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A Note on Parametrization

The key to parametrizartion is to realize that the goal of this method is to describe
the location of all points on a geometric object, a curve, a surface, or a region. This
description must be one-to-one and onto: every point must be described once and only
once.

1 Parametrization of Curves in R2

Let us begin with parametrizing the curve C whose equation is given by

x2 + y2 = 4 (1)

i.e., a circle of radius 2 centered at the origin. We start by associating a position

vector r to each point (x; y) on C through the relation

r = hx; yi: (2)

The coordinates x and y in (2)are not arbitrary { they are related through equation
(1). This means that we are free to assign a value to only one of the coordinates of a
typical point on C; the other coordinate must be determined from the equation of the
circle. For this reason we say C has one degree of freedom.

Choosing x as the parameter for C, we see from (1) that

y = �
p
4� x2;

where the positive square root describes those points on C that lie above the x-axis and
the negative square root the points below the x-axis. The complete parametrization of
C is

r1(x) = hx;
p
4� x2i and r2(x) = hx;�

p
4� x2i; (3)

where �2 � x � 2 for r1 and �2 < x < 2 for r2. Note that the points (�2; 0) and (2; 0)
are arbitrarily assigned to r1. We can now use the parametrization of C to determine
tangent vectors to C, plot C on a graphics software, or to perform a line integral around
C.

Although the paramerization in (3) is adequate for the purpose of describing C, it
is not the most convenient description of this curve. A more e�cient way to view C is
to use polar coordinates to describe its points: x = 2 cos �; y = 2 sin �, with � 2 [0; 2�).
So C can also be parametrized as

r3(�) = h2 cos �; 2 sin �i; � 2 [0; 2�): (4)

Note that r3 in (4) does the job of both r1 and r2 in (3).
The parametrizations r1, r2 and r3 are just a few ways out of the in�nitely many

ways that one could describe C. Here are three other parametrizations of the same
curve:

r4(t) = h2 sin t; 2 cos ti; t 2 [0; 2�); (5)
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where C is traversed in the clockwise direction,

r5(u) = h�2 sinu; 2 cos ui; u 2 [0; 2�); (6)

where C is traversed in the counterclockwise direction (how is r5 di�erent from r3?)
and

r6(w) = h2 sin 2w; 2 cos 2wi; w 2 [0; �): (7)

To understand the di�erence between r4 and r6, compute the speed of a particle traveling
around C according to these parametrizations.

Let us now consider parametrizations of other familiar curves. Any two dimensional
curve whose equation is given by y = f(x) can be parametrized as

r(x) = hx; f(x)i; x 2 (a; b); (8)

so, for instance, the straight line y = mx+ b can be viewed as

r(x) = hx;mx+ bi: (9)

The circle of radius a centered at (b; c) is parametrized as

r(�) = hb+ a cos �; c+ a sin �i; � 2 (0; 2�]: (10)

The ellipse whose equation is given by a2x2+ b2y2 = c2 is parametrized as (to see where
the following expressions come from, divide a2x2 + b2y2 = c2 by c2 and set the term
containing x2 equal to cos2 t and the one containing y2 to sin2 t)

r(t) = h c
a
cos t;

c

b
sin ti t 2 (0; 2�): (11)

2 Parametrization of Curves in R3

Similar to curves inR2, curves inR3 still have only one degree of freedom, that is, a single
parameter is su�cient to describe the coordinates of a typical point on curves in R3. As
an example, consider the straight line C that connects the two points P = (1; 2; 1) and
Q = (�1; 1; 3). Let P = h1; 2; 1i and Q = h�1; 1; 3i. De�ne v = Q�P = h�2;�1; 2i.
Note that v is parallel to the line C. So every point S on C can be accessed by the
vector

S = P+ tv

for some t 2 R. So
r(t) = h1; 2; 1i + th�2;�1; 2i; t 2 R (12)

is a parametrization of C. In terms of coordinates, (12) is equivalent to8><
>:

x(t) = 1� 2t
y(t) = 2� t

z(t) = 1 + 2t
(13)
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Every straight line C, whether in R2 or R3, can be parametrized as

r(t) = r0 + tv; t 2 R (14)

where r0 is the position vector corresponding to a known point on C (such as h1; 2; 1i
in our previous example), and v is a vector parallel to C. For instance, to �nd the
parametrization of the line of intersection between the two planes 2x� 3y + z = 2 and
x+ y + z = 0, �rst we �nd a point on this line by setting z = 0 in the equations of the
planes and then solve for x and y to see that (2

5
;�2

5
; 0) lies on C. Next, we note that

the vectors n1 = h2;�3; 1i and n2 = h1; 1; 1i are normal to the planes. Therefore,

v = n1 � n2 = h�4;�1; 5i

is parallel to C. Therefore

r(t) = h2
5
;�2

5
; 0i + th�4;�1; 5i (15)

is a parametrization of C.
More complicated curves are parametrized similarly. Typical points on a curve C

are accessed by a position vector r of the form

r(t) = hx(t); y(t); z(t)i:

For example, the parametrization hsin t; cos t; ti describes a helix in R3. Or the inter-
section of the plane x+ y + z = 1 and the cylinder x2 + y2 = 1 is given by

r(t) = hcos t; sin t; 1� cos t� sin ti; t 2 (0; 2�]: (16)

3 Parametrization of Surfaces

Surfaces in R3 are characterized by two degrees of freedom; one is allowed to vary two
parameters independently to cover all points on a surface. The simplest examples are
surfaces that are graphs of functions f that depend on two variables, z = f(x; y). Such
surfaces are often parametrized as

r(x; y) = hx; y; f(x; y)i; a < x < b; c < y < d: (17)

For example, the surface z = x2 + y2 over the unit square is parametrized as

r(x; y) = hx; y; x2 + y2i; 0 < x < 1; 0 < y < 1: (18)

The cylinder x2 + y2 = 1 is parametrized as

r(�; z) = hcos �; sin �; zi; � 2 (0; 2�]; z 2 R; (19)

while the cylinder x2 + z2 = 4 is parametrized as

r(�; y) = h2 cos �; y; 2 sin �i; � 2 (0; 2�]; y 2 R; (20)
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The surface of the disk of radius a in the plane z = b centered at the origin is given by

r(u; v) = hu cos v; u sin v; bi; u 2 [0; 1]; v 2 (0; 2�]: (21)

Certain surfaces are best parametrized in spherical coordinates where8><
>:

x = � cos � sin�;
y = � sin � sin�;
z = � cos �:

(22)

For example, the cone z2 = x2 + y2 can be parametrized as

r(�; �) =

p
2

2
h� cos �; � sin �; �i; � 2 R; � 2 (0; 2�]: (23)

Similarly, the northern hemisphere of radius 3 centered at the origin may be parametrized
as

r(�; �) = 3hcos � sin�; sin � sin�; cos�i; � 2 (0; 2�]; � 2 [0;
�

2
]: (24)

An alternative way of parametrizing this surface is as follows:

r(x; y) = 3hx; y;
q
9� x2 � y2i; x2 + y2 � 9: (25)

The boundary of this surface (the circle of radius 3 in the xy-plane and centered at
the origin) is best parametrized using (24) by setting � = �

2
in that relation to get

r(�) = 3hcos �; sin �; 0i; � 2 (0; 2�]: (26)

Once a parametrization r(u; v) of a surface S is known, the vector

ru � rv

de�nes a normal vector to S.

4 Parametrization of Regions in R3

Regions in R3 have three degrees of freedom. They are parametrized by r(u; v; w) where
u , v and w take on values in respective intervals. For example, the region bounded by
the cylinder x2 + y2 = 1 and the planes z = �2 and z = 1 is paramterized as

r(r; �; z) = hr cos �; r sin �; zi; 0 � r � 1; 0 � � � 2�; �2 � z � 1: (27)

The boundary of this region consists of three surfaces S1, S2 and S3 given by8><
>:

S1 : r1(u; v) = hu cos v; u sin v;�2i; 0 � u � 1; 0 � v < 2�;
S2 : r2(u; v) = hu cos v; u sin v; 1i; 0 � u � 1; 0 � v < 2�;
S3 : r3(u; v) = hcos v; sin v; ui; �2 � u � 1; 0 � v < 2:�:

(28)
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Similarly, the region inside the northern hemisphere of radius 2 is parametrized as
follows:

r(�; �; �) = h� cos � sin�; � sin � sin�; � cos �i; 0 � � � 2; 0 � � < 2�; 0 � � � �

2
(29)

The boundary of this region consists of two surfaces S1 and S2 given by(
S1 : r1(�; �) = 2hcos � sin�; sin � sin�; cos �i; 0 � � < 2�; 0 � � < �

2
;

S2 : r2(r; �) = hr cos �; r sin �; 0i; 0 � r � 2; 0 � � < 2�:

(30)


