A Note on Parametrization

The key to parametrizartion is to realize that the goal of this method is to describe
the location of all points on a geometric object, a curve, a surface, or a region. This
description must be one-to-one and onto: every point must be described once and only
once.

1 Parametrization of Curves in R?
Let us begin with parametrizing the curve C' whose equation is given by
> +yt =4 (1)

i.e., a circle of radius 2 centered at the origin. We start by associating a position
vector r to each point (z,y) on C through the relation

r = (z,y). (2)

The coordinates z and y in (2)are not arbitrary — they are related through equation
(1). This means that we are free to assign a value to only one of the coordinates of a
typical point on C; the other coordinate must be determined from the equation of the
circle. For this reason we say C' has one degree of freedom.

Choosing = as the parameter for C, we see from (1) that

y=+v4—x2,

where the positive square root describes those points on C' that lie above the x-axis and
the negative square root the points below the x-axis. The complete parametrization of

Cis
ri(z) = (x,v/4—2%) and ry(z)= (z,—V4—22), (3)

where —2 <z < 2 for r; and —2 < z < 2 for ry. Note that the points (—2,0) and (2,0)
are arbitrarily assigned to r;. We can now use the parametrization of C' to determine
tangent vectors to C, plot C on a graphics software, or to perform a line integral around
C.

Although the paramerization in (3) is adequate for the purpose of describing C, it
is not the most convenient description of this curve. A more efficient way to view C' is
to use polar coordinates to describe its points: = 2cos €,y = 2sin6, with 6 € [0, 2).
So C' can also be parametrized as

r3(0) = (2cosh,2sin6), 6 € |0,27). (4)

Note that r3 in (4) does the job of both ry and rs in (3).

The parametrizations ri, r and r3 are just a few ways out of the infinitely many
ways that one could describe C'. Here are three other parametrizations of the same
curve:

ry(t) = (2sint,2cost), t € [0,2m), (5)



where C' is traversed in the clockwise direction,
r5(u) = (—2sinu,2cosu), wu € [0,27), (6)

where C' is traversed in the counterclockwise direction (how is rs different from r3?)
and
r¢(w) = (2sin2w,2cos 2w), w € [0, 7). (7)

To understand the difference between rq and rg, compute the speed of a particle traveling
around C' according to these parametrizations.

Let us now consider parametrizations of other familiar curves. Any two dimensional
curve whose equation is given by y = f(z) can be parametrized as

r(@) = (2, f(2)), @€ (a,b) (8)
so, for instance, the straight line y = mx + b can be viewed as
r(z) = (z,mz + b). (9)
The circle of radius a centered at (b, ¢) is parametrized as
r(0) = (b+acosf,c+asinf), 6 € (0,2n]. (10)

The ellipse whose equation is given by a?z? 4 b?y? = c? is parametrized as (to see where
the following expressions come from, divide a?2? + v?y? = ¢ by ¢? and set the term
containing 22 equal to cos?t and the one containing 32 to sin?¢#)

r(t) = <§ cost, g sint) t e (0,2m). (11)

2 Parametrization of Curves in R®

Similar to curves in R2, curves in R? still have only one degree of freedom, that is, a single
parameter is sufficient to describe the coordinates of a typical point on curves in R3. As
an example, consider the straight line C' that connects the two points P = (1,2,1) and
Q=(-1,1,3). Let P = (1,2,1) and Q = (—1,1,3). Define v=Q —P = (-2, —1,2).
Note that v is parallel to the line C. So every point S on C can be accessed by the
vector

S=P+tv

for some t € R. So
r(t) =(1,2,1) +t(—2,-1,2), t€R (12)

is a parametrization of C. In terms of coordinates, (12) is equivalent to
z(t) = 1—2t

yt) = 2-t (13)
z(t) = 142t



Every straight line C, whether in R? or R3, can be parametrized as
r(t) =ro+tv, tcR (14)

where rg is the position vector corresponding to a known point on C (such as (1,2,1)
in our previous example), and v is a vector parallel to C. For instance, to find the
parametrization of the line of intersection between the two planes 2z — 3y + z = 2 and
x+y+ 2z =0, first we find a point on this line by setting z = 0 in the equations of the

planes and then solve for z and y to see that (%, —%,0) lies on C. Next, we note that

the vectors ny = (2,—3,1) and ny = (1,1,1) are normal to the planes. Therefore,
V=n; XNy = <—4, —1,5>

is parallel to C. Therefore
0) +t(—4,—1,5) (15)

is a parametrization of C.
More complicated curves are parametrized similarly. Typical points on a curve C
are accessed by a position vector r of the form

For example, the parametrization (sint,cost,t) describes a helix in R®. Or the inter-
section of the plane z + y + z = 1 and the cylinder 22 4+ y? = 1 is given by

r(t) = (cost,sint,1 — cost —sint), t € (0,2n]. (16)

3 Parametrization of Surfaces

Surfaces in R? are characterized by two degrees of freedom; one is allowed to vary two
parameters independently to cover all points on a surface. The simplest examples are
surfaces that are graphs of functions f that depend on two variables, z = f(z,y). Such
surfaces are often parametrized as

r(z,y) = (z,y, f(z,y)), a<zx<b c<y<d. (17)
For example, the surface z = 22 + y? over the unit square is parametrized as
r(z,y) = (z,y,2> +y%), 0<z<l, O0<y<lLl (18)
The cylinder z? + y? = 1 is parametrized as
r(6,z) = (cosf,sinb,z), 6¢€ (0,2x], =z € R, (19)
while the cylinder 2% 4 22 = 4 is parametrized as

r(f,y) = (2cos,y,2sinf), 6€ (0,2n], y € R, (20)



The surface of the disk of radius a in the plane z = b centered at the origin is given by
r(u,v) = (ucosv,usinv,b), u€[0,1], v e (0,2n]. (21)

Certain surfaces are best parametrized in spherical coordinates where

x = pcosfsing,
y = psinfsing, (22)
z = pcoso.
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For example, the cone 22 = 22 4 y? can be parametrized as

2
r(p,0) = %(pcos 0,psinf,p), pe R, 6¢c(0,2n]. (23)

Similarly, the northern hemisphere of radius 3 centered at the origin may be parametrized
as
r(0, ¢) = 3(cos fsin ¢, sinfsinp,cos ), 6 € (0,2n], ¢ €0, g] (24)

An alternative way of parametrizing this surface is as follows:

I'(CL',y) :?’(x?ya \/9—$2—y2>, 5U2+y2 Sg (25)

The boundary of this surface (the circle of radius 3 in the zy-plane and centered at
™

the origin) is best parametrized using (24) by setting ¢ = ¥ in that relation to get
r(f) = 3(cos0,sinh,0), 6 € (0,2n]. (26)
Once a parametrization r(u,v) of a surface S is known, the vector

ry Xy,

defines a normal vector to S.

4 Parametrization of Regions in R?

Regions in R3 have three degrees of freedom. They are parametrized by r(u, v, w) where
u , v and w take on values in respective intervals. For example, the region bounded by
the cylinder 2 + y? = 1 and the planes z = —2 and z = 1 is paramterized as

r(r,0,z) = (rcosf,rsinf,z), 0<r<1, 0<60<2m, —-2<z<L (27)
The boundary of this region consists of three surfaces Sy, So and Ss given by

S1: ri(u,v) = (ucosv,usinv,—2), 0<u<1l, 0<v<2m,
Sz : ra(u,v) = (ucosv,usinv,l), 0<u<1l 0<v<2nm, (28)
S3: r3(u,v) = (cosv,sinv,u), —-2<u<l 0<v<2m.



Similarly, the region inside the northern hemisphere of radius 2 is parametrized as
follows:

r(p,0,¢) = (pcosfsing, psinfsing,pcosp), 0<p<2, 0<0<2m, 0<¢<

(

I

)

The boundary of this region consists of two surfaces S; and Ss given by

S1: ri(6,6) = 2(cosfsing,sinfsing,cosp), 0<6<2m, 0<¢ <73,
Sy: ro(r,d) = (rcosf,rsinf,0), 0<r<2 0<6<2r.

(30)



