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80. Preface

The objective of these notes is to present the basic aspects of multiva
calculus. As in the univariate setting,etle are many computational rules her
These rules are indeed important, but computer software packages allow |
of these calculations to be done by machine. The emphasis in these notes
the concepts behind the computational formulas. It is these concepts that
multivariate calculus its power and importance.

The specific objectives are the following.

(1) Develop a solid understanding of fuirmms and the geometric and algebrai
meaning of the graph of a function. Develop the ability to translate geome
properties of the graph of a functionto equations, and vice-versa.

(2) Develop understanding, not just algorithms.

(3) Develop an intuitive and formal understanding of derivatives.

(4) Devlop an intuitive and formal understanding of integrals.

(5) Develop an understanding of linearity and its use in the calculus.

(6) Develop the the ability to translate a verbal description of a problem int
mathematical description, and vice-versa.

Throughout these notes are various eis®s and problems. The reader shou
attempt to work all of these. Solutions, sometimes in the form of hints, are provi
for most of the problems.

These notes begin with a briefuview of univariate calculus.
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81. A Brief Review

There are two central ideas in the theory of calculus of functions of a sir
variable.

The first core idea is that every funatioan be closely approximated by a linee
function over small pieces of the domain of the function. Stated more forme
for any functionf and any pointa on the x axis the graph of near @,f(a))

is approximately a straight line. Thisad led to the development of the notio

of derivative and is formally captured in the definitibh(@) = lim M.

b-a -

Intuitively, the definition means that for small valuespf (a+h) = f(a) + f'(a)h,
approximately.

The second core idea arises by considering the slo@bkaitthe approximating
lines of asingle given functionf. Graphically the slopes of all of these line
together with a single point on the graph of the funcfiaan be used to completely
reconstructf. This idea is formally capturechithe Fundamental Theorem o

b
Calculus:f(b) = f(a) +/ f'(t) dt. The importance of the Fundamental Theore

stems from the fact that in many applicas geometric or physal reasoning lead
to a formula for the derivative of the function of interest. The functidncan then
be constructed from the knowledgeféfby using the Fundamental Theorem.

The objective is to extend these tweak to the context of functions of sever:
variables. In this discussion there are 5 keyredients: points, functions, integrals
lines, and derivatives. The developmeagns with a discussion of sets, which ar
the mathematical objects used &present collections of points.
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81: ABrief Review 4

Problems

Problem 1-1. Supposé (x) = 2x> - 5. Computef’(3) using the familiar formulas
2(3+h)?-18

of calculus. True or Falsd!(3) = r|]IITCI) H

(5 +h)? - 25

Problem 1-2. Compute li
h-0 h

Problem 1-3. True or Falsef'(b) = Lingw.

Problem 1—4. If f(t) = &, compute / "1 dt.
0

Problem 1-5. SupposeA(r) is the area of a circle of radius and C(r) is the
circumference of the circle of radius Argue geometrically thad' (r) = C(r).

Problem 1-6. SupposeV/(r) is the volume of a sphere of radiusand A(r) is the
surface area of a sphere of radiudVhat is the relationship betwe®ffr) andA(r)?



81: A Brief Review

Solutions to Problems

Problem 1-1. Using the rulesf’(x) = 4x sof'(3) = 12. From the definition
- 2_
f'(3)=|imf(3+h) f(3)=Iim 2(3+h)-18
h-0 h h-0 h

, So the second assertion is true.

Problem 1-2. Definingf(x) = x?, this limit is nothing more thafY (5) = 10.

Problem 1-3. False. The limit should be @& - b.

m
Problem 1-4. Using the Fundamental Theorem of Calcul%, f'(t)dt =
. . 0
f(m) -f(0) =" -eN0=1-1 =0,

Problem 1-5. For small values oh, A(r + h) — A(r) is the area of a thin ring
shaped region whose area is approximalt€lyr).

Problem 1-6. Asinthe preceding problem, for small value$o¥ (r +h)—V(r)
is the volume of a thin shell whose volume is approximat&{y)h. Thus
V' (r) = A(r).

5



82. Sets

Multivariate calculus has a strong geometric flavor. Geometric space is not
more than a collection of points, and geometric objects in space consist of s
sub-collection of points in space. The mathematical language of sets is us
provide an accurate description of geometric objects.

A setis simply a collection of objects. One might speak of the set of stude
in this classroom, the set of bicycles campus, and so on. An individual object ii
a set is called arlementof the set.

In mathematics, the sets of interestoficonsist of numbers. One of most ofte
used sets is the set of real numbers. The collection of all numbers which ca
written in decimal form (repeating or not) is the setedil numbers, and is denoted
by R.

Giving sets a visual representation isawfvery useful. The visual representatio
of the set of real numbeiR is as a straight, infinite, line. The individual number
(elements) are located along this line.

Often, additional requiments are made which narrows the set of possil
values to a piece, that is, subset of the original set. The subset is specifie
notationally by giving the condition required to be an element of the subset.

Example 2—1. The set of real numbers which are at least 3 is written notation:
as{x O R : x= 3}. The notation is read as “the setxin the real numbers such
thatx is greater than or equal to 3.” In this notation the colon is read as “such tl
or “with the property that.” The notation R, which is read asXis an element of
R,” means that the numbgiis an element of the set of real numbers. The inequal
following the colon gives the additionalgperty required to be a member of thi
particular subset. This same set could be wriftenx [0 R andx = 3}.

Exercise 2—1.Give this set a visual interpretation by graphing it on a number lir
Exercise 2-2. Translate into wordsf{x : x J R andx < 1/ 2}.

Exercise 2—-3.Graph the set in the previous exercise.

Exercise 2—4.1s 5[ {x OR: x> x}?

As the example suggests, subsets of the real line are often connected
algebraic problems involving a single vable. In many cases the relationship c
interest will be between two or more vabias. A higher dimensional set is used ¢
the backdrop for visualizopsuch relationships.
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8§82 Sets 7

For a situation involving two variables the subsets will be visualized in a t
dimensional plane. Denote IRf the set{ (;) :xORandy O R}. This is the set

of ordered pairs<§> in which each member of the pair is a real number. The t\

numbers are called trmordinatesof the point. VisuallyR? is a two dimensional
plane.

X : . .
Example 2—2. The set OR?2:x=3andy= 5} can be visualized easily.
This set consists of a single point. As aatdnal convenience, this point is writter

()

Example 2-3. A basic way of visualizing a more complicated set, sucthas

X X\ .
<2x) s x O R} and then plot

several individual points in the set, hopitmsee a pattern. (This method is tediot
for humans, but easy for computers.)

) 0 R?:y=2x; is to first rewrite this set a

Exercise 2-5.What familiar geometric object is the set in the previous example

2X

Exercise 2—6.Is the seB = { (
4x

) x O R} the same as the saP

The previous exercise illustrates that the same set can have many diff
descriptions. Showing that two desdrgns are describing the same set is accot
plished by taking an arbitrary element meeting the first description and showing
this element also meets the second description, and vice-versa.

Example 2—4. Are the sets{@) OR2:x-y= 5} and{(t_t5> t0 R} the

same? Supposé§> is in the first set. Using the condition givgs x—5, so in

fact (;) = (x )_( 5), and since is a real number, this point meets the requireme

to be an element of the second set. On the other hand, suéqo_%g) is in the

second set. Sinde- (t —5) = 5, this point meets the requirement to be in the fit
set. Thus the two descriptions are describing the same set.

+
Exercise 2—7.1s the set{ ( S S 5) cs R} the same as the set in the example?

Sometimes a set has no elements. The set with no elements is calieedphe
setand is denoted byl.

Example 2-5. The set{x OR:x?= —5} has no elements, s{o< OR:x?= —5} =
.
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Spaces of dimension larger than 2 are often useful as well. Den®eé e set

X1
{ ( : ) x ORforl<ic< d}. Thisis the set of ordereatituples of real numbers.

Xd
Most of the work here will involve the spacB andR®. The results and ideas car

be easily carried over into spaces of higher dimension.
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Problems
Problem 2—1. Find the set{x OR: VX2 = x} and graph it.
Problem 2-2. Find the se{x 0 R : 2x+ 3 = 5} and graph it.
Problem 2-3. Find the set{x OR:(X+2P2=x%+4x+ 4} and graph it.

Problem 2—4. Write in set notation: the set of real numbers between 4 anc
exclusive. What geometric object is this set?

Problem 2-5. Write in set notation: the set of points in the plane for which tt
second coordinate is 2 more than the fosbrdinate. What gewvetric object is this
set?

Problem 2—6. True or False: T1 {x OR:xX2-2x+5> 3}.

Problem 2—7. True or False: The poir(té) Is an element of the set

{(;) DRz:xy—5x=7}.

Problem 2—-8. Are the sets

{(;) DR2:2x+3y:7and4(+6y:14}

{(f) DR2:65+9t=21}

the same? Geometrically, what are these sets?

and

Problem 2-9. Consider the regiors = {(;) O0R?:0<x<2,0<y< x+4}.

Sketch the regio, and label each corner of the region with the coordinates of
corner point. What is the area of the regieh

Problem 2-10. Graph the se{ (;) :0sx<20<y< xz}.
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Solutions to Problems

Problem 2-1. {xOR: VW2 =x} = {xOR :x=20}. The graph is the half
line beginning at the 0 and extending to the right.

Problem 2-2. {xOR:2x+3=5 = {xOR :x=1} which graphs as a
single point.

Problem 2-3. {xOR : (x+2) = x?+4x+4} = R. The equationx+ 2)* =
X% + 4x + 4 is an example of ailentity, since equality holds for all values ®f
for which both sides are defined.

Problem 2-4. {xOR:4<x<7}. This setis a line segment, without its
endpoints.

Problem 2-5. {<X> DRZ:y:x+2} or{< X )ZXDR}. This set is
y X+2

aline.

Problem 2—6. Here 7is areal numberand72x7+5=49-14+5 = 40> 3,
so the answer is true.

Problem 2—7. Since 2x3-5x2 =—4# 7 the answer is false.

Problem 2-8. Yes. If <;) is in the first set, then»+ 3y = 7 and by
multiplication the second requirement is also met. Multiplying by 3 shows that

6x + 9y = 21, so the poin<§) meets the requirement to be in the second set.

If f is in the second set, thers & 9t = 21 and division by 3 shows that

2s+ 3t = 7 while multiplication by 23 shows that ¢+ 6t = 14 also holds. So

the requirements fo( ts) to be in the first set are satisfied. Thus the two sets

are the same. Geometrically, the sets are a lifR?in

Problem 2-9.

The area is the area of a rectanglaspthe area of a triangle, and isx®2 +
(1/2)2x 2 =10.

Problem 2-10. This set is the region in the plane bounded above by the

10
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parabolay = x?, thex-axis, and the line = 2.
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Solutions to Exercises
Exercise 2-2. The set of real numbers that are less than or equdizo 1

Exercise 2-3. The graph is an infinite ray which extends from the poirt tb
the left.

Exercise 2—4. The number 5 is a real number aml525 > 5, so the answer
is yes.

Exercise 2-5. A line through the origin.

Exercise 2—-6. Yes, each point if8 has a second coordinate which is twice its
first coordinate.

. + o .
Exercise 2-7. Yes. If  ° 35 is in this new set, then sincet 5-s =5,
this point meets the requirement to be in the first set of the example. On the

other hand, if(;) is in the first set of the example, then= y + 5 so that

+ . . . . .
<;> = <y y 5 , and since is a real number this point meets the requirement
to be in the new set. Thus the new set and the first set of the example are the

same. Can you give the argument to show that the new set and the second set of
the example are the same?



83. Functions

Multivariate calculus involves the studyf functions. A function consists of
three parts.

(1) A set called thelomain of the function.
(2) A set called theange of the function.

(3) Arule which assigns to each element of the domain one and only one elel
of the range.

Often a function is specified just by giving the rule. In such cases the doma
then understood to be the largest set on which the rule makes sense, and the
is the set of output values that results by applying the rule to all of the elemen
the domain.

Example 3-1. The rule<§) i~ X+Yydefines a function with domaiR? and range

spaceR!. (The symbol- is read ‘maps to’.)

Usually functions are given a symbolic name which is attached to the rule.

Example 3-2. A functionf can be defined by the formul{?) =X+Y.

Exercise 3—1.What is the domain and range of the funct@(w?) = JXy?

. . X\ _ [(X+y
Example 3-3. What is the domain and range of the functlm<1y> = (x—y)?
The formula definindh makes sense for any pair of input values, so the domait
R2. Any pair of output values are also possible, so the ran&g s well.

Exercise 3—2.What pair of input valueg andy would produce an output value of
2 .
<3> for the functionh?

Exercise 3—3.What is the domain and range of the funct%?) = (§:§)7

Thegraph of a function is the set of all possible pairs of elements for which t
first element of the pair lies in the domain of the function and the second eleme
the pair is the corresponding output value. The graph must therefore lie in a s
whose dimension is the sum of the dimensions of the domain and the range c
function.

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.



83: Functions 14

Example 3—4. The graph of the function of the previous example is

X

y | (X> O R?
X y
i
y

Notice that the graph is a subset of 3 dimensional space.

Example 3-5. In what space does the graph of the functjx(n§> = (XZ_Xy> lie?

In most cases here, the fuimns of interest will havéR? or R® as their domain,
and eitheR, R?, or R® as their range. Notation such is R?> — R3is used to
denote a function whose domain is a subs®o&nd whose range is a subsefst
Functions whose range is a higher dimensil space have a nice structure whic
allows some simplification of their study.

Example 3-6. Consider the functiong(?) = <thly>. The domain ofg is R?.
The component functionsof g are the two function with domaiR? and rangeR
defined by the formulag1<x> =X+y andgz(x> = xy. Most of the properties of
g of interest here can be o%tained ydying thsfa component functions gf

Because of the availability of componentictions, the preliminary parts of the
discussion here can consider functions whose ranBe is

Sometimes the output of one function can be used as input to another. |
range of the functiogis contained in the domain of the functibjthecomposition
of f with g, denoted - g, is the function defined by the formulb{g)(v) = f(g(V)).
Notice that the function which is applieddt is the one farthest to the right in the
notation.

Example 3—-7. Supposd has domain and randg® and is given byf(x) = 2x -3
while g has domairR and is given byg(x) = x2. Then € - g)(x) = 2x2 — 3. Notice
that @ - f)(x) = (2x - 3)%.

Occasionally, for a given functidrthere will be another function which ‘undoes
whatf does.” This function is called thieverse function of f and is denoted by
f~1. The requirements for the inverse function are that

f1(f(x)) = x for all x in the domain of , and
f(f2(x)) = x for all x in the domain of * (which is the range of).

Example 3-8. If f(x) = 2x— 3 thenf }(x) = (x + 3)/2. Simple substitution shows
that the two requirements are met.
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Problems
Problem 3-1. Write the graph of the functiof(x) = x? in set notation.

Problem 3-2. True or False: If : R® - R2the graph of is a subset oR*.

t+5

t2 -7t
What are the component functioggt) andg,(t)?

Problem 3-3. Consider the functiog(t) = ( ) What is the domain off?

Problem 3—-4. True or False: If : R? - R3itis possible that(é) = <%>

X

Problem 3-5. Suppose(t) = (tt2> andf (y

) = (x—y) What isf - g? What is
X+y
QOf?

Problem 3-6. Supposé () = (| ¥ ). Doesf~* exist? If so, whatis~( )2
y) ~ \x+y y



83: Functions
Solutions to Problems

Problem 3—1. The graph is{ (f) OR2:t= 52} This could also be written

={(#) <o}

Problem 3-2. False. The graph is a subsetR.

Problem 3-3. The domain ofjis R. The componentfunctions age(t) =t+5
andgy(t) =t - 7t.

Problem 3—4. False. The output value éfmust be a point in 3 dimensional
space.

Problem 3-5. (f - g)(t) = (t L2

— 12
t-t > while g - f does not make sense.

Problem 3-6. Simple computations show thiftl<x> = <(x+y)/2>_
y (y-x)/2

16



83: Functions
Solutions to Exercises

Exercise 3—-1. The domain is{ <§> DXy 2 0}; therangeigx OR : x=0}.

Exercise 3—2. The input values must satiskyty = 2 andx—y = 3, from which
x=5/2 andy = -1/2.

Exercise 3-3. The domain isR?, but the range is the line with equatigrr x
in R2.

Exercise 3-3. The graph lies in 4 dimensional space.

17



84. Multiple Integrals

b
One interpretation of the integr?]ﬁ f(t) dt is as the signed area of the regio

bounded by the graph of the functibrover the intervald, b]. A similar geometric
interpretation can be attached to the integral of a real valued function of two or n
variables.

Example 4-1. SupposdJ is theunit square in the plane, that isJ is the region
{(;) :0<x<1,0<y< 1}. If f <§> is a function of two variables which take:

real values the geometric interpretation of tmuble integral / f <X> dx x dy is
U
as the signed volume of the solid bounded by the graghowkr the squard).

Operating at an intuitive level, this volume is well defined. How should tl
volume be computed? The methodstiting is applied once again!

Example 4-2. As a more specific exampI?[, xy? dx x dy will be computed. The
U

graph of the functiomy? asxandyrange over the points in the unit squares a sheet.

There are two different ways in whiclicgng can be done to compute the volum
represented by the integral. One way of slicing is to make the slices parallelyto
axis. Denote by(x) the volume of the solid to the left of Then simple geometric

1
argument shows that for smdi| V(x + h) = V(x) + h/ xy? dy, approximately.
0
1
Using the definition of derivative then givas (x) = / xy?dy = x/3. Finally,
0

1
xy? dx x dy = V(1) - V(0) = /0 x/3dx = 1/6. Here the Fundamental Theorem ¢
Calculus has been used.

Exercise 4-1.What does the computation look &kf slicing is done parallel to the
X axis?

Notice that in working out tis particular example the first integral that wa
computed treated one of the variablesmp®rarily as though it were a number. Th
second integration then was carried oungghis same variable as the variable c
integration. For this reason, in this contéxe integrations produced by the slicin
method are callederated integrals.

Example 4-3. In the previous example, the slicing method produced the itera
1 1

integral / < / xyzdy> dx. Notice that when evaluating iterated integrals, wo
0 0

proceeds from the inner most integral outwards. Since this order of computir
understood, the parentheses are usuallittechand the iteratedtegral is written

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.



84: MultipleIntegrals 19

1 r1
simply as/ / xy? dy dx.
0 JO
Exercise 4-2.What is the iterated integral of the previous exercise?

It may seem geometrically obvious thaettwo iterated integrals must alway:
give the same value. However, thisis nottrue! Ifthe integrand is sometimes pos
and sometimes negative, the two iterated integrals can give different results.

Example 4—-4. The functionf <§> takes the value/§? if 0 < x < y < 1 and the

1
value-1/x?if0 < y < x < 1. Then for any value ofbetween 0 and % f(§> dx =
1 1 1
/yllyzdx—/ Ux?dx=1y+(1-1y) =1, so that/ </ f(x> dx> dy=1.On
0 y 0 0 y

1 X X 1
theotherhand,forarvybetweenOand1/ f( )dy=/ —1/x2dy+/ 1/y?dy =
0 y 0 X
1 1 X
~Ux+(-1+1x) = -1, s0 that/o (/O f<y) dy> dx = -1.

The phenonmenon observed in the example is caused by the fact tha
integrandf has both arbitrarily large positive and negative values on the reg
of integration. An important theorertue to Fubini and Tonelli states thatdhe
of the iterated integrals of the absolutalwe of the integrand is finite, then bott
iterated integrals of the function itself are finite and equal. Practically speak
this means that unless the integrand has both arbitrarily large positive and nec
values on the region of integration, the two iterated integrals must give the s
value.

Technically, the question of the existenaf a double integral can also be raise:
As long as the set of discontinuities of the integrand is of lower dimension thar
dimension of the space of the domain of the integrand, the double integral will e
This is in accord with geometric intuition that the volume of a lower dimensio
set must be zero. For example, the 2 dimsional volume (area) of a line is zerc
the 3 dimensional volume of a 2 dimensional square is also zero.

The method of slicing can be used tongoute integrals over somewhat mor
complicated regions.

Example 4-5. Supposd is the triangular shaped region

T:{(§> :OSySXZ,xzo}

in thex-y plane. What is/ e dx x dy? In this case, the iterated integral obtaine
T

00 )(2
by slicing parallel to they axis is/0 /O e dydx. To understand how the limits
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of integration are determined in this case, notice that a slice parallel tp dkis
is made by first fixing a value of through which the vertial slice will be made.
From the definition ofl, the value ofk can be any positive number. This gives th
limits for the outermost integral, the integral with respect xo Once a value ok is
given, the definition of the regiof implies thaty must lie between 0 anxf. This
gives the limits for thennermost integral. This is illustrated in the picture below
The regionT is shaded.

Sketching the region of integration often helps in determing the limits of integrati

Exercise 4-3.What is the iterated integral obtained by slicing parallel tothgis?

The computations of the example and exercise can be summarized as fol
When finding the limits of integration for an iterated integral, work from the out
most integral in; when computing the value of an iterated integral, work from
innermost integral out.

Notice that when the region oftegration is not arectangle, the iterated integre
can have quite different limits of integration. Notice too, that the integrand is alw
the same! Geometrically this is because the integrand is specifying the height ¢
solid, which does not change with the direction of the slicing.

The slicing method can also be used to evaluate triple integrals, that is, inte
over a region in three dimensional space. Notice that in this case, each slice w
a two dimensional integral. Higher dim&onal integrals can be handled similarly

Example 4—-6. SupposeC is the three dimensional unit cube

X
C= y|]:0=x<1,0<y<10=<sz<1
z
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What is/C xyzdxxdyxdz? Slicing parallel to th&-y plane gives the iterated integra

/01/01 /leyzdxdydz.

Example 4—7. How many other iterated integrals are there in this case, and w
are they?

Example 4-8. When the region of integration is not a 3 dimensional box, t

iterated integrals are often more tleaging to discover. Suppose the region ¢
X

integration is the seV = { (y) :0sx<sy<z< 1}. One iterated integral for
z

1 rz pry
/ xdx x dy x dz is/ / / xdxdydz. To reason out the limits of integration ir
W 0o Jo JO

this case, notice thatmust lie between 0 and 1 because of the definition of the
W. Oncezis fixed,y must lie between 0 arg) and oncez andy are knownx must
lie between 0 ang.

Exercise 4—4.What limits of integration would be used for the iterated integr
with the orderdy dzdx?

Example 4-9. One use of multiple integrals is to compute the mass of a sc

X
with non-constant density. Suppodeetdensity of a solid at the poiréy) IS
z

X
5(y) and the solid occupies the regi&in space. Then the mass of the solid |
z

X

Aé(y) dx x dy x dz.

z

Multiple integrals are useful, but do not include all types of integration that n
be of interest.

Example 4—10. Supposé is the line segmerit = { (;) (y=x0<x< 1}. Then

/f(;) dx x dy = 0 no matter what the functioh. This is because the one
L
dimensional selt has no area.

Exercise 4-5.What iterated integral would be used to compute the double intet
of the last example?

Such integrals over lower dimensional subsets of higher dimensional space
useful in physics and many other areas. Ofilae major objectives here is to defin
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such integrals in a meaningful way.

The slicing method allows the use of iterated integrals to compute mult
integrals. The region of integration in a multiple integral must be a set of the s
dimension as the number of variables.
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Problems

moo.
Problem 4-1. Is /O e dx positive or negative? Briefly justify your answer.

Problem 4-2. True or False: Itis possible to change the valué(o@ at infinitely

many points in the two dimensional $2without affecting the value of f (;) dxx
D

dy.

Problem 4-3. Supposer = {(i) :0<x<3,0<sy< 5}. Write the two iterated

integrals for/ xy dx x dy and evaluate both of them.
R

Problem 4—4. Supposel = {(;) :0<x<1,0<y< x}. Write the two iterated

integrals for/ xy dx x dy and evaluate both of them.
T

Problem 4-5. Supposd. = {(;) :0sx<20<y< ex} Write the two iterated

integrals for/ xy dx x dy and evaluate one of them.
L

2
Problem 4—-6. For which seRin the plane doe% xy? dx x dy = / / xy? dy dx?
R 1
Write your answer in set notation. "

1 rl
Problem 4-7. Sketch the region of integration for the integfall /2 1dydx, write

0
an equivalent iterated integral with the order of integration re\X/ersed, and eva
the double integral.

2 X
Problem 4-8. Sketch the region of integration for the integ/al/ 1dydx, write

. : . . . o J1 1
an equivalent iterated integral with the order of integration reversed, and eva
the double integral.

X
Problem 4-9. Supposé = { (y) C4y? + 472 < x < 4}. Compute/BdeXddez.
z
X
Problem 4-10. SupposeA = y|:0<y<20<y<xx<z<2x,. Compute
z

/Ae‘X dx x dy x dz.
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X
Problem 4-11. The unit sphere irR?® is the setS = y|:x+y?+22<15.

z
Write a triple integral representing thelume of this sphere, and evaluate tr

integral to compute the volume.

Problem 4-12. The unit sphere of the previous problem has center at the ori
and radius 1. What is the volume of a sphere with the center at the origin and rz
r > 0? What is the surface area of such a sphere?

Problem 4-13. A settling tank is used to separate out waste material. Suppose
tank is 30 meters wide, 70 meters long and 5 meters deep. Suppose also th
density of the material at a depth dfmeters is 8% + 1. What is the mass of the
material in the tank?
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Solutions to Problems

Problem 4-1. Since the values of the exponential function are always posi-
tive, the graph of®™ is always above the horizontal axis. Since this integral
represents the signed area under thelyodthis function, the integral is positive.

Problem 4-2. True. As long as the infinitely many points lie in a one
dimensional subset dP, the changes in the value 6fhave no effect on the
value of the integral.

3 p5 3
Problem 4-3. Oneiteratedintegralif / xydydx=/ 25x/2dx = 2254,
0 0 0

5 3
The other iterated integral # / xydxdy = 2254,
0 JO

1 px 1
Problem 4-4. One iterated integral i7/ / xydydx = / x3/2dx = 1/8.
0 JO 0

11 1
Theotheris/ / xydxdy:/ (y-y))/2dy=1/4-18=18.
0 Jy 0

2 e 2
Problem 4-5. One iterated integral is/ / xydydx = / xe*[2dx =
0 JO 0

1 2
(3¢* + 1)/8. The other iterated integral has two part% / xydxdy +
0 JO

& 2
/ xy dxdy. The value is the same as before.
1 Iny

Problem 4-6. The region iR = {(;) 11<x<2,x<y< xz}.

Problem 4-7. The region of integration is below the parabglae x? for

1w
0 <x< 1. The other iterated integralif / 1dxdy.
0 JO

Problem 4-8. The region is below the ling = x and above the ling = 1 with

2 2
1< x< 2. The other iterated integralif / 1dxdy.
1 Jy

Problem 4-9. From the definition 0B, x must lie between 0 and 4. Onge
is fixed,y andz lie within a circle of radius/x/4 centered at the origin. One

4 VKA XAy
iterated integral is/ / / xdzdydx = 16m/3.
0 J-a J-fxia-y?

Problem 4-10. From the definition ofA, y must lie between 0 and 2; ongés
known,x must be at least; oncey andx are knownz must lie betweenx and

2 poo p2X
2x. This gives one iterated integral}é / / e*dzdxdy = 2—4e 2.
0 Jy X
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Problem 4-11. The volume is/ dx xdyxdz, and one iterated integral is given
S

1 12 pf122y2
by/ / _ / dxdydz. Geometrically, the two inside integrals give
-1 J1-22 J—[1-22-y?

1
the area of a circle of radiuAl - 2, thus the iterated integralif n(1-72)dz=
-1
471/ 3.

Problem 4-12. The volume is 4r3/3 and the surface area is the derivative of
this with respect tw, namely 42,

Problem 4-13. One iterated integral for the mass is

0 70 30
/ / (32 + 1)dxdydz
-s.Jo Jo
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Solutions to Exercises

Exercise 4-1. Inthis case le¥(y) be the volume ofthe solid belowlev;eIThen

V(y)—/ xy? dx = y?/2, and/xydeXdy V(1)-V(0) = /y2/2dy 16,

the same numerical result as before.

1 1
Exercise 4-2. Here the iterated integral f / xy? dxdy.
o Jo

Exercise 4-3. This iterated integral i7[ / e dxdy. In this casey can be
o Jx
any positive value; afteris determined, the values wthat are used begin with

thex coordinate of the intersection of tiherizontal line through( 8) and the

parabola, which iﬁ< \§/y> , and extend indefinitely to the right.

1 1 1
Exercise 4-3. There are five others. One of them/s / / xyzdy dzdx.
o Jo Jo

Exercise 4—4. In this casex must lie between 0 and 1; ongés known,zmust
lie betweernx and 1; oncexandz are knowny must lie betweex andz. So the

iterated integral inthisorderif / /xdydzdx.
0 Jx Jx

1 px
Exercise 4-5. One iterated integral would bf / f(;) dydx, which is
0 Jx

clearly zero.

27



85. Geometry in Higher Dimensions

As a prelude to the study of differentiatiof functions of several variables, the
geometry of higher dimensional spaces will be examined in greater detail.

Interpreting sets as geometric objects allows some degree of visualizatic
the set. The possibility of geometric interpretation is enhanced when the algel
operations of addition of two points and multiplication of a single point by a num
can be defined. When these two operations on points can be defined, the poir
then usually referred to as vectors. Thelgghraic operations also have geometr
interpretations.

Example 5-1. In R?, if G) and (VZV> are points an operation of addition can b

defined bytheformul€§)+(vzv> = ();:VZV> Alsoif cis anumber, multiplication

of the point(i(/) by the numbec can be defined by(i(/) = (g;)

Exercise 5-1.What is(z) + (4)? What is :{ 1)?
3 7 4

Notice that any two points iR? can be added and the result will again be a poi
in R?. Also, any point inR? can be multiplied by a number and the result will aga
be a point inR?. The seR? together with these two operations constitutesetor
space The individual points ifR? are calledvectors This new terminology reflects
the fact that these two algebraic operations have been defined and are availal
use. An individual point is still just a point, too!

Example 5-2. The seR? is a vector space when addition and scalar multiplicati
are defined componentwise, as in the casR’dbove.

1 -2 1 5 4
Exercise 5—2.Whatis| 2 | +| 4 |? Whatis-5| 2 ?Whatis< >+ 517
3 6 3 3 6

Exercise 5-3.What is(é) - (é)O

The previous exercise shows that once addition is defined, so is subtrac

Thezero vector, which inR? is 0) , is the unique element of the set which has tl

(o
property that the sum of a given vector and the zero vector is just the given vet

Technically, the interaction between the addition operation and scalar mult
cation must obey the familiar rules, such as the distributive and associative |

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.
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and the fact that addition is commutative. In all of the examples here these |
will hold, just as in the case of the addition and multiplication of numbers.

One of the central ideas is the inteaplbetween algebra and geometry. TF
algebraic operations on vectors haveortant geometric interpretations.

Example 5-3. A single vectorv in R? can be interpreted as specifying both
magnitude and a direction. €hmagnitude determined wis the distance from the
pointv to the origin. The direction determined fays the direction one would walk
along a straight line patstarting at the origin and heading toward the point

The magnitude of a vectaris called thenorm of the vectorv and is denoted
by [[v].

1

Example 5-4.1If v = (2

) 0 R? then||v|| = v12+22. This is nothing more
1

than the distance from the origin to the point Similarly, if w = | 2 | then
3

[[w]| = V12 + 22+ 3

Exercise 5—4.What is the magnitude and direction determine(<tily>?

Closely related to the norm of a vector is tthet product of two vectors. The

dot product onR? is defined by<2>- (g) = ac + bd; on R® the dot product is

a d
defined by the formulz( b) . (e) = ad + be + cf. Similar formulas are used

c f
on higher dimensional spaces. A general fact is that= ||u|| ||v|| cosB where

0 < 6 < mis the angle formed by the points the origin, ands, with the vertex of
the angle at the origin. The most importaohsequence of this fact is that the ang
betweeru andv is a right angle if and only itlev = 0.

Exercise 5-5.What is the angle betwee(’ni) and ( _11>?

Example 5-5. Given two vectors iru andv in R?, the 4 vectors Oy, u + v andv
are the vertices of a parallelogram.

Example 5-6. Verify that the points(g), <;> (;) + <_31> and<_31) are the
vertices of a parallelogram.

Example 5-7. Given a vector in R? and a numbec, the vectors Oy andcv lie on
aline.
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Exercise 5-6.Show that(g), <;> and C(é) lie on aline.

The previous exercise shows that scalar multiplication can be visualize
stretching (ifc > 1) or shrinking (0< c < 1) the original vector without changing
its direction. When the scalaris negative, the direction is reversed, along with tf
stretching or shrinking.
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Problems

1 3
Problem 5-1. True or False: The vecto(sz) and (—1) are perpendicular.
3 1

Problem 5-2. True or False: The distance fro@) to <j> is H @) - (j) H

Problem 5-3. What geometric object |%c(;> ¢ R}?

Problem 5—-4. What geometric object %c(;) + <g) ccO R}?

Problem 5-5. Is the set{ <§) OR?2:y=2x- 1} the same as the set of the pre
ceding problem?

1 4
Problem 5—-6. What geometric object i{c(z) + (5) e R}?

3 6
X
Problem 5-7.Isthesef | y | O R®:y=2x—-3 andz=3x-6; the same as the
z

set of the preceding problem?

Problem 5-8. True or False: Ifvis a non-zero vector then the vecidr|| v || has
norm 1.
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Solutions to Problems

1 3
Problem 5-1. Since<2> . <—1> =4+#0, the answer is false.
3 1

Problem 5-2. True. In general, the distance from the pairtb the pointv is
lfu=vll.

Problem 5-3. This set is the line with equatign= 2x.

Problem 5-4. Thisisthe liney = 2x-1.

Problem 5-5. A pointin the first set has the for c+3
2c+5

) and 2€+3)-1=

2c+5, so such a pointis in the second set. Ap irﬁ in the second set has

oy X\ _ X _ 1 0 o _
y = 2x 1so<y> = (2x—1> —x<2> +<_1>. Writing X = ¢+ 3 now

gives the point in the forne ;) + (2) which is in the second set. So the

two sets are the same.
Problem 5-6. A line in R® which does not contain the origin.

c+4
Problem 5-7. A point in the first set has the forn< 2c+ 5) and these

3c+6
coordinates satisfy the 2 equationssdébing the second set. The equations

describing the second set show that a point in the second set has coordinates of

X 1 0
the form <2x—3> = x<2> - <3> wherex is a real number. Now write

3Xx-6 3 6
X = Cc+ 4 to see that this vector has the same form as one in the other set. So the

two sets are the same.

Problem 5-8. True.
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Solutions to Exercises

. 6 3
Exercise 5-1. The results are{ 10) and < 12) .

-1 -5
Exercise 5-2. The first two results are< 6 > and <—10>. The last sum
9 -15
doesn’t make sense. The summands must come from the same se amndl
R3 are different sets.

craises-s. (2)- (1) =(3)

Exercise 5-4. The magnitude is,/(1-0)? + (1-0)2 = v2, by the distance
formula. The direction might be called northeast.

Exercise 5-5. Since(i)- (_11> = 0, the angle between these two vectors
is 90.

Exercise 5-5. The distance formula shows that the opposite sides have the same
length, and computing slopes shows that the opposite sides are also parallel.

Exercise 5-6. Computing slopes shows that the line through the origin and
<;> has the same slope as the line through the origin {né}% and hence is

the same line.



86. Lines, Planes, and Hyperplanes

The principal geometric objects hereedines and their higher dimensiona
analogs.

Scalar multiplication was seen to have a simple geometric interpretatiors if
a vector andt is a number then the vectors\),andcv lie on a straight line. This
line can be identified as the line through the origin in the direction determingd L

Exercise 6—1.Why does this description of the line make sense?
More concretely, théne through the origin in the direction vis{cv: c O R}.
Exercise 6-2.Is the line through the origin in the directioralso{3cv : c 0 R}?

Exercise 6—3.What is the relationship between the line through the origin in t
direction ( 1) and the line through the origin in the directhéri)?

A plane is uniquely determined by 3 non-collinear points. plane through
the origin with direction vectors u and v is {cu+dv:cOR,d 0OR}. What
algebraic criterion can be used to see if two different descriptions are actt
descriptions of the same plane?

Example 6-1. Is the plane through the origin with direction vect{ ) and ( )

the same as the plane through the origin with direction ve td’r% and 3 ?A
2

1 1
point on the first plane can bewrlttena{sl>+d( ) Now( ) (1) ( )
1 1

1 2 1
sothat| 2 | = | 3 | —| 1 | and making this substitution give: 1 +d =
3 4 1 1 3

1 2 1 1 2 2 2
c[1|+d(|3|-|1|)=(c-d)|1]|+d|[3] =(((c—-d)y/2)(2|+d|3]|.
1 4 1 1 4 2 4

Thus a point on the first plane lies on the second plane.
Exercise 6—4.Show that a point on the second plane lies on the first plane.

A linear combination of the vectorsvy, ...,vy IS an expression of the form
C1V1 + ...+ CyVqg Wherecy, . . .,cq are numbers.

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.
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Example 6—2. One linear combination cﬁ‘é) and< 8) is 3( é) +5< 8) . Another

linear combination of the same vectors—&( (1)> + 7( 2)

Example 6-3.Is <3> a linear combination o(é) and <O>? Is (‘Z) a linear

4 ) 1
L 1

I)

combination of( O) and ( O) p

Each point in a plane through the origin is a linear combination of the direct
vectors. A plane is therefore the setaf possible linear combinations of the
direction vectors. The set of points consisting of all possible linear combination
the vectorsyy, ..., vy is called thespace spanned by, . . .,vq.

Example 6—4. The space spanned l{;< 1) (;) } is the planeR?.

Not all lines and planes pass through the origiru éindv are vectors, théne
through uin the direction vis{u+cv: cOR}.

Exercise 6-5.1s u on the line throughu in the directiorv?

Example 6-5. The line througl—( ;) in the direction( i) is

1 1\ .
{(2) +c<1) cO R}.
More conventionally this line has the equatipr x + 1.

Exercise 6-6.Is the line of the previous example the same as the line thré@g)w

in the direction( 2) ?

Lines can be given a simple physical interpretation too.

Example 6—6. If u andv are vectors, define the functiérwith domainR by the
formulaf (t) = u+tv. Ast varies, the values dft) trace out the line throughin the
directionv. Physically, the valué(t) can be interpreted as the position of a partic
at timet. Thusf is describing the motion of a particle that travels in a straight lir
and is at locatiom at time zero.

Exercise 6—7.What is the velocity of such a particle?

The algebraic description of a general plane is quite similar, except that
direction vectors are required. Tipdane through the vector u with direction
vectorsvandwis thesefu+cv+dw: cOR,d OR}.
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Exercise 6—8.What is the plane throug(&) with the direction vector{
(1)7
1
Exercise 6—9.What is the plane througéi) with the direction vector{
(0)?
0
More generally, thényperplane through u in the directions {vy,...,vq} is

the se{u+cvy +...+CyVvy : Cyq,...,Cq are real numbefs The dimension of this
hyperplane is the dimension of the space spanned by the vegtors,vy.

1
O) and

1
0) and

As in the case of lines and planes through the origin, a general hyperp
has many different algebraic descriptiosvo descriptions will describe the sam:
geometric plane provided that the spaces spanned by the two sets of direction v
are the same, and the difference of tHedugh’ vectors lies in the space spanne
by the direction vectors.
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Problems

Problem 6-1. What geometric object is the line throug(hi) in the direction

(0)?

0

Problem 6-2. Is the line through the origin in the directimthe same as the line
through the origin in the directioav?

1 1
Problem 6-3. Is the line througr( 2) in the direction( 1) the same as the line
3 1

4 2
through ( 5) in the direction( 2) ?
6 2

Problem 6—4. Supposéf is a function with domairR and rangeR? given by

f(t) = <2tt+_53> Use the definition of derivative to computet).
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Solutions to Problems

Problem 6-1. The single point(%).

Problem 6-2. Yes, since the line consists of all multiples of the given vector.

Problem 6-3. Yes, the direction vectors ar®n-zero multiples of each other
4 1 1

and<5> - <2> :3<1>_
6 3 1

Problem 6-4. Here ¢(t+h) —f(t))/h = (;) sof’(t) = (;)
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Solutions to Exercises
Exercise 6-1. The direction determined byis the direction one would travel
when walking in a straight line from the origin to the point

Exercise 6—2. Yes, this is the same set as befgbecause both sets describe all
possible multiples of the vecter

Exercise 6-3. These two lines are the same line.

2 2 1 1 1 1
Exercise 6—4. c<2> +d<3> = Zc<l> +d(<1> +<2>) = (20+d)<1> +
2 4 1 1 3 1
1
d<2>.
3

Exercise 6—4. Yes, since<i> = 3(3) + 4(2) There are no numbers
3 1 2 3\ . . L
andd so that 4 =c 0 +d 0 SO 4 is not a linear combination of

1 2
(5)=(5)
Exercise 6-5. Yes, simply takec = O to see thati is on the line.
Exercise 6-6. Yes, this is a second description of the same line.

Exercise 6—7. The velocity at time is f' (t). The velocity is a vector.

Exercise 6-8. This is the entire planR?.

Exercise 6-9. This is the line througk( i) in the direction(é).
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In the one dimensional case, functiomBose graphs are lines played a centr
role. The generalization ofiese functions to higher dimensions will play a key ro
in the study of calculus in higher dimensions.

Example 7-1. The functionf (X) = ax has a graph which is a straight line passir
through the origin. What is the higher dimensional analog of this function?

To answer the question raised in the exdenlook at the one dimensional cas
in a slightly different way. Iff : R - R is a function, the graph df is the set

{(fé()) tx O R}. A line through the origin is the set of all multiples of a fixe:

X\ _ 1 1
vector. Now(f(x)) = X<f(x)/x) and the vecto(f(x)/x) doesnot depend orx

only if f(X)/x is a number, sag. Thusf(x) = axis required for the graph dfto be
a line through the origin.

Suppose novg : R? - R is a function whose graph is a plane through tt

origin. What is the formula fog? Following the reasoning in the one dimension
X X

case, the graph afis 3;( :xOR,yOR . Now if 3;( is to be of

o o
the formxv + yw wherev andw are vectors that do not depend oh'eitker y, then

1 0
v must be of the forw(O) for some numbea, andw must be of the forn( 1)
a b

for some numbeb. But this means the formula fgris g<§> = ax+ by.

This line of reasoning has uncovered theeded generalizations of the on
dimensional case to the case in whichdoenain is higher dimensional. A functior
f with domainR? and rangeR is linear if there are numbera andb for which

f (;) = ax + by for all x andy. Similarly, a real valued functioh with domainR3

X
is linear if there are numbegs b, andc so thath y) = ax+ by + czfor all x, y,

z
andz. The graphs of these linear functiong @anes passing through the origin.

Exercise 7—1.Show that the graph cﬁ@) = ax + by is a plane passing througt
the origin.

Expressions of the forrax + by andax + by + cz arise quite frequently. Notice
that there are as many constants as Wemin such expressions. This sugges
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87: Linear Functions 41

the idea of collecting the constants andiahles together into vectors, one vectc

a X
(b) containing the constants and the other ve{t(yr) containing the variables.

c z
a X

The dot product of these two vectofsb |« | y | = ax+ by + cz then reproduces
c z

the original expression. This use of tlet product allows a second way of sayin
that a function is linear. A functioh is linear if there is a vectan of constants so
thath(v) = uev for all vectorsv.

0

Example 7-2. The functiong@) =3y= (3

X\ . .. .
)- (y) is linear, as was seen in the
earlier example.

Exercise 7-2.1s the functiorh@) = 3% linear?

0

: 1
The simple vector{ O) and ( 1

1
) in R?, and the corresponding vecto(so) ,
0

0 0
(1), and | 0 | in R3, will play an important role in the following discussion

0 1
These vectors are called tendard basis vectorsand are denoted by ande; in

R?, and byey, &, ande; in R3. More concretely, irR?, e, = <

1 0 0
whileinR3,e,=10]|,e,=|[1|,ande;=] 0 ].
0 0 1

An important fact about linear functions is ttealinear function is completely
determined by its values on the standard basis vectors

1> ande, = <0

; 1)

Example 7-3. Consider the linear functioh(x> = ax+ by. Thenf(e)) = aand

f(e) = b so thatf <X> = (f(e1)>. (X> Once the values df are known on the
y f(e) /) \y

basis vectors, the valuesotan be computed anywhere!

Linear functions with higher dimensional range are those functions eacl
whose component functions is linear.

: X\ _ [ 2X=3y\ . . .
Example 7-4. The funcUong(y) = (5x+ 2y> is linear, since each componen

o) <53~ (41 o 7) 500 7= (3}

linear.
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As an extension of the idea above ugedreal valued functions, the number:
appearing in formula of the linear functiavill be collected into a rectangular gric
called a matrix. Amatrix is simply a rectangular arrayf aumbers. Notationally,
the numbers in the matrix, called tkatries, are blocked off using parentheses.

Example 7-5. The grid<2 3> isamatrix. The gric(é 2 i) Is also a matrix.

4 5

The matrix( 2 has 2rows and 3columns The size of a matrix is always

3 4
5 6 7
specified by giving the number of rows first. So this matrix isxa®matrix (read:
‘2-by-3 matrix’). The entry in the first row and second column is 3.

Exercise 7-3.What is the entry in the second row and first column of the mat
(2 3 4) o
5 6 7)°
A matrix can be associated with a linear function in a simple way.

Example 7—-6. The matrix associated with the linear functigrof the previous

example is(é 23> Notice that the firstow of the matrix is the vector of
constants used to define the first component functiog; dfie secondow of the

matrix is the vector of constants useddefine the second component functiorgof

More generally, the matrix associated with a given linear transformation
as itsith row the vector used to write théh component function of the linear
transformation as a dot product.

X X—Yy
Exercise 7-4.What is the matrixofy| y | = | 2y+3z |?
z 5z

To carry this idea a bit further, the product of a matrix and a vector can
defined. IfAis anr x ¢ matrix andx is ac dimensional vector, the produék is
ther dimensional vector whoséh coordinate is the dot product of tite row of A

with the vector. @) (;) X+
(1))

The definition of multiplication was chosen precisely so that any linear funct
can be written in the form of a product of theatrix of the linear function and the
vector of variables.

1 2\/x\ _
Example 7-7. The product(3 4> (y) =

Example 7-8. The exercise above shows that thdxaf the linear transformation
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X X-y 1 -1 0 X 1 -1 0\ /x
agly|=|2y+3z|is[0 2 3|.Sog|ly|=|10 2 3||y].
z 5z 0O O 5 z 0 0 5/\z

Example 7-9. Continuing the previous example,

o{e)- (a2 J0e)- (e}

0 -1
which is the first column of the matrix @. Alsog 1) = ( 2 ) is the second
0 0

0 0
column of the matrix of). Finallyg(o) = (3) which is the third column of the

1 5
matrix ofg.

The last example illustrates a basic point. TokRimns of the matrix of a linear
function can be found by computing thelwa of the linear function on the standar
basis vectors in the domain of the function. Once the matrix of the functior
known, the value oany vector can be computed. So a linear function is complets
determined by its value omé standard basis vectors.

Example 7-10. This property of linear functions can be useful in finding the fo
mula for a linear function with desired properties. What is the formula for 1
linear function which rotates the puiin the plane through an angle 6fin the

counterclockwise direction with the origias pivot? To find the formula for this

linear functiogR, only R(e;) andR(e;) must be computed. Simple geometry give
cos

_ _ /—sinf@ X\ _ /cosf8 -sin@)\ /x
Ry = (sin@) andR(e;) = ( cosO ) ThUSR<y> - (sine cosO )(y)
A final important property of linearunctions is that lines in the domain of ¢
linear function are mapped to lines in the range of the linear function.

Example 7—11.Supposé(§) = <2x—y>_ The Iinet<1

X—3y 2
: t\_/0Y\_./70Y.
mapped to the Ilné(2t> = (—5t) —t(_5> in the range of.

> in the domain of is

Exercise 7-5.Where doeg map the box{ <§> :0sx<1,0<y< 1} in its do-
main?

This geometric fact is expressed algebraically in the requirement that in o
for a functionf to be linear, the equaliti{au + Bv) = af (u) + 3f(v) must hold for
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any two vectoral andv and any two numbers andf. This fact is computationally
very useful.

The most important facts about linear functions are

(1) A functionf is linear if and only if for any two vectors andv and any two
numbersa andp, f(au+ Bv) = af (u) + Bf (v).

(2) A functionf is linear if and only if there is a matriA of constants so that
f(u) = Au for all vectorsu.

(3) A linear functionf is completely determined by the values fobn the
standard basis vectors in the domairf ofn fact, the columns of the matrix
A are the values df on the standard basis vectors.

(4) A linear functionf maps lines in the domain dfinto lines in the range of

f. Also parallel lines in the domain éfare mapped into parallel lines in the
range off.
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Problems

X
Problem 7-1. If the graph of the functiom: R - R?is { (2x> tx 0O R}, is the

3X
functionma linear function? Briefly justify your answer.

2

Problem 7-2. True or False:<x)- <X) = H <X)

y y y
Problem 7-3. True or False: It is possible for a linear functibrmvith domainR?
to havef (e;) = 3,f(e;) =5, andf (;) =9.

Problem 7—4. True or False: Ify: R? - R2is a linear function then the matrix of
g has 2 rows and 3 columns.

4
Problem 7-5. If k : R?  R2is a linear function andi(_lz) = (5) what is
6
5
2
(30
X

Problem 7—6. Is the functiong (y) = 2x+ 3y —9zlinear? If so, writeg as a dot
z
product.

X 2Xx—3y+6z
Problem 7-7. What is the matrix of the linear functidnl y | = y—6z ?
z X+ 7y

X\ _ [(2X-y 1 0
Problem 7-8. Supposeg(y) = <x—3y>' Computeg<o>. Computeg<1>.

Write the linear functiong in matrix form by filling in the blanks:g@) =

-

Problem 7-9. True or False: If is a linear function theh(0) = 0.

Problem 7-10.Is (2(2)) . (;) =2 ((2) (;))9 Is there anything special
about the number 2 here? Is there dmyy special about the two vectors?

Problem 7-11. For what value off is (a). (<CQSG —sme) <a>> a maxi-
b sin@ cosf b

mum? A minimum? Zero?



87: Linear Functions 46

Solutions to Problems
Problem 7-1. The functionmis linear, since the graph afiis a line through

the origin. Also the formula fomis m(x) = <§§> .

Problem 7-2. True, by using the definition of norm.

Problem 7-3. From the first two conditionsﬁ,(X) = (3> <X> sof <1> =

y 5/ \Y 2
108+ 2[5 =13#9. False.

Problem 7—4. False. The matrix has 3 rows and 2 columns.

20
Problem 7-5. k( > ) =k<5( ! )) =5k< ! ) = (25).
-10 -2 -2
30
X 2 X
Problem 7-6. Hereg(y) = ( 3 >- (y),sogislinear.
z -9 z

2 -3 6
Problem 7-7. The matrix off is (0 1 —6).

1 7 O
1\ _ [/2x1-0\ _ (2 0\ _ [(2x0-1\ _
Problem 7-8. g(o) =l1-3x0) = 1) g 1) = lo2ax1) =

-1 X\ _ /(2 -1 X

3/ 9y) (1 3)\y)
Problem 7-9. True. Notice that the zeros appearing here may well be the zero
vector in different dimensional spaces.

Problem 7-10. Yes, ageneralfactis thatafis a number and andv are vectors
then @u)ev = a(usV). In this sense, the dot produzehaves like multiplication.

Problem 7-11. Use the calculus of one variable to show that the maximum
occurs wherf = 0, the minimum occurs wheth= 1T and the value is zero when
0=r/2.
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Solutions to Exercises

Exercise 7-1. A general point on the graph éfhas the form
{©

X 1 0
< y > = x<0> +y<1> wherex andy are arbitrary real numbers.

ax + by a b

a> of constants so thért( X)
b y

Exercise 7-2. No, since there is no vectc<r
ay), (x
b y /)’

Exercise 7-3. The entry in row 2 and column 1 is 5.

1 -1 0
Exercise 7-4. The matrix is< 0o 2 3> .
0 0 5

Exercise 7-5. The linear functiorf maps the box to the parallelogram with

: (2 1 -1
vetices at the ongm( 1), (_2), and<_3>.

47



88. Derivatives

The derivative of a real valued functidnof a single variable if'(a) =

+ —_
lim w. Re-writing this expression aftelropping the limit shows that

h—?O
for small number# the equality
f(a+h)—-f(a)=f'(a)h

is approximately true. Sinci(a) is a number, the right side of this approximat
equality defines a linear function bf The definition of derivative is therefore the
formal statement that the functid(a + h) — f(a) is approximately a linear function
of h whenh is near 0. Viewed in this way, the definition of derivative in highe
dimensions is easy to grasp. A functiobhas a derivative at the poiaif for vectors

h that are near the zero vector the functida+ h) — f(a) is approximately a linear
function ofh. This approximating linear function is called tderivative of f and
the matrix of this linear function is denoteii(a). Thus

f(a+h) - f(a) = df (@)h

is approximately truéor small vectord. How is this approximating linear function
df (a) determined?

Example 8-1. Supposeg@) = X+y. Forasmallvecto(ﬂ), g <<§) + (E)) -

g<§) =h+k=(1 1 )( E) So the matrix of the approximating linear function i

dg(;) =(1 1)inthis case.

Notice that the approximating lineauriction must have the same domain ar
range space as the original function. Since in the exagple? — R, the matrix
of the linear function must have 1 row and 2 columns.

Example 8-2. Supposej:(;) = x?+y2. Thenj ((X> + (E)) —j(x> = (x+h)?+

y
(y+K)? — (%% +y?) = 2xh + 2yk + h? + k2. So the linear function o< k) which best
approximates this difference (j;@) <E> = 2xh+ 2yk = (2x Zy)(E) Thus

d <§> = (2x 2y). In this case the linear approximation is not exact. The te

h? + k? represents the error in the linear apgmation. The important point is that
this error goes to zero faster tharandk go to zero. Computationally, the entrie
in the matrix of the approximating lineaurction are obtained as follows. The firs
entry is obtained by differentiatingwith respect to the variablbe treatingy as a

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.
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number; the second entry is aloted by differentiating with respect tgy treatingx
as a number.

The methodology of the example is contely general. A key observation of
the last section is that a linear function is determined by its values on the star

g) where the numbeh is

small. Thenf (@) - (g)) —f(i) = df (i) <g> approximately, saf (e;) =

<f <X ; h> —f <§>> /h, approximately. The appkimation becomes exact hs-

basis vectors. Suppose the small vectohas = (

0. Thusdf(e) = limn_o (f(X;h> —f(;(/)) /h. This is nothing more than the

formula for computing the derivative éftreatingx as the variable anglas though
it were a number. A similar computatidolds in the other coordinates.

Example 8-3. The computations of the preceding example and exercise sl
that the linear function which approximat{eé;) = x%y near the point(é) is

1(2)(5)=¢ ()

The example has illustrated the geslemethodology used to identify the ap
proximating linear function. The comptitanal steps involve the familiar rules
of calculus applied while treating all but one of the variables as though they v
numbers.

To formalize the results of this discussion, definephetial derivative of the
functionf in thex direction at the poind, denotedD,f (a), by the formula

Dyf(a) = ,H[nof(aJr nﬁ) —f(a).

Similarly, the partial derivative df in they direction at the poind, denoted,f (a)

is
f(a+mey) —f(a)

Dt (@) =

Notice that there are as many partial derivativet aff the pointa as the dimension
of the domain of . Theith partial derivative of is defined by using thigh standard
basis vector. The derivative bf: R? - R is then the matrix

a(3)=(04(3) 04())

A similar formula definesif in the higher dimensional cases.

Example 8-4. Supposeg@) = x>+ 3xy - y3. Then Dlg<§> = 2x + 3y and
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ng(§> = 3x-3)2. Also Dlg(j) - 18 andng<j) - -30. Sodg<j>(§> -
(18 —39)(?).

X X
Example 8-5. Supposef(y) = X+2xz-y>+yz Then le(y> =1+2
z z
X X 1
sz(y) = —2y+zandD3f(y) = 2X+Yy. Sodf(z) =(7 -1 4)and
z z 3

1 X
af[ 2 ||y | =7x-y+4z
3 z

Partial derivatives can be givengeometric interpretation. As1 varies the
vectorsa + me; form the line througha in the directione;. ThusD;f (a) represents
the rate at which the values bare changing as one moves naan thee, direction.
A similar interpretation attaches to the other partial derivatives.

The geometric interpretation of thegmeding paragraph suggests other pos

bilities. Thedirectional derivative of f in the directionu at the pointa, denoted
D.f (@), is the number defined by the formulgf(a) = "mof(a+|r|nr:m|f(a)). Not
m-

surprisingly,D,f(a) = df (&)eu/ ||u|.

There is some alternate notation for partial derivatives that is common.
multitude of notational options is due to different developments of this theory
the past 150 years. Of course, once hotais introduced, the notation develop
a fan club which never quite lets its favorite notation die! One sometimes wr
if(x> = D1f<x> and if(x> = D2f<x>. Similar expressions are used il
ox \y y dy \y y
higher dimensions, Whef : R? . R, the gradient vector of f, defined by

D.f
Oof <§> = ( ¥ ) is often used instead of the derivative. The connection
ou(;)

y
X\ /a\ _ X a
v (5) ()1 () (3):
Example 8—6. In what direction is the directional derivative the largest? The g
dient vector gives an expression for tbgectional deriative as a dot product:
D.f <§> = df (i)u/ [Jul] = Of <§)-u/ [Ju]]. Given the expression for the direc

tional derivative as a dot produdhe directional derivativ®d,f(a) is the largest
when the directioru is the same as the gradieif(a). Thus the gradient vector
0f (a) points in the direction in which the valuesfoére increasing the fastest.
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Exercise 8—1.In what direction are the values btlecreasing the fastest?

The possibility exists that the partial derivatives exist but that there stil
no approximating linear function. This arises rarely in practice, and will not
examined in further detail here.

The derivative of a functioi whose range is a higher dimensional space
found by using the derivatives of the cponent functions. Naturally, this mean
thatdf is a matrix with as many rows as the dimension of the range spdce of

2 _
Example 8—7.Supposef<§> = (X _ny

a\ /x\ _/2a-2b\ /X a\/x\ _/-1\ /X L
df1<b>(y> B ( -2a ><y> :nddzfifb)z(y) B <3b2> (y> So the deriva
: . . a\/x\ _/2a- -2a) [ X
tive of f |tself|sdf(b>(y> = ( 1 3b2><y>'

In summary, the derivative of a functidnat the pointa is the linear function

df (a) which makes the equaliti{a + h) — f(a) = df (a)h approximately true for all
vectorsh close to the zero vector.

). Then for the component functions
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Problems

Problem 8-1. True or False: Iff : R® - R?is differentiable at the poinp, the
matrix of df (p) has 2 rows and 3 columns.

X X X
Problem 8-2. If h(y) = xe¥ - ye? computedh(y) andDh(y) .

z z z

Problem 8-3. Supposef@) = xe¥ - ysinx. Computele(;) Compute

X X 0\/a
D2f<y>. Computedf(y). Computedf(o> (b)

Problem 8-4. Show that
. . X2 . . X2
LIT) ('y'% X2 + y2> * 'y'f,'?) <!<Im) X2 + y2> .
X . X
Problem 8-5. Supposd <y> = 7. What isdf <y)’?

Problem 8-6. For the functiorg@) =4x- X2 -y computedg(?).

Problem 8-7. Supposgj(;) is a linear function. What idg<a> (X>?

b/\y
X & 0 X

Problem 8-8. Supposd |y | = < ) What isdf | O [ | y |? Find an
. y — ZCOSX 0/ \5

0.1
approximate value for ( 0.2) .
0.3
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Solutions to Problems

Problem 8-1. True. Likef itself, df (p) requires 3 dimensional input and
produces 2 dimensional output.

X X X
Problem 8-2. HereD1h<y> =d, D2h<y> =er—eZandD3h<y> = -ye?
z z z

X X e
sodh(y) =(¢ x&-¢€ -ye&)while Dh(y) = (xey—ez>.
z z —-ye?

Problem 8-3. D;f ; = & —ycosx. D,f ;) = x& - sinx. df (; =
. 0 a\ _ ay\ _
(& —ycosx er—smx).df<0>(b>—(1 O)<b>—a.

Problem 8-4. The limit on the left is 1, while the limit on the right is 0. This
illustrates some of the difficulties that can arise in higher dimensional spaces.

Problem 8-5. df(?) =(0 0).

Problem 8-6. dg<§> =(4-2x -2y).

Problem 8-7. A good linear approximation to a linear function must be the
. . a\ [ x X
linear function itself. Thusl = .

o(3)(5)=s()

Problem 8-8. The matrix of

i X\ /& X&
32/ “\zsinx 1 -cosx)’
0 X X 0
sodf<0> <y> = ((1) 2 _01> <y> = < fz) Usea = <0> and
0 z z y 0

0.1 0.1
h= <O.2> in the approximate equality for the derivative to obth(wO.Z) =

0.3 0.3
0.1 approximatel
01 ) pp Y.

o
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Solutions to Exercises
Exercise 8-1. The direction-0If (a).



89. Some Applications

The major applications of multivariate calculus parallel the applications
univariate calculus.

Example 9—1. What is the maximum value df(x) = 6x — x? — 2 on the interval
[0,8]? The candidates for the locatioh @ maximum (or minimum) value of
consist of those points where the derivativef aé zero, those points whefé is
not defined, and the endpoints of the interval. Heéfg) = 6 — 2x, which is zero
atx = 3; there are no points where the idetive is undefined. So the candidat
points are 0, 3, and 8. Computation gii¢8) = -2, (3) = 7, andf(8) = -18. So
the maximum of occurs aix = 3 and the maximum value éfon the interval is 7.
Notice that the minimum value éfon this interval occurs at the right hand endpoi
of the interval.

Example 9-2. What is the maximum value d)(;) = 6xy—x>—x-y-y’-5onthe

regionR = {(X> :0<x<50<y< 9}? Analogously with the univariate case
the candidate points for the locatiofi @ maximum (or minimum) are the points
at whichdf X is the zero linear transformation, the points where the derivat
is not defined, and the boundary (edgesjha region. In this case the matrix o
df (;) =(6y—-2x-1 6x-2y-1), which is the zero matrix only at the point:

(;) for which both of the equations¥-2x-1 = 0and &-2y—-1 = 0 are

satisfied. The only point at which both of these equalities holéi/ﬁg). The

other candidate points may lie on the boundarfRofThis boundary consists of 4
line segments, and along each segment the variables are determined in som

Along the lower segmeny, = 0 andf (g) = —x? -5 for 0< x < 5. This function

of one variable has candidate pointxat 0 andx = 5. So( 8) and ( g) become

candidate points for the location of the maximunt ain R. Along the right hand
segmentx = 5 andf (5) =2%-y*-10for0<y<0o. So(S) and (g) are

added to the candidate list. Along the top segnyen® andf (;) =53x-x>—-95
for0 < x< 5, so (g) and (g) are added to the list. Finally, analysis of th

left hand segment ad(<sl(/)2> to the candidate list. Summarizing, the candidat

for location of the maximum ar 2/10) (0) <5> (5) <0> and< 0>
1/10/° \0/ ' \0/"\9/)"\9/’ V2

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.
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. 2/10\ _ 0\ _ _ 5\ _ _
The corresponding values Dfaref(ﬂm) = 5.23,f<0> = 5,f(o> = =35,

f(S) = 145 f (g) = -95 andf<1?2> = -5.75. So the maximum df occurs at

<g> and the maximum value is 145.

Some additional complications arise in the case in which the values of
variables are not restricted.

Example 9-3. What is the maximum value of the functi@<X> =10-x2-y??
In this case inspection of the function shows that the maximum value is 10
is attained at the origin. Mechanical computation alone would giyéx> =

(-2x -2y), and identify the origin as a candidate point for the location of
maximum or minimum. But is the origin the location of a maximum or minimui
or a false alarm?

A general method of answering the question raised in the example is as foll
If the values of the functioff <X> must become arbitrarily large and positive &

X _ _
H (y) H becomes large, then the functioan not have an absolute maximum ar

must have an absolute minimum. Thus the candidate points must be the loc
of either an absolute minimum, a local minimum, or a local maximum. |If t

values of the functiorh(x> must become arbitrarily large and negativ%’ <s§> H

becomes large, then the function can have an absolute minimum and must ha
an absolute maximum. The candidate points must be the location of eithe
absolute maximum, a local maximum, or a local minimum.

Example 9—4. In the previous example, the function values must become arbitra

. X .
large and negative s(y H becomes large. Spmust have an absolute maximun
and the origin is the location of either an absolute maximum, a local maximurr
a local minimum. Since there are no other candidate pointsgamdst have an

absolute maximum, the origin is the location of the absolute maximum.

Because of the complicated nature of the equations for finding the locatio
candidate points, purely numerical rhetls are also used. One of the most comm
of these methods is called tiggadient searchmethod. The method is based o
the fact from the last section that the giextt points in the direction of the rate o
greatest increase in the values of the tiort If the maximum value of a function
f is to be found, choose a starting pomaind computelf (p). Move fromp to
the pointp, = p + mlf(p) a short distance from in the direction of the gradient
vector. Now move fronp; a short distance in the direction off (p,) to the point
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p.. Continue in this way until the gradient vector is approximately the zero vec
This point is (approximately) the location of a local maximum. A more detalil
discussion of this method can be found elsewhere.

Multivariate functions are often useéd physics. One of the most basic appli
cations is as the position of a particle in space.

Supposep(t) is the position of a particle in space at timhe The physical
interpretation ofp(0) is as the position of the particle at the time 0 at which
observation begins. The physical interpretatiorpt) is as thevelocity of the
particle at timd; p" (t) is theaccelerationof the particle at timé. Notice that both
the velocity and acceleration are vectors. The nppt(t) || of the velocity vector
is thespeedof the particle at time. Physically, the velocity is the rate at which thi
position of the particle is changing, the aamition is the rate at which the velocit
is changing, and the speed is the rate at which the distance travelled by the pe
is changing.

cost
Example 9-5. Suppose(t) = ( sint ) is the position of a particle at timte Such a
t

-sint
particle is moving on a spiral path in the positadirection. Therp'(t) = ( cost )

1
—cost
andp” (t) = | —sint |. The vectorp'(t) is tangent to the path of motiqgo(t) at
0

timet. The speed of this particle at tiniés || p'(t) || = V2. The particle moves with
constant speed, but na@onstant velocity.

Sometimes the domain of the function to be maximized (or minimized) i
lower dimensional surface instead of a region.

Example 9—6. A rectangular box is to be designed which must have a volume

8 cubic meters. What should the dimensions of the box be in order to use the
X

amount of material? The amoul | y | of material used to build a box with

z
X

lengthx, widthy, and heighzisM | y | = 2xy + 2yz+ 2xz. The functionM is to be

V4
X

X
minimized When(y) takes values in the surfaGe= { (y) D XyZ = 8}.
z z

In order to attack this problem, the nature of surfaces is examined in a bit n
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detail. The key observation is this. A surface is completely coveredllgf the
one dimensional curves which lie in the surface. This fact allows the surface t
studied by looking at all of these one dimensal curves. Sine one dimensional
objects are so simple (at least comparedhieir higher dimensional counterparts
many computational difficulties can be eliminated by using this fact.

A simple application of this fact allows a geometric interpretation of the gradi

X X
of a function used to define a surface. Suppdses | y | :f|{y [ =0;. Ifcisa
z z

function with domairR and range contained Bthenf (c(t)) = O for allt. For small
values oh, f(c(t+h))—f (c(t)) = df (c(t))(c(t+h)—c(t)), so%f (c(t)) = df(c(t))c' (1) =0

for all t. In vector formUf (c(t))ec' (t) = 0. So the gradient df is perpendicular
to the tangent of every curve which dien the surface defined by the equatic

e

Example 9-7.Returning to the previous example, define the funcfidoy the

X X X
formula f (y) = xyz—- 8. Then the surfac& = {(y) :f(y) = 0}. The
z z z

X
previous discussion shows that | y | is perpendicular to the tangent vector t

z
every curve which takes values $ Now suppose that is a point inS at which

M achieves a maximum or a minimum, and tb& a curve taking values i8with

c(0) =p. Then M - c)'(0) = dM(c(0))c' (0) = 0, soIM(p) is also perpendicular
to every tangent vector to a curve lying in the surf&eearp. This means that
the two gradient vectorSif (p) and OM(p) must be multiples of each other at th
critical pointp. The pointp must also lie on the surface. In the particular case

X 2y+2z X yz
thisexample[IM|y | = | 2x+2z | andOf [ y | = | x2 |. These two vectors

z 2X+ 2y z Xy
are multiples of each other only when= y = z. The point with equal coordinates
2

that lies on the surface is the poiEQ) , Which is the point that minimizesl.
2

The technique developed in thest example is called tHeagrange multiplier
method. In summary, to find the critical points of a functiov subject to a
restriction specified by the requiremdnt 0, find those pointp for which

(1) f(p)=0and
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(2) there is a numban so thattdIM(p) = mUf (p).

Keep in mind that such poinfscan correspond to a maximum or a minimunibf
or neither.

These types of problems can also be solbgdsing the restriction to eliminate
one of the variables.

Example 9-8. In the preceding example the restrictisyg = 8 can be used to

X X
write z (say) in terms o andy. Thusz = 8/xy. ThenM (y) = M( y ) =
z 8/xy
2xy + 16y + 16/x with the variablesc andy no longer restricted except that eac

must be positive. The derivative of this unrestricted function of two variable:
(2y-16/x2 2x-16/y?) which is the zero matrix only when=y = 2. This is the
location of an absolute minimum. The valuezof 8/xy = 8/2 x 2 = 2, as before.

The advantage of the Lagrange multiplier method is that the restriction c
not have to be used to eliminate one of tlegiables. The disadvantage is that tt
equations to be solved tend to be more complicated. In practice, the simpler of 1
two approaches should be followed.

Partial derivatives often arise in canscting a mathematical model of a physice
situation. This usually leads to an equatiomang partial derivatives of the unknowr
function. The resulting partial differential equation must then be solved for
function of interest. This type of appation and the methods of solving sucl
equations will not be discussed here.
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Problems

Problem 9-1. What is the maximum value df(;) = Xy on the triangular region

T= {(;) 0<y< x,0sxs4}?
Problem 9-2. What is the maximum value @‘(i) = €*Y onR??
Problem 9-3. What is the maximum and minimum valuegp(;) = xy?

Problem 9—4. Find the maximum and minimum of the functib@) = 10-x2-y?

if <§> must lie on the ling/ = 3x + 5.
Problem 9-5. What is the maximum value cbi(i) = 2Xy+ 28— X2 = x* + 4y —y??

Problem 9-6. At what point(s) does the functicm(;) = 4x - x? - y? achieve its
maximum value? Its minimum value?.

cost
Problem 9—7. Suppose(t) = | sint | is the position of a particle at tinte How

t
far does the particle travel between timies0 andt = 1?

Problem 9-8. Suppose(t) = <Z(I)::

timet. How far does the particle travel between timhes0 andt = 6? Attimet = 6
how far is the particle from where it was at tirhe 0?

is the position of a particle in the plane a

Problem 9-9. A box is to be constructed that it 8 cubic meters. The bottom o
the box requires 4 times the amount of matkpier unit area as the sides or the to
What are the dimensions of the box that uses the least amount of material?

tsint

Problem 9-10. Supposef@) = xy — ¥4, and thatg(t) = < o

(f - g)'(t)? Hint: What does the chain rule look like here?

). What is
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Solutions to Problems

Problem 9-1. Heredf (;) = (y x), which is only the zero matrix at the

origin. So one candidate point (so

0). Analysis of the boundaries shows that

the only candidate points are at the vertices of the triangle. N @) =0,

f g) = 0, andf (j) = 16, so the maximum is a€j> and the maximum

value is 16.

Problem 9-2. The functiong has no maximum value on this region. The
values ofg become arbitrarily large as+ y becomes large and negative.

Problem 9-3. Although the origin is a candidate point, the origin is neither the
location of a maximum or a minimum. The function has neither a maximum or
a minimum.

Problem 9-4. Eliminatingy as a variable in the original function gives the
function of one variable as 10x? — (3x + 5)> = -15— 10x?> — 30x which has a
candidate point at = —3/2. This is the location of an absolute maximum. Thus

<_3/2> is the location of the absolute maximum of the original function and

12
-2

the maximum value |$( 12

) = 9.5. The function has no minimum value

along this line.

Problem 9-5. Heredf(?) = (2y+28-2x-4x 2x+4-2y). Solving

i . Since the highest power
terms appear with negative coefficients, the valuébetome large and negative

(X> is large. So(2
y

4
and the maximum value ls(i) = 36.

shows thatf (;) =(0 0) only at the poin

whenever‘

) is the location of an absolute maximum,

Problem 9-6. The candidate points for the location of a maximum or min-
imum are those points at whicdg(§> is the zero matrix. Herdg<§> =

(4-2x -2y) and there is only one such point, nam Iyg . Since as either
X —» o ory — oo the values ofy become more and more negatigedoes not

have a minimum value. S (2) is the location of the absolute maximum. As

an alternate approacQ(?) =4-(x-2)°-y? so (S) is the location of an

absolute maximum.

Problem 9-7. The distance travelled depends on the speedD(ff is the
distance travelled by timg D(t + h) = D(t) + h || p'(t) || for smallh, so that
D'(t) = || p'(t)||. Thus the distance travelled between times0 andt = 1 is



89: Some Applications 62

1 1
' dt= [ v2dt=v2.
L lpwla= [ v2a=1

6
Problem 9-8. The particle has travelled || p'(t) || dt = 6 distance units

in the 6 time units betweeh = 0 andt = 6. At the end of this time, the
particle is|| p(6) — p(0) || = 0.2822 distance units from where it began. Note that
the particle is traviing counterclockwise around the circumference of the unit
circle.

X
Problem 9-9. Here the amounil <y> of material required to make the box
z
X X
is M <y> = Bxy + 2xz + 2yz, and the requirementl‘s(y) =xyz—-8=0. The
z z

multiple requirement then shows that y andz = 5x/2 = 5y/2, from which

x = (16/5)V8 = y = 1.473, with the corresponding value for 3.684. This can

also be solved by eliminating one of the variables and finding the unrestricted
minimum of the resulting function of two variables.

Problem 9-10. Forsmallvalues d, f (g(t+h))—f (g(t)) = df (g(t))(g(t+h)—g(t)),
approximately. Dividing byh and taking limits givesf(o g)' (t) = df (g(t))d' (t).



810. Determinants and Volume

Suppose you want to find the volume diax whose opposite sides are paralle
but which is not necessarily a rectangular box. For the moment, consider the
of a two dimensional box, for which volume means area and the box is simp
parallelogram. If two of the sideme determined by the vectarsandv, denote the
area byA(u,Vv). What properties does this aréunction have that would assist ir
computing its value?

First note thatA(2u,v) = 2A(u,v), and a similar property holds when 2 i
replace by any positive constant. A similar property holds for multiples of 1
second argument as well.

Second, geometric considerations show thatig any vector thed(u, v+w) =
A(u,v) + A(u,w). The illustration is given in the picture below. The area
the parallelogram with two dashed sides is equal to the sum of the areas c
two parallelograms with solid sides, senthe side-angle-sidengruence theorem
shows that the two triangles have thense area. A similar property holds fol
addition in the first argument.

Third, geometric considerations also show tA@t, u) = 0.

Combining these propergseshows that the functioA behaves almost like a
linear transformation with respect to each argument separately. The only diffic
Is that negative multiples can’t pull out properly like positive multiples can.

Example 10-1. Unfortunately, these pperties and the req@ment that the area
always be non-negative are not compatible. To see this, AG:v) = A(u -
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u,v) = A(u,v) + A(-u,v). SoA(-u,Vv) = -A(u, v) follows as a consequence of thes
properties. Negativealues for the area function are unavoidable!

The unavoidability of negative values can be turned to our advantage. T
this, define a function which does have the full linearity property. Teterminant
function onR?, denoted by dety v) is the function with the properties

(1) det@u + Bw, V) = a det(u, v) + B detfw, v) for all vectorsu, v, andw and all

numbersa andf.

(2) detfu, av + Bw) = a det(, v) + B det(u, w) for all vectorsu, v, andw and all

numbersa andp.

(3) det(u, u) = O for any vectouu.

(4) det@, v) = —detfv, u) for any vectorsi andv.

(5) detey, &) = 1.
These properties are sufficient to allow computation of the determinant.

Example 10-2. Compute det(%), <j>) Since(b = € + 26, and <i> =

3e; +4e, using the properties above gives c(ei(), <i>) = dete,+2e,, 36, +4e) =

det(e;, 3e; + 4ey) + 2 dete,, 36, + 4e;) = 3dety, e;) + 4dety, &) + 6dete,, e;) +
8dete,, &) = 4detfy, &) + 6 dete, €)) = -2 dety, &) = -2, since deg;, &) = 1.

Exercise 10-1.Show that det( i) (3)) =ad - bc.

The only remaining problem is discovdret relationship between the determ
nant function and the area function.

Consider the two values det{,v) = —det@,v). Geometric considerations
show that the parallelograms with sidasandv and with sides1 andv have equal
area. Notice that starting from the origin and traversing the perimeter of the p
lelogram beginning in the direction of the first vector argument, the interior of
parallelogram will lie to the right in one casnd to the left in the other. Since whe
traversing the perimeter of the parallelogram with sideande, (in that order)
the interior of the parallelogram lies the left, such a paralellogram hpgsitive
orientation. If the interior lies to the ght the parallelogram hasegative orien-
tation. Thus the value of the determinant function has a geometric interpretas
a positive value of the determinant is equal to the area of the parallelogram,
the parallelogram has a positive orientation; a negative value of the determine
equal to the negative of the area of thegi@logram, and the parallelogram ha
a negative orientation. Thu&u,v) = | det(u, v)| and the sign of the determinan
indicates only the orientin of the parallelogram.

Another point of view will help make # interpretation of orientation more
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visible. SupposeB is a linear function with domain and range sp&& The
columns ofB are the values oBe; andBe,, and these two vectors determine th
parallelogram that results whéhis applied to all points inside the unit square (th
parallelogram in the domain spaceB®fwith sidese; ande,). Thus detBe;, Be,)
measures hovB changes area and orientatiofor simplicity of notation, write
det@) instead of the bulkier deBg,, Bey).

The exercise above shows thaBif <i g

), then detB) = ad - bc.,

The geometric interpretation of determinant as the area of the output of
linear function applied to the unit squeashows that the linear functidd has an
inverse function if and only if del) # 0.

This discussion extends to spaces of any dimension. Notice that the determ
function always requires as many arguments as the dimension of the space,
determinant function can only be applied to square matrices, that is, matrices
the same number of rows as columns. Tneperty of determinant that change
with dimension is the last one. R?3, that requirement becomes dgt, €3) = 1;
and generally deg(, e, . . .,e5) = 1 ind dimensional space.
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Problems

Problem 10-1. What is det(g :11)9
1 2 3
Problem 10-2. Whatisdetf 0 4 6|?
1 01

Problem 10-3. SupposeB is the linear function with matri><$ i) How does
B change area? Do&spreserve orientation?

2 _
Problem 10-4. Supposa‘(;(/) = <Xxyy). How doesf change area near the

point (8)’7 Near the poin( i)O Doed preserve orientation?
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Solutions to Problems
Problem 10-1. The determinantis 5.

Problem 10-2. The determinantis 4. Thisis computed by writing each column
in terms of the basis vectors and expanding using linearity, as in the example of
this section.

Problem 10-3. The determinant of the matrix &is -2, soB magnifies areas
by a factor of 2, and also changes orientation.

Problem 10-4. The matrix ofdf (;) is (2;( _Xl> which has determinant
2 +y. At <8> this determinant is zero, dois collapsing space to a lower

dimension near this point. Ne r2 the determinant is 10, dois magnifying

1
area by a factor of 10 near this point, and is also preserving orientation there.
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Solutions to Exercises
Exercise 10-1. Simply expand as in the example.



811. Changing Variables in Multiple Integrals

Changing variables in multiple integrals is more complicated than in the cas
single integrals. The method does have apexgeometric interpretation. Over ¢
small regionA containing a poinp, the value of on the image sej(A) is approxi-

matelyf (g(p)), so for small regions, /(A) f (;) dxxdy = f(g(p)) xvolume ofg(A),
approximately. But the volume g(A)%s approxmately detdg(p)| x volume ofA,

/ f (X) dx x dy = f(g(p))  volume ofg(A)

gA) \Y
=f(g(p))| detdg(p)| x volume ofA
B X X y
—/A(fog)<y)|detdg(y>|dx dy

approximately. This argument can be degprecise by taking limits as the regiol
shrinks to zero, and adding together the integrals over the resulting small piec

Change of Variable Theorem. If g is a function with domaii in R? and range in
R? which has an inverse function and ifs function whose domain includggA)

then
X X X
f< >dx><d: fo <>detd()dx><d.
/Q(A)y y/A(g)yI gyl y

A similar statement holds when the domain and ranggliafin R3, or a space
of any other dimension.

Here| detdg@) | is the absolute value of the determinant of thegrix of the

linear functiondg<§>. The function| detdg| is called thelacobianof g.
The typical case is that in which the functigiis chosen so that is a rectangle.

Example 11-1.SupposeB = {<§> 0sx+y<2,-2<x-y< O}. What is

€ dxxdy? Aboxis a setdefined by inequalities in which the variable(s) appear

B
tween fixed numerical limits. The form of the &$uggests that usingyandx-yas
the new variables will produce a box as the rmregion of integrathn. For notational

convenience, writa = x+yandv = x-y. Then simple algebra gives= (u+v)/2 and
o . u\ _ /(u+v)/2 _[/u) . :
y = (Uu-v)/2. Deflneg(v> = ((u—v)/2> andA = {(v) :0su<2,-2<v< O}.

Theng(A) is the original region of integration, ardi:;(\i) = (1//5 _31/22) S0

|detdg(3)| =1/2. Thus/ €dxxdy= / e"'2(1/2) du x dv, which is far more
B A
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easily evaluated.

Another common case is that in which either the original integrand or the rec
of integration exhibit circular symmetry. This situation arises in applications si
gravitational and electrical fields exhibit such symmetry. In this situation the us
polar coordinates produces a rectangular region ofegration in polar coordinate
space.

Example 11-2. As an illustration, consider the quarter circle region
Q= {(;) X +y?<1,0sx<1,0<y< 1}

in the first quadrant. What ij[ X2 + y?dx x dy? This integral can be computec

Q
by simply writing down an iterated integral, but the computations are messy
error prone. Recall that polar coordinatesRf are defined in terms of the usua
coordinatesc andy by the formulas< = r cosf andy = r sinf. The requirements

onr and@ are thatr > 0 and O< 6 < 2711. The functiong( g) = (:g?:g) maps

from polar coordinate space to regular space. N the image undeg of the

rectangular regiomR = {(;) :0<r<10<0< n/Z}. So/Qx2+y2dx><dy =

2 _ 2 ry _ /cos6@ —rsin@)
/g(R) X +y2dx><dy—/Rr | detdg| dr xd6. Heredg<6> = (sin@ rcosd ) S°

1 ,n/2
- 2 — 3 —
| detdg| =r. So/Rr |detdg|dr><d6—/o /0 r3dedr = /8.

Keep in mind that changing variables can simplify the computation of multi
integrals in many cases by changing the region of integration to a rectangle.
trade off is that the integrand becomes more complicated.
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Problems

Problem 11-1. What is the value of the integral in the first example of this sectio

2x2

1
Problem 11-2. Sketch the region of integration for the integ%l 1dydx,
0, Jx

2

write an equivalent iterated integral with the order of integration reversed,
evaluate the double integral.

Problem 11-3. Compute the volume of the regioniR? defined by the inequalities
x20,y20,z20,x+y+z<1.

Problem 11-4. Let R be the region bounded by= x?, y = 2x?, andx = 1 in R?.
Compute/ Xy? dx x dy.
R
X

Problem 11-5. SupposeA = { (y) 0<y<2,0<sy<sx,Xx<z< ZX} Compute
z

/ e dx x dyxdz
A

Problem 11-6. Let R be the region irR? in which 1< x? +y? < 2 andy > |x|.
Sketch the region and compufgx2 +y? dx x dy.

Problem 11-7. Suppos€ = {@) 1<xy<3,x<sy< 4x}. Compute - dxxdy.

Problem 11-8. Compute/om /Ow XY dxdy.
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Solutions to Problems

2 40
Problem 11-1. / e™'2(1/2)du x dv = / / e"2dvdu=4e-8+4eL.
A 0 -

Problem112/ 1dxdy+// 1ldxdy = 1/3.
Wiz Wiz

Problem 11-3. The volume is 16.

Problem 11-4. One method is to change variables. The definitiorRof
suggestsl = y/x? andv = x as the new variables, from whieh= v andy = uv?.
Defineg(u,v) = (v, u?) as a mapping fronR? in u-v coordinates tdR? with
x-y coordinates. LeA = {(u,v) : 1 <u<20<v<l1}. Theng(A) =R,

detdg(\lj) = -2 and the change of variables formula gives
/xy2=/u2v5><v2du><dv
R A

2 1
= / / v’ dvdu
1 0

=7/24.

Problem 11-5. From the definition ofA a reasonable choice of new vari-
ables would bau = y, v = y/x, andw = Z/x, since with this choice the new

u
region of integration is the bo& = { < %

w
Solving givesx = u/v, y = u, andz = uw/v and the Jacobian matrix is

:Osus2,0$vsl,1sws2}.

Uv -—ulv
< 1 0 0 ) which has determinant?/v®. The desired integral is
wv —uw/v2  ulv

2 pl p2
equal to/ eVi?\Pdudvdw = 2 - 4e2. This integral can also be
1 0 0
computed by simply setting up an iterdiategral without abbange of variables.

Problem 11-6. Using polar coordinates gives the equivalent integral as

34 V2
/ / r3dr do = 311/8.
/4 1

Problem 11-7. Use the new variables = xy andv = y/x for which the
region of integration becom (3) :1lsus<3/1l<svs 4}. Thenx = Julv

andy = vjuv and the Jacobian ig 2v. The value of the integral is 2In(2).

Problem 11-8. Here the region in polar space is

Rz{(é) :Osr<oo,056srr/2}.

Computation gives the value of the integralrdgl.

72



812. Forces, Work, Fluid Flow

Most of the remainder of the discussibare deals with mathematics that we
constructed to deal with physical problemMost of these physical problems hav
simple interpretations.

A force is a physical quantity that has both a magnitude and direction. For
reason, forces are often represented mathematically by vectors. In some ap
tions, the force varies depending on the location in space.

Example 12—1. The force of gravitational attréion of a point mass depends on th

distance of the attracted particle from the point mass. If the point mass is locat

the origin, the inverse square law stated tha gravitational force exerted by thi:
X -X

particle on a pointat y | is proportional t
z

O(Xz +y2 + 22)92 :32/

A reasonable way of representing such a force field would use a vector
X

its ‘tail’ at | y | and its ‘head’ in the direction of the origin. Vectors do not hay

z
this sort of property since the ‘tail’ of a vector is always located at the origin.

overcome this difficulty supposel] R2. The collection of pairsg v) for v 0 R3is
called thetangent spaceof R3 atp and is denoteéRf;. The elements of the tangen
space are callethngent vectors Addition and scalar multiplication of tangen
vectors are defined by the formulas ) + (p, w) = (p, v+ w) andc(p, V) = (p, cv).
A similar approach is taken in higher dimensional spaces.

There are two intuitive interpretations of the tangent space. Fpst) (J Rg
represents an arrow with tail ptand head ap +v. The second interpretation is
as follows. Suppos€ : R - R?is a differentiable curve witlc(0) = p. Then
C'(0) is the velocity ofC at 0, and this vector is tangent to the cu@at the point
C(0) =p. Thus p,C'(0)) is the velocity vector with its tail located pt

A similar definition and poperties holds in spaces of other dimensions.

Example 12-2.In the previous example, the gitational field would be repre-

X -X

sented by the collection of tangent vectrs y W -y in R3 X
z -z

y

z

A functionf : R? - R2 (orf : R® — R3)is often called avector field. Typical
pictures of vector fields show the vectijjp) with its tail atp. By an abuse of
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notationf can be reinterpreted so thi{p) takes the valuep(f(p)) in Rg. This
makes the pictures typically drawn more mathematically accurate.

The standard basis ﬁa‘; is of course §, 1), (p, &), and 0, ).
Exercise 12-1.What is the standard basis &f?

One important phyiscal idea is the notion of work. Suppose a force field
valueF at all points in space, and a patrticle is moved in this field from the origir
the pointd. Notice that bothi- andd are vectors. Thevork done in moving from
the origin to the point is defined to bé-«d.

1 1
Example 12-3. If the force isF = (2) andd = (0) the work done in moving

3 4
from the origin tod is Fed = 13.

-4
Exercise 12—-2.What work is done in moving from the origin té 0 ) in this
1

same force field?

A positive value for the work done implies that the force field is doing the wo
a negative value implies that work is being done against the field.

One of the problems to be addressedthasv work should be calculated wher
the force field has varying values and the path of motion is not a straight line.
ideas of calculus enter here because any path of motion is approximately a st
line over short enough distances.

Example 12—4. Consider computing the amount of work in the general force fie
X

F| y | when a particle moves from the origin to a pairdlong some path. Suppos

z
the path is specified by a given functip(t) which represents the position of the

particle at time. Assume the particle is at the origin at titne 0 and is at at time

t = 1. If hisa small number, during the time interval frato t+hthe particle moves
approximately in a straight lsnalong the tangent vectpft + h) — p(t) = p’ (t)h. The
force applied to the particle is approximatélfp(t)). So the work done in this time
interval is approximately(p(t))ep’ (t)h. This argument shows that W(t) is the
work done between time 0 andthen

W) =jm W(t + hr)] — W(t)

= F(p(t))+p’ ().
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1

So the total work done i8V(1) - W(0) = / F(p(t))ep' (t) dt by the Fundamental
0

Theorem of Calculus.

X 1 -4
Exercise 12—3.Compute this integral whelﬁ(y) = (2) andp(t) :t( 0 ) for
z 3 1

This methodology depends on givingetipath through the field a parametri
representation. Physically, the amount of work done should depend only or
path, not on the way the path is traversed.

Exercise 12—4.Compute the integral if theame path is parameterized lyt) =

-4
t2( 0 ) ,for0<t < 1. Is the integral the same?
1

The change of variable formula can be usesghow that the value of the integra
depends only on the path, not on the pagtanization of the path. This will be done
in a later section.

Another important physical problem deals with fluid flow. In this connectic
the velocity of a particle of fluid at each point in space is specified. vighecity
field is then a vector field in the same way that the force field considered above
vector field.

Example 12-5. A straight river flowing from left to right with river banks along
Wl—w>
for

the x-axis and the lingy = 1 might have velocity field/(i) = < 0

O<y<1l
Exercise 12-5.What is the value of the velocity field €t1/12> ?

For a 2 dimensional flow, as in the example, what amount of fluid cross
given line segment per unit time? This is a difficult question to answer for a fl
with varying velocity. Suppose the velity of the flow was the same at each poir
in space, say, and that the line segment extended from the origin to the ploiAt
particle of fluid crossed the line segmentinnit of time that just ended precisely i
the particle currently is in the parallelogram with vertices at the origin;+ d, and
d. So the amount of fluid flow is nothing more than the area of this parallelogr
which is dety, d), the determinant of the matrix withandd as columns. The sign
of this determinant has a physical interpretation here. The sign is positive if
flow is from left to right as viewed by a person standing at the origin and look
toward the poind; the sign is negative if the person would see the flow movi
from right to left.
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Exercise 12-6.1f v = ¢, andd = e, is the flow moving from left to right or from
right to left? What ifv = e, andd = ¢,?

Once again, the analysis of the simple case of a constant velocity flow acr
straight line segment leads to the solatad the general problem. Suppose a path
the plane is parameterized by a funct(t), for 0<t < 1. Then over a short time
interval starting at, the path is approximaliea straight line segmemt (t), and the

velocity of particles near this segment is approximat&g(t)), whereV ( ;) is the

velocity of a fluid particle a § . The amount of fluid flowing across this shor

segment per unit of time is then déf(p(t)) p’'(t)). The total amount of fluid flow
1

across the whole path is th g\ det (V(p(t)) p'(t))dt.

Example 12—6. Suppose the velocity field for the row‘iS(i(/) = (_xy> and the
pathis the straight line segment fromthe origir( ) . One parameterization of this

path isp(t) = t(é) forO<t < 1. The netflow of fluid across this path per unit tim

| 1 , I B N S
s then/0 det(V(p(®)) p'(t))dt = /0 det( > 3) dt _/0 13tdt = -13/2.

From the point of view of an observer standing at the origin looking tov(ai;()
the flow is from right to left.

Exercise 12—7.What if the path in the example is a circle of radius 1 centered
the origin?

For a 3 dimensional flow, the amount of fluid crossing a two dimensional surf
could be measured. Again, the general case is difficult to analyze. Suppos
velocity field takes the same valuat each point, and the two dimensional surfa
is the parallelogram with vertices at the origena + b, andb. The same geometric
intuition shows that the fluid flux across this parallelogram in one time uni
detf, a, b), the determinant of the matrix with a, andb as columns. What is the
significance of the sign of this determmt& Imagine that the parallelogram witt
vertices at Oa, a+ b, andb is painted on a piece of glass. The side of the gle
with the property that when traversing thiertices in this order the inside of the
parallelogram lies to the left is the ‘outside’ and the other side is the ‘inside’. T
determinant is positive if the flow is from the inside to the outside, and negativ
the flow is from the outside to the inside.

The general flow can be analyzed using the same methodology as in the
cases. The primary challenge is to find a reasonable parameterization of the p
surface involved. The core observationhat there should be as many paramete
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as the dimension of the path or surface being parameterized.

Example 12—7.If a velocity vector field is given, what is the net outflow of th
fluid through the surface of a sphere of radius 3 centered at the origin? The su
of the sphere is a 2 dimensional objecatdaso should be parameterized using tw

variables. A natural approach is to usdéitude and longitudeaordinates. Define
3 cosf cosg

a mappingg( Z) = ( 3sin@ cosqo) , and take the domain gfto be the rectangle
3sing

Q= {(g) :0s0<2m,-n2< @< 7T/2}. The functiorg mapsQ onto the sphere

X
of radius 3 centered at the origin. If the velocity fieIcMEy) , then the net fluid

flow is/Qdet(v(g<?0>) dg(Z))dBXd(p. Z

The remainder of the discussion hereveleps a more systematic approach 1
these types of computations. As was seen in the fluid flow examples, that paran
ization is physically irrelevant, but was deal for the discussion as developed her
The first step will be to develop tools thaill push the parameterization furthel
into the background and allow the physicaiition to be used more directly. This
systemized approach will also expose tanalog of the Fundamental Theorem «
Calculus in this more complicated setting.
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Problems

Problem 12-1. A particle moves in a force fiel(ﬁ?(iﬁ) = <_xy> along a path

p(t) = (Ztt_—13> for0<t<1. How much work is done?

Problem 12—2. Suppose andb are two vectors ifR3. Find a parameterization of
the line segment joining andb.

Problem 12-3. Suppose the two dimensional fluid has a velocity field given

by v(§> = <y(10— y)> for 0 <y <1 and allx. What is the rate at which fluid

. .. (0 o
crosses the line segment from the onglr(t?) per unit time?

Problem 12—4. Suppose the velocity field of a fluid flow M(§> = (x;y)

What is the net flow from the inside to the outside of the box with corne(sia{t),
1 1 -1
?
(22): (1) ane( 7))

Problem 12-5. The velocity of a particle of fluid at the poir(t§> is V@) =

<;¥) A curve is given parametrically byt) = (ttz) for0<t< 1. Compute that

net rate at which fluid crosses the curve per unit time. From the point of viev
an observer standing at the origin and looking along the curve, is the net fluid
crossing the curve from left to right, or from right to left?

Problem 12-6. The force acting on a particle at the Iocatié@) is given by

F(i(/) = (:X> Give a parameterization of the straight line path connecting

point (;) to the point(i). Find the work done when a particle moves along tl

straight line path frorr(é) to (;’) . Is the work done by the force field, or again:s
the force field?

X
Problem 12-7.How much work is done by the gravitational fiekl| y | =

z
1 X 1 2
y | on a particle moving from 1 | to | 2 |?
2 2 2)3/2
O +y2+22)32 | 1 5
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Solutions to Problems

1 —_—
Problem 12—-1. The work done is/ <3,; _it> . <;> dt=1.
0

Problem 12-2. To move fromato b in a straight line, follow the line through
ain the directionb — a. One path that follows this line igt) = a +t(b — a), for
O<sts< 1l

0
t
for 0 < t < 1. The rate of flow across this segment per unit time is then

1
t(1-t) 0\ , _
/Odet< 0 t)dt—1/6.

Problem 12-4. Parameterize each of the four sides of the box in such a
way that a positive value for the net flow indicates flow from inside the box
to the outside of the box. One parameterization for the left side of the box is

p(t) = <_11> +t<_01> = <1_—1t)' The net outflow through this side of the

Problem 12-3. One parameterization of the line segmenpff = (

1 _ 1
box is then [ det Ot _01 dt = / tdt = /2. Applying similar methods
0
for the other 3 sides and adding the results gives a net outflow of 4.

1 _t2
Problem 12-5. Herep'(t) = (21t>,andthe netflowi7/ det( ttz 21t> dt=
0

1
-2t -t2dt = -1/2-1/3 = -5/6. Since the net flow is negative, the net flow

0
is from right to left.

Problem 12—-6. One parameterization {gt) = (;) +t ((?) - (;)) -

(;:g) for 0 <t < 1. There are many others. Using this parameterization,

3 [t/ -1-3t 3 !
'(t) = < >and the work |s/ < )-< >dt:/ -13 - 34tdt =
PO =15 , \—2-5t)°\5 A

-13-17 =-30. Since the result is negative, the work is done against the field.

1 1
Problem 12-7. One path is parameterized p§) = <1> + t<1>, for
1 1

0<t<1. The work doneis 3tdt = 4-3v2 =-0.2426.

oo
/0 (Bt +1p)%?
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Solutions to Exercises
Exercise 12-1. The standard basis R’Zp is (p,e1) and p, ).

1 -4
Exercise 12—-2. The work done i3<2> . < 0 ) =-1.

3 1
-4
Exercise 12-3. Herep' (t) = < 0 > and the integral is-1, as before.
1
-4
Exercise 12-4. In this casg]' (t) = 2t< 0 ) and the integral is
1

1

1 -4 1
/ 2 |e2t| O dt=—/ 2tdt = -1,
o \3 1 0

as before.

12 0
flows fastest at its center, and hasdocity near zero near its banks.

Exercise 12-5. The value is the tangentvecté( 1 ) (1/4)>. The river

Exercise 12—6. Inthe first case, the flow moves from left to right. In the second
case, the flow moves from right to left.

cost

Exercise 12—7. One parameterization of the pathpi) = < sint

>for0sts

2 . .
21m. The net flow is thery det sint sint dt=0.
o cost cost

80



813. Tensors and Differential Forms

The physical examples of the previowexson involve integrands which have
a nice form. A real valued function &f vector arguments which is linear in eac
argument separately is calledemsor of orderk.

Example 13-1. The usual dot product is a tensor of order 2 sincei fixed veu
is linear in theu argument.

Example 13-2. If v, v», andvs are vectors iR the function defined by the formula
T(v1,Vo,Vv3) =det(vy V. V3)isatensor of order 3.

Example 13-3. A linear function with domairR? and rangeR is a tensor of order
1.

There are some simple linear functionsighwill be particularly useful. The
notation is rather poor, but has been in use for more than a century. Denoi

x the function with domairR? and rangeR specified by the formula(ﬁ) = a

Similarly, y is the function defined by the formuj{i; = b. The functionsx andy
are nothing more than projections onto tieeinate directionsThese same name:

a a
are also used for functions with domd®i. Thusx( b) = aandy( b) =D, too.
c c

Exercise 13—1.What is the rule defining the functiahwhose domain iR3?

Any tensor of order 1 can be written in terms of these basic functions.

b b b
would usually write more simply thdt= 3x+ 4y. Note that in this expressiomand

y are functions and not variables! Alsb = 3dx + 4dy in terms of the derivatives
dx anddy of the basic tensorsandy.

Example 13—4. Supposd (2) = 3a+ 4b. Thenf (a) = 3x( a) + 4y( a). One

As the determinant example above demaiss, some tensors have the propet
that an interchange in the order of the arguments changes the sign of the val
the tensor. Such a tensorakernating.

There is a simple method of building up alternating tensors of higher orc
from the simple tensorsandy (andz). Thewedge product(or exterior product)
x Oy is the second order alternating tensor given by the formulay(u,v) =

x(u)  x(v)
(S0 )

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.
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Exercise 13-2.Show that the wedge product thudided is an alternating tensol
of order 2.

Exercise 13—-3.Computex Dy(( ;) , (j) ).

Exercise 13—4.What isx Ox?

X(u)  x(v)  x(w)
Similarly, x Oy Oz(u, v, w) = det ( y(u)  y(v) y(w) ) .
Zu) z(v) zZ(w)

The wedge product of two general alteting tensors is computed by expandin
each tensor in terms of the basic wedge produéiy above and then adding the
wedge products of the corresponding basésrents, taking care to maintain th
proper order of the factors.

Example 13-5. Whatis (Z-7y) [(x+6y)? Taking care with the order of the factor:
and expanding gives X2 7y) LI(x+6y) = (2x) [x+(2x) LI(6y) — (7y) Ox—(7y) CI(6y) =
X Ox+ 12 Oy-7yOx—42y Oy = 1% [y, after using the facts that[0x = 0,
yOy=0andxOy=-yOx

In the phyiscal examples of the last #en, some of the objects appearing i
the computations were tangent vectors (such'&3). This suggests that the mair
interest will be with tensors ose inputs are tangent vectorsdifferential k form
(or simply ak form) on R? is a functionw with domainR? for which cw(p) is an
alternating tensor of ordé&rwhose domain is the tangent spage Note that there is
no obvious ‘differential’ in the definitionfdifferential forms! The intuition should
be that the ‘differential’ comes from the tangent vectors which are the argumen
the form. A similar definition applies in spaces of other dimension.

A differential form must have, for eagh an expression in terms of the wedg
products of basic first order tensors ﬁl What are these basic first order tensor
The basic first order tensors Bf are the functionx andy. Since each of these
basic tensors is lineatx(p) = x for all p. Hence the basic first order tensorsRﬁ‘n
aredx(p) anddy(p). Every differential formw can therefore be written as a sum c
terms each of which is a real valued ftion of 2 variables times a wedge produc
of these basic tensors.

Exercise 13-5.What are the basic differential forms &i?
To gain physical intuition, considehe simple differential forndx. What is

the valuedx( E) (<g> (3))9 Sincex is the function with formula(?) =a,

o(3) =@ o0 msa3)(3)(5) = 1 () = v
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the change in the x component of the tangent vector with tail@g) and head at

b+d
interpretation applies tdy anddz

+ . . . ..
<a C). Sodx represents an incremental change inxteordinate. A similar

With this physical intuition, the languag® differential forms makes the de-
scription of the physical problems the previous section simple.

X X
Example 13-6.Supposeé=| y | = | —z | is a force field orR3. The work form

z y
for this force field isW = xdx—zdy +ydz The form expresses at an intuitive leve

the earlier argument that for small changes in position the force field is essen
constant and that in this case the work done is the dot product of the field witt
displacement vector. Notice that, formally, the work form is nothing more tt

{:H{2)

Exercise 13—6.What is the work form associated with the force fi(ﬂté;) =

( —y) onR??
—X

Example 13—-7.What form would be associated with the fluid flow with velocit
field V(?) = (i) in R?? Using the same physical intuition, the fluid flow forn

for this flow would by de(i g;) = ydy — xdx.

There is also physical intuition associated with the wedge product of dif
ential forms. InR?, the formdx O dy is the area of a parallelogram with side
parallel to thex andy axes. This interpretation comes from the computati

a0y (((5):(a))-((p):(£))) = det(g ). in R he same

wedge product is the area of the projectishgdow) of a 3 dimensional parallelo
gram on thex-y plane.

Exercise 13—7.Verify this physical interpretatioby an appropriate computation.

2
Example 13-8.Suppose a fluid flow irR® has the same velocity 3 | at all

4
points. Then as was seen earlier, the fluahflthrough a parallelogram spanne

a d 2 ad
by |b|] and| e | isdet|] 3 b e |. Expanding this determinant gives thi
c f 4 ¢ f
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value 2pf — ce) — 3(af — cd) + 4(ae— bd). This is the same value as the 2 forr

0 a
w = 2dy dz + 3dzOdx + 4dx (O dy applied to the tangent vecto(s( O) , ( b) )
0 C

0 d

and ((O ,| e | |. The wedge products in this form are giving the areas of t
0 f

projection of the parallelogram onto thespective coordinate planes. The orderir

in the factors in the wedge @ducts maintains the earlienterpretation of the sign
of the determinant in this case.

Exercise 13—8.What form would be associated with a general fluid floviRit?

As the problems in the earlier section indicate, forms exist to be integrated,
is the integral of the form that is of phigsl significance. How should the integra
of a form be defined?
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Problems
, 1\,/1\ /3
Problem 13-1. What is (3«dx + 5ydy) ( 2) (( 2) ; (4>)?

Problem 13-2. Simplify (3xdx + 5Sydy) [1dx.
Problem 13-3. What is the interpretation of a 2 form R??

Problem 13—4. What is the interpretation of a 3 form R*?

85
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Solutions to Problems

Problem 13-1. (3xdx + 5ydy)<$>(<;), (i)) =9+40=49.

Problem 13-2. (3xdx+ 5ydy) O dx = 3xdx O dx + 5ydy O dx = —5ydx [1dy.
Problem 13—-3. This must be an oriented area.

Problem 13—4. This must be an oriented volume.

86
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Solutions to Exercises

a
Exercise 13—-1. The rule isz< b> =c.
c

Exercise 13-2. Interchanging two columns of a matrix changes the sign of its
determinant.

Exercise 13-3. ny(<;>, <i>) = det(% j) =-2.

Exercise 13—4. x[Ix = 0, since a matrix with two equal columns has determinant
0.

Exercise 13-5. Here the basic forms au, dy, anddz.
Exercise 13-6. The work form is-y dx — xdy.

Exercise 13-7.

(()) () () (E)E)

X Vi
Exercise 13-8. Suppose the velocity vector of the flow\}s<y) = <v2>

z V3
where each ofy, v, andvs may be functions of, y, andz. The 2 form associated

with this flow is therv,dy O0dz + vodz O dx + vadx O dy.



814. Pulling Back and Integrating Forms

A 1-form can only be reasonably inte¢ed over a set of dimension 1, evel
though the form is usually defined oversat of larger dimension. The earlie
physical examples illustrated that the 1 @insional set will be parameterized usin
1 parameter. This pameterization will be done usinganction of a single variable
which takes values in a higher dimensional space. If the form can be pulled ba
a form defined on the domain of this function, the integral of the pulled back fc
can be computed in the usual way. The only question is how the form can be p
back.

Forms are defined on tangent spaces. To understand how a form shou
pulled back, consider the basic fodr on R?. Suppose a 1 dimensional pathRA
Is parameterized by a functigft) whose domain is the interval [Q] in R. Grab
a tangent vectora b) in RL. Under the mapping, this tangent vector is mappec
to a tangent vector iIRS(a), namely the tangent vectop(@), p(a + b) — p(a)) =
(p(a), p' (@) b). This tangent vector can be used as input for the fdxrat the point
p(a). Direct computation givesix(p(a))(p(a@),p’'(@b) = (1 0)'(a)b. This is
defined to be the value of thaull back pYdx of the formdx by p at the tangent
vector @, b).

Example 14—-1. To gain some additional insight, consider a specific case. Supg

2
p(t) = (2?; > for0<t < 1isa pathinR2. What isp-dx? Herep' (t) = <£§> so by

the formula just developedp'{dx)(a)(a, b) = 4ab. A key insight is that this is the
same as the value of the forndt(a)(a, b).

Exercise 14-1.Compute 4dt(a)(a, b).

The example illustrates a simple method of pulling back a form. The para
terization expresses each of the variables in the range space in terms of the vat
in the domain space. The values for the basic fodxanddy in the range space
can then be obtained by mechanical computation, similar to that used when m:
a simple change of variable in an integral.

Example 14-2.Using the parameterization of tipeevious problem gives the ex-
pressionsx = 2t2 andy = 3t in terms of the variablé, so thatdx = 4tdt and
dy = 3dt. So,p"(5xdx — 7y? dy) = 5(2?) 4t dt — 7(3t)? 3dt = (403 — 189?) dt is the
pull back of the form %dx — 7y? dy underp.

The integral of a form over a curve (or surface) is defined to be the integre
the pull back of a form under a parameration of the curve (or surface) over th
domain of the parameterization.

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.
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Observe that a 1-form can only be intaged over a 1 dimensional object; ;
2-form can only be integrated over a Zransional object. For this reason, .
parameterization of a 1 dimensional object is sometimes called¢abe and a
parameterization of a 2 dimensional obje& eube

Example 14-3. Consider the formw = 3dx + 4dy on R? and the 1 dimensional
curve parameterized Hft) = (tt2> forO<t< 1. Inorderto comput?/ w, first
f

1
computef “w = (8t + 3)dt. Then/fw = /O (8t + 3)dt = 7. This integral represents

the work done by moving a particlerttugh the constant force field,®) along the
arc of the parabola parameterizedfby

Example 14—4. Thearc length form onR? is ds = |/(dx)2 + (dy)2. The physical
intuition for the name of the form comes from the fact ttsis the distance travelled

when moving through a small change of posit@gx> along a straight line path.
The pull back of the arc lengtrofm under a parameterized patft) gives the
distance travelled under a small digpément along the curve parameterizegby
Thus/ dsis the length of the curve parameterizedgy

p

Exercise 14—2.What is the arc length form dR3?

Example 14-5.In R® there is a surface area form which represents the are:
a small surface element of a 2 dimensional surface in 3 dimensional space
uncover this form, consider first the faula for the volume of a 3 dimensiona

a d g
parallelogram spanned by the vect{rb), (e), and (h) The volume is
c f i

a g
det| b e h | =a(ei—fh)-b(di —fg)+c(dh-eg)as was computed earlier. If the
c f i

a
vector| b | is chosen to be perpendicular to thier 2 vectors and of unit length

c
this volume will be numerically equal to tldimensional area of the parallelograr

spanned by the other 2 vectors. Thergendicularity requirements @y b, andc
are therad +be+cf = 0 andag+bh+ci = 0. Multiply the first of these bg and the
second byl and subtract to gdi(eg—dh)+c(f g—di) = 0. So one choice for the vectol

a e —fh
(b) is ( fg—di ) , divided by its length. The ared the parallelogram spannec
C dh-eg

g
by e) and h) is then\/(ei —-fh)2 + (di —fg)? + (dh — eg)2. The surface area
f i
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form is thereforalS = \/(dy [0dz)2 + (dx 0d2)2 + (dx O dy)?, since this form has the
same value on these tangemictors. The integra/ dSis the surface area of the

P
2 dimensional surface parameterizedpyThe sign of the integral discloses thi
orientation of the surface.
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Problems

Problem 14-1. For the 1 formw = xy?dx + ydy andf(t) = (:) forO<t<1,

computef “w and/fw.

Problem 14-2. For the 1 formw = xy?dx + ydy andf(t) = (t,t?), forO<t < 1,
computef “w and/fw.

Problem 14-3. For the 1 formw = xy? dx + ydy find a parameterizatiohwhose
image (range) is the line segment from{1to (3 7) and computé-w and/f .

Problem 14-4. Find the length of the curve with parameterizatjt) = <;tt2)
forO<st<1.

Problem 14-5. Argue that the gravitational field generated by a point of nMss

r
at the origin is (xdx +ydy + zdz). Spherical coordinates ( 9)

(X2 + y2 + 22)3/2 (p
on R® are defined by = r cosBcosg, y = r sinf cosgp, andz = r sing. Find the

equivalent representation of ghiield in spherical coordinates= |/x2 +y2 + 72, 0,
and@. Hint: Use an appropriate pullback.

Problem 14-6. Use spherical coordinates & to compute the volume of a spher:
of radius 5 centered at the origin.

Problem 14-7. Find the surface area of a sphere of radius 5 centered at the or
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Solutions to Problems

1
Problem 14-1. wa:(t3+t)dtand/w:/ (EB+t)dt=14+122=34.
f 0

Problem 14-2. f7w = (5 +2t3) dt so [; w = [;(t5 + 2t3) dit = 3/2.

(1 3 1 o
Problem 14-3. One choice id(t) = <1> +1 ((7) - <1>> This gives
fPw = (2t + 1)(6t + 1)?2dt + (6t + 1)6dt.

Problem 14—4. Pull back the arc length form to geft(ds) = v16dt? + 162 dt =
RS 1 — a—
41 +t2dt. The length of the curve if 44/1 +t2dt = 2v2-2In(v2-1).
0

Problem 14-5. Pull back the 1 form using the mapping

r r cost cosg
f<9> = <rsin9005(p>,
Q rsing

noting that<® + y? + 22 = r2.

Problem 14—-6. The volume is 500/ 3.

Problem 14-7. Spherical coordinates can be used again, but this time the

radius is not a variable, but a known constant. The surface areais 100

92
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Solutions to Exercises
Exercise 14-1. 4tdt(a)(a, b) = 4adt(a)(a, b) = 4ab.

Exercise 14-2. OnR3 the arc length form isls = 1/(dx)2 + (dy)? + (d2)2.

93



815. Orientation

The physical interpretation of the integral of a 1 form as work suggests
the direction in which the path of integration is traversed will affect the sign of
integral. This is in fact the case. In cpuotting the integral of a 2 form on a 2 cub
the parameterization of the cube is important.

Example 15-1. The surface area formS = \/ (dx Ody)2 + (dx 0 d2z)? + (dy O dz)?
of the last section can be pulled back to compute surface area. What is the st

1 1 0
area of the rectangle iR® with vertices at the origin 0|, | 2|, and| 2 |?
0 0 0

The surface area must be 2, the area of the rectangle. To compute usin

methodology of forms and pull backs, parderee the rectangle using the functio
s

p<f) =|[t],for0O<s<1 0<t<?2 Since this parameterization gives s,
0

y =tandz = 0, thendx = ds, dy = dt, anddz = 0. Sop"(dS) = /(dsOdt)2. Does

this simplify tods Cldt or dt [1ds? The answer to this question affects the sign

the integral of the pull back.

In the discussion of volumes and detenamts, the orientation of the volume
was seen to affect the sign of the determinant. A similar situation exists here,
2 dimensional surfaces inside 3 dimensional space. Such a surface has botr
and a bottom (or an inside and outside). A parameterization of the surface wi
orientation preserving if any triangle with the standard orientation in the domai
the parameterization is mapped to a @wvhich traces out a counterclockwise pai
when viewed from the top (or outside) ithe range of the parameterization.

Example 15-2. For the parameterizatiom of the previous example, if a triangle
in the domain op is traced out in a counterclockwis@ektion, the image triangle
will also be traced out in a counterclockwise direction, as viewed from a point
the positivez axis.

An orientation preserving parameigation should always be used to pull bac
a form to the natural ordering of tiveedge products befe integration.

1-s
Example 15-3.The parameterizatioq(f) = t is orientation reversing.

0
Tracing the border of a triangle in the domaingoh a counterclockwise direction

will trace the border of the image trianglethe clockwise direction, as viewed fron
the positivez axis. If q pulls back a form to the natural order of wedge produc
the integral will have the wrong sign.

Copyright[] 2003 Jerry Alan Veeh. All rights reserved.
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The upshot of the previous discussion is that unless care is taken, the int
of the pull back may be computed with the incorrect sign.

The following gives the technical detsof the previous discussion. Suppdse
is a 2 cube irR®. There may well be another 2 cuavith the same image set in
R®. How aref; w and f, w related? Writeg"w = hdsOdt. Then

ffw=(gog"f)w
= (g™ H){gw)
=ho(g?of)detd(g™ - f))dsOdt.

This computation and the changewairiables formula then gives

for 1o
:/(gog‘lof)%
= [@* D))
= [he(g?of) det(g™ o ) dsxa
:/ho(g‘lof)|det(d(g‘10f))|ds><dt
:/hdSth

- [go
- [

under the sole proviso that de¢¢™ - f)) > 0. The two 2 cube$ andg have the
same orientationif the condition det(g™ - f)) > 0 holds. A similar computation
can be made in other cases.



816. The Fundamental Theorem of Calculus

Since the integral of a form has been seen to have physical significance
guestion of differentiation of forms naturally arises. Once meaning is attache
the differentiation of forms, the analad the Fundamental Theorem of Calculus fc
forms can be developed. As in the caseuwfdtions, this theorem is of great valu
in computing integrals of forms.

One of the basic interpretations of a i¥ative is as a rate of change. Thus th
derivative of a form should represent the rate at which the form is changing.

Example 16-1.To gain some insight into what the rate of change of a form
consider the fluid flow form associated with a velocity field that is the same

all points inR?. For concreteness, supgothe velocity field isV(?) = (g)

at all points<x>. The associated form is théhn = 2dy — 3dx. What isdF,

the derivative of this form? Since the velocity field is the same everywhere,
observers measuring the flow across a line segment of a given length in a ¢
direction will get the same value, no tter where the two observers are standin
So this flow does not change at all with the position of the observer. Hifhee0.

In particular, the observatioof the example implies thak(dx) = 0, d(dy) = 0
andd(dz) = 0, since all of these basic forms are associated with constant velc
fluid flows.

Consider now the case of a general floviki) with vV ( §) = <¥1 > wherev; and
2
Vv, are functions ok andy representing the components of the velocity inxlaady
directions. How can the flow change when moving fr M) toa nearby point? The

only way the flow can change is if the change in the velocity of the flow causes ¢
buildup or net depletion of fluid in the remi between the measurement location

Using earlier intuition, suppose the nearby point ié ét: g§> . Looking at the hori-

zontal component of the fluid motion, the net buildupliéX +ydx) dy—v1<§) dy =

X 7} X X _ 0 X -
<Vl(y> + &w(y) dx> dy v1<y) dy = &Vl(y> dxdy. Similarly, for the ver-
. . . . X X
tical component of the velocity the net buildupv ( )dx -V ( )dx =
p y pvs y+dy p) y

X 0 (x) ) (x) 0 (x) .
V. + —vVv dy | dx-v dx= —v dxdy. The total net buildu
<2(y> ay 2\y) Y 2\y ay 2\y) Y P

: 0 X %) X
is therefore<&v1<y) + E’W(y)) dxdy. Here the produaix dy represents the
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area of the small rectangle, which is also true of the fasodldy. This physical

(0 X 7} X N
argument suggests thadfe = (&Vl(y> + a—yw(y)) dx Ody in this case.

i . X 0 X
Physically, tive val og ()+— () Id that th
ySICa y a pOSl Ive value XV1 y asz y wou mean a ere

was a net depletion of the fluid in this small rectangle, since the fluid was spee
up as it moved from left to right and bottom to top. For this reason the s
%vl(x> + iw(?) is called thedivergenceof the vector fieIo\/(?) = (Vl>

\y/ o9y \Z
and is denoted dw.

X Vi
Exercise 16—1.What is the divergence of a vector fiaw(y) = (v2> in R3?
4 V3

As in the calculus of functions, computing in this way is tedious and er
prone. Mechanical methods of computation are necessary to make the tt
useful. Fortunately, such mechanical methods are near at hand.

X
a(y)
The form for the rowV<X> = ¥ isF = Vl(x) dy - Vz(x> dx.
y V2(y> y y

Now bothv; and v, are real valued functions, amﬂq@) = %w(?) dx +

0 x) X %) X %) X i
—V dy. Also dv. < > = —V ( >dx+ —V ( >d . Substituting these
ay1<y_ v 2\y) = ax2\y) 77 gy ely) Y § "9 e

expressions into the formula fér and replacing the usual product with the diffel

. . (0 X 17} X
entials by the wedge product gives = <&v1(y> dx + a_yvl(y> dy> Ody

0 x) d X . X
—V dx+ —v ( )d ) Ddx=d|vv( )ded , as above. The computa.
<dx 2<y dy 2\y y y y p

tional scheme is now complete.

Example 16-2. Using this techniquel(xy dx+7y? dy) = (y dx+x dy) Cdx+(14y dy) 0
dy = —xdx O dy.

Exercise 16—2.What isd(e¥ dx — sin(xy) dy)?

This computational procedure shows that for any férnd(dF) = 0. So the
first fact above abouwd(dx) = 0 was not peculiar to this simple form alone.

Having developed the notion of differgation of forms paves the way for the
development of the Fundamenidieorem of Calculus for forms.

To gain some insight into how the fundamental theorem for forms should w
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consider again the simple work fortd = 2dx + 3dy. Suppose the objective is tc
find the amount of work done when moving along a line segment from the or

to the point< 3) Instead of parameterizing the path and computing as was d
earlier, first find an antiderivative dV. A moments reflection shows that the
functionP< X) = 2x+ 3y has the property thaP = W. In this context, the function

P is apotential for the formW. This simply means tha& is a function for which
dP =W.

Exercise 16—3.Show thatd(2x + 3y) = W. Are there any other functions whost
derivative isW?

Having found an antiderivative fat, the fundamental theorem should allo
the work done to be computed as a differenic the values of the antiderivative
at the endpoints of the path. In this case, the work done when traversing the

would beP<3> —P(g) - 205+3[7-(200+3D) = 31.
Exercise 16—4.Show that this value is correct by computing the work done
pulling back the form.

Example 16—3. Not every form is a derivativelf the formF is the derivative of
another form, sa¥ = dW, then from the general fact abow#; = d(dwW) = 0. The
form F = xydx + ydy is not a derivative, sincdF = (xdy + ydx) Odx +dy Ody =
—xdx ddy is not zero.

There is an additional technicality which even shows up in the usual func
setting.

Example 16—4. The functionF(x) which takes the value 0 for< 2 and the value
1 for x > 2 has derivative equal to 0O everywhere except at2. Because of this
single point of difficulty, the Fundamentaheorem fails to hold for this functio.

4
As a particular case/ F'(t)dt = 0# F(4) - F(0) = 1. The interval on whick' is

0
defined has a hole a&t= 2 and this single hole is sufficient to cause the Fundamer
Theorem to fail.

To distinguish the cases caused by this technicality, some terminology is ir
duced. A formF is closedif dF = 0. A form F is exactif F is a derivative. An
exact formmust be closed. This is just the general fact above about the sec
derivative of a form. An important fact called tf®incaré Lemmasays that in a
region which lacks holes a closed form is exact.

Example 16-5.The formF = x?>dx + y?dy is closed, sinc&lF = 0. Since this
. . . . X
form makes sense anywhere, in any region lacking helssexact, too. I1‘P< )
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. - - — d X d X d X = 2
is a potential for this formdP = dxp(y> dx + dyp<y) dy. Thusdx <y) -

SO P(;) = x3/3 + g(y) for any functiong of y alone. Using this expression give:

;—yP<§) = ¢'(y) which should be equal tg*. Thusg(y) = y*/3 is one choice for

g. Thus one choice foP is P(§> = x3/3 +y°/3. This gives a general method fo
finding potentials.

Example 16-6. The gravitational force fiel& ( §> = (X2 +y?) 32 ( :§> onR? has

-xdx—ydy

associated work forriV = ICASEE Simple computation shows thd¥V = 0.

A potential forW is g( > = (X +y?)™Y2. The potential is defined everywher:
except at the origin, andg = W at all points at whichW is defined. SV is exact.

The gravitational field example has seinteresting consequences. How muc
work is done by a particle moving oncecand a circle of radius 1 centered &
the origin? Since the work form for the gravitational field has a potential, and
starting and ending point of the path are the same, no work is done.

Looking more carefully at this queshobrings another idea into play. The
circular path is the boundary (border) of thadid circular region. The relationship
between the boundary of the circle and thidsaircle is the same as the relationshi
between the endpoints of an interval and the whole interval. Deno@Cbihe

boundary of the solid circular regidd. By analogy,/(7C W = - dW. While true
for the gravitational field, this resultifa generally unless the solid region has n

holes.

Example 16—7. The formB = —ydzxidy
X +

gravitational field. Direct computation shows tli8 = 0 so thatB is closed. |
fact, d(arctany/x)) = B too where this function is defined. But since arcmeis
not defined on the&-axis, it isnot a potential for the fornB. SoB is not exact.

is very similar to the work form for the

Exercise 16-5.For the formB compute the work done when traversing a semic

-1 1 . . -
cular path from( 0 ) to (O) which passes above the origin and for a semicircu
path that passes below the origin.

This equality between the integral of a form on the boundary of a region.
the integral of the derivative of the form over the region itself constitutes
Fundamental Theorem of Calculus for differential forms.
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Stoke’s Theorem. If F is a form andR is a set without holes then

/RdF =/ F

When computing using Stoke’s Theorem, the bound®ys given the orien-
tation inherited from the regioR.

Example 16-8. For the fluid flow formF = ydx — xdy, what is the net outflow
from the square with vertices at the origiéé), <i> and <2> per unit time?
HeredF = -2dx Ody, so by Stoke’s Theorem the net outflow per unit time

1 r1

/ / —2dxdy = -2. Since the net outflow is negative, there is in fact an inflow
0 JO

2 per unit time.

Exercise 16—6.Compute the net outflow by pulling back the form.

Example 16-9.1n R? suppose the two dimensional vector figld (zl) specfies
2
the velocity vector of a fluid flow at each point in the plane via the associate

form w = -v, dx+ v, dy. If Ris a region in the plane the]ﬁ w represents the rate
R
at which fluid is leaving the regioR. By Stoke’s Theorem

/,;R w= /Rda) = /R(Dlvl + D,vo) dx Ody.

Recall thatD,v; + D,V, is the divergence of the vector field This identity restates
the earlier interpretation of the divergence as the net rate at which fluid is lea
a region. This special case of Stoke’s Theorem is often calledithergence
Theorem.

P1

The symboll is introduced to formally represent the ‘vect IS
2

) in R? or
D1

D, | in R3. The divergence of a vector fields then formally written agI] v.
Ds

Exercise 16—7.A vector field isincompressibleif its divergence is zero. Explain
the use of this terminology.

F1
Example 16—-10.In R® supposé& = ( Fz) is a three dimensional vector field. Th
Fs

DyF3 — D3k
curl of F is defined to be the formal cross prodist F = | DsF; —D;F3 |. If S
D:iF2 - D2Fy
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is a two dimensional surface R® then Stoke’s Theorem gives

/ Fidx+ dey+ Fsdz=
oS

/(D2F3 - D3F2) dy Odz+ (D3F1 - D]_Fg) dzOdx + (D]_Fz - D2F1) dx Ddy
S

(This last integral is often written asf [x F [hdo wherenis the unit normal to

the surface ando is the surface areaselement.) Hence if the cun of zero, the
work done in moving a particle along any closed curve is zero. This is easily ¢
to imply that the 1 form representing the work donefoig closed (and so, exact in
a reasonable geometric region). Thus zero curHamnplies that the 1 form is the
derivative of a potential.
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Problems
Problem 16-1. If F = & dx + € dy what isdF?
Problem 16-2. If F = xdy 0dz+ zxdz [0dx + zydx Cdy, what isdF?

Problem 16-3. The work form associated with a force fieldWs = (6x + 5y) dx +
(5x+ 4y) dy. What isdW? If possible, find a potential falv. If it is not possible to
find a potential foW explain why not.

X y
Problem 16-4. A force field onR®isF| y | = | x+z |. What work formW is

z
associated with this force field? WhatdgV? Is there a potential? Find the worl

done by a particle moving along the line sggnt connecting the origin to the poin

2

Problem 16-5. For the work formW = y® dx—x3 dy find the work done by a particle
moving counterclockwise once around theske of radius 4 centered at the origin.

Problem 16—6. From the formF = xy dx + yzdy + xy dz a fluid flow is obtained as
dF. What is the net rate of flow per urtime through the part of the paraboloic
z=9-x? -y above thex-y plane?

Problem 16-7. For the work formW = (x+y?) dx + (y + %) dy + (z+ x?) dzfind the

0
work done by a particle traversing the edge of the rectangle with verti Q}t

0
1 1 0
O],]111],and| 1 | inthe counterclockwise direction.
0 0 0

Problem 16-8. Find the net outflow of fluid per unit time for a flow with velocity

X 3y°Z +2
fieldV |y | = | 9x%yZ2 | from the cube with vertice$ +2 |.
z —4xy? +2
Problem 16-9. Supposé is a vector field orR® with component functiong, f,
andf;. Define three associated differential forms by the equations
w' =fdx+f,dy+fsdz
«? = f;dy Odz+f,dzOdx + fzdx Ody
w’ = (fy +f, +f3) dx Ody Odz



816: The Fundamental Theorem of Calculus 103
Give a physical interpretation of each of these three forms.
Problem 16-10.1f f : R® - R show thatdf = w;.
Problem 16-11. Show that ifF : R® - R®thend(w) = «f | g and thatl(ag) =
wgliv F

Problem 16-12.Use the previous problem to show that cufl = 0 and that
div curl F = 0.

Problem 16-13. Consider the force fieldo = (2x + y) dx + xdy in R?. Find the
amount of work done in moving a particle from, () to (2 1).

X X
- : _ -1
Problem 16-14.1Is the graviational field o~ ()Z/) = @+ yi+ )2 (y) the

gradient of some function?

Problem 16-15. Argue that the work done by the gravitational field depends ot
on the norm of the endpoints of the path traveled, not on the path itself.

Problem 16-16.In R?, n = n(X) is a unit vector which is normal to the boundar

of aregionSat the poin anddsis the arc length element. LEt= ( E1> be a two
2

dimensional vector field oR?. Show that/ F Chds= / -F,dx+ Fy dy.
C C

Problem 16-17.In R3, n = n(X) is a unit vector which is normal to the surfaSat
F1

the pointxanddo is the surface area element. et ( F, ) be athree dimensional
Fs

vector field onR3. Show that/sF Chdo = /SFl dy O0dz+ F,dzOdx + Fzdx Cdy.
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Solutions to Problems
Problem 16-1. dF = (¢*—¢&") dx Ody.

Problem 16-2. dF = dxOdy Odz+ydzOdx Ody = (1 +y) dx Ody Odz

Problem 16-3. Computing giveslW = (6 dx+5dy) Odx+(5dx+4dy) Ody = 0,
soWi is closed. Sinc#V is defined everywherdy is exact. One potential fol

is P(?) = 32 + By + 22,

Problem 16-4. The associated work form &/ = ydx + (x + 2 dy + ydz,
for whichdwW = dy Odx + dx Ody + dzOdy + dy 0dz = 0. One potential is

X 1 0
P(y) =xy +Yyz The work done along this pathlE(Z) —P<O> =8.
z 3 0

Problem 16-5. The formW is not exact, but Stoke’s Theorem can still be
applied. HeralW = -3(x + y?) dx Ody. If Cis the circular disk, the work done

is [ =302 +y?) dxx dy = [Z" [ -3r3dr dO = —384m.

Problem 16-6. If P denotes the paraboloid surfacg,dF = F by Stoke’s

P oP
Theorem. Now the boundary & is a circle of radius 3 in the-y plane
cost

which can be parameterized p&) = <sint> forO<t<2m So/ pF =
0

2
/ —costsinftdt = 0.
0

104

Problem 16-7. Stoke’s Theorem says that the work done is the same as the

1 1
integral ofdW over the solid rectangle, whichif / —2ydxdy = -1.
0 Jo

Problem 16-8. The associated fluid flow form i& = 9x?y?dy Odz +
9x%yZ dz O dx — 4xy’ dx O dy. Stoke’s Theorem gives the flow as the inte-
gral of dF over the solid cube. HemF = 9x?Z2 dx Ody (dz, so this integral is

2 ;2 2
/ / / 9x?Z dxdydz = 1024.
-2J-2J-2

Problem 16-9. The formw! represents the work done by the force fi€ld
the formay? represents the rate a which a fluid with velocity vedtes passing
through a surface, and?® represents the rate at which a fluid with velocity vector
f is leaving a 3 dimensional region.

Problem 16-13. Sincedw = 0 the form is closed and hence exact here. It
is easy to see that if = x> + xy thendn = w. The work done is therefore
n2,1)-n(1,-2)=6-(-1)=7.

X
Problem 16-14. Recall that iff <y> is a real valued function, the gradientfof
z
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X
4
X

is the vector| Dof <y> . Whatis the gradient of the functior?@y?+2%) ™Y 2?
z

X
D3f <y>
V4

Problem 16-15. If p(t) is a parameterization of the path, thgpn p) ||t =

F(p(t))ep'(t), by the chain rule. So the Fundamental Theorem of Calculus
applies.

Problem 16-16. If cis a 1 cube parameterizir@thends = || ¢’ (t) || dt. Find
a formula forn and use an appropriate pull back to thg plane.

Problem 16-17. If ¢ = (c1,Cp,C3) is a 2 cube parameterizingthenn is

Dic; D,c,
proportional to( D1C2> x < D202> . What isdo in terms ofc?
Dic3 D,c3
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Solutions to Exercises

X Vi
Exercise 16-1. The divergence of the vector fie\d(y) = <V2> is %Vl +
z V3

v+av
27T [-V3-
0z

dy
Exercise 16-2. d(e?¥ dx—sin(xy) dy) = (ye®¥ dx+xe¥ dy) Odx — (y cosy) dx +
xcosfy) dy) Ody = xe¥ dy Odx -y cosky) dx [1dy = (—x€¥ —y cosfy)) dx [1dy.

Exercise 16—-3. Hered(2x + 3y) = 2dx+ 3dy = W. The same is true for the
function &+ 3y + 17. There are many other choices.

Exercise 16—4. A parameterization of the path t) = t( ?) forO<st<1,

1
so thatp"W = 2(5dt) + 3(7dt) = 31dt. Hence [ p“W = / 31dt=31.
0

Exercise 16-5. One parameterization of a path above the origip(3 =
0

(_C;)isntt> for —-r < t < 0. This gives the work done af( —1dt = 71. One
-1

cost

parameterization of a path below the origirpis) = (sint

)for—nstso,

0
which gives the work done af[ ldt=-m.

-7t

106

Exercise 16-6. Here it is convenient to use a different parameterization for
each side of the square. The boundary of the square should be traversed in a
counterclockwise direction to measure outflow. All parameterizations here are

forO<t<1. Forthe bottom edgec =t andy = 0 sodx = dt anddy = 0 giving
both the pull back and integral as 0. For the right edge: 1 andy =t so that
dx = 0 anddy = 1 giving the pull back asdt and the integral asl. For the
top: x = (1-t) andy = 1 so thatdx = —dt anddy = 0 giving the pull back asdt
and the integral asl. For the left edgex = 0 andy = 1 -t so thatdx = 0 and
dy = —dt giving the pull back and integral as 0. The total integrai2s

Exercise 16—7. If the divergence is zero, the previous example shows that the
net flow across any boundary must be zero. So the fluid can not be compressable.
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