.ac.uk/kd/comp/comp.html.

Nonlinear PDEs are particularly difficult to solve, but they are important in many
practical problems—eg when the resistance to a flow is a function of the flow strength
or when the elastic modulus of a membrane is a function of the strain.

In some simple cases, solutions can be found in terms of sums and products of el-
ementary functions. Find all the first and second order partial derivatives of the
following functions u(x, t) or u(x, y) and try to match the functions to the above
linear homogeneous partial differential equations with suitable initial and boundary
conditions:

3e−at sin
√
a/bx, e−ax cos ay, log(x2 + y2), sin(ax) sinh(ay),

e−x cos(t− x), e−a2t sin(ax), 2 cos(ax) cos(act)

http://www.ma.umist.ac.uk/kd/comp/comp.html
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3.1 Exercises

1. If u is a solution of any of the above-mentioned linear homogeneous PDEs,
then so also is ku a solution for any constant k.

2. If u is a solution of a linear non homogeneous PDE and v is a solution of the
homogeneous version of the PDE, then, for all constants k, another solution
of the non homogeneous PDE is given by u+ k v.

3. Show that u(x, t) = sin(x − ct) is a solution of the wave equation; for what
initial and boundary conditions?. Can you find any more solutions; for what
initial and boundary conditions?

4. Consider the PDE

uxy = 0. (3.11)

Show that this must mean that ux is a function of x only. Let this function be
f(x). Then show that it follows that every solution of (3.11) must be of the
form

u(x, y) = F (x) + g(y), where F (x) =

∫
f(x) dx

4 Analytical Methods of Solution

As we see, given a function of two or more variables, it is quite easy to find many
PDEs of which it is a solution and to invent suitable boundary conditions. The
reverse process, finding solutions to a given PDE with prescribed boundary condi-
tions is much harder and usually impossible analytically. Nevertheless, there are
three things that help engineers in this regard:

• Many problems in engineering and physics involve one of a relatively small
number of types of PDE involving derivatives up to two only.

• There are a number of standard analytic methods that yield solutions to the
important linear PDEs arising in models of real processes.

• Computer software, such as Mathematica, Maple and Matlab can perform
analytic manipulations which would be prohibitively tedious by hand, so the
range of analytic methods is extended enormously for engineers. Often, part of
the work in an engineering problem is a numerical procedure, for which there
are many standard packages. For more information, see:
http://www.ma.umist.ac.uk/kd/comp/comp.html.

In this course we shall consider some of the simplest analytic methods.

http://www.ma.umist.ac.uk/kd/comp/comp.html
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5 D’Alembert’s solution of c2uxx = utt

The wave equation (1.3) has the D’Alembert solution φ(x− ct)+ψ(x+ ct), for some
choices of the functions φ and ψ to suit the given conditions. Such solutions are
waves travelling at constant speed c, in both directions along the x-axis. To see
how this is arrived at we need to do some applications of the chain rule for partial
derivatives.

5.1 Exercises

1. Let v = x+ ct and w = x− ct. Use the chain rule to show that

ux = uv + uw (5.12)

ut = c(uv − uw) (5.13)

uxx = uvv + 2uvw + uww (5.14)

utt = c2(uvv − 2uvw + uww) (5.15)

2. Substitute these expressions into the wave equation, c2uxx = utt.

Now we find that c2uxx = utt is equivalent to

c2(uvv + 2uvw + uww) = c2(uvv − 2uvw + uww)

and this simplifies to
4c2uvw = 0, or, uvw = 0,

since c > 0. But, from a previous exercise, it follows that u must be expressible as
a sum of a function of v and a function of w, such as

u(v, w) = φ(w) + ψ(v).

Hence we have our result when we substitute back for the variables (x, t),

u(x, t) = φ(x− ct) + ψ(x+ ct) D′Alembert′s solution. (5.16)

We need some initial and boundary conditions to find the form of the functions in
(5.16). Suppose we have been given

u(x, 0) = f(x) and ut(x, 0) = 0. (5.17)

We substitute (5.17) into (5.16) and deduce as follows:

u(x, 0) = φ(x) + ψ(x) = f(x) since t = 0 (5.18)

ut(x, 0) = −cφ′(x) + cψ′(x) = 0 (5.19)

φ′(x) = ψ′(x) so φ(x) = ψ(x) + k for some constant k (5.20)

f(x) = φ(x) + (φ(x) + k) by (5.18) (5.21)

φ(x) =
1

2
(f(x)− k) and ψ(x) =

1

2
(f(x) + k) (5.22)

u(x, t) =
1

2
((f(x− ct) + f(x+ ct)) . (5.23)
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Figure 2: A particular D’Alembert solution of the 1-D wave equation c2uxx = utt;
this solution is given by u(x, t) = 1

2
((cos(x− 3t) + cos(x+ 3t)). A slice parallel to

the x-axis at t = t0 gives the shape of the wave along the x-direction, at that chosen
instant of time t0. A slice parallel to the t-axis at x = x0 gives the variation in time
of the shape at that chosen point x0.

Such solutions are waves travelling at constant speed c, in both directions along the
x-axis. We can think of f(x) as being the shape of the wave, or the ‘wave profile’
that moves along the x-axis.

For example, if we take

u(x, t) =
1

2
((cos(x− 3t) + cos(x+ 3t))

so f is a cosine function and the speed is c = 3, then the appearance of the solution
is shown in Figure (2). Here, the wavelength is λ = 2π and the period is T = λ/c =
2π/3.

5.2 Exercises

1. Is u(x, t) = A cosm(x − kt) a solution of the 1-D wave equation for constant
A, k? What about u(x, t) = A cosm(x+ kt)?

2. Investigate D’Alembert solutions with cosine wave profiles of higher frequen-
cies.

3. The method generalises. For a parabolic equation of Euler type

auxx + 2huxy + buyy = 0, (5.24)

there is only one solution of the associated quadratic

a+ 2hλ+ bλ2 = 0,

so the general solution of (5.24) is of form

u(x, y) = f(x+ λy) + (rx+ sy)g(x+ λy).
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4. For a hyperbolic equation of Euler type

auxx + 2huxt + butt = 0, , (5.25)

there are two solutions λ1, λ2 of the associated quadratic

a+ 2hλ+ bλ2 = 0,

so the general solution of (5.25) is of form

u(x, t) = f(x+ λ1t) + g(x+ λ2t).

5. Find the general solution of

uxy − uyy = 0

by using the change of variables: v = x, w = x+ y.

6. Find the general solution of

x uxy − y uyy = uy

by using the change of variables: v = x, w = xy.

7. Transform the equation

uvw = 0

to other PDEs with variables x, y by choosing some different simple expressions
for x and y as functions of v, w, eg x = v, y = w − v.

6 Separation of variables

A general method for attempting to solve PDEs is to suppose that the solution func-
tion u is a product of functions, each one depending on one only of the independent
variables. This converts the PDE into two (or more) ODEs which may be soluble.
We shall find the corresponding ODEs for solution of the wave equation (1.3) by
this method of separation of variables.

In c2uxx = utt we substitute u(x, t) = X(x)T (t). To simplify the notation we shall
denote differentiation with respect to x by ′ and differentiation with respect to t by
a dot; thus

Ṫ =
dT

dt
and X ′ =

dX

dx
.

We obtain

utt = XT̈ and uxx = X ′′T, so XT̈ = c2X ′′T.

If XT 6= 0, we obtain
T̈

csT
=
X ′′

X
= k, a constant. (6.26)
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If X or T is zero, then we cannot divide here but we can still use XT̈ = c2X ′′T.
If X = 0 then either also T = 0 or X ′′ = 0 and X = ax + b for some constants
a, b. Similarly, if T = 0 then either also X = 0 or T = mt + n for some constants
m,n. In either case, we obtain that u(x, t) is linear in x and t so its second partial
derivatives both vanish identically.

We can proceed once we choose some boundary conditions. Let the boundary con-
ditions be given at x = 0 and x = l for all t by the following:

u(0, t) = X(0)T (t) = 0 and u(l, t) = X(l)T (t) = 0 for all t

If T is the zero function then so is u. If T is not the zero function then the boundary
conditions tell us that

X(0) = 0 and X(l) = 0.

We need to consider the three possibilities for the constant k, zero, positive or
negative.

If k = 0, then X ′′ = 0 and X = ax+ b but the boundary conditions tell us that then
a = b = 0, so X is the zero function.

Next, suppose that k > 0, let k = µ2, say. Now our ODE to solve is

X ′′ − µ2X = 0

which has the general solution

X(x) = Aeµx +Be−µx.

Substituting the boundary conditions, X(0) = 0 and X(l) = 0, we obtain that
A+B = 0 from putting x = 0 and so when x = l we find

X(l) = A(eµl − e−µl) = 0.

But eµl − e−µl = 2 sinh(µl) = 0 implies µl = 0 so µ = 0 and then k = 0, which is a
contradiction.

Hence, k < 0, so suppose k = −p2. Now our ODE is

X ′′ + p2X = 0

which has general solution

X(x) = A cos px+B sin px.

From X(0) = 0, we have A = 0, so X(x) = B sin px. But also X(l) = B sin pl = 0
and so sin pl = 0 and hence pl = nπ for some integer n. That is, p = nπ/l and so
we have infinitely many solutions, one for each integer value of n; we label them by
subscripts:

Xn = Bn sin
nπx

l
, for n = 0,±1,±2,±3, . . . . (6.27)
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Figure 3: One of the solutions (6.29) of the 1-D wave equation c2uxx = utt with
c = 1

2
, l = 2, n = 3 given by u(x, t) = sin 3πx

2
cos 3πt

4
. The boundary conditions

were: u = 0 at x = 0 and x = 2, for all t, as you can see in the Figure. A slice
parallel to the x-axis at t = t0 gives the shape of the wave along the x-direction,
at that chosen instant of time t0. A slice parallel to the t-axis at x = x0 gives the
variation in time of the shape at that chosen point x0.

6.1 Exercises

1. Sketch the solution for the case n = 1, B1 = 1 and l = 2, in (6.27).

2. Repeat the steps with the ODE for T starting from

T̈ − c2kT = T̈ + c2p2T = T̈ + c2(
nπ

l
)2T = 0.

3. Deduce that there are infinitely solutions given by

Tn = Dn cos
cnπt

l
+ En sin

cnπt

l
, for n = 0,±1,±2,±3, . . . . (6.28)

Finally, putting the above results together, we have infinitely many solutions for u,
labelled by the integer n, as follows:

un(x, t) =

(
Dn cos

cnπt

l
+ En sin

cnπt

l

)
Bn sin

nπx

l
, for n = 0,±1,±2,±3, . . . .

(6.29)
One particular example is shown in Figure 3 with c = 1

2
, l = 2, n = 3, Bn = Dn =

1, En = 0.

Remark Note that the ODEs arising from the wave equation reject all except
the periodic solutions. The wavelengths of the wave profiles along the x-axis are
controlled by the original boundary conditions. The period of the oscillations in
time are controlled by the length l and the speed c.
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6.2 Exercises

1. Consider the heat equation:

c2
∂2u

∂x2
− ∂u

∂t
= 0. (6.30)

Substitute u(x, t) = F (x)G(t) (6.31)

to obtain
1

c2G

dG

dt
=

1

F

d2F

dx2
if (F (x)G(t) 6= 0). (6.32)

2. In the ODE (6.32), each side depends on a different single variable only, hence
both sides must be equal to the same constant. That yields two ODEs to solve
subject to the given conditions for the problem. What are the two ODEs to
solve?

3. What happens if F or G is the zero function?

7 Method of characteristics

We shall consider a flow problem, in the form

a(x, t)ux + b(x, t)ut = 0. (7.33)

Using the method of characteristics, we shall see that u is constant along a certain
curve in (x, t)-space given by dx

dt
= a(x,t)

b(x,t)
and then from initial conditions we can

obtain u.

Suppose that we have a solution u of (7.33) in a region R of (x, t)-space. Now we
consider a general curve in R given parametrically by

x = x(s), t = t(s), for parameter s with s0 ≤ s ≤ s1. (7.34)

Note that often it is greatly simplifying if we choose s = t as parameter. On this
curve (7.34), the values of u are given by

u(s) = u(x(s), t(s)), for s0 ≤ s ≤ s1. (7.35)

Differentiating through this with respect to s, using the chain rule, gives

du

ds
=
∂u

∂x

dx

ds
+
∂u

∂t

dt

ds
, for s0 ≤ s ≤ s1. (7.36)

Next, we choose the curve (7.34) in such a way that for some function λ, depending
on (x, t), we have along the curve the following dependence on the functions a and
b in the PDE (7.33):

dx

ds
= λa and

dt

ds
= λb, for s0 ≤ s ≤ s1. (7.37)
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Characteristic curve: t = 1
c
x+ A

(x0, 0)•

•(x, t)

Figure 4: Characteristic curve for PDEs of form c∂u
∂x

+ ∂u
∂t

= function of t.

Now, substituting in (7.36) we obtain

du

ds
= λ(a

∂u

∂x
+ b

∂u

∂t
) = 0, for s0 ≤ s ≤ s1. (7.38)

So, u is constant along such a curve and to determine it we need to find the function
λ. We do this by rearranging (7.37) to yield a differential relationship between x
and t along the curve

dx

a(x, t)
=

dt

b(x, t)
= λ(x, t) ds. (7.39)

These are called characteristic curves of the PDE (7.33).

7.1 Exercises

1. Let b = 1, and a(x, t) = c, a positive constant, so we have the homogeneous
linear PDE

c ux + ut = 0 (7.40)

Show that the characteristics can be obtained from (7.39) by dt
dx

= 1
c

so here
these curves are just lines given by t = 1

c
x+ A, for some constant A.

2. Sketch the characteristics as lines in (x, t) space for several values of A, cf.
Figure 4.

To obtain an expression for u(x, t), find the characteristic that passes through (x, t).
Follow this characteristic back to the initial point (x0, 0). But, t = 1

c
x + A, so at

t = 0 we have 0 = 1
c
x0 + A, and therefore 1

c
x0 = −A. On the other hand, we know

that on this characteristic A = t − 1
c
x, and so 1

c
x0 = 1

c
x − t, which rearranges to

x0 = x− ct.

Suppose that we are given the initial condition

u(x, 0) = f(x) (7.41)
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for some known function f. Now we know from the initial condition (7.41) that

u(x0, 0) = f(x0). (7.42)

Finally, by arrangement, u is constant on the characteristic joining (x, t) to (x0, 0)
so we have that

u(x, t) = f(x0) = f(x− ct) (7.43)

which we recognise as a wave travelling at constant speed c in the positive x-
direction, with wave profile f(x).

Inhomogeneous flow equation
Consider next the case that the flow equation is not homogeneous. We illustrate in
this Exercise with a linear inhomogeneous example.

7.2 Exercises

1. Consider the inhomogeneous flow equation

c
∂u

∂x
+
∂u

∂t
= kt. (7.44)

Show that along a characteristic we have

dx

c
=
dt

1
=
du

kt
.

2. Deduce that along the characteristic

t =
1

c
x+A, for some constantA, and so u(x, t) =

1

2
kt2+B, by integration of du = kt dt.

3. Follow the characteristic back from (x, t) to (x0, 0) so x0 = −cA, and hence
we deduce x0 = x− ct, cf. Figure 4.

4. Use the initial condition u(x, 0) = f(x) to show that u(x0, 0) = B so B =
f(x0) = f(x− ct) and finally obtain the solution to (7.44) as

u(x, t) =
1

2
kt2 + f(x− ct).

So, the characteristics are given as before, cf. Figure 4, but, unlike for the ho-
mogeneous case (7.40), now u is not constant along the characteristic, it satisfies
an ODE because of the nonzero term on the right of (7.44). There is a partic-
ular solution uPI(x, t) = 1

2
kt2, and so a general solution of (7.44) is of the form

u(x, t) = 1
2
kt2 + f(x − ct). As before, f(x − ct) represents a wave travelling along

the x-axis at constant speed c with no change in its shape.

Inhomogeneous nonlinear flow equation
Here we have the most general case, a nonzero function on the right hand side, and
all terms may depend on u as well as x, t. This is the equation:

a(x, t, u)ux + b(x, t, u)ut = c(x, t, u). (7.45)
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The algebraic manipulation is similar, but now we obtain the following differential
equation along the characteristics:

dx

a(x, t, u)
=

dt

b(x, t, u)
=

du

c(x, t, u)
. (7.46)

The presence of u means that we can no longer solve for the characteristic in terms
of x, t and then solve for u along it, as we did in the linear case. The two differential
equations contained in (7.46) have to be solved simultaneously for the characteristic
and for u along it; this can often be done only by numerical methods.

Sometimes, we can find an implicit solution, as in the following Exercise.

7.3 Exercises

Consider this inhomogeneous nonlinear flow equation

(1 + t)uux + ut = u, u(x, 0) = f(x). (7.47)

1. Along a characteristic,
dx

(1 + t)u
=
dt

1
=
du

u
,

show that u = Aet and use this to obtain

dx

dt
= (1 + t)u = A(1 + t)et.

2. Deduce that x = Atet +B = ut+B.

3. Use the initial condition to deduce that u(x0, 0) = f(x0) = A and x0 = B =
x− ut.

4. Hence obtain the implicit form of a solution to (7.47)

u(x, t) = etf(x− ut).

We can see that in general it would be difficult to rearrange this implicit solution
into an explicit solution for u in terms only of x, t. It might be possible if f is a
simple function.

LATEX
This pdf document with its hyperlinks was created using LATEX which is the standard
(free) mathematical wordprocessing package; more information can be found via the
webpage:
http://www.ma.umist.ac.uk/kd/latextut/pdfbyex.htm
Mathematica
The graphics were created as eps files in Mathematica and converted to pdf format
using Ghostview, then incorporated in the LATEX document. See:
http://www.ma.umist.ac.uk/kd/mmaprogs/AREADMEFILE
for beginning Mathematica.
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