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Preface: A note to the Student

These lecture notes are meant to accompany the textbook, not to replace it.
It has been my experience that students who attempt to use lecture notes (even
mine, which I have to admit, are practically perfect) in lieu of the textbook receive
abysmally poor final term grades. However, properly using the lecture notes can
help you.

Here is how I would suggest you study in this class.

Read the pertinent sections in the textbook prior to attending the class lecture.
Come to class.

Pay attention. Although I use the notes during class, I will not follow the notes
verbatum, and I will most certainly not stand in front of the class and read
the notes out loud to you. I will frequently also include additional material so
you need to keep sharp.

Take notes in class. Some students find it helpful to have a copy of these
lecture notes in front of them, but others do not. It is a personal style, and
you will have to decide what is right for you.

Review your notes after class, before you try to do the homework. Compare
your notes with the lecture notes; you can use the lecture notes to check to
see if you copied the formulas correctly, or if you don’t understand something
in your notes.

Reread or at least skim back over the chapter after reviewing your notes.

Do the exercises at the end of the chapter. Note that this step comes AFTER
you have read the chapter, not before.

If you don’t understand something, go back over the chapter, your class notes,
and the lecture notes, in that order. If that doesn’t help, ask me during office
hours, during class, or via email for help.

Sometimes you will run into something in either the notes or the text that just
plain does not make sense. If you can manage it, skip over the problem, or go on
with the next step or sentence in what you are reading. Come back to it later,

iii
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sometimes the answer will come to you.

And finally, even though the textbook is in its zillionth edition and I've been
writing and revising these lecture notes since you were in kindergarten neither is
perfect, and there are still plenty of typographical errors in each. Please let me
know of any errors you discover. In particular, just prior to the fall 2006 term
these notes were translated en-masse from one word processor (MS-Word) to an-
other (XTEX2¢z). Much of this translation was automated, and even computers
sometimes makes mistakes ©.

As your teacher I am here to help you. Feel free to contact me during my office
hours with any questions or problems you have at all - that is what the office hours
are for. And there is always email.

If you are a student in another Math 250 section at CSUN you are also welcome
to use these notes. But you should check with your instructor first. There is no
guarantee that he or she will approve of, agree with, or appreciate the material in
these notes. Furthermore, there is virtually no chance at all that your teacher will
cover the exact same material in the same order and with the same emphases placed
on the different subtopics that I have chosen. These notes are provided without any
guarantee whatsoever. Remember that you cannot use the excuse “but that’s the
way Shapiro did it in his lecture notes” in your class, especially if it turns out there
is a bug in the notes. So be forewarned. And enjoy!
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The order in which the material is covered is more-or-less the same order as it is
presented in the textbook. The following table provides a cross-reference between
the notes and the textbook.

Lecture | Topic Text Reference
1 Cartesian Coordinates 14.1
2 Vectors 14.2
3 Cross Products 14.3
4 Lines and Curves 14.4
5 Velocity, Acceleration, and Curvature | 14.5
6 Surfaces 14.6
7 Cylindrical and Spherical Coordinates | 14.7
8 Functions of 2 Variables 15.1
9 Partial Derivatives 15.2
10 Limits and Continuity 15.3
11 Gradients 15.4, 15.5
12 Chain Rule 15.6
13 Tangent Planes 15.7
14 Unconstrained Optimization 15.8
15 Constrained Optimization 15.9
16 Double Integrals: Rectangles 16.1, 16.2
17 Double Integrals: General 16.3
18 Double Integrals: Polar 16.4
19 Surface Area 16.6
20 Triple Integrals 16.7, 16.8
21 Vector Fields 17.1
22 Line Integrals 17.2, 17.3
23 Green’s Theorem 17.4
24 Flux Integrals 17.5, 17.6
25 Stokes’ Theorem 17.7
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Examples of Typical Symbols

Used

Table 1: Symbols Used in this Document

Symbol Description

| Used to indicate the end of a proof or example
\Y% “Nabla” or “Del” gradient operator

Vf Gradient of a scalar function

V- F divergence of a vector field

V xF curl of a vector field

a,b,... constants

D, f,Dyg,.. partial derivative of f w.r.t. x, or g w.r.t. y
ferGys -

oS boundary of surface C

of Jox partial derivative

D,f(P) directional derivative of f in the direction u at the point P.
Sz Fyys Foy second partials, mixed partials

1,9, h,. .. scalar functions

f(x),9(y),. .. scalar functions of a single variable
flz,y),g9(u,v),... scalar functions of two variables

f(z,y,2),... scalar function of 3 variables
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Table 1: Symbols Used in this Document
Symbol Description
F,G(z,y,..),. .. Vector function, with or without explicit variables.
1 (), df Jdx the derivative of f with respect to x
f:D—R the function f has a domain D and a range R
fR"— R™ the function f has an n-dimensional domain
and an m-dimensioned range.
lim,_,, the limit as x approaches y
u,v,... vectors
u-v,p-q,... dot product between vectors
uxv cross product between vectors
P,Q,... points
PQ,RS.... line segments between points
I:TQ,. .. vector from P to Q
R, R?,R3 real numbers, real line, 3D space
R"™ n-space
T, Y, 2, .. variables
||, | f(z)],. .. absolute values
v, |F(z,y, 2)],- - vector norms
(z,y), (x,y), v two-dimensional vector with components x and y
Yy

three-dimensional vector with components z, vy, z

z
a b c
a b
d e f|, Matrices
c d
g h 1
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Table 1: Symbols Used in this Document

Symbol Description
a b ¢
a b
d e fl, Determinants
c d
g h i
i single, double, triple integral
fCa f fC, Hfo integrals over a specific domain
f; definite integral
f; ff iterated double integral
f; ff f7“ iterated double integral
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Lecture 1

Cartesian Coordinates

We express a point in three dimensions as an ordered sequence (x, y, z). In Cartesian
coordinates, the third axis (the z-axis) is raised perpendicular to the x-y plane
according to the right-hand rule:

1. Construct the x-y plane on a piece of paper.

2. Place your right hand on top of the paper at the origin with your fingers
curling from the x-axis toward the y-axis.

3. Your thumb should be pointing upwards out of the paper. This is the direction
of the z-axis.

Figure 1.1: Cartesian coordinates.

Definition 1.1 (Distance Formula) The distance between two points Py = (1,1, 21)
and Py = (2, Y2, 22) is calculated using the following distance formula

PQ| = /(21— 22)? + (y1 — ¥2)® + (21 — 22)? (1.1)



2 LECTURE 1. CARTESIAN COORDINATES

Example 1.1 Find the distance between P = (7,5, —3) and Q = (12,8,6).

According to the distance formula,

1PQ| = (21— 22)>+ (y1 — 42)2 + (21 — 22)?
= V(7T-12)2+ (5 —8)2+ (-3 —6)2
= V(=52 +(=3)2 + (-9)?
= V25+9+81 =115~ 10.72

Therefore the distance is approximately 10.72.H

Example 1.2 Show that the triangle with vertices given by P = (2,1,6), Q =
(4,7,9) and R = (8,5, —6) is a right triangle.

We use the fact that a right triangle must satisfy the Pythagorean theorem. The
lengths of the three sides are:

PQl = V(@4 —-22+(T—-1)24+(9-62=vV4+36+9=V49=7

IPR| = (8—2)2+(5—1)2+(—6—6)2=+/36+ 16 + 144 = V196 = 14

IQR| = VB8—42+(5-7)2+(—6—-9)2=16+4+ 225 = /245
Since

|PQ|? + |PR> = 49 + 196 = 245 = |QR/*

we know that the triangle satisfies the Pythagorean theorem, and therefore it must
be a right triangle. B

Definition 1.2 A sphere is locus of all points that are some distance r from some
fized point C. The number r is called the radius of the sphere.

Suppose that C' = (z9, Yo, 20). Then the distance between C and any other point
P =(z,y,2)is

|PC| = /(x — x0)2 + (y — %0) + (2 — 20)? (1.2)

If P is a distance r from C, then

r=/(z—x0)2 + (y — v0)> + (z — 20)° (1.3)

That is the condition that all points a distance r from C must satisfy. Equivalently,
the squares of both sides of (1.3) are equal to one another,

r? = (z—20)°+ (y — w0)* + (z — 20)? (1.4)

Definition 1.3 FEquation (1.4) is called the standard Equation of a Sphere of
radius v and center C' = (x9, Yo, 20).

Revised December 6, 2006. Math 250, Fall 2006



LECTURE 1. CARTESIAN COORDINATES 3

Example 1.3 . Find the center and radius of the sphere given by
4448 — 4y —22: 4+ 77 =0 (1.5)
Completing the squares in equation (1.5),

0 = 2248z +y? —dy+22—2224+77
= 224 8r+4% — 42 49 —dy +(—2) — (=2)2 + 22 =222+ (—11)2 — (—11)2 +- 77
= (@+4)2-16+(y—22 -4+ (z—11)2 121 + 77
= (+4)2*+(@y—2>2%+(2—-11)* - 64

Rearranging,
(z+4)%+ (y—2)* + (2 — 11)* = (8)? (1.6)

Comparing equations (1.6) and (1.4) we conclude that the center of the sphere is at
Co = (—4,2,11) and its radius is r = 8. W

Example 1.4 Find the equation of a sphere that is tangent to the three coordinate
planes whose radius is 6 and whose center is in the first octant (see text, page
599,#27).1

Figure 1.2: Place the ball in the corner where the three walls come together.

z-axis

y-axis
x-y plane

x-axis - out of the paper

Now imagine placing a ball that is 6 inches in diameter right in the corner. If you
push the ball right about against both walls and the floor it will be 6 inches from
each wall. Hence the center of the ball will be at

C = (6,6,6)
Since the radius of the ball is 6, the equation of the sphere is

(x—6)2+(y—6)°+(z—6)* =361

IThe first octant is that region of space where > 0, y > 0, and z > 0.

Math 250, Fall 2006 Revised December 6, 2006.



4 LECTURE 1. CARTESIAN COORDINATES

Example 1.5 Suppose that two spheres of equal radii have their centers at
P = (-3,1,2)
Q = (57 _Ba 6)

Find the equations of the two spheres if the two spheres are just touching (tangent)
at precisely one point. (See the text, page 599 #26.)

Since the two spheres are tangent at a single point, the radius is one half the distance
between the two centers (think of two bowling balls that are just touching one
another). Hence

2r = |PQ|=+/(—3-5)2+(1——=3)2+(2—6)?
V(=8)2 + (4)% + (—4)2 = /64 1 16 + 16 = V96

and therefore ) 96
r:§\/96:>r2:Z:24

The equation of the sphere centered at P = (-3, 1,2)is
(432 +@x—-1)>*+(x—-2)2=24
while the equation of the sphere whose center is Q = (5, —3,6) is
(=524 (y+3)7°+(—6)* =241

Theorem 1.1 Midpoint formula. The coordinates of a point halfway between the
points

P = (xl,yl,zl)
and
Q = (72,y2,22)
are given by the formula
r1+T2 Y1 +y2 21+ 22
(g ) = (P12 P B (1.7

Example 1.6 Find the equations of the sphere that has the line segment between
(-2,3,6) and (4,-1,5) as its diameter.

The center of the sphere must be the center of the line segment between the two
points (-2, 3, 6) and (4, -1, 5),

—244 3+-1 645
C—< g3 >_(1,1,5.5)

The diameter of the sphere is the length of the line segment,
d=(—2-42+B—-—1)2+(6-52=v36+16+1= 53
The radius is one-half the diameter, » = v/53/2 The equation of the sphere is then
(x—1)*+(y—1)?+ (2 — 5.5)? = 53/4.1
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LECTURE 1. CARTESIAN COORDINATES 5

Definition 1.4 A linear equation is any equation of the form
Az +By+Cz=D (1.8)

where A, B, C and D are constants and A, B and C are not all zero (D may be
zero).

Theorem 1.2 An equation is linear if and only if it is the equation of a plane,
i.e., linear equations are equations of planes, and all equations of planes are linear
equations.

Theorem 1.3 Properties of a linear equation. Suppose that Ax+By+Cz = D.
Then

1. If A # 0, the z-intercept is at D/A. If A = 0, the plane is parallel to the
ZT-aTiS.

2. If B # 0, The y-intercept is at D/B. If B = 0, the plane is parallel to the
Y-axis.

3. If C # 0, The z-intercept is at D/C. If C = 0, the plane is parallel to the
2-axLs

If D # Othen the equation of a plane is

A B, 8
p* T DY DT
which we can rewrite as
v + Y + : =1
D/A D/B D/C
Let
a = DJ/A
b = D/B
c = D/C
Then
Ty
a b ¢

where a is the z-intercept, b is the y-intercept, and c is the z-intercept.
Example 1.7 Sketch the plane —3x + 2y + (3/2)z = 6

The x-intercept is at 6/(-3)=-2, which is the point (-2, 0, 0)
The y-intercept is at 6/2=3, which is the point (0, 3, 0)
The z-intercept is at 6/(3/2)=4, which is the point (0, 0, 4)

The plane is sketched in figure 1.3. B

Math 250, Fall 2006 Revised December 6, 2006.



LECTURE 1.

CARTESIAN COORDINATES

Figure 1.3: The plane in example 1.7 is sketched by first finding the three coordinate
intercepts and then drawing a triangle to connect them.

A

4

Figure 1.4: Left: the line x + y = 4 in the zy-plane. Right: cross section of the

plane x 4+ y = 4 with the plane z = 4.
Ay

N

x-y plane

y=4
x+y=4

fﬁ

x=4

A

(0,4%

(1,1,4)

Ny
horizonal plane through (1,1,4)

y=4

Tangency point is midpoint
between (0,4,4) and (4,0,4)

Revised December 6, 2006.
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LECTURE 1. CARTESIAN COORDINATES 7

Example 1.8 Find the equation of sphere that is tangent to the plane x +y = 4
with center at the point P = (1,1,4). (See the text, page 599 #28.)

In two dimensions (the xy-plane), the equation x+y = 4 describes a line of slope
—1 with y-intercept of 4. This line also crosses the z-axis (has z-intercept) at = = 4
(see figure 1.4.) In three dimensions, this equation x + y = 4 represents a vertical
plane whose projection onto the xy-plane is the line x + y = 4.

To find the equation of the desired sphere, consider the horizontal plane passing
through P, namely, the plane z = 4. This plane sits parallel to and directly above
the xy-plane, and from an illustrative point of view (see figure 1.4) looks just like
the zy-plane. The center of the sphere will lay at (1, 1, 4), or at the point (1,1)
of the equivalent xy-plane look-alike illustration. The cross section of the sphere
with this plane is a circle of radius r (whose value is not yet determined) that is
tangent to the line x 4+ y = 4 in this plane. The point of tangency is point on the
line that is closest to the point (1,1). By symmetry, this must be the midpoint of
the z-intercept and y-intercept, which is

0+4 4+0 4+4
(515050 - e

The radius is the distance between the center at (1,1,4) and the point of tangency
at (2,2,4):

r=v1-22+1-22+4-42=2

Hence the equation of the sphere is

(z—12+(@y—-172%+(z—4)2?=21

Math 250, Fall 2006 Revised December 6, 2006.
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Lecture 2

Vectors 1in 3D

Properties of Vectors

Definition 2.1 A displacement vector v from point A to point B is an arrow
pointing from A to B, and is denoted as

v=AB (2.1)

In general, we will use the same notation (e.g., a boldface letter such as v) to
denote a vector that we use to describe a point (such as A) as well as a matrix. In
most cases (but not always) we will use upper case letters for points (or matrices)
and lower case letters for vectors. Whenever there is any ambiguity we will write
a small arrow over the symbol for the vector, as in v, which means the same thing
as v. A small arrow over a pair of points written next to each other, as in AB is
used to denote the displacement vector pointing from A to B. If v is a vector then
v denotes its magnitude:

Definition 2.2 The length or magnitude of a vector v is the distance measured
from one end point to the other, and is denoted by the following equivalent notations:

v=v|=vl (2.2)

In print the notation v is more common for a vector; in handwritten documents
(and some textbooks) it is usual to write ¢ for a vector.

Figure 2.1: Concept of a vector as the difference between two points.

the vector

V:B-A<‘

points



10 LECTURE 2. VECTORS IN 3D

If the point A = (24, Ya, 24) and the point B = (xp, yp, 25) then we define the
components of the vector v=AB as v = (v, vy, v;), where

v = (’Uz,'Uy,’Uz) = (xb_l'aayb_yaazb_za) (2'3)
We observe that the difference of two points is a vector, and write this as
v=AB=B-A (2.4)

There is no equivalent concept of the sum of two points, although we will see that
it is possible to add two vectors.

The text uses angle brackets () to denote a vector in terms of its components:
(a,b,c) = (a,b,c) (2.5)

The use of parenthesis is more common, although angle brackets are used whenever
there is some possibility of confusion between vectors and points.

Theorem 2.1 The magnitude of a vector v = (vg, vy, v;) is given by

VIl = /0% +vj +v2 (2.6)

Proof. According to the distance formula, the distance from A to B is

VI = V(@b — 2a)? + (Y — Ya)? + (26 — 20)% = \/m.l

Definition 2.3 Two vectors v and w are said to be equal if they have the same
magnitude and direction i.e., they have the same length and are parallel, and we
write v.=w

Theorem 2.2 Two vectors v .= (Uz,0y,v;) and W = wy, wy,w, are equal if and
only if their components are equal, namely the following three conditions all hold:

Vg = Wy, Uy = Wy, Vy = Wy (2.7)
Definition 2.4 The zero vector, denoted by 0, is a vector with zero magnitude
(and undefined direction).
Operations on Vectors

Definition 2.5 Scalar Multiplication or multiplication of a vector by a
scalar is defined as follows. Suppose that a € R is any real number and v =
Ugy Vy, Uy € R3 is a vector. Then

av = a(vg, vy, v;) = (aVg, avy, av;) (2.8)

Revised December 6, 2006. Math 250, Fall 2006



LECTURE 2. VECTORS IN 3D 11

Figure 2.2: Scalar multiplication.

V+V+V 3v
v+v 2v
v -V

Scalar multiplication changes the length of a vector, as illustrated in figure 2.2. As
a consequence of definitions 2.3 and 2.4, we also conclude that

0= (0,0,0) (2.9)

Definition 2.6 Vector additive inverse or the negative of a vector. Suppose
that v = (vy,vy,v,). Then

—v = (=1)v = (—vz, —vy, —03) (2.10)

Figure 2.3: Illustration of vector addition. Top: the three vectors u, v, and w =
u + v. Bottom: vector addition, and illustration of commutative law for vector
addition: u4+v=v+u.

Vector addition, illustrated in figure 2.3 proceeds as follows: Join the two
vectors head to tail as show in the figure to the right and then draw the arrow from
the tail to the head. Addition is commutative: the order in which the vectors are
added does not matter. A vector sum can be calculated component-by-component;
suppose that v = (vg, vy, v,) and u = (ug, uy, u.). Then

U+ v = (Ug, Uy, Uz) + (Vg, Uy, vz) = (Ug + Vg, Uy + Vy, Uz + V) (2.11)
Vector subtraction is similar, and is induced by the idea that we want

v-u=v+-u (2.12)

Math 250, Fall 2006 Revised December 6, 2006.



12 LECTURE 2. VECTORS IN 3D

To obtain u - v, start (1) by placing the second vector at the head of the first and
then (2) reflect it across its own tail to find —u. Finally, (3) draw the arrow from
the tail of u to the head of the reflection of v. Observe that this process is not
reversible: u - v is not the same as v - u. In terms of components,

u— v = (Ug, Uy, Uy) — (Vg,0y,0;) = (Ug — Vg, Uy — Vy, U, — V) = —(V—u) (2.13)

Figure 2.4: Vector subtraction, demonstrating construction of v—u (left) and v—u
(right). Observe that v—u = —(v —u)

Theorem 2.3 Properties of Vector Addition € Scalar Multiplication. Let
v, u, and w be vectors, and a,b € R be real numbers. Then the following properties
hold:

1. Vector addition commutes:

viu=u+v (2.14)

2. Vector addition is associative:

(u+v)+w=u+(v+w) (2.15)

3. Scalar multiplication is distributive across vector addition:

(a+bv = av+bv (2.16)

a(v+w) = av+aw 2.17)

4. Identity for scalar multiplication

lv=vl=v (2.18)

5. Properties of the zero vector

Ov=0 (2.19)
0+v=v+0=v (2.20)

Revised December 6, 2006. Math 250, Fall 2006



LECTURE 2. VECTORS IN 3D 13

Definition 2.7 The dot product or scalar product u - v between two vectors
V = (Ug, Uy, vz) and u = (ug, Uy, u;) s the scalar (number)

UV = UgUy + UyVy + UV, (2.21)

Sometimes we will find it convenient to represent vectors as column matrices.
The column matrix representation of v is given by the components v, vy, and v,
represented in a column, e.g.,

Uy Uz
v= (v, | ,u= |1y (2.22)
vz uz

With this notation, the transpose of a vector is

ul = (uz uy us) (2.23)
and the dot product is
Vg
wv=uv=(u uy uw) vy | =ugvs +uyvy + uv, (2.24)
Uz

which gives the same result as equation (2.21).
Example 2.1 Find the dot product of @ = (1,—3,7) and ¥ = (16,4, 1)
Solution. By equation (2.21),

u-v=(1)(16) + (=3)(4) + (1)(1) =16 — 12+ 7= 11.M
Theorem 2.4 ||v| =V v
Proof. From equation (2.21),

V-V = U0 + UyUy + U0, = HVH2

where the last equality follows from equation (2.6).H

Example 2.2 Find the lengths of the vectors i = (1,—3,7) and ¥ = (16,4,1)

Solutions.

[ul = V(1)2 + (=3)2 + (7)2 = VI+ 9+ 49 = V59 ~ 7.681
[v]| = V/(16)2 + (4)2 + (1)2 = V256 + 16 + 1 = v/273 ~ 16.523M

Math 250, Fall 2006 Revised December 6, 2006.



14 LECTURE 2. VECTORS IN 3D

Theorem 2.5 u-v = ||ul|||v]| cos ¥, where § is the angle between the two vectors u
and v.

Proof. We can use the law of cosines to determine the length |[u — v|| (see figure
2.5).

Figure 2.5: The triangle with sides |[ul|, ||v||, and |ju — v]|.

\

N vl
\

la =] = ful* + [[v]* = 2[u]| v cos 0

Hence

2[ulllviicos® = [lul* + [[v]* — [Ju—v]?

u-u+v-v—(u—v):(u—v)

u-ut+v-v—[ju-(u—v)—v-(u—v)

u-utv-v—juru—u-v—-v-u+v-v|

= 2u-v
Therefore the dot product can be written as
u-v = |uf|||v|cost R

Corollary 2.1 . Two vectors are perpendicular if and only if their dot product is
zero.

Example 2.3 Find the angle between the two vectors in @ = (1,—3,7) and U =
(16,4,1)

Solution. We use the fact that u-v = |Ju|||v| cosf. From the previous examples,
we have

lu| = V59
vl = V273
u-v = (1)(16) + (=3)(4) + (7)(1) =16 — 12+ 7 = 11,
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LECTURE 2. VECTORS IN 3D 15

Hence
u-v = |ufl||v] cosf
= 11 =v59v273cos bt = /16107 cos b
= 0 1 1 0.087
cosf = ~—~0.
V16107 127
= 0 =~ arccos(0.087 ~ 29degll

Example 2.4 The basis vectors are all mutually orthogonal to one another:

ii=j j=k-k=1
ij=j-k=k-i=0

Unit Vectors, Direction Angles and Direction Cosines

Definition 2.8 A unit vector is any vector with a magnitude of 1. If v is a unit
vector, it is (optionally) denoted by v.

Theorem 2.6 Let v # 0 be any vector. Then a unit vector v parallel to v is

R v
vV=—
[[v]]

Proof. To verify that ﬁ is a unit vector,
- IGErwr el
VI vl vl
v )2 vy \2 v, \2
-y Ge) + () = ()
v v v

\%

INgl

1
= M U%“‘U;""Ug
M,

v

Vv

To see that u =
(vl

and v are parallel,

but, letting 8 be the angle between u and v
u-v = |jul|||v| cosd = ||v| cosb

Equating the two expressions for u - v gives cos = 1 or # = 1. Hence the vectors
are parallel. Since u has magnitude one and is parallel to v we conclude that
v=u=v/|v|. B

Math 250, Fall 2006 Revised December 6, 2006.



16 LECTURE 2. VECTORS IN 3D

Example 2.5 Find v, where v = (3,0, —4).

Solution. Since
vl = /3 (=42 = 5

3 4
g= " = (,0,-).
vl \5 5

Three special unit vectors that are parallel to the x, ¥y and z axes are often
defined,

then

i = (1,0,0) (2.25)

j = (0,1,0) (2.26)

k = (0,0,1) (2.27)
In terms of i, j and k, any vector v = (vg, vy, v;) can also be written as

v = ('Uma Vy, Uz)
= (v3,0,0) + (0,vy,0) + (0,0,v)
= 1,(1,0,0) + vy(0,1,0) + v,(0,0,1)
= vid+ujt+ok
The unit vectors i, j and k are sometimes called the basis vectors of Euclidean

space. Since i, j and k are always unit vectors, we will usually refer to them without
the “hat.”

If v = (vg, vy, v,) then

V-i= (vg,0y,v:) - (1,0,0) = v,
V- j = (vg,0y,0;) - (0,1,0) = v,
v -k = (vg,vy,v:) - (0,0,1) = v,

Definition 2.9 The direction angles {«, 3,7} of a vector are the angles between
the vector and the three coordinate azxes.

Definition 2.10 The direction cosines of a vector are the cosines of its direction
angles.

Since the vectors i, j, k are parallel to the three coordinate axes, we have

v-i = ||v|]cosa
v-j = [vlcoss
v-k = |v]cosy

Thus the three direction cosines are

v-i v-k
cosq = ,co8 0 = || || ,COo8y =

]’
Revised December 6, 2006. Math 250, Fall 2006
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and the direction angles are

.j .3 .k
o = arccos <VI> , 3 = arccos <v_]> ,7Y = arccos <V> (2.29)
v v v

Example 2.6 Find the direction cosines and angles of the vector v = (4, —2,—4)

Solution. First, we calculate the magnitude of v,

vl = V@2 + (272 + (47 = 6

Thus the three direction cosines are

vei 4002
cosqy = — = — = —
vl 6 3
A 2 1
cosff = —=——=——
v 6 3
v-k 4 2
cos = — ===
770V 6 T3

and the direction cosines are

2
Q = arccos <3> ~ 48.19deg
1
[ = arccos (—3) ~ 109.47 deg

2
7Y = arccos <3> ~ 131.81 degI

Projection of one vector on another vector.

Consider any two vectors u and v, as illustrated in figure 2.6. We can always express
v as the sum of two vectors:

v=m-+n (2.30)

where m is parallel to u and n is perpendicular to u. Let 0 bet the angle between
u and v. Then

[[ml| = [Jv]| cos 0 (2.31)
Since m and u are parallel, then they must have the same unit vectors, so that
m=u
Therefore
m = ||m|m = (||v|cosf)m = (||v|cosf)a = (v-a)a (2.32)

and since v =m + n,

n=v-m (2.33)

Math 250, Fall 2006 Revised December 6, 2006.



18 LECTURE 2. VECTORS IN 3D

Figure 2.6: A vector u is expressed as the sum of its components m parallel to u
and n perpendictular to u.

Definition 2.11 The projection of a vector v on u is
pru((v)) =m= (v-d)a (2.34)

Example 2.7 Express v = (—3,2,1) as the sum of vectors m parallel and n per-
pendicular to u = (—3,5,—3).

Solution.

lu = V(=3)2+(5)2+(-3)2= V43

u 1
a = —=—(-3,5,-3)
[ul V43
1 16
v-a = —((-3)(=3)+B)(2)+(=3)(1)) =
= (39 +O)) + (3)(1) = =
. 16 B 48 80 48
"o (V'“)u_43(_3’5’_3)_< 43743 43>
48 80 48 1
= v-m=(-3,2,1)—-|—,—,—— ) ==-(3,-26,31) .1
0= vom= (320 (<5 g ) =7 G20
Example 2.8 Express v.= (2,—1,—2) as the sum of vectors m parallel and n
perpendicular to u = (2,4,5).
Solution.
lul = V(22 + 4?2+ (5)2=V45
u 1
i = — =-——(2,4,5)
[l V45
1 10
v = —((2)2) + (-1)4) + (=2)(5)) = ———
= () + ()@ + (2)6) =~
10 1
= ‘a)u=—-——(2,4,5)=—-(4,8,10
m o= (voa)a= - (24,5) =~ (4.8,10
1 81 6 91
— vem=(2,-1,-2)— > (4,8,10) = (——=, > =
no= vem=(2-1-2) - 54810 (43’43’43)
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LECTURE 2. VECTORS IN 3D 19

The Equation of a Plane

To find the equation of a plane through a point P = (21, y1, 21) that is perpen-
dicular to some vector n = (A, B, C),

1. Let Q = (z,y, 2) be any other point in the plane.

2. Let v be a vector in the plane pointing from P to Q:
v=Q-P=(z—-21,y —y1,2 — 21)

3. Since v must be perpendicular to n, the dot product v - n = 0, hence

Al —z1) + By —y) + (2 —21) =0

4. Rearrange to give

Ar+By+Cz=Ax1+By1+Cz1=n-P

Example 2.9 Find the equation of a plane passing through (5, 1, -7) that is per-
pendicular to the vector (2,1,5)

Solution By the construction described above, the equation is
204+ y+52=(2)(5) + (1)(1) + (5)(—=7) = —241
Example 2.10 Find the angle between the planes
3z —4y+T7z=5

and
20 -3y +42 =0

Solution. We find the normal vectors to the planes by reading off the coefficients of
x, y, and z; the normal vectors are n = (3, —4,7) and m = (2, —3,4). Their angle
of intersection 6 is the same as the angle between the planes. To get this angle, we
take the dot product, since m - n = ||m||nl| cos§. We calculate that

jm = V39

| = V7

mon = (2)(3)+(=3)(—4) + (4)(7) = 6+ 12 + 28 — 46
cosf = 1 16 ~ 0.0214

[mlf[ln] — (29)(74) — 2146
# = arccos.214 ~ 88.8degll

Example 2.11 Find the equation of a plane through (—1,2,—3) and parallel to the
plane 2x + 4y — z = 6.
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20 LECTURE 2. VECTORS IN 3D

Solution. Since both planes are parallel, they must have the same normal vector.
Hence
n=(2,4,-1)

Since in general the equation of any plane
n-(r,y,z) =n-P (2.35)

where P is a specific point on the plane and n is any vector normal to the plane,
then the plane we are looking for is given by

2r+4y —z=1(2,4,-1)-(-1,2,-3) = (2)(-1) + (4)(2) + (-1)(-3) =9.1
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Lecture 3

The Cross Product

Definition 3.1 Let v and w be vectors. Then the cross product v X w is a vector
with magnitude

[[v < wi = [[v]l[}w][sin® (3.1)

and whose direction is perpendicular to the plane that contains v and w according
to the right hand rule:

1. Place v, w so that their tails of the vector coincide;
2. curl the fingers of your right hand from through the angle from v to w.

3. Your thumb is pointing in the direction of v x w

The construction of the cross product is illustrated in figure 3.1. Geometrically,
the cross product gives the area of the parallelogram formed by the two vectors, as
illustrated in figure 3.2.

Figure 3.1: Geometry of the cross prouct. v x w is perpendicular to both v and w.

VXW

There are a number of different ways to calculate the cross product by compo-
nents. For example, suppose that u = («, 3,7) and v = (a, b, ¢). Then to calculate
u X v, define the matrix

0 — p
U=|v 0 -« (3.2)
e 0
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Figure 3.2: The magnitude of the cross product is equal to the area of the paral-
lelogram formed by the two vectors. The areas of the two gray triangles are equal,
hence the area of the parallelogram is equal to the area of the rectangle of width
||v|| and height ||w|| sin 6.

The product of a square matrix M and a column vector v is a column vector u = Mv
that is defined as follows:

mi1 Mmi2 MM13 U1
Mv = ma1 MmM22 m273 V2
ms3i1 Mm32 MM33 U3

(m11 mao myg)- (v1,v2,v3)
= (m2,1 ma22 m2,3) : (U1, V2, U3)
(m31 m32 m3g3)- (v1,v2,v3)
m1,1V1 + M1,202 + M1 303
= Mo 11 + M2 2V2 + Mg 3vU3
m3,1v1 + M3,2v2 + M3 303

Then the cross product is equivalent to the matrix product:

0 — # a cf — by
uxv=Uv=|~v 0 -« bl =|ay—ca (3.3)
-0 « 0 c ba — af

where now we are using column matrices to denote the vectors v and u x v. The
use of column vectors and matrices is particularly useful if we are computing a long
string of vector calculations, such as u- (v x w).

Example 3.1 Find v Xx w, where v =2i+j— 2k and w = 3i + k.

Solution. From equation (3.3),

0o 2 1 3 1
VW = -2 0 -2 0] =1-8
-1 2 0 1 -3

In our “standard” form, then, v x w = (1,—8,—3).1
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Proof of equation 3.3.
To show that Uv is perpendicular to both v and u we compute the dot products:

B —by
u-(Uv) = uTUv:(a B ) |ay—ca
ba — af

= o(cf —by) + Bay — ca) +y(ba —af) =0

cff — by
v-(Uv) = vTUv:(a b ¢)|ay—ca
ba — af

= a(ef —by) +blay — ca) + c(ba—af) =0

To show that the product given by equation (3.3) has length ||u|||v| sin @, observe
that

> = (lullsin6) + (|[ul| cos 6)*
lalIvi> = (lulllvllsing)® + (Jull|v] cos §)*
(lallllv] sin6)* + (u - v)*
(halllvlising)* = flul*|v]* — (u-v)*
= (®+82+9%) (@®+0*+*) — (aa+ Bb+7c)
= o (a®+b*+) + 3% (a® + b2+ %) +7% (a® + b* + &)
—aa (oa + Bb+ ye) — b (ca + Bb + yc¢) — ye (aa + Bb + ~c)
= a?b? + o’ + Pa® + 2P + 72a® + 4% — 208ab — 2ayac — 2[vbe

Now consider the magnitude ||Uv||,

|Uv|* = a’y—ca
ba — ap

= (cB—b)*+ (ay — ca )* + (ba — afB)?
= 26% — 2bcfy + V242 + a®y? — 2acay + o + b%a® — 2abaf + a® 52
= (lulllv sing)*

and therefore
10| = [[ufl[[v]sind = [u x v|
Hence the cross product’s components are given by equation (3.3). W
Definition 3.2 (Determinant of a Square Matrix.) Let
a b
M =
(¢ )
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24 LECTURE 3. THE CROSS PRODUCT

be a 2 X 2 square matriz. Then its determinant is given by

a b

detM = M| = . d =ad — be

If M is a 3 X 3 matriz, then

d e

_ale T

detM = |M|= ho

Q Q.
> o o
S-S 0

—b'd /
g 1

+c‘

and hence
det M = a(ei — fh) — b(di — fg) + c(dh — eg) (3.4)
From equation (3.4) we can calculate the following:

et — fh
detM=(a b ¢)| fg—di (3.5)
dh — eg

Let w = (A,B,C), u = (a, ,7), and v = (a,b,c), as before. Then comparing
equations (3.3) and (3.5)

cf — by
w-(uxv) = (A B C)|ay—co (3.6)
ba — af
= A(cf —by) + Blay — ca) + C(ba — aff) (3.7)
_ 48y a a f
- A’b c_Ba C+Ca b (3:8)
A B C
a b c

By analogy we can derive the following result.

Theorem 3.1 Let v = (a,b,c), u= («a,3,7), and let i, j, and k be the usual basis
vectors. Then

i j k
uxv=la [ v (3.10)
a b ¢
Proof.
i j k
_ B _sle a [
o B 7 ~ o Jac+kab
a b ¢

— i(eB — by) — jlca — ay) + k(b — af)

= uxyv

where the last line follows from equation (3.3). W
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Example 3.2 Find v x w, where v =2i+j— 2k and w = 3i + k.

Solution.
ok 1 -2 2 =2 2 1
vxw = [2 1 =2|=i —J +k
DL
= (1)) = (=2)(0)) =j((2)(1) = 3)(=2)) + k((2)(0) — (1)(3))
= i—8—3k.N

Theorem 3.2 (Properties of the Cross Product). Let u, v, and w be vectors,
and let a be any number. Then

1. w x v =—v X w — The cross product anti-commutes.
2. (av) xw=a(vxw)=vX(aw)

3. ux (v+w)=uxv+uxw— The cross product is left-distributive across
vector addition.

u x v = 0 if and only if the vectors are parallel (assuming that u, v # 0.)
ixj=k jxk=ikxi=j

jxi=-k kxj=-iixk=-j

ixi=jxj=kxk=0

u-(uxv)=v-(uxv)=0

© e N e otk

The vectors u, v,u x v form a right handed triple.
10. (uxv)-w=u-(vxw)
1. ux (vxw)=(u-w)v—(u-v)w

Example 3.3 Prove that the cross product is right-distributive across vector ad-
ditions using the properties in theorem 3.2, i.e., show that (v+w)xu = vxu+wxu.

Solution. By property (1)
(Vv+w)xu=—-ux(v+w)
By the left distributive property,
—uX (V+w)=—-uXv—-uxw
Applying anti-commutivity a second time,
—UXV—-—uUXwW=VvXu+wxu
Hence

(v+w)xu=vxu+wxull
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Example 3.4 Leta= (3,3,1),b=(-2,—-1,0),c = (—2,-3,—1). Findax (bxc)
Solution. By property (11) of theorem 3.2,

ax(bxc) = b(a-c)—c(a-b)
= (=2,-1,0)((3,3,1)- (=2, -3, —1)) — (=2, -3, —1) ((3,3,1) - (~2, —1,0))
= —16(—2,—1,0) +9(—2, -3, 1)
= (32,16,0) + (18, —27, -9)
— (14,-11,-9)m

Finding the equation of a plane through three points P, Q, R

Suppose we are given the coordinates of three (non-collinear) points, P, Q, and R,
and want to find the equation of the plain to contains all three points. The following
procedure will give you this equation.

1. Use the points to define two vectors

—
PQ=Q-P
e
QR=R-Q
It does not matter which pair you use, as long as you take any two non-parallel
—_— e — s — —
vectors from among the %} possible vectors PQ, QR, RP, QP, RQ and PR.

(Note that if you chose PQ as your first vector, the second can be any of the
—
other vectors except for QP.

2. The vectors you chose in step (1) define the plane. Both vectors lie in the
plane that contains the three points. Calculate the cross product

—_— ——
n=PQ x QR

Since n is perpendicular to both vectors, it must be normal to the plane they
are contained in.

3. Pick any one of the three points P, Q, R, say P = (ps, py,p-), and let X =
(z,y, z) be any point in the plane. Then the vector

—
PX=X-P=(z—ps,y — Py, 2 — D)

lies in the plane.

—
4. Since PX lies in the plane, and the vector n is normal to the plane, they must
be perpendicular to one another, i.e.,

—

n-PX=0
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5. In fact, every point X in the plane can be represented by some vector P—)i
pointing from P to X, and hence we can say the plane is the locus of all points
[
satisfying n - PX = 0 and hence
n-(z—ps,y—py,z—p:) =0

or equivalently,
n-(z,y,z)=n-P

since P = (pzapyapz)'

It is usually easier to reconstruct this procedure each time than it is to memorize
a set of formulas, as in the following example.

Example 3.5 Find the equation of the plane that contains the three points P =
(1,3,0), Q=(3,4,-3) and R = (3,6,2).

Solution. We start by finding two vectors in the plane, for example,

—
QP=P-Q=(1,3,0)—(3,4,-3) =(—2,-1,3)
QR=R-Q=(3,62) —(3,4,-3) = (0,2,5)
Then a normal vector to the plane is given by
— —
n = QP x QR
= (-2,—1,-3) x (0,2,5)

i j k
= |-2 -1 -3
0 2 5
_ 3 —1‘_.'—4 —1‘+k‘4 3'
—5 6 2 6 2 -5
= —11i+10j — 4k
= (—11,10,—4)

Then for any point (z,y, z) in the plane, the vector from R (where R was chosen
completely randomly from the three points) to (z,y, z) is given by

v=(r—-3,y—6,2z—2)
Since v and n must be perpendicular, then their dot product is zero:
0 = n-v=(-11,10,—-4) - (z — 3,y — 6,2 — 2)
—11(z —3) +10(y — 6) — 4(2 — 2)
—1lz+ 33+ 10y — 60 — 4z + 8
= —1lz+ 10y —42—-19

Hence the equation of the plane that contains the three points is

11z — 10y + 4z = —190
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Example 3.6 Find the equation of the plane through (2,—3,2) and parallel to the
plane containing the vectors v = 4i+ 3j — k, w = 2i — 5j + 6k.

Solution.The normal to the desired plane will also be perpendicular to the plane
containing v and w. Since the cross product of any two vectors is by definition
perpendicular to the plane containing both vectors, then one such normal vector is

i j k
n = vxw=114 3 -1
2 -5 6
_ i‘?) —1‘_j‘4 —1'+k'4 3‘
-5 6 2 6 2 -5
= 13i —26j — 26k

Since a point on the plane is (2,-3,2), the equation of the plane is

n-(zr,y,z)=n-P
(13, -26,—26) - (z,y, 2) = (13, —26, —26) - (2, —3,2)
13z — 26y — 26z = 52

Dividing the last equation through by 13 gives © — 2y — 2z = 4 as the equation of
the desired plane. B
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Lecture 4

Lines and Curves in 3D

We can parameterize a curve in three dimensions in the same way that we did in
two dimensions, associating a function with each of the three coordinates,

z=[f(t),y=g(t),z=h(t) (4.1)

where ¢ is allowed to vary over some interval that we will call I It is useful to
envision yourself as moving along the curve from one end to the other. At any time
t, you are at a point (x,y, z) on the curve. We think of the parameter ¢ as time and
then

Il
~
—~

x t) is your x-coordinate at time t
y = g(t)is your y-coordinate at time t
z = h(t) is your z-coordinate at time t.

x,,2)=(f{1).g(1),h(7))

We define our position vector r(t) at any time ¢ as the vector pointing from
the origin to our position (z,y, z) at the time ¢. This vector is then a function of ¢
and is given by

r(t) = (x(t), y(t), 2(t)) = f(O)i+ g(t)j + h(t)k (4.2)

Suppose that we walk along a straight line, as illustrated in figure 4.3, starting at
the point Py, at a time ¢ = 0, and arrive at the point P at time ¢, moving with a

29
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Figure 4.2: The vector r(t) = (f(t), g(t),h(t)) describes the position as a function
of time.

(xy,2)=(f(t+T),g(t+T),h(t+T)) (tip of arrow)
0 r(t+T)

(x,3,2)=(f(1),g(1),h(2)) (tip of arrow)

constant speed v, the whole time, then the distance between Py and P is the the
—_—
length of the vector PoP. Since speed is distance/time,

Po¥|
V=T (4.3)
or
Hfﬁ“ = ot (4.4)

If we define the veclocity vector as a vector of length v pointing in our direction
of motion,

vV =0V (4.5)
—
then it must be true that v is parallel to PyP, so that
—_—
P - PO = P()P = (U\A’) t (46)

Since the coordinates of our position vector r, are, by definition, the same as the
coordinates of the point P (see equation (4.2)),

()

where we have defined ry to be our position vector at time ¢ = 0. Equation (4.7) is
the equation of a line through rg in the direction v.

Theorem 4.1 The equation of a line through the point ro and parallel to the vector
v # 0 is given by r = rog+vt. If u # 0 is any vector parallel (or anti-parallel)
to v then r = rg + ut gives an equation for the same line.

If we denote our coordinates at any time ¢ by (x,y, z), and our velocity vector
by (vg, vy, v:), then

(ajvyv Z) — ($07y07 ZO) + (vav 7vz)t
Y

= (20, Y0,20) + (vat, vyt, vst)
= (w0 + vat,yo + vyt, 20 + Ust) (4.8)
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Figure 4.3: The equation of a line is parametrized by.

K P=tip of r(¢)

y

Py=tip of r(0)

If two vectors are equal then each of their components must be equal,

‘:r:xo—i-vmt,y:yo—i—vyt,z:zo—i—vzt (4.9)

Equation (4.9) gives the parametric equation of a line. The numbers v, vy,
and v, are called the direction numbers of the line.!

Example 4.1 Find the parametric equation of a line through the points (2,—1,5)
and (7,-2,3).

Solution. We can define

rop = (2,—1,5)
r = (7,—2,3)

so that
v=r;—ro=(7,-2,3) - (2,-1,5) = (5,—1,-2)

is a vector parallel to the line. Hence the equation of the line is
r=(2,-1,5)+ (5,—1,-2)t = (24 5t,—1 — t,5 — 2t)
The parametric equations of the line are
r=2+5bt,y=—1—-t,z=5—-2t.1A

If v, # 0,vy # 0, and v, # 0, then we can solve for the variable ¢ in each of
equations (4.9),

t = (x—2x0)/vg (4.10)
t = (- wo)/vy (4.11)
t = (z2—20)/vs (4.12)

'The term “direction numbers” is rarely used and should probably be avoided, even though it
is mentioned prominently in the text.
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Since t must be the same in all three equations, we obtain the symmetric equa-
tions of a line,

7% _Y7% _Z7% (4.13)

Vg vy vy

Example 4.2 Find the symmetric equations of the line we found in example 4.1.
Solution. In the earlier example we calculated that

V = (Vg,0y,0;) = (5, —1,-2)
is parallel to the line, and that the line goes through the point

(20, Y0, 20) = (2, —1,5)

Hence

r0=2, yYyo=-1, 20=5

Vg =9, vy=-1, wv,=-2

and thus the symmetric equations of the line are

r—2 y+1 2z-95
5 -1 =2

Example 4.3 Find the equation of the plane that contains the two lines
r=-24+2t,y=1+4t,z2=2+1

and
r=24+4y=3+2t,z=1—-1

Solution. The equation of a plane through a point P that has a normal vector n is
n-(zr,y,z)=P-n

Thus we need to find (a) a point on the plane; and (b) a vector that is perpendicular
to the plane.

One way to find the normal vector is to find two non-parallel vectors in the
plane and take their cross product. But we can read off two such vectors from the
equation of the line:

u=(2,4,1)
v=1(4,2,-1)
Hence a normal vectors is
0 -1 4 4 —6
n=uxv=|1 0 -2 2 | = 6
—4 2 0 -1 —12
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Note: alternatively, we could have calculated

J

4 1 |=-6i+6j—12k
2

We also need to find a point on the plane. We do this by picking any time, say
t = 0, and substituting that into either of the lines. The first line, for example, gives
P =(-2,1,2) at t = 0. The equation of the plane through P with normal vector n
is then
(r,y,2)-(—6,6,—12) = (—-2,1,2) - (—6,6,—12)

or
—6r+6y+12:=12+6—24=—6

Suppose we had picked a different point P, say, for example, the second line at ¢t = 2,
P = (10,7,—1). Then we would calculate

(x,y,2) - (—6,6,—12) = (—6,6,—12) - (10,7, —1)
—6x + 6y +122=—-60+42+12=—6

In other words we get the same equation regardless of which point we pick
on the plane. R

Example 4.4 Find the equation of the plane containing the line
r=1+2t,y=—-1+3t,z=4+1

and the point P = (1,—1,5) (text section 14.4, exercise 19).

Solution. We already know one point on the plane; we also need a normal vector

to get the equation of the plane. We can get a second point on the plane from the
equation of a line; at ¢ = 0 we have

Q = ((0),y(0),2(0)) = (1,-1,4)
The vector .
u=QP=P-Q=(1,-1,5) — (1,—-1,4) = (0,0,1)

We can get a second vector that lies in the plane from the equation of the line,
v = (2,3,1) which is the velocity vector of the line. Hence a normal vector to the
plane is

0 -1 0 2 -3
u=vxv=(001)x%x(231) =11 0 3|1 =1 2
0 0 1 0
The equation of the plane is
(x,y,2)-(—3,2,0) = (1,-1,5) - (-3,2,0)

—3x+2y=-5.1
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Example 4.5 Find the equation of the plane containing the line
r=3t,y=1+1t,2=2t
and parallel to the intersection of the planes
2 —y+2=0y+2z+1=0
(text section 14.4, exercise 20)

Solution. As usual, we need a point P in the plane, and a normal vector n to
the plane. The normal vectors of the two planes are

u=(2,-1,1),v=(0,1,1)

0o -1 -1 0 -2
w=uxv=|[1 0 =2 1] =1-2
1 2 0 1 2

must be parallel to both planes because it is perpendicular to both normal vectors.
Since w is parallel to both planes it must be parallel to their intersection.

A second vector in the solution plane is direction vector of the line, r = (3,1, 2).

A normal vector to the solution plane is the cross product

n = rxw=(3,1,2) x(-2,-2,2)
0 -2 1 -2 6
= |2 o —=3|[-2]=(-10
-1 3 0 2 —4

Taking the equation of the given line at ¢ = 0 we see that the solution plane pass
through the point (0,1,0) and has normal vector (6,—3,2). Hence the equation of
the solution plane is

(z,y,2)-(6,—10,—4) = (0,1,0) - (6, —10,4)

6x — 10y — 4z = —10
3z — 5y — 2z = -5l
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Tangent Line to a Parametrized Curve in 3-Space
Suppose we know the parameterization of some curve
r(t) = (f(t),g(t), h(t)) (4.14)

and would like to find a line that is tangent to this curve at . The derivative of our
position is

= 1im (f(t+e),g(t+e),h(t+e)—(f(t),9(t),h(t)) (4.16)

~ lm <f(t + ez - f(t), g(t + 62 - g(t)7 h(t + ez — h(t)> (417

_ (hm flt+e) = f() lim gt +e€) —g(t) lim h(t +¢€) — h(t)> (4.18)
€e—0 € e—0 € e—0 €

= (F'(), 4 (1), W (1)) 4.19)

4.20)

In other words, you can differentiate term by term.

The derivative r'(t) gives a vector that is tangent to the curve r(t),

Example 4.6 Find the symmetric equations of the tangent line to the curve param-
eterized by

1
r(t) = <3t, —4t% — sin 7Tt>

T
att = 1.
Solution. A tangent vector to the curve at any time ¢ is given by the derivative,

r'(t) = (3, —8t,cos mt)
At t = 1 we have the tangent vector
r'(1) = (3,-8,-1)

and a point on the curve
r(1) =(3,-4,0)

The symmetric equations of the line are then

z—3 _y-|-4_

3 8
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Lecture 5

Velocity, Acceleration, and
Curvature

Length of a Curve

Our definition of the length of a curve follows our intuition. Lay a string along the
path of the curve, pick up the string, straighten it out, and measure the length of
the line.

Theorem 5.1 Suppose that a curve is parameterized as

r(t) = (f(t), 9(t), h(t)) (5.1)

on some interval at < b. Then the arc length from a to b or the length of the
curve from a to b is given by the integral

b b
5 = / ()] dt = / @) + (00 + (b (8) 2t (5.2)

Proof. Let n be some large integer and define € = (b — a)/n. Divide [a,b] into n
intervals
[a,a+ €], [a+ € a+ 2€,....,[b—€,D]

and approximate the curve by straight line segments

r(a)r(a+¢€),r(a+ e)r(a+ 2€),...,r(b— 2€)r(b —€),r(b — €)r(a — €),

The end points of the path during the time interval from ¢ € [a + i€, a + (i + 1)¢]
are given by
r(a+ie) = (f(a +i€), g(a + i€), h(a + ie))

and
rla+ (i+1)e) = (f(a+ (i+1)e),g(a+ (i + 1)e),h(a+ (i + 1)e))

Hence the length of the line segment from r(a + i€) to r(a + (i + 1)e)
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38 LECTURE 5. VELOCITY, ACCELERATION, AND CURVATURE

Figure 5.1: The arc length can be determined by approximating the arc by line
segments, summing the length of all the line segments, and taking the limit as the
number of segments becomes infinite.

r(a+2¢)

A

I I I T 1 (b)
a a+e a+2s o b-2¢ b-e
time variable

r(a+e)

r(a)

= VAL + [Agi] + [Ahq)?

where
Afi = fla+ i+ 1)e) — f(a+ ie) (5.3)
Agi = gla+ (i+1)e) — gla+ie) (5.4)
Ah; = hla+ (i + 1)) — h(a + ie) (5.5)

The total length of all of the line segments added together is then

s = Zn: 8; = Z \/ [Afi]? 4+ [Agi)? + [Ah)?
i=1

If we let At = € and take the limit as n — oo, or equivalently, as € — 0,

s = lg% i %\/Aff + Ag? + Ah? (5.6)
- gnzw (3) (&) (%) e
= /a \/(f’(t))2 +(9'(8)% + (W (t)*dt. W (5.8)

Definition 5.1 Suppose that a curve is parameterized as in equation (5.1). Then
we say that the curve is smooth if 1'(t) exists and is continuous on [a,b] and

r'(t) # 0 for all x in [a,b).
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Definition 5.2 Let r(t) = (f(t),g(t),h(t)). Then if the derivatives f'(t), ¢'(t) and
h'(t) exist, we define the velocity by

V() = T =2 (0) = (£(0).9'(0), (1) (59)
and the speed as
ds , _
= = Il = vl (510)

Furthermore, if the second derivatives f"(t), g"(t) and h"(t) also exist we define the
acceleration as

a(t) = =r"(t) = (f"(t).g" (1), 1"(1)) (5.11)

Example 5.1 Find the velocity and acceleration of the motion described by the
curve r = (cost,sin3t,t) att =m/2 .

Solution. The time-dependent velocity and acceleration are found by differentiation:
v(t) = r'(t) = (—sint,3cos3t, 1)
a(t) = r’(t) = (—cost,—9sin3t,0)
Therefore at t = 7/2
r'(r/2) = (-1,0,1)
r’(r/2) = (0,9,0).8

Example 5.2 Find the length of the curve parametrized by r(t) = (t3, —2t3,6t3)
over the interval (0, 1).

Solution. We use the formula for arc length, equation (5.2) with
F(t) =12, g(t) = 2°, h(t) = 6t°

Since
f'(t) = 3t%, ¢'(t) = 6t 1/ (t) = 182
and therefore the arc length is given by

1
s = / V@) + (@0 + (e)? dt
- / \/3t2 (662)* + (182)* dt

= /t2x/9+36~l—324 dt

0
1
= \/369/ t2 dt
= f’f =Vil m
0
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40 LECTURE 5. VELOCITY, ACCELERATION, AND CURVATURE

Example 5.3 Find the length of the curve r(t) = (tcost,tsint,t) over the interval
(3,4).

Solution. Differentiating,
r'(t) = (—tsint + cost,tcost + sint, 1)

hence

4
s = / \/(—tsint+cost)2 + (tcost +sint)” + (1)° dt
3

4
= / \/tzsinzt — 2tsintcost + cos?t + t2cos?t + 2sintcost + sin®t + 1 dt
3

4
= / \/t2sin2t+cos2t+t2(30$2t+sin2t+1dt
3

4
= /\/tz(sin2t+cos2t)+(coth+sin2t)—|—1dt
3
4 4
= /\/t2+1~|—1dt:/ V12 4 2dt
3 3

By formula 44 on the inside back cover of the text

2
/\/:CQ:i:azda::x :|:a2:|:%ln‘x+\/x2:|:a2‘

X
2
so that
4
¢
5 = /\/t2—|—2dt:(2\/t2+2+ln‘t+\/t2+2‘)
3
3
- (2\/42 +2+ln‘4—|— Va2 +2D - <2\/32 T2 43+ /32 +2|>

3
- (2\/18+ln ‘4+ \/18‘) - <2\/11 +1n )3+ \/11‘)
~ 8.485+2.109 — 4.975 — 1.843 ~ 3.776. W

4
3
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LECTURE 5. VELOCITY, ACCELERATION, AND CURVATURE 41

Tangent Vectors

Our definition of the velocity is the same as the definition of the tangent vector we
in the previous section. Therefore a unit tangent vector is

(5.12)

Example 5.4 Find a unit tangent vector to the curve r(t) = (%tQ, %t?’, —18t) at
t=1.

Solution. The velocity vector is

Att=1,
v(1) = (1,1,—18)

The magnitude of the velocity is

V@)= V(1)2 + (1)2 + (18)2 = V326

Therefore )

V326

Definition 5.3 The Curvature (t) is the magnitude of the rate of change of the
direction of the unit tangent vector measured with respect to distance,

T = (1,1,—-18). =

dT
t) =||— 5.13
o= % (5.13)
The Radius of Curvature R is the reciprocal of the curvature,
1
R=- 5.14
) (5.14)
By the chain rule,
dT dT dt dT /ds dT
~) =175 dt ds dt /dt dt / MOl ' (5.15)

This gives us a more useful formula for calculating the curvature directly from the
parameterization:

i
dt

1

") = @]

(5.16)
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42 LECTURE 5. VELOCITY, ACCELERATION, AND CURVATURE

Example 5.5 Find the curvature and radius of curvature of the curver = (5cost,5sint, 6t).
Solution. The velocity is
v(t) = (—5sint,5cost, 6)

hence the speed is

Iv(®)] = +/(~5sint)2+ (5cost)? + 62
= \/25(sin2 t + cos?t) + 36
= V25+36=V61

The unit tangent vector is then

. v(t) 1 .
T(t) = = ——= (—bHsint,5cost, 6
O = ~on = Vet ! )
The curvature is
1 dT
) = ——||=
w{2) IMMHﬁH
1
= a”(—5cost,—5sint,0)H
1

= o (=5cost)? + (—bsint)?

_ 2 20 = O A
= 6l \/25(s1n t+cos?t) = a3l ~ 0.08197

The corresponding radius of curvature is R =1/k =61/5. W

The Acceleration Vector

Theorem 5.2 The vector dT/ds is normal to the curve.

Proof. By the product rule for derivatives,

d dT dT dT
—(T-T)=T-— — |- T=2T - —
ds( ) ds <ds> ds

But since T = v/ ||v|| (see equation (5.12)),

popo v VP
IvI® vl
d
~ (T -T) =
ds( )
Hence T
T. — =
ds

which means that dT / ds is perpendicular to the tangent vector T. Thus dT / ds is
also normal to the curve.ll
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Definition 5.4 The Principal unit normal vector N is

_dT/ds 14T

= [arjas| " ds (5:17)

N is not the only unit normal vector to the curve at P; in fact, on could define
an infinite number of unit normal vectors to a curve at any given point. To do so,
merely find the plane perpendicular to the tangent vector. An vector in this plane
is normal to the curve. One such vector that is often used is the following, which is
perpendicular to both T and N.

Definition 5.5 The binormal vector is .

Definition 5.6 The triple of normal vectors {T,N,B} is called the trihedral at
P.

Definition 5.7 The plane formed by T and N is called the osculating plane at
P.

Since T = v/ ||v| we can write

ds

=T =T 5.18
v=T|v|=T% (518)
(see equation (5.10).) The acceleration vector (equation (5.11)) is
dv d ds d*s dTds
a dt dt< dt> FTER T
s, (dTds) ds
T dt ds dt ) dt
d?s  dT (ds\’
= L= (=
@t " ds (dt)
From equation (5.17),
d?s ds\?

Equation (5.19) breaks the acceleration into two perpendicular components, one
that is tangent to the curve:

&
dt

and one that is perpendicular to the curve:

a|] =K @ i
LM\ e

a:a”T—FaJ_N

a =

so that
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44 LECTURE 5. VELOCITY, ACCELERATION, AND CURVATURE

Figure 5.2: Components of the acceleration.

Normal Component

Tangential
Component

r(t)

Example 5.6 Find the normal tangent and perpendicular components of the accel-
eration of the curve r(t) = (7 + 21t, 14 — 42t,28sint) at t = 7/3.

Solution.Differentiating r gives the velocity
v(t) =1'(t) = (21,—-42,28cost) = 7(3,—6,4 cost)

and the speed as
d
T; = ||v|| = 7V/45 + 16 cos ¢

Thus the tangent component of the acceleration is

d? d 112costsint
a”(t):d—s:7—\/45—&—16008%:—&

t dt V45 + 16 cos? t
hence
aH (7(’/3) = —4\/§
The acceleration vector is
d
a(t) = d—‘t’ = (0,0, —28sint)

hence
|la(n/3)|| = 28sin(r/3) = 14V/3

Since ||a||* = aﬁ + a2, the square of the normal component at t = 7/3 is
) 2 2
2 = (14%5) - (4\/:7,) = 540

and consequently

a; =540 = 6v/15. W
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Lecture 6

Surfaces in 3D

The text for section 14.6 is no more than a catalog of formulas for different shapes
in 3D. You should be able to recognize these shapes from their equations but you
will not be expected to sketch them during an exam.

Definition 6.1 Let C be any curve that lines in a single plane R, and let L be
any line that intersects C but does not line in R. Then the set of all points on
lines parallel to L that intersect C is called a cylinder. The curve C is called the
generating curve of the cylinder.

Figure 6.1: Cylinders. Left: a right circular cylinder generated by a circle and a
line perpendicular to the cylinder. Center: a circular cylinder generated by a circle
and a line that is not perpendicular to the circle. Both circular cylinders extend to
infinity on the top and bottom of the figure. Right: a parabolic cylinder, generated
by a parabola and a line that is not in the plane of the parabola. The sheets of the
parabola extend to infinity to the top, bottom, and right of the figure.

- )

Definition 6.2 A simpler definition of a cylinder (actually, this is a right cylin-
der oriented parallel to one of the coordinate axes) is to consider any curve
in a plane, such as the xy plane. This is an equation in two-variables, T and y.
Then consider the same formula as describing a surface in 3D. This is the cylinder
generated by the curve.
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46 LECTURE 6. SURFACES IN 3D

Definition 6.3 A quadric surface is any surface described by a second degree
equation, i.e., by any equation of the form

Az + By?* + C22 + Day+ Exz+ Fyz+Ge + Hy+ Iz +J =0 (6.1)

where A, B,C,D,E,F,G,H,1I,J are any constants and at least one of A,B,C,D,E, F
are non-zero.

Theorem 6.1 Any quadric surface can be transformed, by a combination of rotation
and translation, to one of the two following forms:

Az + By* +C22+J =0 or (6.2)

Az + By* +12=0 (6.3)

Quadric surfaces of the form given by equation (6.2) are called central quadrics
because they are symmetric with respect to the coordinate planes and the origin.

Table of Standard Quadric Surfaces.

2 2 2
. x Y 24
Ellipsoid 2 + 12 + Z = 1
2 2 2
Hyperboloid of one Sheet % + y—Q - 2—2 =1
a b c
2 2 2
Hyperboloid of two Sheets :% — y—Q — 2—2 =1
a b c
22 g2
Elliptic Paraboloid z=—+ 2
a
y? 22
Hyperbolic Paraboloid (saddle) s
2 2 2
Elliptic Cone T4y Z 0
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Lecture 7

Cylindrical and Spherical
Coordinates

Cylindrical Coordinates

Cylindrical coordinates are polar coordinates with z added to give the distance
of a point above the zy plane. A point P = (z,y, z) is described by the cylindrical
coordinates (r, 6, z) where:

r is the distance, measured in the xy-plane, from the origin to the projection of P
into the xy plane.

0 is the polar angle, measured in the xy-plane, of the projection of P into the
xy-plane.

z is the same is both cylindrical and cartesian coordinates.

Figure 7.1: Cylindrical coordinates (r,6, z) shown in terms of the usual Cartesian
coordinate frame.

/ x=rcosb

To find (z, y, z) given (r,0,z):

T =1cosb
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y =rsinf

z=2z
To find (r,0,z)given (z, y, 2):

r=+vz2+1y?

tand =y/x or O =tan ! (y/x)

Example 7.1 Convert the equation
22 —y? 4+ 29z =25
to cylindrical coordinates

Solution.We have x = rcos#, y = rsinf and z remains unchanged. Therefore the
equation can be written as

25 = 2% — y? + 2yz = (rcosh)? — (rsinf)? 4 2zr cos f
With some factoring and application of a trigonometric identity:
25 = r%(cos? 0 — sin® f) + 221 cos 6
25 = r2cos20 4+ 2zrcosf. M
Example 7.2 Conwvert the equation
r?cos20 = z
from Clylindrical to Cartesian coordinates.

Solution. With some algebra,

z = 7r2cos260 = 1%(cos® § — sin? )

= r?cos? 0 — r?sin®0

= (rcosf)? — (rsinf)?

- 2 n
Example 7.3 Conwvert the expression

r = 2zsinf
from Cylindrical coordinates to Cartesian coordinates.
Solution. Multiply through by r to give
r? = 22rsinf

Then use the identities 72 = 22 + y? and y = rsin 6 to get

2?4y =2y, W
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LECTURE 7. CYLINDRICAL AND SPHERICAL COORDINATES 49

Spherical Coordinates

In spherical coordinates each point P = (z,y,2) in Cartesian coordinates is
represented by a triple (p, 0, ¢) where:

p (the Greek letter “rho”) is the distance from the origin to P.
0 (the Greek letter “theta”) is the same as in cylindrical and polar coordinates.

¢ (the Greek letter “phi’)’ is the angle between the z axis and the line from the
origin to P.

Given the spherical coordinates (p, 6, ¢), to find the Cartesian coordinates (x, y, z),
x = psin¢cosd
y = psin ¢sinf
Z = pcoso
Given the Cartesian coordinates (z,y, z), to find the spherical coordinates (p, 0, ¢),
P2 = a? 4 y? 422
tanf = y/x

cos ¢ = z/\/x? + y? + 22

Figure 7.2: Spherical coordinates.

? z=pcosd
, Y

’

/ x=psindcosO

;" y=psindsin0 psing

Example 7.4 Convert the equation 2% +2y? —42% = 0 from Cartesian Coordinates
to Spherical coordinates.
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50 LECTURE 7. CYLINDRICAL AND SPHERICAL COORDINATES

Solution.

0 = 2224 2y% — 422

2(psin ¢ cos 0)? + 2(psin ¢sin 6)% — 4(p cos ¢)?
2p% sin? ¢ cos? 0 + 2p% sin? ¢ sin’ 6 — 4p? cos? ¢
2p% sin? ¢(cos? O + sin? ) — 4p® cos® ¢

2p% sin? ¢ — 4p% cos® ¢

20%(sin? ¢ — 2 cos? ¢)

2p%(1 — cos® ¢ — 2 cos? P)

= 2p%(1 —3cos® 9)

Therefore we have two possible solutions:
p=0 (the single point at the origin)
or

1 = 3cos’¢
cos’¢p=1/3
cos = £1/V/3
¢ = cos 1 (1/V3)

R

which is the equation of a cone passing through the origin (and hence actually
includes the first solution at the origin). W

Example 7.5 Convert the equation
psing =1
from spherical coordinates to Cartesian coordinates.

Solution. Squaring both sides of the equation gives

pPsin?¢p = 1
— p?(1—cos?¢) =1
2 2 2 2
— (" +y +Z)<1_:MW>:1
— x2+y2+22—22:1
— 224+t =1
which is the equation of a cylinder of radius 1 centered on the z-axis. W
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Lecture 8

Functions of Two Variables

In this section we will extend our definition of a function to allow for multiple
variables in the argument. Before we formally define a multivariate function, we
recall a few facts about real numbers and functions on real numbers. Recall our
original, general definition of a function:

A function f is a rule that associates two sets, in the sense that each
object x in the first set D is associated with a single object ¥ in the
second set R, and we write

f:D—R
and

y=f().
We call D the domain of the function and R the range of the
function.

In terms of functions of a real variable, we made some notational conventions:
e The symbol R represents the set of real numbers.

e Any line, such as any of the coordinate axes, is equivalent to R because there
is a one-to-one relationship between the real numbers and the points on a line.

e For real valued functions, the both the domain D and range R are subsets of
the real numbers, and we write

DCR

RCR

so that
f:(DCR)— (RCR)

If, in fact, D = R = R, we write

f:R—R
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Example 8.1 The function y = 3z + 7 has a domain D = R and range R = R.
We can write f : R+— R. 1l

Example 8.2 The function y = x> only takes on positive values, regardless of
the value of x. Its domain is still D = R but its range is just the nonnegative
real numbers, which we write as the union of the positive reals and {0}, namely,
R =RU{0}, and we can write f : R— RU{0}. W

Example 8.3 Find the natural domain and range of the function

B 4 — x?
y= 1—=x

Solution. We make two observations: (1) the denominator becomes zero (and hence
the function is undefined) when x = 1, and (2) the square root is undefined unless
its argument is non-negative. Hence we require x # 1 and

4—$220:>42x2

2

Of course z* can not be negative, so we have

0<2?<d4=-2<x<2
If we include the earlier restriction x # 1 this becomes
D={z:—2<z<lorl<z<2}=[-21)U(1,2]

As the argument x gets closer to 1 the function can take on arbitrarily large (for
x < 1) or large negative (for z > 1) values and hence the range of the function is R,
so that

f:2,H)u(1,2l— RN

Our goal now is to extend our definition of a function to include two variables.
Such functions will have the form

Z:f(:E’y)

and will associate a point a on the z-axis with points in the zy-plane. Such functions
will represent surfaces, and we will use the following notational observations:

e R? represents the set of ordered pairs (z,y), where z,y € R.

e Any plane, such as any of the coordinate planes, is equivalent to R? because
there is a one-to-one relationship between the points on a plane and the set of
all real-valued ordered pairs (x,y).

so that we can write

f:(DCR*)— (RCR)

The natural domain of a function of two variables is the set in the zy plane
for which the function definition makes sense. The rules for determining the natural
domain are the same as they are form functions of a single variable:
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LECTURE 8. FUNCTIONS OF TWO VARIABLES 53

Figure 8.1: Visualization of a multivariate function. In both figures, the domain
represents a set in the xy-plane, and the range is a subset of the z-axis. In the
top, the function is visualized as a mapping between sets. The arrows indicate the
mapping for four points in the domain that are mapped to three points in the range.
The bottom figure visualizes this as a mapping embedded in 3D space, with each
point z = f(x,y) represented as a 3-tuple (x,y, z) in space.

\4

<1

2 3

D (Domain) R (Range)

.(xzy}’2,Z3)
| P (*1L,Y1,22)
I

RN

L/ o IDomain (in xy plane)
(xX3,Y3,22)

(X4,Y4,21)

(a) Don’t divide by zero
(b) Don’t take the square root of a negative number.
Anything that remains is part of the natural domain of the function

“Exclude the impossible and what remains, however improbable, is the
solution.” [Sherlock Holmes]

Example 8.4 Find the natural domain of the function
fla,y) = V16 — 2% — y?

Solution. Since we can’t take the square root of a negative number, we exclude
points where
16 —22 — 4% <0

Thus the natural domain is the set of all (x,y) where

16 — 22 —y? >0,
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54 LECTURE 8. FUNCTIONS OF TWO VARIABLES

or equivalently, the set where
22 +y? <16

This is a disk (including its boundary) of radius 4 centered at the origin. W

Example 8.5 Find the natural domain of the function

_a:2+y

f(%y)—w-

Solution. Since we can’t divide by zero, we exclude all points where
z+y? =0.

This is the parabola
= —y-.

Since there are not square roots, this is all we have to exclude, so the domain is the
entire real plane except for points on the parabola z = —y?, which we can write as

D:{(x,y):w#—yQ}.I

Figure 8.2: Left: A visualization of the function y = xye_($2+yz) as a surface in
3D space. Right: Contour plot for the same function with the contours marked
at values of z = —0.18,—-0.17,...,0.17,0.18. Colors(yell/green, negative; blue, pink:
positive) are used to emphasize the values, but this is not always a feature of contour
plots. It is more common to label each contour with a small number indicating the
z-value it represents.

g bs\
% LIRS
”""‘.:9.:"#‘;‘

Yy

Functions of two variables are generally surfaces when plotted in 3-space; we
have already seen some of them in plots of planes and quartic surfaces. Consider,
for example, the function

f:R*2—R
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described by the equation

z = :L‘ye_(x2+92)
It can be represented by a surface something like the one illustrated in figure 8.2.
In addition to the surface plant, another useful tool is the contour plot, illustrated
in the fight-hand illustration of figure 8.2. If we take a surface plot and slice it
along planes parallel to the xy plane we will obtain a series of sections that can be
represented by curves in the xy plane. Each curve, called a countour, represents a
particular slice, or height, above the xy plane. Countour plots are commonly used
by geographers, for example, to draw topographic (e.g., figure 8.3) or weather maps
( see figure 8.4), among other things. Each curve in a contour plot is called a level
curve.

Figure 8.3: Example of a contour plot used to illustrate altitude on a topographic
map. Contours are drawn for every 20 feet of altitude; small numbers next to
contours annotate the contours at 100 foot intervals. [Taken from USGS Digi-
tal Raster file 044072d6.tif for the Stowe, VT, USA quadrangle, as published at
http://en.wikipedia.org/ article ” Topographic Maps.” This image is in the public
domain. |

Example 8.6 Find the level curves of the function

z2=2—x—y?

for z=1,0,—1.
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56 LECTURE 8. FUNCTIONS OF TWO VARIABLES

Figure 8.4: Example of a contour plot illustrating the maximum temperature during
the week of July 23, 2006. Rather than annotating the contours the space between
the contours is colored, and the temperature is read by comparison with the leg-
end on the figure. [Taken from the US NOAA /National Weather Service Climate
Prediction center, as posted at http://www.cpc.ncep.noaa.gov.|

Extreme Moximum Tempsrature (°F)
JUL 23 - 28, 2006

VAN
I:: CLMATE PRECICTION CENTER, HGAA %

Computer genarated cenlours

i W
Basad en praliminory dola fwx
-

Solution. The level curves for z=0 are the curves

2

0 = 2—z—y
= y¥=2-z
= y=*xVv2-z

The level curves for z=1 are the curves
1 = 2—x—y?
= y2:2—1:—1:1—x
= y=%+Vvl—-=x
The level curves for z=-1 are the curves

2

-1 = 2—z—y
= y?=2—2+1=3—1z
= y=xv3—=x

The level curves are illustrated in figure 8.5. W

Example 8.7 Find a general form for the level curves z = k for the function

:E2+y
T + y>2
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o7

Figure 8.5: Level curves for the function z = 2 — z — 4% at z = —1,0, 1.
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Solution. Substituting z = k and cross-multiplying, we find

24y = k(z+y?) = ke + ky?
2 —kr = ky -y

Completing the squares on the left hand side of the equation,

2t —kr = 2*—kx+ (k/2)% — (k/2)?
= (z—k/2)*> —k?*/4

Doing a similar manipulation on the right hand side of the equation,

ky* —y = k(y*—y/k)

r-ome (&)~ )]
(- %) 58]

= k(y—1/(2k))* — 1/(4k)

Equating the two expressions,

(= k/27 = K2/4 = Ky~ (1/2K)7 ~1/4k
9 3 _
(x = k/2)* = k(y — (1/2k))* = kz N ﬁ = Ak :
(x—k/2)*  (y—(1/2k))?
(k3 —1)/dk (k3 —1)/(4k2)

=1

which is a hyperbola. B
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Lecture 9

The Partial Derivative

Definition 9.1 Let f(x,y) be a function of two wvariables. Then the partial
derivative of f with respect to x is defined as

of . fla+Ary) - f(z,y)
%¢4u%w—;g0 AL

(9.1)

if the limit exists, and the the partial derivative of f with respect to y is
similarly defined as

f(a?,y—i—Ay) _f(xay)

(9.2)

if that limit exists.

Calculation of partial derivatives is similar to calculation of ordinary derivatives.
To calculate 0f /0x, for example, differentiate with respect to = while treating y as
a constant; to calculate df /0y, differentiate with respect to y while treating z as a
constant.

Example 9.1 Find the partial derivatives of f(x,y) = x.

Solution. Applying equations (9.1) and (9.2), we calculate

0 o

a% - fx(w,y)z}lLigbf(“’H y}z f(z,y)
. (@+h) -z
= lm ——=1

a 3 ) ‘I’h — ,
= Jm == =0.m

All of the usual rules of differentiation apply to partial derivatives, including
things like the product rule, the quotient rule, and the derivatives of basic functions.
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60 LECTURE 9. THE PARTIAL DERIVATIVE

Example 9.2 Find the partial derivatives with respect to x and y of f(z,y) =
eYsin x.

Solution.
% — o (e¥sinz) = eyé%(sin x) = eYcosx (9.3)
g:]; = ;y(ey sinz) = sin waay(ey) =eYsinz A (9.4)

Example 9.3 Find the partial derivatives of f(x,y) = x3y? — bz + Ty>.

Solution.
% = %(x?’gf — 5z + Ty°)
_ g 3,2\ 2 g 3
0 0 0
_ 2Y 23y Y - 3
= 3x2y2 -5
g‘g = aay(as?’y2 — 5z + Ty°)
— g 3,2\ 2 2 3
0 0 0
— 3 Y .2y Y . 3

= 2%y +21° W

Physical Meaning of Partials.

Partial derivatives represent rates of change, just as ordinary derivatives. If T'(z,t)
is the temperature of an object as a function of position and time then

or

%(mvt)

represents the change in temperature at time ¢ with respect to position, i.e., the
slope of the temperature vs. position curve, and

oT
E("E’t)

gives the change in temperature at a fixed position x, with respect to time.
If, on the other hand, T'(z,y) gives the temperature of an object as a function
of position in the zy plane then

%(q}ay)
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represents the slope of the temperature vs position curve in a plane perpendicular
to the y-axis, while

represents the slope of the temperature vs position curve in a plane perpendicular
to the y-axis.

Figure 9.1: The partial derivatives represent the ordinary slope of a function in a

cross-section of 3-dimensional space.
A

(x,y)

X slope T/x

Example 9.4 Suppose that the temperature in degrees Celsius on a metal plate in
the xy plane is given by
T(z,y) = 4+ 22° +

where x and y are measured in feet. What is the change of temperature with respect
to distance, measured in feet, if we start moving from the point (3,2) in the direction
of the positive y-axis, as illustrated in figure 9.2 ¢

Solution. If we move in the direction of the positive y-axis we are moving perpen-
dicular to the z-axis (with x fixed) in the zy plane, so we are interesting in finding
the partial derivative 0T'/0y.

ol (v,y) 0

= (4+22° +y°) =0+ 0+ 3y* = 3y°
dy 8y(+x+y) +0+ 3y Y

At the point (3,2) we have z = 3 and y = 2. Thus

aT(3,2)

=3(2)2 =12 f
oy 3(2) deg /foot

In other words, the temperature increases by 12 degrees for every foot we move in
the y direction.ll
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Figure 9.2: The function T'(z,y) discused in example 9.4.

Higher order partial derivatives

The second and higher order partial derivatives

D05
T 0x 0x Ox?
L _oar 9
W oyoy o oy?
In addition, there are mixed partial derivatives for higher orders.
B _090f 0% f
fmy - (fac)y - aiya - ayax
B o0 o9f 0% f

Example 9.5 Find all the second order partial derivatives of
fla,y) = a®y? = 5e +7y°

From equations (9.3) and (9.4),

% = 32%y* — 5, g‘?’; = 22%y + 21y°

Hence 9 of 9
Joz = 9z Oz = %(3x2y2 —5)= 6$y2

0 0 0
fxy = 8y8£ = @(Snyz - 5) = 63323/
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99f 0 3 2 3
= ——=—(2 21 =2 42
_090f 0 3 2N a2
fyz = 90y x(2x y + 21y*) = 6x“y.

We observe in passing that f., = fy.. B

Example 9.6 The Heat Equation is

ou 0%u
e
ot Ox?
where u(z,t) gives the temperature of an object as a function of position and time.

Show that

y = L e/ (det)

Vit

satisfies the heat equation (i.e., that it is a solution of the heat equation).

Solution. By the product rule:

du 91 a2
ot ot t
1 0 2 2 01
— = Y —x?/(4ct) —z?%/(4ct) ¥
N te ot Vi
By the chain rule,
0 —s2/(ct) 2 jaery O (=7
ot ot \ 4ct
2
—o?jaety (2T O
¢ (40) t(t )
2
_ —a?/(4et) [ X -2
e <4C )( ™)
X —2?/(4ct)
4ct?
Furthermore
0 1 o, _ _
N 5 V) = (—1/2)¢7%
Hence
2
% = ;i <4th2> e—w2/4ct _|_e—;v2/4ct(_1/2)t—3/2

_ 671‘2/4Ct a? _ 1
4etB/2 243/2

B 6—272/4015 72 1

oVt \det? 2t
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Similarly, by the chain rule

Ou 0 (1 ue)) _ L a9 (7
Ox or \ Vt t Oz \ 4ct

N ) <—2$> _ T a?/(et)
\/i 4ct 2ct\/i

By the product rule,

2
Fu 0 T 2
0z2 0x \ 2ct\/t
_ =T 0wt _ a?/aey O T
2ctr\/t O 0x 2ct\/t

_ 20—5/% (6_m2/(4ct)> (ﬁ) n (76_332/(4@)) <2(;t1\/i>

S Ry N S
Vi 422 2ct

Multiplying the last equation through by c,

JPu L ey (2 1) _Ou g
0z?  \/t 4et? 2t ot

Equivalence of Mixed Partials

We observed at the end of example (9.5) that f;, = fy,. This property is true in
general, although it is not stated formally in the book until section 15.3 theorem B.
To see why it is true we observe the following:

0 Of (x, 0
fxy(x7y) = 373/ f(azy) :@fx(x7y)

k—0 k

—  lim P20 h h—0 h
k—0 k

 kS0h—0 hk

 k—0h—0 hk

— lim k—0 k k—0 k
h—0 h

_ gy Ju@ A y) — fy(ay)
h—0 h

0
= aixfy(way) = fyﬂC(xvy)'

Hence in general it is safe to assume that f;, = fy..
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Harmonic Functions

Definition 9.2 A function f(x,y, z) is said to be harmonic if it satisfies Laplace’s
Equation,
0*f  0*f  0%f

ox?  0y? 022 =0

Harmonic functions are discussed in problems 33 and 34 of the text. To see why
they called Harmonic Functions, we look for solutions that satisfy

f(xy,2) = X(2)Y (y)Z(2)

where X is only a function of x, Y is only a function y, and Z is only a function of
z. Taking partial derivatives,

2 2 2 T
O = T Xy w)ze) = Ty ) z() = X"(@)Y () 2()
2 2 2
Sk = X @Y )2() = X0 T 26) = X@Y W)0)2(:)
2 2 2 p
O = L X@Y W) = X@Y )T = @)y ()2"(2)(2)
Therefore

X" @)Y (y)Z(2) + X (2)Y" () Z(2) + X (2)Y (y)2"(2) = 0
Dividing through by f(x,y,2) = X(2)Y (y)Z(z) gives

X'(x)  Y'y)  Z2"(2)

X)) Y T2

Rearranging
X"x)  Y'(y) Z'(2)
X(z) Y{y)  Z(2)
The left hand side of the equation depends only on x and not on y or z, while the

right hand side of the equation depends on y and z and not on x. The only way
this can be true is if they are both equal to a constant, call it K. Then

X'a) _ o V') 2'()
X(z) Y(y)  Z(z)
and hence
X" (x) = K1 X(x)
Y (y) _ Z'(7)
vy T TG
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Repeating the process, the last equation must equal a constant that we call K3 so
that
Z"(2) = -KyZz

Y'(y) = (K2 — K1)Y (y) = K3Y (y)

whereK3 = Ky — Kj. So each of the three functions X (x), Y (y), Z(z) satisfy second
order differential equations of the form

X"(z) = —kX(z)

which you might recognize as the equation of a ”spring” or ”oscillating string.”
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Limits and Continuity

In this section we will generalize the definition of a limit to functions of more than
one variable. In particular, we will give a meaning to the expression

lim x,y) =1L
(xyy)*(a,b)f( v)

which is read as
“The limit of f(z,y) as the point (x,y) approaches the point (a,b) is L.”

The complication arises from the fact that we can approach the point (a,b) from
any direction. In one dimension, we could either approach from the left or from the
right, and we defined a variety of notations to take this into account:

LT = lim+ f(x)
L™ = lim f(z)
T—a
and then the limit
lim f(z) =L
is defined only when
L=L"=1L",

i.e., the limit is only defined when the limits from the left and the right both exist and
are equal to one another. In two dimensions, we can approach from any direction,
not just from the left or the right (figure 10.1).

Let us return to the single-dimensional case, as illustrated in figure 10.2. Whichever
direction we approach a from, we must get the same value. If the function ap-
proaches the same limit from both directions (the left and the right) then we say
the limit exists. Formally, we say that

lim f(z) =L

r—a
exists if and only if for any € > 0, no matter how small, there exists some § > 0
(that is allowed to depend functionally on €) such that whenever 0 < |z —a| < 6
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Figure 10.1: In one dimension we can only approach a point along the z-axis from
two directions: the left and the right. In two dimensions we can approach a point
in the xy-plane from an infinite number of directions.

- N\

>——@—< > 0 <«—
xy-plane

Figure 10.2: The limit of a function of one variable. Left: the function f(z) — L
from both directions, and we say that lim,_,, = L exists. Right: The function f(x)
approaches L from the left, but not from the right.

A A

. ____1_8 _____ S(a,L) . ""1_8" | (a,L)

) o}
—> >
I . : y
> >
a a
Limit Exists Limit Does Not Exist
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then |f(z) — L| < e. No matter how close we get to L along the y-axis (within a
distance €), there is some interval about a along the z-axis (of width we call 24 such
that, if we draw a box about the point (a, L) of size § x €, and then slowly shrink the
box to zero, the function will always remain within the box. If the limit does not
exist, then as we shrink the box, at some point there will not be a representation of
the function from left to right across the box (see figure 10.3).

Figure 10.3: Limits of a function of a single variable. On the left, the limit exists,
and we can shrink a box about (a, L) however small we like, and the function remains
entirely within the box. On the right, we eventually get to a point where the function
from the left is not in the box, and the limit does not exist.

A A
//- 1
—(a,L) , —[(a,L)
J { JE TRl N
Lt--134--}--Me L PP == \
E These boxes can // E
; be shrunk to zero \ // !
- ' and the function ' These b
p d , will remain in the box 1 0 ese boxes can
i S not be shrunk to zero
a ” a "
Limit Exists Limit Does Not Exist

Now consider the case of a limit in three dimensions. Rather than approaching
the point to within an interval of width 26 and letting the size § — 0 we can approach
in the xy plane from any direction. So the interval becomes a disk of radius §, and
the box becomes a cylinder of radius § and height e.

Definition 10.1 A neighborhood of radius § of a point P is the set of all points
Q satisfying ||P — Q|| < 4. In 1D, a neighborhood is called an interval. In 2D, a
neighborhood is called a disk. In 3D (and higher) a neighborhood of P is called a
ball.

Mathematically, the definition of a limit is essentially the same in all dimensions.

Definition 10.2 Let f(z,y) be a function of two variables. Then the limit of
f(x,y) as (x,y) approaches (a,b), which we write as

lim x,y) =1L
(fr,y)ﬂ(a,b)f( v)

exists if and only if for any € > 0 there exists some & > 0 such that whenever
0<|f(x,y) = (a,b)|| < (i-e., (x,y) is in a neighborhood of radius 0 of (a,b)) then
|f(x,y) — L| <€ (ie., f(x,y) is in some neighborhood of radius € of L.
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We can get a general definition of a limit (in any dimension) by merely omitting the
language specific to 2D.

Definition 10.3 Let f(x) : R™ — R", let P be a point in R™, and L a point in
R™. Then the limit of f(x) as x approaches P, which we write as

lim f(x) =L

x—P

exists if and only if for any € > 0 there exists some § > 0 such that whenever 0 <
If(x) — (P)|| < (i.e., x is in a neighborhood of radius § of P) then ||f(x) — L|| < €
(i.e., £(x) is in some neighborhood of radius € of ).

Example 10.1 Calculate
22 — o2
T Sy
(z,y)—(0,0) T2 + Y
as you approach the origin
(a) along the z-axis;
(b) along the line y==3x;
(c) along the parabola y = 5x2.
Solution.

(a) along the x-axis we have y=0, and we can approach the origin by letting z — 0.
Therefore

' 22 _ y2 222 " .
im ﬁzlmﬁ:hmﬁ:hmlzl
(2,y)—(0,0),y=0 T* + Yy z—0 x4 +0 —0 I z—0

(b) Along the line y = 3z we have

22— 2 2?2 — (3z)? —8x2 4
lim — = lim ———5 = lim —— =
(z,y)—(0,0),y=3x 2 + y2 z—0 22 + (3.’E)2 z—0 1022 )

(c) Along the parabola y = 522 we have

. 2?2 — (5x?)? I r? =252 2?(1 — 2522)

11m —_—_— = m ——=|lim —-——=

(z,9)—(0,0),y=22 T2 + (52?)? —0 22 + 25x%  2—0 22(1 + 2522)
1 — 2522

im — =
z—0 1 4+ 2512
The first and third limits are the same, but the third limit is different. Therefore
the limit does not exist. W

As the above example shows, to show that a limit does not exist we need to
calculate the limit along different approach paths and show that different numbers
result. Showing that limit does exist is considerably more difficult than showing
that it does not exist.
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Example 10.2 Show that
4_ 4
. X Yy
lim 41, .4
(z,y)—(0,0) = + Y
does not exist.
Solution. We calculate the limit in two directions: along the x-axis and along the

y-axis.
Along the x-axis, y=0, so that

4 4 4 4
- -0
(z,y)—(0,0),x—azis T* + Y z—0 24 +0
Along the y-axis, x=0, so that
4 4 4 4
— 0 _
lim v Y i vy _ -1

— = lim —% =
(2,9)—(0,0),y—azis * +y*  y—0 0% 4+ ¢4
Since the limits along the different paths are unequal we may conclude that the limit
does not exist. W

Definition 10.4 A function is said to be continuous at a point (a,b) if

lim f(CC,y) = f(a’ b)

(z,y)—(a,b)

A function is said to be continuous on a set S if it is continuous at every point
in S.

Theorem 10.1 The following classes of functions are continuous:
(a) Lines
(b) Polynomials
()
)

(d) Rational functions except where the denominator equals zero.

Composite functions of continuous functions, e.g., f(g(z,y))

Example 10.3 Determine where the function

4 4
_rT Yy
fz,y) P

1S continuous.

Solution. f(x,y) is a rational function. Therefore it is continuous except where the
denominator is zero. The function is not continuous when

at+yt=0

which only occurs at the origin. Therefore the function is continuous every except
for the origin.ll
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Figure 10.4: The function z = y/r —y + 1 is continuous on the lower halp plane
beneath the line y =z 4 1.
not continuous on upper
half plane
A

y=x+1

" continuous on lower
half plane

Y

Example 10.4 Determine where the function

fle,y) =vVe—y+1

18 continuous.

This is a function of the form f(z,y) = g(h(x,y)) where g(z) = /z is a function of
a single argument that is defined and continuous on z > 0, and h(z,y) =z —y + 1
is also a continuous function. Since this is a composite function of a continuous
function, then it is continuous everywhere the argument of g(z) is positive. This
requires x —y + 1 > 0, or equivalently, y < x + 1 which is the half-plane underneath
the line y = x + 1. In other words, the function is continuous everywhere in the half
plane below y = x + 1 (see figure 10.4). W
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Gradients and the Directional
Derivative

We will learn in this section that the concepts of differentiability and local lin-
earity are equivalent, and we will generalize our definitions of the derivative and
and partial derivative from one-dimensional objects or slopes to generalized slopes
in higher dimensional spaces.

Definition 11.1 A function f(z) : R — R is said to be locally linear at =z = a
if it can be approximated by a line in some neighborhood of a, i.e., if there is some
constant m such that

fla+h) = f(a) + hm + he(h) (11.1)
where
flLlE%) e(h) =0

The number m is called the slope of the line.

Suppose that a function f(x) is locally linear at a. Solving equation 11.1 for e(h),

ST (R0 (G

and therefore

0 = lim ¢(h) = lim
h—0 h—0

= f'(a) ~m

(fash s _,)

The last equality only makes sense if the limit exists, which we know it does because
we have assumed that f(x) is locally linear, and therefore limy_oe(h) exists and
equals zero. But the first term in the final limit is the derivative f'(a), and we say
the f(z) is differentiable if and only of the derivative f’(a), defined by this limit,
exists. Therefore we have proven that a function is locally linear if and only
if it is differentiable. Our immediate goal is to extend this result to multivariate
functions.
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74 LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE

Definition 11.2 A function f(x,y) : R? — R is said to be locally linear at the
point (a,b) if there exist numbers h and k such that

fla+h,b+ k)= f(a,b) + hfy(a,b) + kfy(a,b) + he(h, k) + ké(h, k) (11.2)

where
lim =
hl e(h) 0
lim §(k) =
klm ( ) 0

Definition 11.3 A function is said to be differentiable at P if it is locally linear
at P.

Definition 11.4 A function is said to be differentiable on an open set R if it
is differentiable at every point in R.

If we define the vectors

P = (a,b)
h = (h,k)
e(h) = (¢,0)

Then equation 11.2 becomes
f(P+h)=f(P)+h-(f(P),f,(P)) +h-e
Rearranging terms, dividing by h = ||h[|, and taking the limit as [|h| — 0

FP+h)—f(P) . h-(f(P),f,(P)) . h-e
1 =1 1 g
>0 I >0 I o [[hl]

Defining the unit vector h = h/||h/,

fP+h)—fP) o
— lim h- (f,(P), lim h-
=0 [l >0 (f(P)jba”)+nﬁEm ©

The first limit on the right does not depend on the length |h|| because h only
appears as a unit vector, which has length 1, so that
P+h)— f(P . .
_ J(P+h)— f(P)

=h-(f,(P), P li h-
Ihj—0 Ih] (£z(P), fy(P)) + lim 'h-e

The second limit on the right depends on h through the vector e; but the components
of the vector e approach 0 as the components of h approach 0. Since the dot product
of a vector of length 1 with a vector length 0 is zero,

f(P+h) - f(P)
]| —0 [l

=h- (f:(P), f,(P)) (11.3)

This gives us a generalized definition of the derivative in the direction of any vector
h. We first define the gradient vector of functions of two and three variables, which
we will use heavily in the remainder of this course.
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LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE 75

Definition 11.5 The gradient of a function f(x,y) : R? — R of two variables is
given by

Vf(z,y) = gradf(z,y) = laff +Jg£ (11.4)

The gradient of a function f(x,y,2) : R3 +— R of three variables is

.0
Vi(x,y) =gradf(z,y) = laff +J 8’; +k8"}; (11.5)

Note that if we apply the definition in three-dimensions to a function of two vari-
ables, we obtain the same result as the first definition, because the partial derivative
of f(x,y) with respect to z is zero (z does not appear in the equation).

Example 11.1 Find the gradient of f(x,y) = sin®(2%y)
Solution.

. 0f .0 0 2
Vf = 1—$+J——1—xsm 3(2? y)—i—,]a—sm (x%y)

0 0
. <2/ 2 . 2 s 2 020,.2 I 2
= i|3sin“(z y))—ax sin(x y)} +j [3 sin”(z y))Gy sin(z“y)

= i[3sin®*(2%y)) cos(z?y)(2zy)] + j [3sin®(2?y)) cos(z®y)(2?)]
= 3xsin? (zQy) cos (9323/) (2yi+ zj) A

Example 11.2 Find the gradient of f(x,y) = 2%y + y?z + 2%z
Solution.
Vf = i~=+j-—+k-=
x z
2 2 .0 g 2 2
— (z y+y Z+z 93)—1—,16—3/ (a: yt+yz+z x) +

9/ 9 2 2
k&(x y+yz+z a;)

= i(2zy + 2% +j(2® +2y2) + k(y* + 222) A

Theorem 11.1 Properties of the Gradient VectorSuppose that f and g are
functions and c is a constant. Then the following are true:

Vif+g9]=Vf+Vyg (11.6)
V(cf) =V (11.7)
V(fg) = fVg+gVf (11.8)
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76 LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE

Returning to equation 11.3, let u = vh/h where h = ||h||,i.e., any vector that is
parallel to h but has magnitude u. Then

lim f(P+ (h/u)u) — f(P) u-Vf(P)

= 11.
h—0 h u ( 9)
Since w is finite (but fixed), then h/u — 0 as h — 0, so that
0 VIP) = lim [EEO/Ww) = F(P) (11.10)

h/u—0 h/u

Finally, if we define a new k = h/u then we can make the following generalization
of the derivative.

Definition 11.6 The directional derivative of f in the direction of u at P
s given by

Duf(P) = u. Vf(P) = lim L E W = (P)

11.11
k—0 k ( )

Theorem 11.2 The following are equivalent:
1. f(z,y) is differentiable at P
2. f(x,y) is locally linear at P
3. Duf(P) is defined at P

4. The partial derivatives Of /0x and Of /0y exists and are continuous in some
neighborhood of P.

Figure 11.1: Geometric interpretation of partial derivatives as the slopes of a func-
tion in planes parallel to the coordinate planes.

Example 11.3 Find the directional derivative of f(z,y) = 22% + 2y —y? at p =
(3,—2) in the direction a =1—j.
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LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE 7

Figure 11.2: Geometric interpretation of directional derivatives as the slope of a
function in an arbitrary cross-section through the z-axis.

Solution. We need to calculate D, f(p) =a-Vf. But
Vi@y) = V(@2®+zy—y°)
= i(%(QwZ + 2y — 9°) +j6%(29€2 +ay —y?)
= iz +y) +j(z - 2y)
Hence
Daf(p) = a-Vf=(>{-j) (i(4x+y)+ilz—2y))
= [(D(z+y) + (=1)(z - 2y)]
= [de+y—xz+2y=3x+y)

At the point p=(3,-2) Daf(p) =3(3—2) =3.1

Example 11.4 Find the directional derivative off(x,y,z) = 23y — y?2? at p =
(=2,1,3) in the direction a =i — 2j + 2k.

Solution.

Vi@yz) = V(’y—y*2?)

ox
= i(3x2y) +j(:c3 — 2y22) + k(—2y2z)

o a 3 2 9 a 3 2 2 8 3 2.2
= i —(z% yZ)+Jay(xy y2)+kaz(wy y=z7)

and therefore
a-Vf=3z¥ — 223 + 4y2? — 497

The directional derivative at p = (—2,1,3) is
Daf(p) = 3(=2)*(1) —2(=2)> +4(1)(3)* — 4(1)*(3) =52 W

Note: Some books use the notation

of

for the directional derivative. The following example justifies this odd notation.
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78 LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE

Example 11.5 Simplify the expression

of

u Duf(p)

when u = Kk, i.e., a unit vector in the z-direction.

Solution.

Duf(p) = u-Vf=k-Vf=k- <ig£+jg‘§+kg£>
0f Of

of
AT PO
18m+ ']By 0z

-k

o af of . .0f

= (0)% + (0)674 + (1)5
of

= ZL_p.tm
0z /

- k-

Theorem 11.3 The directional derivatives along a coordinate axis is the partial
derivative with respect to that axis:

_of _
Dif—%_f:c
)

Dif =5 =1,
)
Dkf:aiﬁ:fz

Theorem 11.4 A function f(z,y) increases the most rapidly (as you move away
from p=(z,y)) in the direction of the gradient. The magnitude of the rate of change is
given by ||V f(p)||. The function decreases most rapidly in the direction of —V f(p),
with magnitude —||V f(p)]|.

Proof. The directional derivative, which gives the rate of change in any direction u
at p is
Duyf=u-Vf=|ul|Vf|cosb

Consider the set of all possible unit vectors u emanating from p. Then the maximum
of the directional derivative occurs when cos@ = 1,i.e., when u is parallel to Vf,
and

max(Dyuf(p)) = [|[Vf(pP)ll

Similarly the rate of maximum decrease occurs when cosf = —1 H

Example 11.6 Find a unit vector in the direction in which f(x,y) = eYsinz in-
creases most rapidly at p = (57/6,0)
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LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE 79

Solution. The gradient vector is

0 0

Vf = V(e¥sinz) = | —eYsinx, —eYsinx | = (eY cosx,e¥sinx

f o= Vesing = (g etsina, L evsing) = )
= €Y (cosz,sinz)

At p = (57/6,0), we find that the direction of steepest increase is
Vf(p) = € (cos(57/6),sin(57/6)) = (—\/5/2, 1/2)
and the magnitude of the increase is

IVF@) =/ (V3/2)2 + (1/2)° = \/BJA+ 1/d=1

Since u = V f(p) has a magnitude of 1, it is a unit vector in the direction that f
increases most rapidly.ll

Example 11.7 Suppose that the temperature T'(z,y,z) of a ball of some material
centered at the origin is given by the function

- 100
10+ 22 4y + 22

T(z,y,2)

Starting at the point (1, 1, 1), in what direction must you move to obtain the greatest
increase in temperature?

Solution. We need to move in the direction of the gradient.

oT o | oT

VT(z,y,z) = 5 —|—J87y+k£
_ 9 100 L0 100
T 0010+ 22+ 222 Joyl0 a1y + 22
0 100
+k

0210 + 22 + 42 + 22
The partial derivative with respect to x is

0 100

— = 1008
Or 10+ 22 + 92 + 22

dx

(10 4 2% + > + 22) 7!

d
:1memm+ﬁ+f+£r%ﬂm+ﬁ+f+ﬁ
—200x
(10 + 22 + y? + 22)2

By symmetry,

a 100 B —200y
Oy10+ a2 +y? + 22 (10 + 22+ ¢ + 22)?
0 100 —200z

0210422 + 42+ 22 (10 + 22 + 32 + 22)2
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80 LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE

Hence

200(zxi 4 yj + zk)

VI@92) = ~fop o212 1 20

At the point (1,1,1) we have

0 —200z —200

O 10+a2+ 12+ 224, 169

and similarly for the other two partial derivatives. Hence the direction of steepest
increase in temperature is

200

_2000 .
169(1+J+ )

VT(l"ayvz)‘(m,l) =
Theorem 11.5 The gradient vector is perpendicular to the level curves of a func-
tion.

To see why this theorem is true, recall the definition of a level curve: it is a
curve along which the value of z = f(x,y) is a constant. Thus if you move along
a tangent vector to a level curve, the function will not change, and the directional
derivative is zero. Since the directional derivative is the dot product of the gradient
and the direction of motion, which in this case is the tangent vector to the level
curve, this dot product is zero. But a dot product of two non-zero vectors can only
be zero if the two vectors are perpendicular to one another. Thus the gradient must
be perpendicular to the level curve.

Corollary 11.1 Let f(x,y,2z) = 0 describe a surface in 3D space. Then the three-
dimensional gradient vector V f is a normal vector to the surface.

This result follows because a surface f(z,y,z) = 0 is a level surface of a function
w = f(x,y,z). The value of f(z,y,z) does not change. So if you consider any tan-
gent vector, the directional derivative along the tangent vector is zero. Consequently
the tangent vector is perpendicular to the gradient.
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Lecture 12

The Chain Rule

Recall the chain rule from Calculus I: To find the derivative of some function u =
f(x) with respect to a new variable ¢, we calculate

du dudz

dt ~ dzdt
We can think of this as a sequential process, as illustrated in figure 12.1.
1. Draw a labeled node for each variable. The original function should be the

furthest to the left, and the desired final variable the node furthest to the
right.

2. Draw arrows connecting the nodes.

3. Label each arrow with a derivative. The variable on the top of the derivative
corresponds to the variable the arrow is coming from and the variable on the
bottom of the derivative is the variable the arrow is going to.

4. follow the path described by the labeled arrows. The derivative of the variable
at the start of the path with respect to the variable at the end of the path is
the product of the derivatives you meet along the way.

Figure 12.1: Visualization of the chain rule for a function of a single variable

OO D B
@ @ dt dx dt
dx dt

Now suppose u is a function of two variables z and y rather than just one.
Then we need to have two arrows emanating from u, one to each variable. This is
illustrated in figure 12.2. The procedure is modified as follows:

1. Draw a node for the original function u, each variable it depends on z,y, ...,
and the final variable that we want to find the derivative with respect to t.
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82 LECTURE 12. THE CHAIN RULE

2. Draw an arrow from the u-node to each of its variable nodes, and then draw
an arrow from each of the variable nodes to the final node. Observe that by
following the arrows there are now two possible paths we can follow.

3. Label the arrows emanating from the original function with partial derivatives.
Label the arrows emanating from the variables themselves to the final variable
with ordinary derivatives.

4. Consider each possible pat from u to ¢, and from the product of derivatives as
you follow the path. The top path in figure 12.1, for example, gives

Ou dy
8y dt
and the bottom path gives
ou dx
Oz dt
5. Add together the products for each possible path. This gives

i( )= audy+8uda:
at"""Y " ayat T oxdt

Figure 12.2: Chain rule for a function of two variables

ou dy

ay
) du _Odudx  oudy
@ dr ~ ox dr ay dt
Ju
dx dt

This method has an obvious generalization if there are more variables; for ex-
ample, if u = u(z,y, z), we add a third node labeled z and another path from u to
t through z. The result is

i( 2) = audy_i_audx_i_@%
at Y E T ayar T ordt T 9z dt

Example 12.1 Let w = 2*y? & = sint,y = t>. Find dw/dt using the chain rule.

Solution.
dw ow dx Owdy
dt — Oxdt Oy dt
= = t) + — —(t
Sty G sint) & @) 5 ()

= (42%y?)(cost) + 2*(2y)(2t)
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LECTURE 12. THE CHAIN RULE 83

The problem is not finished because the answer we have derived depends on z, ¥,
and ¢, and should only depend on ¢. To finish the problem, we need to substitute
the expressions we are given for z and y as a function of ¢, namely x = sint and
y = t2. This leads to

d

CTZ) = 4dz3y® cost + dztyt
= 4(sint)3(t?)% cost + 4(sint)* (t?)t
= 4dt*sin®tcost + 4t>sint ¢

= 4t?sin®t(t?cost +sint) W

Example 12.2 Find du/dr, as a function of r, using the chain rule for u =
2Tty x=e", y=12r and z =Inr.

Solution.

dr

Ouds | udy | Oudy
Ordr  Oydr Ozdr

D (VETD) )+ (V) 120

ox dr oy
b (VET D) 3 (n)
21/2)@+9) 7] [T )] + |21/ +9)72] (12)
+ (Vz+y) (1/r)
3ze3" 12z VZty

+ +
2Vz+y  2y/x+y r

3ze3" 6z n vty

+
2Vr+y  Vxty r
31In(r)e®” 6lnr Vesr +12r
+ |
2/e3 +12r  Ved + 12r r

Example 12.3 Find dw/dt, as a function of t, using the chain rule, for w = xy +
yr4+axz, x =t y=1—1t>, and z =1 —t.
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84 LECTURE 12. THE CHAIN RULE

Solution.
dw  Owdr Owdy Owdy
dt 8xdt+8ydt+8zdt
_ O(zy +yz 4 xz) d(t?) N O(wy +yz +x2) d(1 — t?)
Ox dt Ay dt
O(xy +yz + xz) d(1 —t)
* 0z dt

= (y+2)(20) + (x+2)(=2t) + (y + z)(-1)
= 2(y+z—x—2)—y—=x

(
= 2i(y - )—y—ﬂr
= 2t(1 - t2) — (1 — ) — 2
= 2t(1—2t2)—1
= 2t—4-1 1

Example 12.4 Find Ow/0t and Ow/0s using the chain rule and express the result
as a function of s and t, for w =522 —ylnz, z = s +t, and y = s3t.

Solution. Here w only depends on two variables x and y, so the chain rules become

ow  OJwdx L ow Ow dy
ot~ Oz ot oy Ot

ow  Jw dx L ow Ow dy
ds Oz Os oy Os

The second factor in each term is a partial derivative because x and y are functions
of two variables, s and ¢, and not just functions of a single variable. From the first
equation,

ow Owdx  Owdy

o T oxot oyor
05z —ylna) O(s + 1) n (5% — yInz) 9(s3t)
N ox ot oy ot
= (10z — y/2)(1) + (- Inz)(s%)

3
= 10(s+1t)— nrie [In(s 4 t)]s
Similarly,

ow — OJwix 4 ow ow dy

ds 0Oz 0s 0y 0s
_ 0(52? —ylnz) I(s +1t) n (5% — yInz) 9(s3t)
N Oz 0s oy ds

= (10z —y/z)(1) + (= Inxz)(3s%)
3

t
i 3s%tIn(s +t) A

= 10(8—{—t)—8Jr
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Example 12.5 Find Ow/0t and Qw/0s using the chain rule and express the result
as a function of s and t, where

w:m3+y+z2+xy

x = st
y=s+t
z=s+4t

Solution. Now w is a function of 3 variables: x, y and z, so there are three terms
in each of the chain rule formulas. All of the derivatives are partial because we are
asked to find the partial derivative:

ow _owor  owdy  owos
ot Oz ot Oy ot 0z 0t
ow_0wor  owdy ooz
ds Ox0s Oyds 0z0s
To find Jw/0t we calculate
ow Owdzr  Odwdy Owiz

9 oxot oyot 0z 0
0@ +y+ 2%+ zy) O(st) N O3 +y+22+2y)d(s+1)
ox ot dy ot
+8(a:3 +y+ 22+ xy) O(s + 4t)
0z ot

= (3224 y)(s) + (1 +2)(1) + (22)(4)
= s(B2?+y)+1+a+82

Substituting for x, y, and z gives

o

8—:1; = s(32*+y)+1+z+82

= s(3(st)® + (s+1)) + 1+ st +8(s+4t)

= 35%% +35s+3t+ 1+ st + 8s + 32¢
3532 + 35+ 35t + 1 + st + 8s

To find dw/ds, we similarly calculate

ow 8w8£ Bw@ Gw%

b5 Gwds  oyds ' 0z0s
Az’ +y+2° +ay) d(st) | I(a® +y+2*+axy)d(s +1)
= +
ox 0s oy 0s
O(x® + y + 22 4+ wy) O(s + 4t)
_l_
0z s

= =2+ y)(t) + (1 +2)(1) + 22(1)
= (3$2+y)t—|—1—|—$+22
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Substituting for x, ¥, and z,

ow

5 = (3(st)> +s+1t)t+ 1+ st+2(s+4t)
S
= 35283 4 st+ 12+ st+2s+ 8¢

3% + 2st + 2+ 25+ 8¢ W

Generalization to Higher Dimensions

If f is a function of multiple variables,

flu,v,wyzy, z,...) = fu(t),v(t),w(t), z(t),...)

The figures are generalized in the obvious way; in between the node for f and the
node for ¢ we put nodes for each of u, v, w, x,... and so forth, and draw arrows as
before. There are still only two derivatives in each path, but there are a whole lot
more paths, and we have to add up the products over each path. The result is

df _0fdu  0fdv  Of dw Ofdr  Ofdy  0fdz
dt  Oudt Ovdt Owdt Oxdt Oydt 0zdt

Usually mathematicians use an indexed variable when the number of variables be-
comes large, and write a function of n-variables as
f(xly L2y L3y ey xn)

This is considered a function in n-dimensional space, sometimes called R"™. The
chain rule for a function in R" is

df <~ Of da
dt Ox; dt

=1

Relationship of Chain Rule to the Gradient Vector and
the Directional Derivative

If z, y, and z are functions of a parameter ¢, then the position vector

T(t) = (l’(t), y(t)7 Z(t))

traces out a curve in three dimensions. The rate of change of any function f(z,y,z)
as a particle moves along this curve is df /dt. Using the chain rule, this derivative is

G ofde  ofdy  ofd

dt dr dt Oy dt Oz dt
_ (00 05 0 (s dy iz
 \ 0z’ 9y’ 0z dt’ dt’ dt
d
= v-Vf
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LECTURE 12. THE CHAIN RULE 87

because the velocity vector has been defined as v = r/(¢). Thus

a

= V() VI =Dyf(t)

where v = ||v(t)]|| is the speed at time t. Thus the total rate of change of a function
as you move along a curve r(t) is the directional derivative in the direction of the
tangent (or velocity) vector.

Proof of the Chain Rule

We outline the proof for a function f(z(t), y(t)) of two variables; the generalization
to higher dimensions is the same.The derivative of f with respect to ¢ is

o fE A~ f()
dt At—0 At

But

ft+ At) = f(x(t + At), y(t + At))

so that

f+ A = f(t) = fla(t+At),y(t + At)) — f(x(t),y
= fla(t+Ab),y(t+ At) — f(x(t),y(t
+f (@), y(t + At)) — f(z(t),y()

This is allowed because the two middle terms add to zero. Let
Ax = z(t + At) — x(t), Ay = y(t + At) — y(¢)
Then

fE+A) = f(t) = flz+Az,y+Ay) — f(z,y+ Ay)
+f(z,y + Ay) — f(2(t),y(t))
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Consequently

f(t+At) — f(t) flx+ Az, y+ Ay) — f(z,y + Ay) + f(z,y + Ay) — f(z,y)

At

Therefore

af
dt

At
fl@z+Az,y+ Ay) — f(z,y + Ay)
At
f(:v,y+Ay)—f(ac,y)
* At
flx+ Az, y+ Ay) — f(z,y + Ay) Az
At Az
f(a?,y—kAy)—f(x,y)%
At Ay
flx+ Az, y+ Ay) — f(z,y + Ay) Az
Az At
f(a?,y—kAy)—f(x,y)%
Ay At
flx+ Az, y+ Ay) — f(x,y + Ay) z(t + At) — x(¢)
Az At
L@yt Ay) = flzy) y(t+ A —y(t)
Ay At

+

+

A = F()
At—0 At
p S Ary+ Ay) = foy+ Ay) | alt+ AL — ()
At—0 Ax At—0 At
+ lim flx,y+ Ay) — f(x,y) lim y(t + At) —y(2)
At—0 Ay At—0 At
of d | 0f dy
Or dt Oy dt

Implicit Differentiation using the Chain Rule.

Suppose that f(x,y) = 0 and we want to find dy/dx, but we can’t solve for y as a
function of z. We can solve this problem using implicit differentiation, as we did for
a function of a single variable.

Example 12.6 Find dy/dx for x® + 2x%y — 10y° = 0.
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89

Solution. Using implicit differentiation,

with respect to z and solve for dy/dx

we differentiate both sides of the equation

3+ 2x2y — 10y5 =0

d
3 2 5
— 222y — 10y°) = —
= Ly - 100 = ()
d 3 d o d 5 _
= dx(a:)—l—de(xy)—lde(y)—O
dy d dy
2 2 2 4
2 |z°—= — -1 = =
= 3z“+ [ac dx%—ydxa:} 0(5)y o 0
2 2 dy 4dy
= 3z +2x°—+4xy —50y"— =0
dx dx

Now bring all the terms that have a dy/dx in them to one side of the equation:

24y

2
lida:

Factor dy/dx on the left:

dy

dx
Solving for dy/dx

_ 50y4@

e —4xy — 322

(222 — 50y*) = —day — 322

dy — —dxy — 3z2

dzx

Now consider the same problem of
parameterized variables f(x(t), y(t).

2$2 _

50y*
finding dy/dxz when f is a function of two

o drat).y(0) _ of e 0f dy
dx Oxrdx  Oydx
Since dx/dx =1
09 ofdy
Or Oydx
ofdy  Of
dyde  Ox

Hence we have the following result.

Theorem 12.1 Implicit Differentiation If f(z,y) =0 then

dy _
dr

_0f/0x
af /9y

By a similar argument, we also have

Theorem 12.2 Implicit Differentiation If f(x,y,z) =0 then

dz  Of/0x
ox  Of)0z

0z 0f/0y
oy 9f]0z

and

Math 250, Fall 2006
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90 LECTURE 12. THE CHAIN RULE

Example 12.7 Repeat the previous example using theorem 1 instead of implicit
differentiation.

Solution. We had f(z,y) = 23 + 222y — 10° so that

dy of [0z _ a% (xs - 10y5) _ 322 + 4y
dx 0f/8y (,% (x3 + 2x2y — 1Oy5) 222 — 50y4

Example 12.8 Find dy/dx if 2? cosy — y*sinz = 0.

2

Solution.Writing f(z,y) = 2% cosy — y?sinz and usingtheorem 1,

dy  0f/ox %(mzcosy—yzsinx) B 2z cosy — y2 cosx
du af /9y 8% (22 cosy — y2sinw) —z2siny — 2ysinx
Differentials

Definition 12.1 The differential of a function f(x,y,z) is the quantity

df =V f-dr
where
dr = (dz,dy, dz)
namely,
_of of of
df = 8:cdx + 8ydy + 8zdz

The differential gives an estimate of the change in the function f(z,y, z) when r is
perturbed by a small amount from (z,y, z) to (z + dz,y + dy, z + dz).

Example 12.9 Estimate the change in f(z,y) = 2% +y? as you move from (1,1)
to (1.01,1.01) using differentials, and compare with the exact change.

Solution. We have
Ar = (0.01,0.01)

and
Vf=(27,2y)
so that
Vi(1,1) =(2,2)
Therefore

Af=Vf-Ar=(22)-(0.01,0.01) = .04

The exact change is

£(1.01,1.01) — f(1,1) = 1.012 +1.012 = 1 — 1 = 0.0402 W
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Example 12.10 The effective resistance R of two resistors Ry, Roin parallel is

given by the formula
1 1 1

R™ R R
Suppose we have two resistors
Ry =10+1 ohms

Ry = 40 £+ 2 ohms

that are connected in parallel. Estimate the total resistance R and the uncertainty
m R.

Solution. We first calculate R,

1 1 1 5 1
E 10w m g T8

To calculate the uncertainty we solve for R(R;, R2) and find the differential.

R Ry

R= 12

R1+ Ry

Hence 0 IRiR 0 RiR
1412 dR 142

dR = — 172 S
AR Ryt R T dRy R+ Ry

dRy

By the quotient rule,

8 RiRy  (Ri+Ro)gh (RiR2) — (RiR2) 55 (Ri + Ra)
dRi Ry + Ry (R1+ Ry)?
B (R1 + RQ)RQ — R1Ry
(R1 + Ry)?
R3 402 40\* [4\* 16
(Ri + Ry)2 (10 +40)2 (50) - (5) T 25
8 RiRy  (Ri+ Ro)gh(RiR2) — (RiR2) 55 (Ri + Ra)
dRy Ry + Ry (R1+ Ry)?
_ (R1 + Rg)Rl — R1Ry
(R1 + Ry)?
R? 102 10> /1\* 1
T (Ri+R2)? (10+402 (50) - <5) T 25
Thus
ip = 2 Tl 0 Rk o _ %(1) + 2—15(2) = ;% =0.72

TAR R+ R iRy R+ Ra
and we conclude that R =8 +0.72 ohms W
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Lecture 13

Tangent Planes

Since the gradient vector is perpendicular to a surface in three dimensions, we can
find the tangent plane by constructing the locus of all points perpendicular to the
gradient vector. In fact, we will define the tangent plane in terms of the gradient
vector.

Definition 13.1 The tangent plane to a surface f(z,y,z) = k at a point Py =
(20, Y0, 20) is the plane perpendicular to the gradient vector at pg.

To get a formula for the tangent plane, let P = (x,y, z) run over all points in
the plane. Then any vector of the form

P—-Po=(z— 20,y —¥yo,2—20) = (@ —x0)i+ (y—yo)j+ (2 —20)k

Since V f(xo, 0, 20) is normal to the tangent plane, the critical equation defining
the tangent plane is

(P —Py) - V(0. 50, %) = 0 (13.1)

Example 13.1 Find the equation of the plane tangent to the surface
322+ 9% — 22 = —20
at the point Py = (1,2, 3).

Solution. First, we rewrite the equation of the surface into the form f(x,y,z) =0,
as
flz,y,2) =322 +9y*> —22+20=0

The general form of the gradient vector at any point on the surface is then

vi=2i 95,9

k = 6xi+ 2yj — 2zk
py 2y 1+ 2Y] z

At the point Py = (1,2, 3) the gradient is
Vf(Py) =6(1)i+2(2)j — 2(3)k = 6i + 4j — 6k
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A general vector on the plane is
P-Po=(x—-1)i+(y—2)j+(z—3)k
Hence
0 = (P—-Po) Vf(Po)
[(z—1)i+ (y —2)j+ (z — 3)k] - [61 + 4] — 6K]
6(x —1)+4(y —2) — 6(2 — 3)

6r —6+4y —8—6z+18
= b6zx+4y—6z2+4

Solving for z, we obtain
z=x+(2/3)y+2/3

as the equation of the tangent plane. W

We can find an explicit equation of the form z = f(x,y) for the tangent plane
as follows. We write the surface in the form

0=F(z,y,2) = f(z,y) — 2.

It is only when the surface is in the form F(z,y, z) = 0 that the gradient vector is
normal to the surface. But then

= ifa(Po) +Jjfy(Po) — 1

Therefore according to equation 13.1

P.VE(P,) = Py VE(P)
P-(ife(Po) +jfy(Po) —1) = Po-(ife(Po)+jfy(Po) —1)

Writing P = zi + yj + zk and Py = zoi 4+ yoj + 20k,
P (if:(Po) +jfy(Po) — 1) = Po - (ife(Po) +jfy(Po) — 1)
(zi+yj+ zk) (ifa(Po) +ify(Po) — 1) = (zoi+ yoj + 20k) - (ifz(Po) +ify(Po) — 1)

z fo(Po) + yfy(Po) — 2 = 20 f(Po) + yofy(Po) — 20

Solving for z, we find that the equation for the tangent plane to the surface
z = f(x,y) at the point Py is

z =29+ (x — z0) fz(Po) + (v — v0) fy(Po) (13.2)

Example 13.2 Find the equation of the tangent plane to the surface z = xe™2Y at
the point (1,0,1).
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Solution. From equation 13.2, we calculate that
z—20 = (z—0)fx(%0,Y0,20) + (¥ — Y0) fy(To, Yo, 20)
) -2
-l = (@-1) (e y}(1,0,1)> Ty <_2x6 y‘(l,o,l))
= (z—1)e" +y(=2(1)(e"))
= z—1-2y
Solving for z gives z = x — 2y as the equation of the tangent plane. W
Example 13.3 Find the equation of the tangent plane to the surface
z=+z+ y1/3
at the point (1,1,2).
Solution. Differentiating,
af 1 1
0r]012)  2VZlaag
af 1 1
Y (11,2 3y?/3 (112 °
From equation 13.2, the tangent plane is therefore
z = 20+ (x —x0)fz(z0, Y0, 20) + (¥ — y0) fy (0, Yo, 20)
zr—1 y—1
= 2
+ 5+
1 1 z oy
= [(2—-Z2_2Z2 i
(2-5-3) 45
7T x oy
BCRERE
Multiplying through by 7 gives 62 =743z 4+ 2y. W
Example 13.4 Find a point on the surface
z = 22% 4 3y? (13.3)

where the tangent plane is parallel to the plane

8r—3y—2=0

Math 250, Fall 2006
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Solution. In our discussion of the equation of a plane in section 14.2 we found that
when a plane is written in the form

ar +by+cz=d

then its normal vector is n = (a, b, ¢). Hence we want to find a point on the surface
of 2z = 222 + 3y? where the normal vector is parallel to

n=(8-3,-1)
Rewriting equation 13.3 in the form F(z,y,z) = 0,
F(z,y,2) =22 4+3y> —2=0
A general form of the normal vector is given by the gradient vector
VF(z,y,z) = (4, 6y, —1)
Since the two gradient vectors are parallel
(4z,6y,—1) = k(8,—3,—1)

for some number k. The solution is K = 1 (which we find from the z-component)
and hence z = 2 and y = —1/2. Thus the point on the surface where the normal
vector has the right direction is

(x,y,2) = (2,-1/2,f(2,-1/2)) = (2,-1/2,8.75) A
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Multivariate Taylor Series
Recall the following result from Calculus I (see section 10.8 of the text):

Theorem 13.1 Taylor’s Theorem with Remainder Let f be a function whose
first n + 1 derivatives exist for all x in an interval J containing a. Then for any
T € J,

x—a)? z—a)”
1) = f(a)+ (o)) + E oy E ) 4 ) 1.
where the remainder is
(x—a)")
Ra(e) = s £ 0 (13.5)

for some (unknown) number c € J.

Definition 13.2 The Taylor Polynomial of order n at a (or about a) is
defined as

@)+ + Mf(n)(a) (13.6)

n!

Corollary 13.1 f(x) = P,(z) + Ry (z) for all z € J.

Theorem 13.2 If f is infinitely differentiable then R, (x) — 0 as n — oo, so that
f(z) =lim, oo Pp(x) for all x € J, or more explicitly,

> £(k) (g
fa) = YWy (13.7)
k=0
= f@)+ - af @+ e aP @ (39

which is called the Taylor Series of f about the point x=a

Example 13.5 Find the Taylor Polynomial of order 3 of f(x) = v/x + 1 and the
corresponding remainder formula about the point a = 0.

Solution. Taking the first 4 derivatives,
fl@)=(z+ 1> = f0)=1

fa) =@+ V2 = f0) =2

2 2
Py = 3@ ) s )=
P =S s )=
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15 15
(4) - _=° 7/2 @) = -2
fO@) = 1@+ ) 5 )=
Therefore
/ a? " a’ (3)
Psy(x) = f(0)+zf'(0)+ ?f (0) + *f (0)
_ 1 1y 3
= 1+2£L'+ < 4>l‘ + = < )
_ 1 1o 13
BT A T
and (4) 7/2,.4 4
-1 1)~ 1
R(x) = f <C)x4 _ 15+ 1) 5z
4! 384 384(c+1)7/2

for some ¢ between 0 and x. Since smaller denominators make larger numbers,
the remainder is maximized for the smallest possible value of ¢, which occurs when
c = 0. So the error at x is bounded by

1524
[Raa)] < o

For example, the error at = 1 is no more than 15/384. W
Looking more closely at the Taylor series

f(x) = f(a) + (z —a)f'(a) +
we observe that the first two terms
f(z) = f(a) + (z —a)f'(a) +- -

give the equation of a line tangent to f(x) at the point (a, f(a)). The next term
gives a quadratic correction, followed by a cubic correction, and so forth, so we
might write

51— a2 (o) + -+

f(znear a) = (equation of a tangent line through a)
+ (quadratic correction at a)
+ (cubic correction at a)
+ (quartic correction at a) + - - -
For a function of two variables z = f(x,y), the tangent line because a tangent plane;

the quadratic correction becomes a parabolid correction; and so forth. The explicit
result is the following.

Theorem 13.3 Let f(x,y) be infinitely differentiable in some open set J that con-
tains the point (a,b). Then the Taylor Series of f(x,y) about the point (a,b)
18
flay) = [f(a,b)+ fala,b)(z — a) + fy(a,b)(y — b)
1
""5 [f:ca:(a7 b)(x — a)2 + 2f:cy(a’ b)(x —a)(y —b) + fyy(av b)(y — b)Z]
for all points (z,y) € J.
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According to the text,
“The details are best left to higher-level books.” [8th ed., page 669].
Nevertheless we will at least do one example.

Example 13.6 Find a Taylor Approximation to f(x,y) = /x+y+1 near the
origin

Solution. Our point (a,b) is the origin, so that (a,b) = (0,0). Differentiating,

fo(@,y) = fy(z,y) = m
Hence 1 1
fola,b) = £(0,0) = 5, fy(a,b) = f,(0,0) = 5
Similarly B
faa(z,y) = fyy(@,y) = fay(@,y) = m
so that 1
Fa(0,0) = fyy(0,0) = f22(0,0) = =7

Therefore the Taylor expansion is

f(z,y) =~ f(0,0) + [zf:(0,0) +y.f,(0,0)]
% [ £22(0,0)2% + 2f2,(0,0)zy + fyy(0,0)37] + - --

RS VU VRS O IO UPS S o I
- o ¥ Ty Tyt T T Y
= 1+§(:c+y)—§(x + 22y +y°) + -

1 1
= 1+§($+y)—g(f€+y)2+"' u
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Lecture 14

Unconstrained Optimization

Every continuous function of two variables f(z,y) that is defined on a closed,
bounded set attains both a minimum and a maximum. The process of finding these
points is called unconstrained optimization. The process of finding a maximum
or a minimum subject to a constraint will be discussed in the following section.

Definition 14.1 Let f(x,y) be a function defined on some set S, and let (a,b) € S
be a point in S. Then we say that

1. f(a,b) is a global maximum of f on S if f(a,b) > f(z,y) for all (x,y) € S.
2. f(a,b) is a global minimum of f on S if f(a,b) < f(x,y) for all (x,y) € S.

3. f(a,b) is a global extremum if it is either a global mazimum or a global
minimum on S

Theorem 14.1 Let f(x,y) be a continuous function on some closed, bounded set
S C R2. Then f(x,y) has both a global mazimum value and a global minimum value
on S.

The procedure for finding the extrema (maxima and minima) of functions of two
variables is similar to the procedure for functions of a single variable:

1. Find the critical points of the function to determine candidate locations for the
extrema (in the single-dimensional case, these were points where the derivative
is zero or undefined, and the boundary points of the interval);

2. Examine the second derivative at the candidate points that do not lie on the
border (in one-dimension, we had f”(a) < 0 at local maxima and f”(a) > 0
at local minima).

3. Compare internal extrema with the value of the function on the boundary
points and at any points where the derivative or second derivative is undefined
to determine absolute extrema.

Definition 14.2 Let f(z,y) be defined on some set J C R%. Then the candidate
extrema points occur at
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1. All points on the boundary of J;
2. All stationary points, namely, any point where V f(z,y) = 0;

3. All singular points, namely, any points where f(x,y) or V f(x,y) are unde-
fined.

The candidate extrema are sometimes called critical points; some authors re-
strict the use of this term to describe the stationary points.

Stationary points occur when V f(z,y) = 0; this requires all of the derivatives
to be zero:
of _,_of
Ox oy
Recall from one-variable calculus that three different things could happen at a sta-

tionary point where f’(a) = 0:

(z) could have a local maximum at = = a, as, for example, occurs for f(z) =

—(z —a)?

e f(z) could have a local minimum at = = a, as, for example, occurs for f(z) =
(z—a)?

e f(z) could have an inflection point at x = a, as, for example, occurs for
fz) = (z - a)®

For multivariate functions there are three types of stationary points: local maxima,
local minima, and saddle points. Saddle points are the generalization of inflection
points. At a saddle point, in some vertical cross-sections, the function appears to
have a local minimum, while in other vertical cross-sections, the function appears
to have a local maximum.

Example 14.1 Find the stationary points of the function f(x,y) = 2% — Txy +
12y —y

Solution. The function has stationary points when f.(z,y) = fy(x,y) = 0. Differ-
entiating,

of Jd . 2
B 833(96 vy +12y° —y) =22 - Ty
= y=2x/7
8f 0 2 2
T = (2o 1202 — ) = T+ 24y —1=0
9 8y(x ry + 12y~ — y) T+ 24y
= 24dy=Txr+1

Combining the two results,

49:1:+7

48
7$—7

r=-—7
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Figure 14.1: Top: Topology of a solid around a saddle point; the canonical
function is z = 7? — 22 with a saddle point at the origin, although many
other functions display saddle points. Bottom: Origin of the nomenclature.
The draft saddle model 1583 is sold by Midwest Leather Co. for $955 [from

http://www.draftsource.com/Midwest_Leather].
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Hence
y=2zx/7T=-2

So the only stationary point is at (z,y) = (=7,—2). R
Example 14.2 Find the stationary points of f(x,y) = x3 + 3> — 6y

Solution. Differentiating, as before,

_Of 9,5, 3 a2
0= 5~ B (x° +y° — 6zy) = 3z° — 6y (14.1)
aof 0,4 3 9
= - = — —_ == - 14.2
0 dy 8y( +y° — 6ay) = 3y~ — 6z (14.2)

From equation 14.1,
y =322/6 = 2%/2

From equation 14.2,
T = 3y2/6 = /2 = (2/2)2/2 = 2 /3
2t —8xr=x(z>—-8)=0
z=0o0r z=2

When z = 0, y = 0. When x = 2, y = 22/2 = 2. So the stationary points are (0,0)
and (2,2). &
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The Second Derivative Test: Classifying the Stationary
Points

Theorem 14.2 Second Derivative Test.Suppose that f(x,y) has continuous par-
tial derivatives in some neighborhood of (a,b) where

fala,b) = fy(a,b) =0
Define the function
D(x,y) = foafyy — [oy
and the number
d= D(a,b) = fzz(a,b)fyy(a,b) — (fay(a, b))2
Then

—

. Ifd >0 and fzz(a,b) <0, then f(a,b) is a local mazimum;

2. Ifd >0 and fyz(a,b) > 0, then f(a,b) is a local minimum;

3. If d <0 then f(a,b) is a saddle point;

4. If d = 0 the second-derivative test is inconclusive.
Proof of the Second Derivative Test. Given at the end of this section. W
Example 14.3 Classify the stationary points of f(x,y) = x5 + 3> — 6y

Solution. We found in the previous example that stationary points occur at (0, 0)
and (2, 2), and that
fa: = 3332 - 6y
fy= 3y2 — 6z
Hence the second derivatives are
fze = 67
fﬂcy =—6
fyy = by
Thus
D(l‘, y) = fmfyy - fa%y = (61’)(6y) - (_6)2 = 36$y — 36
At (a,b) = (0,0),
d=-36<0

hence (0,0) is a saddle point.
At (a,b) = (2,2),
d = (36)(2)(2) — 36 > 0

and
fe22,2=12>0

Hence (2,2) is a local minimum. W
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Example 14.4 . Find and classify the stationary points of f(z,y) = zy

Solution. Differentiating,

Jr=y
fy==
The only stationary point occurs when x = y = 0, i.e., at the origin. Furthermore,
f:va; = fyy =0
facy =1

Therefore
( ) fwwfyy fa:y (O)(O) - (1)2 =-1<0
for all z,y. We conclude that (0,0) is a saddle point. W

Example 14.5 Find and classify all the stationary points of f(x,y) = e~ (@ +y*—dy)

Solution. Differentiating,
by = —ge—(@H—1)

fy = (=2y + 4)e” @V W)

Setting f, = 0 gives

=zx=0

Setting f, = 0 gives
(—2y + 4)e~ @V —4) — ¢

= —2y+4=0
=y=2

The only stationary point is at (0, 2). Next, we calculate the second derivatives.

fII = —26_($2+y2_4y) + 4x2€_(x2+y2_4y)
= (—2+ 41‘2)67(””2+92*4y)
foy = —2u(=2y+ 4V
foy = 2~ AV ) 4 Loy 4 4)2em (Y —4)

= (=2 +4y® — 16y + 16)e~ @ Hv"~4)
= (4 — 16y + 14)e (T +y* 1)

At the critical point (0,2), we find that

fxx(O,Q) = ( 2+4( )2)6 (02422 —4( )):—264

f2y(0,2) = —2(0)(—2(2) +4)e” (02+22-4(2)) _
F(0,2) = (4(2)2 —16(2) + 14)e~ O+ —42) — 9!
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Therefore
d=D(0,2) = facfyy — fo, = (—2¢")(=2¢") — (0)*> = 4e* >0
Since fy < 0 the point (0,2) a local maximum. W
Example 14.6 Find and classify the stationary points of
flz,y) =2+ 1—2zxcosy,—m<y<m
Solution. Proceeding as before
fo =2z — 2cosy
fy = 2xsiny
Setting these expressions equal to zero gives
T = cosy (14.3)
rxsiny=0=2=0 or siny=0 (14.4)

Equation 14.4 can be rewritten (using the fact that —pi < y < pi) as

xr=0o0r y=0 (14.5)
because siny = 0 implies that y = +km, k = 0,1,2,.... Therefore we have two cases
consider. The first case is

x=-cosy and z =0 (14.6)
The second case is
x=cosy and y =0 (14.7)

From equation 14.6, if x = 0 then cosy = 0, which means y = +7/2. So our first
two stationary points are

(0,7/2), (0,—7/2)

The second case (equation 14.7 ) has y = 0 and = cosy = cos0 = 1. So there is a
third stationary point at
(0,1)

We now classify the critical points. To do so we must first calculate the second
derivatives,

fxx =2
fzy = 2siny
fyy = 2xcosy

Hence
D(x,y) = faafyy — fzy =4xcosy — 4in? Y
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At (1,0), we have d = 4(1) cos(0) — 4sin?(0) = 4 > 0. Since fz, = 2 > 0 this is
a local minimum.

At (0,—7/2) we have d = D(0,—7/2) = (4)(0)cos(—7/2) — 4sin?(—7/2) =
—4(—1)%? = —4 < 0 so this is a saddle point.

At (0,7/2) d = D(0,7/2) = (4)(0) cos(n/2) — 4sin?(r/2) = —4(1)2 = -4 < 0 s0
this is also a saddle point. W

Figure 14.2: Geometry for example 14.7.

Example 14.7 A rectangular metal tank with an open top is to hold 256 cubic feet
of liquid. What are the dimensions of the tank that requires the least material to
build?

Solution. Assume that the material required to build the tank is proportional to the
area of the cube. Let the box have dimensions x, y, and z as illustrated in figure
14.2.

The area of the bottom is zy; the area of each of the two small sides in the figure
is yz; and the area of each of the larger sides (in the figures) is zz. Therefore the
total area (since there is one bottom but two of each of the additional sides) is

A=xy+2zxz+2yz

Furthermore, since the volume is 256, and since the volume of the box is zyz, we
have
256 = zyz

or
z = 256/xy

Combining this with our previous equation for the area,

A = zy+2zz+2yz

= zy+ 22(256/zy) + 2y(256/zy)

512 512
y X
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This is the function we need to minimize. We define

512 512

fle,y) =ay+ —+ —
y X

Taking derivatives,
fo=1vy—512/z>

fy =512/’

Stationary points occur when
0=y —512/2% and 0=z — 512/
Thus
y = 512/2% = 512/(512/y°)* = y* /512

=512y —y* =0

= y(512—y3) =0

=y=0o0r y=38

Since we also required x = 512/y2, we find that at y = 0, z — oo hence there is

no stationary point in this case.

At y = 8 we have z = 512/82 = 8. Hence the only stationary point is (8, 8). We
now proceed to test this stationary point. The second derivatives are

fee = 1024/2°

fxy =1
fuy = 1024/4°

Thus
fee(8,8) = 1024/(8%) = 1024/512 = 2
fey(8,8) =1
fyu(8,8) = 1024/(8%) = 1024/512 = 2
and

d=D(8,8) = fau(8,8)fyy(8,8) — f,(8,8) = (2)(2) = (1)* =3 >0

Since d > 0 and f35(8,8) > 0, we conclude that f(z,y) has a local minimum at
(8,8). The third dimension is

2 = 256/xy = 256,64 = 4

The dimensions of the minimum area box are 8 by 8 by 4, and its total area is
A=uzy+2rz+2yz=(8)(8)+2(8)(4) +2(8)(4) =192 W
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Least Squares Linear Regression

Suppose we have a large set of data points in the zy-plane

{(xlvyl) D= 1a 27 ,7’L}

and we want to find the “best fit” straight line to our data, namely, we want to find
number m and b such that

y=mx—+b

is the “best” possible line in the sense that it minimizes the total sum-squared
vertical distance between the data points and the line.

Figure 14.3: The least squares procedure finds the line that minimizes the total sum
of all the vertical distances as shown between the line and the data points.

\/

The vertical distance between any point (z;, y;) and the line, which we will denote
by di, is

d; = ‘ml‘z +b— yi|
Since this distance is also minimized when its square is minimized, we instead cal-
culate

d? = (mx; +b—y;)°
The total of all these square-distances (the “sum-squared-distance”) is

n n

flm,b) =>"d? = (ma; +b—y;)°

=1 i=1

The only unknowns in this expression are the slope m and y-intercept b. Thus we
have written the expression as a function f(m,b). Our goal is to find the values of
m and b that correspond to the global minimum of f(m,b).
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Setting 0f/0b = 0 gives

_9f_ 90y 32
0 = 8b_6b;(mxz+b vi)

= Z2(mxi+b—yi)

=1

= 2) (mx;i+b-y)

=1

Dividing by 2 and separating the three sums

n

0 = Z(mwi—i-b—yi)

i=1

n n n
- St Y0-3n
1=1 i=1 1=1

i=1 =1

Defining
X = > (14.8)
i=1
Y = >y (14.9)
i=1
then we have
0=mX+4+nb-Y (14.10)

Next, we set df/0m = 0, which gives

_ 9 _ 0y b2
O = m " om 2 b w)
= Z 2x; (mx; + b —y;)

i=1

= 223@ (max; +b—y;)

=1
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Dividing by 2 and separating the three sums as before

0 = Z% (mz; +b—y;)
i=1

n n n
= me? + bei — inyi
i=1 i=1 i=1
n n
= mZ@Q +bX — z::ztlyz
i=1 i=1

where X is defined in equation 14.8. Next we define,

A = ) a} (14.11)
=1
C = > i (14.12)
=1
so that
0=mA+bX —C (14.13)

Equations 7?7 and 77 give us a a system of two linear equations in two variables
m and b. Multiplying equation 14.10 by A and equation 14.13 by X gives

= AmX+nb—-Y)=AXm+ Anb— AY (14.14)
X (mA+bX —C)=AXm+ X?b—CX (14.15)

Subtracting these two equations gives
0=Anb— AY — X?*b 4+ CX = b(An — X*) +CX — AY

and therefore
n n n n

2 i . .
_AY—CX_Z;:EZZ?/Z leyzlgxz

=1 =1 1
- An-— X2

n n 2
ny @ - <Z wz)
i=1 i=1
If we instead multiply equation 14.10 by X and equation 14.13 by n we obtain
0=X(mX +nb—Y)=mX>4+nXb-YX
0=n(mA+bX —C)=nAm+nXb—nC
Subtracting these two equations,

0=m(X?-nd) - (YX —nC)

Solving for m and substituting the definitions of A, C; X and Y, gives
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n n n
XY -nC i:zlwz‘i;lyi—nzgﬁ%yi
N X2—nA - n 2 n
<Z$i) —ny
i=1

i=1

Generally this algorithm needs to implemented computationally, because there
are so many sums to calculate. It is also implemented on many calculators.

Least Squares Algorithm
To find a best-fit line to a set of n data points

(xl)yl)) (x27y2)7 ceey (ﬂj‘n, yn)

X=3"

y=>" u

A=Y a?
C= Z;l TiYi

calculate,

The best fit line is

y=mzx—+b
where
XY —nC
"X A
- AY - CX
An — X2
Example 14.8 Find the least squares fit to the data (3, 2), (4,3), (5,4), (6,4) and
(7,5).

Solution. First we calculate the numbers X, Y, A, and C,

X = 3 m=3+4+5+46+7=25
Y o= 3 gi=243+4+4+5=18
A = 37" @ =9+16+25+36+49 =135
C = ) zwyi=(3)2)+ @)+ () + (6)4) + (7)(5) = 97
Therefore
L _ XY —nC _ (25)18) ~ (5)(97) _ 450 —485 _ 35 _
T XZ-nA - (252-5(135)  625-675 50
and
,_ AY —CX _ (135)(18) — (97)(25) _ 2430~ 2425 _ 5 _

An — X2 (135)(5) — 252 50 50
So the best fit lineis y =0.7x +0.1 W
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Derivation of the Second Derivative Test

Let z = f(z,y) and suppose that P = (a,b) is a critical point where all the partials
are zero, namely,

faz(a,b) =0
fy(a,b) =0
An equivalent way of stating this is that
Vf(a,b) =ifs(a,b) +jf,(a,b) =0

We ask the following question: what conditions are sufficient to ensure that P is
the location of either a maximum or a minimum?

We will study this question by expanding the function in a Taylor Series approx-
imation about a critical point where the partials are zero.

f@) = P+ folP) @~ a) + fo(P) (5 D)
by ealP) (2 = )+ fuy(P) (& — ) (y = D) + 3 fun(P) (g )
If the first partial derivatives are zero, then
f@) = FP)+ 3 fealP) (&~ )
Hhay(P) (2= ) (5 = D) + 3 fu(P) (g~ B)°
Next we make a change of variables
u=r—a

v=y—b
g(U, fu) = f(x,y) - f(a’ b)
Then
g of ox  Ofdy _of
%_%[f(x,y)—f(P)} 81‘3u+87y3u 81‘() 82/() oz

and so forth gives us the relationships

f:cr( ) - g:r:ac(o) = Yzz,0

f:ry( )—gévy O) Gzy,0
fyy( ) = gyy(o) yy,0

We have transformed the critical point of f(z,y) at (a,b) to a critical point of g(u, v)
at the origin, where

1 ) 1,
g(u,v) = 2 9uu0U” + Guv,0UV + 5 Guw,00
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Now we make the following substitutions,

1

1
A= §guu,0 = ifmr,P

B = Guv,0 = fa:y,P

1

1
C= 591}7},0 = ifyy,P

which gives us
g(u,v) = Au® + Buv + Cv?

In other words, we have approximated the original function with a quadratic at the
origin (note to physics majors: this is a generalization of a property called Hooke’s
law to 2 dimensions).

The function
D(u, U) = GuuGvv — (guv)2
so that
d = (24)(2C) — B> = 4AC — B?

Completing the squares in the formula for g,

A 4A2 )] 442 " A

[ B \* (Cc B*\,
=4 (“*m) +<A‘4A2>“
[ B \? [44C- B2\ ,

B \* d
= A <u+v> +4—v2

r B 32 2 BQ 2
glu,v) = A <u2+uv+ U> ! +002}

We have three cases to consider, depending on the value of d.

Case1: d > 0

If d > 0 then everything in the brackets is positive except at the origin where it is
zero. Thus the origin is a local minimum of everything inside the square brackets.
The function g is a paraboloid that extends upwards around the origin when A > 0
and downwards when A < 0. Thus if A > 0, we have a local minimum and if A < 0
we have a local maximum.

Math 250, Fall 2006 Revised December 6, 2006.



116 LECTURE 14. UNCONSTRAINED OPTIMIZATION

Case 2: d <0

If d < 0 then write d = — |d| = m? > 0 for some number m > 0, so that

(1w o)~ (e

If we make yet another change of variables,

g(u,v) = A

Buv mu

Pt on 1794

then
g(u,v) = A [p* — ¢*

This is a hyperbolic paraboloid with a saddle at (p,q) = (0,0). The original critical
point is at u = 0,v = 0, which corresponds to (p,q) = 0. So this is also a saddle
point in uv-space.

Case 3: d=0
Finally, if d = 0 then

Bv\?
— A e
g(u,v) <u+ 2A>

Along the line u = —B/(2A)v, g(u,v) identically equal to zero. Thus g(u,v) is a
constant along this line. Otherwise, ¢ is always positive when A > 0 and always
negative (when A < 0). Thus the origin is neither a maximum of a minimum. MW
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Constrained Optimization:
Lagrange Multipliers

In the previous section we learned how to find the maximum and minimum points of
a function of two variables. In this section we will study how to find the maximum
and minimum points on a function subject to a constraint using a technique called
Lagrange’s Method or The Method of Langrange Multipliers.

Theorem 15.1 Lagrange’s Method. An extreme value of the function f(x,y)
subject to the constraint

g(m,y) =0

occurs when
Vi(z,y) = A\Vg(z,y)

for some number A.

We introduce the method along with the concept of a constraint via the following
example.

Example 15.1 Find the dimensions and area of the largest rectangular area that
can be enclosed with a fixed length of fence M.

Solution Let the sides of the rectangle have length = and y. Then the area is
given by the function f(z,y) where

flz,y) ==y
. Similarly, the perimeter M is
M =2z +2y

One way to solve this problem is to solve for one of the variables, say y, as a
function of x and M, substitute the result into the equation for the area, and then
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maximize f which becomes a function of a single variable. Instead, we will use a
different method: We want to maximize the function f(z,y) subject to the constraint
g(z,y) = 0 where

g(z,y) =M — 2z —2y

According to Lagrange’s method, the optimum (maximum or minimum) occurs
when

Vf(z,y) = AVg(z,y)

for some number \. Thus
(y,2,0) = =X (2,2,0)

This gives us three equations in three unknowns (z, y, and A; the third equation is
the original constraint)

y=—2\
T = =2\
M =2x+ 2y

We can find A by substituting the first two equations into the third:
M =2(=2\)+2(=2X\) = —-8\= A= —-M/8

Hence
r=y=M/4

and the total area is
f(M/4,M/4) = M?/16

To test whether this is a maximum or a minimum, we need to pick some other
solution that satisfies the constraint, say x = M/8. Then y = M/2 —x = M/2 —
M/8 = 3M /8 and the area is

f(M/8,3M/8) = 3M? /64 < 4M?/64 = M?/16

Since this area is smaller, we conclude that the point (M /4, M/4) is the location of
the maximum (and not the minimum) area. W

Example 15.2 Verify the previous example using techniques from Calculus 1.

Solution. We want to maximize f(x,y) = xy subject to M = 2z + 2y. Solving for
Yy gives

y=M/2 -z
hence v o
f(x,y):x(Q—x) :796—372
Setting the derivative equal to zero,
M
0=—-2
> x
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or x = M /4. This is the same answer we found using Lagrange’s Method. W

Why does Lagrange’s method work? The reason hinges on the fact that the
gradient of a function of two variables is perpendicular to the level curves. The
equation

says that the normal vector to a level curve of f is parallel to a normal vector of
the curve g(z,y) = 0. Equivalently, the curve g(x,y) = 0 is tangent to a level curve
of f(x,y). Why is this an extremum? Suppose that it is not an extremum. Then
we can move a little to the left or the right along g(z,y) = 0 and we will go to a
higher or lower level curve of f(x,y). But this is impossible because we are tangent
to a level curve, so if we move infinitesimally in either direction, we will not change
the value of f(x,y). Hence the value of f(z,y) must be either a maximum or a
minimum at the point of tangency.

Example 15.3 . Find the mazimum and minimum value of the function

flz,y)=z+y

on the ellipse
322 4+ 4y? =25

Solution. We use Lagrange’s method with the constraint
g(z,y) =32% +4y* =25 =0

setting Vf = AVg to give
(1,1) = A (6z,8y)

Our system of equations is

1

7oA

1

Y78
3z? 4+ 4% = 25

Substituting the first two equations into the third equation gives

3 4

25 =
362 T 6ax2
1 1 164+12 28 7
5B\ — 4 — - =2
1216 (16)(12) 192~ 48
A2 = 7

7
(48)(25) ~ 1200

[ 7
A=+ 1200 20
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Thus
1 2
x::io\/gzilo\/g:ilo
6A 6 V7 3 V7 V21
and
1 20 /3 5 /3 5 /3-3 15
8\ gV 2V 7 2V 3.7 2v/21
Hence

10 15 5 3
2y =t ——=, —= | =+—=1(2,=
(@9) (\/21 2\/21> V21 ( 2)
To determine which point gives the minimum and which point gives the maximum
we must evaluate f(x,y) at each point.

f<10 15)_ 35
V21 2v21)  2v21

whereas
10 15 35

(Vs am) = avm

so the positive solution gives the location of the maximum and the negative solution
gives the location of the minimum. H

Example 15.4 Find the minimum of
flayy,z) =a® +y* + 22

on the plane
x4+ 3y —22=12

Solution. We write the constraint as
g(z,y) =x+3y—22—-12=0

Setting V f = AVg gives
(2x,2y2z) = A (1,3,-2)

or
2r = A\

2y = 3\

2z = —2)\

T+ 3y —2z=12
Substituting each of the first three equations into the fourth,

A 9A 12
24+ o =12 A= —
2t T - 7
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Hence
s .8 18 12
- 77 7y - 7 M - 7
and

6 18 12 36 +324 + 144 504
- ) = T = T~ 10.28
/ (7’ 7T ) 49 49
To determine if this is a maximum or minimum we need to compare with some
other point on the plane x + 3y — 2z = 12. Since there are two free variables and
one dependent variable we can pick x = 0 and y = 0. Then z = —6, and

£(0,0,—6) = 36 > 10.28
Hence the point we found is a minimum, as desired. W

Example 15.5 Find the point on the plane 2x — 3y + 5z = 19 that is nearest to the
oTigin.

Solution.The distance from the point (z,y, z) to the origin is

d(z,y, 2) = Va* +y* + 2°

We want to minimize this distance. Because differentiating square roots is messy,
we observe that d is minimized if and only if d? is also minimized. So we choose to
minimize

fla,y,2) = 2 +y° + 2
subject to the constraint

g(z,y,2) =22 -3y +52—-19=0

Using Lagrange’s method Vf = AVg so that

(2x,2y,2z) = A (2,-3,5)

Hence we have four equations in four unknowns,

=\
_ =3
Yy=77
Z—@
2

19 =22 — 3y + 52
From the fourth equation

9\ 25\
19 =2 "+ —+ — =19\
2 2
Using A =1 gives
r=1,y=3/2,2=5/2
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and the distance is
d>=14+9/4+25/4=237/4=9.25

Picking any other point on the plane, say z = 0,y = 0,z = 19/5, the distance is
d=361/5~72.2 > 9.25. Hence the closest point to the origin is (1, -1.5, 2.5). W

Example 15.6 Suppose the cost of manufacturing a particular type of box is such
that the base of the box costs three times as much per square foot as the sides and
top. Find the dimensions of the box that minimize the cost for a given volume.

Solution. Let the bottom (and top) of the box have dimensions a x b and let the
height of the box have dimension h. Then the area of the base = ab and the area of
the rest of the box is

top + (left and right) + (front and back) = ab + 2ah + 2bh
If the cost function is ¢ dollars per square foot that then total cost is
f(a,b, h) = 3abc + (ab + 2ah + 2bh)c = 4abe 4 2ach + 2bch
We want to minimize this cost subject to the constraint
g(a,b,h) =abh —V =0
The Lagrange formulation V f = AVg gives

of of o\ _ (2 99 99
da’ 9" oh) ~ "\ da’ 0b* Ok

(4bc + 2ch, 4ac + 2ch, 2ac + 2bc) = X (bh, ah, ab)

We have four equations in four unknowns a, b, h, and A:

4bc + 2ch = bhA (15.1)
dac + 2ch = ahA (15.2)
2ac + 2bc = abA (15.3)
abh =V (15.4)
This is non-trivial to solve. We begin by solving 15.1 for h,
4bc
bhA — 2ch = 4bc = h = % (15.5)
Similarly, equation 15.2 gives
4dac
hA —2ch =4 h = 15.6
a c ac = % (15.6)
Since both equations for h must be equal,
4b 4
‘ 1 (15.7)

b)\—ZCZa/\—Qc
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b(aX — 2¢) = a(bX — 2¢)
abA — 2bc = ab)\ — 2ac

2bc = 2ac
b=ua (15.8)
Using equation 15.8 in 15.4 gives
h=V/a? (15.9)
Using equation 15.8 in 15.3 gives
dac = a*\ = X\ = 4c/a (15.10)
Using equation 15.9 in 15.6 gives
aLf? - a)\4C—LCQC (15.11)
Substituting equation 15.10 gives
% = 4C4fc2c =2 (15.12)
Hence
a=b=(V/2)"/? (15.13)
From equation 15.9
h=Va2=VV/2 23 =y1/322/3 = (4v)1/3 (15.14)

The solution is a = b = (V/2)'/3 and h = (4V)'/3. &

Theorem 15.2 Lagrange’s Method: Two Constraints An extreme value of
the the function f(x,y,z) subject to the constraints

g(x,y,2) =0

and
h(z,y,z) =0

occurs when

Vf=AVg+uVh
for some numbers X\ and u
Example 15.7 Find the mazimum and minimum of
flz,y,2) = —x 4+ 2y + 22
on the ellipse formed by the intersection of the cylinder
24y =2

with the plane
y+2z2=1
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Solution. The idea is to find the extreme values of the function f(x,y, z) subject to
the constraints imposed by

g(z,y,2) = +y* ~2=0

and
h(J:?y?Z) :y+22_ 1

Lagrange’s method says that Vf = AVg+ uVh
(—=1,2,2) = A (22,2y,0) + 1 (0,1,2)

Hence we have 5 equations in 5 unknowns,

22\ = —1 (15.15)
QYN+ =2 (15.16)
U = 2 (15.17)
224yt =2 (15.18)
y+2z=1 (15.19)

We can immediately elminate u = 1, to give
2y =1 (15.20)

Using equations 15.20 and 15.15 in equation 15.18 gives

2 =122+ 9% = (1/20)? + (—1/20)2 = 1/(2)\?) (15.21)

or
A=£1/2 (15.22)
For A = 1/2 we have x = —1,y = 1 and z = (1 — y)/2 = 0. At this point

f(=1,1,0) =1+42(1) +0 =3. For A = —1/2 we have x = 1,y = —1, and z = 1.
Here f(1,—1,1) = =1 — 24 2 = —1. Hence the maximum of 3 occurs at (-1, 1, 0)
and the minimum of -1 occurs at (1,-1,1). A

Example 15.8 The cone 22 = x? + y? is cut by the plane z = 1 + = + y in some
curve C. Find the point on C that is closest to the origin.

Solution We need to minimize
flz,y,2) = 2?4y + 22 (15.23)

subject to the two constraints
g(w,y,2) =2 —a® =y =0 (15.24)

hz,y,2) =2—1—x—y=0 (15.25)
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Applying our usual technique, Vf = AVg + uVh, so that

(2x,2y,2z) = A (=22, —2y,22) + p(—1,—-1,1) (15.26)
or
20 = =2\ — (15.27)
2y = —2y\—pu (15.28)
22 =22\ + 4 (15.29)

We can elminate p by adding equation 15.29 to each of equations 15.27 and 15.28
to give

2r + 2z =2\ (2 — x) (15.30)
2y +2z=2\z—vy) (15.31)
or .
z4x
A= (15.32)
z—x
A= 2y (15.33)
z—y
Equating the two expressions for A,
z+x z4y
z—x  z—y
(z+2)(z—y) = (z+y)(z—2)
22—|—a:z—yz—my = 22—|—yz—:pz—:py
Tz —Yyz = Yz —xZ
Yz = xz

Hence y =z or z = 0.

Case 1: z=0

From the constraint g we have 22 4+ y?> = 0 which means z = 0 and y = 0. The
origin is the only point on the cone that satisfies z = 0. But this point is not on the
plane z = 1+ x 4+ y. So there is no solution here.

Case 2: x=y

The first constraint (g) gives 22 = 222. The second constraint (h) gives z = 1 + 2z,
hence
(1+22)2=22"=>1+4x+42> =22 = 22° + 40 +1=0
—4+v8 1

V2
hence

z—1+2<—1ﬂ:\}§>_—li\@
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The extremum occur at

1 1
—14 0=, -1+ —,-1+V2
( V2 V2 )
and

(—1—\2,—1—\}5,—1—\6)

The minimum is at

f<_1+1 _1+1,_1+\/§> - 2(—1+1>2+(—1+\/§)2

V2 V2 V2
4
= 2— — +1+4+1-2V2+2
V2
= 4-4V2

and the maximum occurs when

f<_1_\27_1_\}§,—1—\@> = 2<—1—\}§>2+<—1—\f2)2

4
= 24 = +1+1+2V2+2

V2
= 6+4V2 1
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Lecture 16

Double Integrals over
Rectangles

Recall how we defined the Riemann integral as an area in Calculus I: to find the area
under a curve from a to b we partitioned the interval [a, b] into the set of numbers

a=20 <21 <9< < Tp_1<xTp=">b
We then chose a sequence of points, one inside each interval ¢; € (z;—1, z;),
Tim1 < ¢ < X;

and approximated the area A; under the curve from x; 1 to z; with a rectangle with
a base width of ¢; = ; — x;_1 and height f(¢;), so that

A = 0if(c)

Figure 16.1: Calculation of the Riemann Sum to find the area under the curve from
a = x1 to b = z,, approximates the area by a sequence of rectangles and then takes
the limit as the number of rectangles becomes large.

A

I\

Y

T

|
T

|
|
! 1
! |
fe)i |
! |
v |

Ci

X1 X2

The total area under the curve from a to b was then approximated by a sequence
of such rectangles, as the Riemann Sum

A A=) 6f(c)
i=1 =1
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128 LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES

We then defined Riemann Integral as the limit

01,02,...,0n—0,n—00 £
=1

b
[ t@do= Y e,

Figure 16.2: Left: A Riemann Sum in 3D can also be used to estimate the volume
between a surface described some some function f(x,y) and a rectangle beneath it
in the xy-plane. Right: construction of the boxes of height f(u;,v;) with base in
rectangle 1.

height=f(u;,v;)

(uj,vy)

We now want to generalize this procedure to find the volume of the solid between
the surface z = f(x,y) and the 2-y plane over some rectangle R as illustrated in
figure 16.2. The surface z = f(z,y) forms the top of the volume, and rectangle

R = [a,b] X [e,d]

in the z-y plane forms the bottom of the volume. We can approximate this volume
by filling it up with rectangular boxes, as illustrated on the right-hand sketch in
figure 16.2.

1. Divide the [a,b] X [c,d] rectangle in the z-y plane into little rectangles. Al-
though they are illustrated as squares in the figure, they do not have to be
squares.

2. Number the little rectangles in the zy plane from ¢ = 1 to i = n.
3. Let the area of rectangle i be AA;

4. Pick one point in each rectangle and label it (u;,v;). The i** point does
not have to be in the center of mini-rectangle 7, just somewhere within the
rectangle. The points in rectangle ¢ and rectangle j can be in different locations
within the rectangle.

5. The distance of the shaded surface about the point u;,v; is f(u;,v;). Draw a
box of height f(u;,v;) whose base is given by rectangle .
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LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES 129

6. The volume of box i is V; = f(ui, v;) AA,;.

7. The total volume under the surface is
D Vi=> flus,vi) A4
i=1 i=1

We then obtain the double integral by taking the limit as the number of squares
becomes large and their individual sizes approach zero.

Definition 16.1 Let f(x,y) : R C R? = R be a function of two variables defined
on a rectangle R. Then the Double Integral of f over R is defined as

jj flz,y)dA = lim zn:f(ui,vi)AAi
R i=1

n—00,AA;—0

if this limit exists. The summation on the right is called o Riemann Sum. If the
integral exits, the function f(x,y) is said to be integrable over R.

Theorem 16.1 If f(x,y) is bounded on a closed rectangle R, and is continuous
everywhere except for possibly only finitely many smooth curves in R, then f(x,y)
is integrable on R. Furthermore, if f(x,y) is continuous everywhere on R then
f(z,y) is integrable on R.

Example 16.1 Approzimate

[] fa.y)dA

using a Riemann Sum for
flxy)=z+y

and R is the rectangle [0,6] x [0,4], with a partition that breaks R into squares by
the lines x = 2, x = 4, and y = 2, and choosing points at the center of each square
to define the Riemann sum.

Solution. See figure 16.3. Choose points (u;,v;) in the center of each square, at
(1,1),(3,1),(5,1),(1,3),(3,3),(5,3), as shown. Since each AA; = 4, the Riemann
Sum is then

[[ f@ypda=xY""  flu,v)aa,

R

A0+ fB1) + f(5,1) + f(1,3) + f(3,3) + £(5,3))
42+44+6+4+6+8) =120 W
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130 LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES

Figure 16.3: A partition of the rectangle R = [0,6] x [0, 4] into size equally-sized
squares can be used to calculate [ f(x,y)dA as described in example 16.1.

A

P

4

3le | e | @

2

2 bl Bl Bl PR
34567

1
shadow of f(x,y) in x-y plane

Theorem 16.2 Suppose that R = U + V where U, V, and R are rectangles such
that U and V' do not overlap (except on their boundary) then

[f r@.pda = [[ f@y)da+ [[ fe.y)aa
R U \%4

in other words, the integral over the union of non-overlapping rectangles is the sum
of the integrals.

Theorem 16.3 Iterated Integrals. If R = [a,b] X [¢,d] is a rectangle in the zy
plane and f(z,y) is integrable on R, then

[resia= [ ([ )i ([ )

The parenthesis are ordinarily omitted in the double integral, hence the order of the
differentials dr and dy is crucial,

b rd d b
gf(x’y?)df‘:/a / f(x,y)dydasz/c /a £ (@, y)dzdy

Note: If R is not a rectangle, then you can not reverse the order of integration
as we did in theorem 16.3.

Example 16.2 Repeat example 1 as an iterated integral.

Solution. The corresponding iterated integral is
6 4
[eman = ([ @+ ay)ao
R o \Jo
6 4 4
= / (/ xdy+/ ydy) dx
0 0 0

In the first integral inside the parenthesis, = is a constant because the integration is
over ¥, so we can bring that constant out of the integral:

ffRf(w,y)dA—/oﬁ <:L'/O4dy+/04ydy> dx
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LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES 131
Next, we evaluated each of the two inner integrals:
6 4
_ 4 1,
[fpf@naa = [ (az (i) + <2y N
6 1 1
_ / (x (4—0)+ ((16) _ (0))> do
0 2 2

_ /06(4x +8)da

After the inside integrals have been completed what remains only depends on the
other variable, which is x. There is no more y in the equation:

HRf(x,y)dA = /06(4a;+8)dx

= (222 + 833)’3
= 2(36) +8(6) —2(0) — 8(0) =72+ 48 = 120

Usually the Riemann sum will only yield a good approximation, but not the exact
answer, with the accuracy of the approximation improving as the squares get smaller.
It is only a coincidence that in this case we obtained the exact, correct answer. W

[ </15(3x + 12y)da:> dy

Solution. We evaluate the inner integral first. Since the inner integral is an integral
over x, within the inner integral, we can treat y as a constant:

A7</15(3:E—|—12y)d1:>dy = A7<3/151‘dx—|—12y/15d$>dy
- 1: (3(;1’2 j) + 12y <x\?)> dy
_ /47(3(225—3)“2@/(5—1))@

7
= / (36 + 48y) dy
4

Example 16.3 FEwvaluate

After the integration over z is completed, there should not be any z’s left in the
equation — they will all have been “integrated out” and what remains will only
depend on y.

[ </15(3x+12y)da:> dy = [(36+48y)dy

—  (36y + 24¢°)]
= [(36)(7) + 24(49) — (36)(4) — 24(16)]
— 252+ 1176 — 144 — 384 = 900
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132 LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES

Whenever we calculate a definite integral, the final answer will always be a number
and will not have any variables left in it. H

2 2
Example 16.4 Find/ / (2% 4 y?)dzdy
o Jo

Solution.

2 2
//(x2+y2)d:cdy =
o Jo

I
| Y e—— |
W =
8
w

28 )
= =+ 22| d
3—|—y]y
_ (8,28
- 3Y73Y)),
8 2 32
- 22+ == m
22+ 30@) =3

Volumes and Areas

The Area A of a rectangle R in the xy plane is

A= HR dzdy

The Volume V between the surface z = f(x,y) and the rectangle R in the xy plane
is

V=[] fay)dzdy

These formulas for area and volume still hold even if R is not a rectangle (even
though we have not yet defined the concept of an integral over a non-rectanglular
domain).

Example 16.5 Find the area of the rectangle [0,1] x [0, w].

Solution. Using double integrals,

A:ﬂRda;dy:/w/ldxdy:Zw N
0 0

Example 16.6 Find the volume of the solid under the plane z = 2x + 4y and over
the rectangle [3,12] x [2,4].
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LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES 133

Solution. The volume is given by the iterated integral

12 4 12 4 12 4
/ / (2z + 4y)dydr = / / 2mdyda:+/ / dydydx
3 J2 3 J2 3 J2
12 4 12 4
= / 29:/ dyd:z—i—/ 4/ ydydz
3 2 3 2
12 12 .
— / 2x(42)dx+/ 4[(y2/2)’2dx
3 3
12 12
= / 433d1:—|—/ 4(8 — 2)dx
3 3

12 12
= 4/ xdm—i—24/ dx
3 3

= 4(x 2/2)3 +24(12 — 3)
= 4(72 -9/2) 4216 = 288 — 18 + 216 = 486 W

Example 16.7 Fmd/ / ———dydx

1+ 22

Solution. Since the inner integral is over y, the denominator, which depends only
on z, can be brought out of the inner integral:

1 2 y 1 1 2
dyde = | —— [ ydyd
/()/01+x2yx /01+x2/0yym
1
1 2 2
- [ ek

L |
- 2/ L.
0 1+1'2

= 2 tanflx‘é
= 2(tan"!'1 —tan"10)
= 2(r/4—-0)=7/2 W

Example 16.8 Find the iterated integral / / sdxdy

x2+y)

Solution. There is nothing that can be factored out of the inner integral. We will
first consider just the inside integral,

3
X
4
/1 @+ g2 ™

where y is a constant. If we make the substitution

u:x2+y
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134 LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES

then du = 2dx, because y is a constant. When z=1, u=1+y; When z=3, u=9+y.

Therefore,
3 x 1 [ du
el = g 3
1 (@®+y) 2 )14y u

1 9+y
= = / uw2du
2 14y

1 —1+ 94y
- 5(—u )1+y

1] -1 N 1
2|94y 14y
Substituting this back into the original iterated integral, we find that

5 3 5
1] -1 1
[l - L3l ikl
2 J1 (@%+y) 2 29+y 14y

= 5 [-IO+y) + I +y)]l;

[(In14 +1n6) — (—In1l + In 3)]

(6)(11) 1 11 N
In 0@ §ln7 =In+/11/7~0.226 &

N~ N~

When we integrate over non-rectangular regions, the limits on the inner integral
will be functions that depend on the variable in the outer integral.

Example 16.9 Find the area of the triangle
R={(z,y):0<z<b0<y<mzx}
using double integrals and show that it gives the usual formula y = (base)(height)/2
y=mx

h=mb

b

Solution.

b prmzx b )
A:ffRdxdy:/o /0 dydx:/o maxdx = mb-/2

We can find the height of the triangle by oberserving that at x = b, y = mb, therefore
the height is h = mb, and hence

A =mb®/2 = (mb)(b)/2 = (height)(base)/2 A

We will consider integrals over non-rectangular regions in greater detail in the fol-
lowing section.
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Lecture 17

Double Integrals over General
Regions

Definition 17.1 Let f(x,y) : D C R? — R. Then we say that that f is integrable
on D if for some rectangle R, which is oriented parallel to the xy axes, the function

F(x y) - f<m7y) if(x,y) cD
’ 0 otherwise

is integrable, and we definitionine the double integral over the set D by

fj f(z,y)dA = J:f F(x,y)dA
D R

Figure 17.1: The integral over a non-rectangular region is definitionined by extend-
ing the domain to an enclosing rectangle.

A

A4

In other words, we extend the domain of f(x,y) from D to some rectangle including
D, by definitionining a new function F(x,y) that is zero everywhere outside D, and
equal to f on D, and then use our previous definitioninition of the integral over a
rectangle. The double integral has the following properties.

Theorem 17.1 Linearity. Suppose that f(x,y) and g(x,y) are integrable over D.
The for any constants o, 3 € R

|[ (@f@.y)+ Bg(a, ) dA = a [{ f(a,y)dA+ B [[ g(x,y)dA
D D D
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136 LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS

Theorem 17.2 Additivity. Suppose that f(z,y) is integrable on S, that S =
AU B, and that any overlap between A and B occurs only on a smooth curve. Then

[f r@.pda = [[ f@,y)dA+ [[ fe.y)da
S A B

Figure 17.2: The integral is additive over regions that share (at most) a common
smooth curve. Here [[o f = [[, f+ [[5 [-

DO

A4

Theorem 17.3 Comparison Property. Suppose that f(x,y) and g(z,y) are in-
tegrable functions on a set S such that

fz,y) < g(z,y)
for all (z,y) € S. Then

{[ £ A< [{ gtz y)da
S S

The simplest non-rectangular regions to integrate over are called z-simple and y-
simple regions, as illustrated in the following example. A region is called x-simple
if it can be expressed as a union of line segments parallel to the z-axis; it is called
y-simple if it can be expressed as a union of line segments parallel to the y-axis.
The following example considers one y-simple set.

Example 17.1 Set up the integral

[] @, y)da

where S is the set bounded above by the curve y = 2, below by the line y = —3x,
on the left by the line x = 2, and on the right by the line x=10.

Solution. As z increases from z=2 to x=10, we can trace out the figure with

a vertical rectangle that goes from the lower boundary y = —3x to the upper
boundary y = x2. In other words: For all z between 2 and 10 (this is the outer
integral), include all y between y = —3x and y = 2. Therefore

Jf stepaa= [ _chc,y)dx .
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LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS 137

Figure 17.3: The integral over this y-simple region is examined in the example.
y=x2

x=2 .X=10

>
>

y=-3x

Definition 17.2 A region S is called x-simple if there are numbers c¢,d € R and
functions g(y), h(y) : [¢,d] — R such that

S={(z,y) : g(y) <y < h(y) and y € [c,d]}

Definition 17.3 A region S is called y-simple if there are numbers a,b € R and
functions f(x),g(z) : [a,b] — R such that

§={(z.y): f(z) 2 < g(x) and x € [a,b]}

Figure 17.4: Examples of x-simple and y-simple regions.

A anx-simple set . ay-simple set
dl--- 8(x)

h(y)
g

S

v
Sy

Figure 17.5: The quarter of the circle of radius a centered at the origin that is in
the first quadrant.

y_-,[aZ.xZ

Example 17.2 Set up the integral ffs f(x,y)dA over the portion of the interior of
a circle of radius a centered at the origin that lies in the first quadrant.
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138 LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS

Solution. The equation of a circle is

2 2 2

Solving for y,

y=+va2— 22

The set S can be described as follows: As x increases from z = 0 to x = a, y at x
increases from y = 0 to y = va? — x2. Therefore

ﬂfxydA //a“a fz,y)dydz W

Example 17.3 Find a formula for the area of a circle of radius a using double
integrals.

Solution. We can place the center of the circle at the origin, so that its equation is
given by z2 + y? = a2, as in the previous example. The circle can be thought of as

the set
{(z,y): —a <z <a,—Va® —2% <y < Va? -2}
so that
VaZ—z?
A = f dxdy—/ / dydx
VaZ—z?
a2 _r2
= / (y‘ 3/69%2) dz
—a
a
= / (\/&2 —x2 — —v/a? — 332) dx
—a
a
= 2/ Va2 — x%dx
—a
By symmetry, since the integrand is even, we also have
a
A:4/ Va2 — x%dx
0
According to integral formula (54) on the inside book jacket
2
/\/aQ—xQdu— Va2 — 2+ gin 12
2 2 a

Therefore

a T 22 z\ "
A = 4/ Va2 — x2dx = <2 a2—x2+2sin1)
0

0

2 2
0 0 0
= 4[(; a2—a2—|—a58m_1 Z) — <2 a2—02+58in_1 a)]

= 40+ ‘ismlu) —0—0] = 4(a*/2)(7/2)

= 71a’ N
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LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS 139

Example 17.4 Find the iterated integral
1 y?
/ / 2ye®dxdy
o Jo

Solution We write the integral as

1 py? 1 y? 1 )
/ / 2uedxdy = / 2y/ e”cdzndy:/ 2y{e$]g }dy
0o Jo 0 0 0
1 , 1 ) 1
= / 2yleY —eo]dy:/ 2yeY dy—/ 2ydy
0 0 0

The first integral on the right can be solve with the substitution

and sketch the set S.

uw=1?% du=2dy

when y =0, u = 0, and when y = 1, v = 1. Thus y=0, u=0; when y=1, u=1. Thus
1 ) 1
/ 2ye? dy:/ e'du = e“\é:el—eoze—l
0 0
The second integral is straightforward:
! 1
/ 2ydy = y*|,=1-0=1
0
Therefore

Figure 17.6: The region in example 4.

X increases from 0 to y?

as y increases from O to 1

1 py? 1 ) 1
/ / 2uedxdy = / 2yeY dy —/ 2ydy
0o Jo 0 0

= (e—1)—1=e—-2

We can draw the domain by observing that the outer integral — the one over y —
increase from zero to 1. For any fixed y within this region, 2 increases for 0 to 3.
As we move up along the y axis (the outer integral) we need to increase from x = 0
to x =2, ie., the curve of y = /z. W
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140 LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS

Example 17.5 Find the iterated integral

12 po+3
/ / (x + 3y)dzdy
_o J_ g2

Solution. Separating the integral into two parts and factoring what we can gives
12 pa+3 12 pa+3 12 pa+3
/ / (x + 3y)dydxr = / / xdydz +/ / 3ydydx
-2 J—z2 -2 J—z2 -2 J—z2
12 43 12 pax+3
= / x/ dyd:c—i—S/ / ydydx
-2 —x2 -2 J—z2?
12 12 4
— [ s s [ Gy
-2 -2

B 12 ) § 121: 2 2
- /_Qx(x—i—?)—l—a:)da:—i—z/_z[( +3)" = (=27)7]d

12 3 12 3 12
= / (2? + 3z + 2°)dx + = / (z + 3)%dz — = / zide
_9 2/, 2/ 5

Integrating and plugging in numbers, we find that

S 13, 3.2 1 31 31
/—2 /_xz (z +3y)dydz = (§$3+§x2+1x4) 1_22+§§($+3)3‘1—22_5515‘1—22
:,123 7122 7124_7_ P
5127+ 5(12)° + 2(12)" = 2(=8) — 5(4) — 5(16)
1 3
(155 — (=8)) — (127 — (—32
+5(15% = (=8)) = 15 (12 = (-32))
= 5764216+ 5184 + g — 6 — 8+ 1691.5 — 124432
~ —116775.83 W

Figure 17.7: The plane z = 6 — 2x — 3y and its cross-section on the zy plane.

A

=6

y=2 y=-(2/3)x+2

x=3

Example 17.6 Find the volume of the tetrahedron bounded by the coordinate planes
and the plane z = 6 — 2x — 3y.
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Solution Dividing the equation of the plane by 6 and rearranging gives

x Yy oz

T4 2421
3 * 2 + 6

This tells us that the plane intersects the coordinate axes at z= 3, y=2, and z=6 as

illustrated in figure 17.7. We can find the intersection of the given plane with the

zy-plane by setting z = 0. The cross-section is illustrated on the right-had side of

figure 17.7, and the intersection is the line

r oy
T+ 3y 3—1—2
Solving for y,
2
= Zr+2
Y 3:5—1—

If we integrate first over y (in the inner integral), then going from the bottom to
the top of the triangle formed by the z and y axes and the line y = (2/3)x + 2,
our limits are y = 0 (on the bottom) to y = —(2/3)x + 2 (on the top).. Then we
integrate over x (in the outer integral) going from left to right, with limits z = 0 to
T =3,

—(2/3)z+2
vV = // (6 — 2z — 3y)dx
0o Jo

3
3 3 —(2/3)a+2
= / (6y—2xy—y2> dz
0 2 0
3 2 2 3/ 2 2
= 6(—2z+2)—22(-22+2)-2(-22+2
/0 [ ( 3x+ ) x( Sx—i- ) 2( Sx—i- )

Expanding the factors in the integrand gives

dx

5T 4 4
V = /0 _—43:—1—12—1—33:2—43:—;<9x2—§x+4)}dm

3T 4 4 2 5
= A4+ 124+ -z —4dx — —x* +4x — 6| dx
o L 3 3

3T 2

= / —4:10—1—6—1—952] dx
o L 3

3

2
= <—2ZL‘2 + 6z + 9x3>

0
2
= ~29)+6(3)+ S(27) = ~18+18+6=6 W

Example 17.7 Find the volume of the tetrahedron bounded by the coordinate planes
and the plane 3z + 4y + 2z — 12 = 0.
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142 LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS

Solution. This example is exactly like the previous example. Dividing the equation
through by 12 we determine that the given plane intersects the coordinate axes at
r =4,y = 3, and z = 12. The tetrahedron drops a shadow in the xy plane onto a
triangle formed by the origin and the points (0,3) and (4,0). The equation of the
line between these last two points is

—(3/4)z+3

. Hence the volume of the tetrahedron is given by the integral

4 (9—(3/4)a+3
= / / (12 — 3z — 4y)dydx
o Jo

Alternatively, we could integrate first over x and then over y as

3 —(4/3)y+4
V= / / (12 — 3z — 4y)dxdy
o Jo

Either integral will give the correct solution. Looking at the first integral,

(3/4)a+3
VvV = / / (12 — 3z — 4y)dydz

_ / (12y — 3zy — y)}o(g/%“d;ﬂ

4 2
3 3 3
— /O 12 <—4$+3>—3x (—4$+3>—2<—4$—|—3>

4
= /0 _—9$+36+Za§2—9x—2(1961‘—gaz+9>]dx

dzx

4 9 9
= / 36 — 182 4 —x% — x2+9x—18]dac
o L 4 8

4 9
:/ 18 — 9z + a:—i—}d
0 8
9 9
- |1 T2 4 3
[8“’ 2" T ®G) }

3"
3(64) 4)

4

= 18(4) — 7(16)
= 72—72+24—24I
Example 17.8 Find the volume of the solid in the first octant bounded by the

paraboloid
z=9— 2% —y?

and the xy-plane.

Solution The domain of the integral is the intersection of the paraboloid with the
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143

Figure 17.8: The solid formed by the paraboloid z = 9 — 22 — y? and the zy plane.
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zy plane. This occurs when z = 0. So that means the domain is
0=9—22—y? = y? 422 =32

which is a circle of radius 3 centered at the origin. Since we only want the part of
the circle that is in the first quadrant, we need x and y both positive. To cover the
upper right hand corner of a circle of radius 3 centered at the origin, we can let x

increase from 0 to 3 and y increase from 0 to y = /9 — 22 Therefore the volume is

3 pV9—22
VvV = / / (9 — 22 — 9?)dydzx
0o Jo
3 V9—z? 3 V922
/ (9—1‘2)/ dydx—/ / yidydx
0 0 0o Jo
3 VI9—x 1 3 3|VI—x
/0 (9 —2%) (3/’09 2) dx_?,/o VY de
/ (9 — 22)%2de — = / (9 — 22)32dx
0 3 Jo

2 3 :
3/ (9 — 22)%2da
0
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144 LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS

Making the substitution = 3cosu in [(9 — x2)3/2da: we have dr = —3sinudu
hence

/(9 — 223 = /(9 — 9cos?u)¥?(=3sinu)du
/93/2(1 — cos? u)*?(—3) sin udu
= —3(3%)3/2 /(sin2 u)®/? sin udu
= —3(33)/sin4 udu
= 81 / (sin u)(sin® u)du

Using the trigonometric relationship

1
sin®u = 5(1 — cos 2u)

gives

1 1
/(9x2)3/2dx = 81/2(1cos2u)2(lcos2u)du

81
= -7 (1 — 2cos 2u + cos? 2u)du

Use the substitution

1
cos®u = 5(1 + cos2u)

to get
81 1
/(9 — 2?24y = e [u — sin2u + 3 /(1 + cos 4u)du]
81 |3 1
= -7 [211 —sin2u — 3 sin4u]

The limits on the definite integral over x were [0,3]. With the substitution x =
3 cosu, we have u = 7/2 when 2 = 0 and u = 0 when x = 3. Hence

3 1 1 0
/(9—m2)3/2dm‘ L {3u—51n2u—31n4u}
0 4|2 8 /2
1 1 1
- _SZ B(O)—sin(O)—8sinO—gg—sinw—Ssin27r
_ 8137 24dm
422 8

and consequently

2 (3 22437 8lrw
V== (9-2®de =" ="
3/0( v e = 3= 4
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Lecture 18

Double Integrals in Polar
Coordinates

Recall that in polar coordinates the point P = (x,y) is represented by the numbers:

r, the distance of P from the origin; and
0, the angle, measured counter-clockwise from the axis
between the z-axis and the line segment from the origin to P.

Figure 18.1: The point P is represented by the cartesian coordinates (z,y) and the
polar coordinates (r,6).

To convert from Cartesian coordinates to polar coordinates,
x =rcost

y =rsinf
To convert from polar coordinates to Cartesian coordinates,

r2 = g2 4 o2

tanf = y/x
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146 LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES

Example 18.1 Find the polar coordinates of the point (3, 7).

Solution.
P2 =32472 58 = r = /58 &~ 7.62

tanf = 7/3 = 6 ~ 1.165 radians ~ 66.8 deg W
Example 18.2 Find the Cartesian coordinates corresponding to the point (\/g, —%r).

Solution 3
x =rcosh =3cos (—Tm/6) = —=

2
3
y =rsinf = /3sin (—77/6) = \2[ [ |
Our goal here is to define a double integral over a region R that is given in polar
rather than rectangular coordinates. We will write this integral as

I&f&ﬁﬂA

Here dA is the area element as calculated in polar coordinates. In Cartesian coordi-
nates dA represented the area of an infinitesimal rectangle of width dx and height
dy, hence we were able to write

dA = dxdy

However, in polar coordinates we can not merely multiple coordinates, because that
would give us units of distance x radians rather than (distance)? as we require for
area. Suppose that our region R is defined as the set

R={(r,0):a<r<ba<6<p}

We can calculate a formula for the area element dA by breaking the set up into
small bits by curves of constant r, namely concentric circles about the origin, and
curves of constant #, namely, rays emanating from the origin. Consider one such
”bit” extending a length Ar radially and A6 angularly. The length of an arc of a
circle of radius r is 7Af, hence the area of the ”bit” is approximately

AA ~ AOAr

To see why this is so, observe that since the area of a circle of radius r is 772, then
the area of a circular ring from r to 7 + Ar is 772 — 7(r + 67)%. The fraction of this
ring in a wedge of angle Af is Af/(27), hence
Al
AA = o [7(r + Ar)? — 7rr2]
0
= 7 [2TAT + (AT)2:|

=rA0Ar [1 + AT}
2r
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LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES 147

In the limit as Ar and A8 — 0, the term Ar/r — 0 much faster than the other
terms and hence

dA= lim 7rAOAr [1 + Ar} = rdrdf
AG,Ar—0 2r

Hence we write

ff f(z,y)dzdy = jj f(rcos, rsinf)rdrdd
R R

As with cartesian coordinates, we can distinguish between 6-simple and r-simple
domains in the xy-plane.

Definition 18.1 A region R in the xy plane is called 0-simple if it can be expressed
in the form

R={(r0):a<r<b,g(r) <6 <h(r)}

Double integrals over #-simple regions have the simple form
b prh(r)
If flz,y)dA = / / f(rcosf,rsinf)dd r dr
R a Jg(r)

Definition 18.2 A region R in the xy plane is called r-simple if it can be expressed
in the form
R={(r,0):a<0<p,g(0) <r<h®)}

Double integrals over #-simple regions have the simple form

h(0)

{Jf(:v,y)dA:/j/g(e) f(rcos,rsind)r drdf

Figure 18.2: Examples of r-simple (left) and #-simple (right) regions.

A A
arcs of fixed radius

lines of fixed angle 6 %

r-simple region 0-simple region
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148 LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES

Example 18.3 Find the integral
V2 4—y2
/ / xdzxdy
0 Y

Solution. The integrand is f(z,y) = z, hence

using polar coordinates.

f(rcosf,rsinf) = rcosf

The area element is
dA = rdrdf

Hence (except for the limits, which we still have to determine), the integral is

? ?
/ / r? cos Odrdo
? ?

To determine the limits of integration, we need to figure out what the domain is.
This is usually facilitated by sketching the domain. The outer integral has limits

0<y<v2

while the inner integral has limits

y<az<4—y?

Since the limits on x are functions of y the region is x simple. The equation x =
/4 — 92 lies on the same curve 22 4+ y? = 4, i.e., the upper limit on the z-integral
is part of the circle of radius 2 centered at the origin. Since x is less than /4 — y?
then the integral is over part of the inside of this circle, and lies to the left of the arc
of the circle (smaller values of z lie to the left of larger values of z), as illustrated
in figure 18.3a.

The region is also bounded on the left by the line z = y, since we have = > y;
equivalently, y < x hence the region is beneath as well to the right of the line, as
illustrated in figure 18.3b. Next, we can fill in the top and bottom of the region as
being between the lines y = 0 and and /2 (figure 18.3c). We see that the domain of
integration is a circular wedge, of the circle of radius 2, centered in the origin, that
lies between the z-axis and the line y = x. In polar coordinates we end up with

0<r<v2
0<6<m/4

The region is both #-simple and r-simple, and hence the order of integration does
not matter, and we have

V2 \4—y? V2 /4
/ / rdxdy = / / 2 cos 0dOdr
0 y 0 0

w/4 V2
= / / r? cos Odrdf
0 0
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LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES 149

Figure 18.3: The domain of integration of the integral in example 18.3.

A a A b
r=2
>
A A
< d
7] ERE
x=y 0=m/4
X=nld— y2 r=2
y=0 > >
6=0

We emphasize the fact that when the order of integration is reversed, the order of
the differentials dfdr reverses to drdf and the order two integrals is reversed.

Finally, to solve the integral we arbitrarily choose one of these forms, say the
second one, to give

V2 pa/A—y? /4 2
/ / xdxdy = / cosﬂ/ r2drdf
0o Jy 0 0
w/4 2
= / cos 6 17"3 do
0 3 o
w/4
= (8/3)/ cos 0do
0
= (8/3) (sin0l5") = (8/3)(v/2/2) = 4v'2/3 ~ 1.88562 W

Example 18.4 Find the area of a circle of radius a using double integrals in polar
coordinates.

Solution. Consider a circle of radius a whose center is at the origin. Then the
interior of the circle is the set

C={(r0):0<r<a0<6<2r}

Since the area of any region C'is [, fdA, the area of the circle is
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150 LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES

Hcrdrde - / 7 / " vdrdd
0 0

a

2w
1
= / 77‘2
0o 2

a2 2

= 2| a

0

do

Example 18.5 Find the volume V of the solid under the function

2

fla,y) =e =V

and over the region

S={(r0):5<r<7,0<0<mw/2}

Solution. This region is both r-simple and theta-simple, so it is not difficult to

“set-up” the integral:

V= [ fr,0)rdrdg = / " / ' f(r,0)rdrdd
0 5

R

To convert the function f(x,y) to a function in polar coordinates we observe that

since

then

f(z,y) = e~ (@ Hy?) = o=

Thus the integral becomes

w/2 T )
V= / / e " rdrdf
0 5

In the inner integral, make the substitution

u=—r?

so that
du = —2dr

Revised December 6, 2006.
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LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES 151

With this change of variables, when r = 5, 4 = —25; when r = 7, u = —49. Then
the inner integral is then

T, 1 [~
/ e "rdr = —/ edu
5 2 J 95
—49

1
= —5 e |
_ _% (6749 _ 6725)
_ % (725 — =19

~ 6.94 x 10712

Finally, we can calculate the double integral,

/2
V = / / " rdrdf

/2
~ 6.94 x 10~ 12/ de
0

Q

—12y (T
(6.94 x 10712) ( 2)
1.1x1071 m

Q

Example 18.6 Find the integral

[[ Vi—em=ypaa

where S is the first-quadrant sector of the circle of radius 2 centered at the orgin
between y =0 and y = x.

Solution. The domain is the same 45 degree sector of a circle as in example 18.3.
Since

f(rcos@,rsind) = /4 — (rcosf)2 — (rsin 6)2

_ i

the integral is

2 pmw/2
ffS\/4—m2—y2dA = / / V4 —1r2rdidr
o Jo

2 w/2
= /T\/4—T2</ d@)dr
0 0
T 2
= 2/ rv4—r2dr
0
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152 LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES

We can solve this final integral by making the substitution u = 4 — r2, hence du =
—2rdr. When r =0, u = 4 and when r = 2, u = 0. Therefore

[[ Vi —daa = T "2 (du)2)

Example 18.7 Find the value of

o0 2
/ e Udx
—Oo

Solution. There is no possible substitution that will allow us to find a closed form
solution to the indefinite integral
/ e dy

However, by using polar coordinates we can find the definite integral f_oooo e’ dx,
as follows. First, we define the quantity

I:/ e dx
which is the definite integral we are trying to find. Then
? = (/ e_x2d:n> </ e_x2dx>
= / e’”Qda:/ e’y2dy
o0 o0 9 2
= / / e " e YV dxdy
_ /oo /oo e~ @) gy

This is an integral over the entire xy plane; in polar coordinates this is the set

S={(r0):0<r<00,0<6<2r}
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Transforming the integral to polar coordinates and using the fact that r2 = z2 + y?

gives
o] 2T 5
I’ = / / e " rdldr
0 0
o0 2

2
—/ err/ dodr
0 0

= / e_r2r(27r)d7'
0

o0 2
= 27r/ e " rdr
0

At this point we can make the substitution v = —r2. Then du = —2rdr, when
r =0, then v = 0 and when r = co, u = —00

oo
? = 27r/ e rdr
0

—00
= — 277/ e"du
0

= —2me"|;™
=  271(e”™® —¢Y)

= =27(0-1)=27

Therefore

/ e_IQda::I:\/ﬁ:\/%' [ ]

—0o0
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Lecture 19

Surface Area with Double
Integrals

To find the area of a surface described by a function f(z,y) : R? — R using double
integrals, we first break the domain (in the xy-plane beneath the surface) into small
rectangles of size

Ax x Ay

Above each rectangle in the zy-plane there will be some infinitesmal “bit” of the
surface that is approximately (but not quite) flat; we can approximate this infinites-
imal “bit” of the surface by an infinitesimal tangent plane. Pick an arbitrary

Figure 19.1: A surface can be broken into infinitesimal “bits,” each of which lies
above an infinitesimal rectangle in the xy-plane.

A 4

=
coosfooood]
t-’ /|
Ax ;
(' //'
...-’-’- ---/1'-----
y ;
Ay’
X /By

point within each surface “bit,” say the corner, and label this point (z,y). Then
there is a “bit” of the tangent plane that lies over the Ax x Ay rectangle in the
xy-plane at the point (z,y). This “bit” of the tangent plane is a parallelogram. The
back edge of the parallelogram is formed by the intersection of a plane parallel to
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156 LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS

the yz plane with the tangent plane; the slope of this line is therefore

m = fy(z,y)

The vector v from (z,y, z) to (z,y + Ay, z + mAy) is

Figure 19.2: Calculation of vectors that edge the infinitesimal tangent plane.

A A
Z-axis , z-axis ,
L (oy+Ayz+myAy) L (et Axy,z+myAy)
(x.2) REARYAES x.32) L (erAry)
y-axis N y-axis
Plane through (x,y,z) that is Plane through (x,y,z) that is
parallel to y-z plane parallel to x-z plane

v = (0, Ay, mAy) = (0, Ay, fy(x,y)Ay)

Similarly, the left edge of the parallelogram is formed by the intersection of a plane
parallel to the xz-plane with the tangent plane; the slope of this line is therefore

my = f:}c(x7 y)
By a similar construction, the vector u from (z,y, z) to (x + Az,y, z + m,Ax) is
u = (Az,0,myAzx) = (Az,0, f,(x,y)Ax)

The area of the parallelogram formed by u and v is given by their cross product:

AA = |luxvl|
= fe(z,9) 0 —Ax Ay
0 Az 0 fy(z,y)Ay

—fo(z,y)AzAy
= ||| —fy(z,y)AzAy
AzxAy

= AwAy 1+ f2(w,y) + f3(w,y)
Taking the limit as the size of the infinitesmal parallelograms go to zero, we have
dA = dA = \[1+ [2(z,y) + f3(z,y) dudy

Theorem 19.1 . Suppose that z = f(x,y) : D UR? — R Then the surface area of
f over D is

A= [[ 1+ 2@.y) + f,y) dedy
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LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS 157

Example 19.1 Find the surface area of the region of the plane 3x — 2y + 6z = 12
that is bounded by the planes x =0, y = 0 and 3z + 2y = 12.

Solution The domain is the region in the xy plane bounded by the z-axis, the y-axis,
and the line
3z + 2y =12

Solving the line for vy,
y=06—1.5z

This line intersects the z-axis at x = 12/3 = 4, and the y-axis at y = 12/2 = 6.
Therefore we can write the domain of the integral as

{(z,y):0<2<4,0<y<6— 1.5z}

And the surface area as

4 r6—1.5z

where f(x,y) is the solution of 3z — 2y + 6z = 12 for z = f(x,y), namely

X y
:2—— —
f(z,y) 5 T3

Differentiating, f, = —1/2 and f, = 1/3, thus

4 6—1.5z
A = /0/0 \/1+f§(w,y)+f§(x,y)dydx
4 6—1.5z
= // V14 (=1/2)2 4 (1/3)2dydx
0 0
4 6—1.5z
\/49/36 /0 /0 dydz

4 r6-15z
= 2/0/0 dydz
7 4

- 6/0 (6 — 1.52)dz

7
= 62— 0.7522)[3

- %(24—12) —14 m

Example 19.2 Find the surface area of the part of the surface
z2=49—y
that lies above the quarter of the circle
z? + y2 =9

in the first quadrant.
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158 LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS

Solution. The domain is the set

{(z,y):0<y<3,0<z<+/9—92}

Therefore the area is

3 /o
A:/ / 1+ f2+ fdady
0 0 v

Differentiating f(x,y) = (9 — y*)'/? gives f, = 0 and
fo = (1/2)9 = y*) "2 (=2y) = —y(9 - y*) 71/

and therefore

3 rvV/9—y2
A = / / /14 f2 4 fidedy
0o Jo Y
3 r/9—y?
= / / \/1 + [—y(9 — y?)~1/2)2dxdy
0o Jo
3 rv/9—y2
= / / V14 y2(9 — y2) " ldxdy
0o Jo
3 p/9—y? \/ y2
= 1+ dxdy
/0 /o 9—y?
3 p/9—y? 9
= / / ——dzdy
o Jo 9—-y

dxdy

9—y 1
W e
o Jo 9—92
Since the integrand is only a function of y, we can move it from the inner integral
to the outer integral:

A:3/3\/917y2/ dxdy
/ﬁmdy

/ dy=9
0

Example 19.3 Find a formula for the surface area of a sphere of radius a.

Solution. The equation of a sphere of radius a centered at the origin is

x2+y2+z2:a2
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LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS 159

Solving for z
2 =4+/a%2 — 22 — 2

The total area is the sum of the area of the top half and the area of the bottom half
of the plane; the equation of the sphere in the top half of the plane is

foy) = VE—F

Differentiating

fr=—F———— and fj=———
N a2 — z2 — o2 Y a2 — 22 — 2

The area of the top half of the sphere is then

A = ffcq/l—l-f%—kfgdxdy
2

_ z Yy
- ffc\/1+a2—a:2—y2+a2—x2—y2d$dy

where C' is the circle of radius a in the zy-plane. In polar coordinates, then

2 a 1
A=a —————rdrdf
/o /0 va? —r?
2 2

Letting v = a® — 72 we have du = —2rdr; when r = 0, v = a? and when r = q,
u = 0.Thus the area of the top half of the sphere is

21 01
A = —(—du/2)df
[ [ e

0

- —“/ /u‘l/QdudQ
2 0 (12
1/2

2
0
a [*"u
= —— —— | df
2/0 1/2 )
27
- —a/ 0 — (a2)!/2)dp
0
27
= a2/ df = 2ra>
0

Therefore the area of the sphere is 24 = 47a> W
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160 LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS

Example 19.4 Find the area of the surface z = x?/4 + 4 that is cut off by the
planesx =0,z =1,y=0, y = 2.

Solution. Differentiating f, = x/2, f, = 0; hence the area is

[f 1+ 2+ 1204
1,2 2
= //\/1+xdydx
0 Jo 4
2 4 2 2
= /\/ T / dydz
0 4 0
1 2
= 2(2)/ Va4 + 22 de
0
2
= /\/4+x2dx
0
From integral 44 in the back of the book,

2
/\/x2+a2dx:§ x2+a2+%ln‘x+\/x2+a2’

A

Setting a = 2,
[VaT s = S Va4 2o+ Vet
Therefore
A = /02de
- [g\/m+2ln|x+M|”Z

2 0
[2\/4+4+2In|2+\/4+4|] — [2\/0+4+21n|0+\/02+4|

= V8+2In|2+ V8| —2In2
= 2V2+2In(1+v2) W
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Lecture 20

Triple Integrals

Triple Integrals in Cartesian Coordinates
We can easily extend our definition of a double integral to a triple integral. Suppose

that f(z,y,2) : VUR3 — R. Then we extend our Riemann sum so that it covers
the volume V' with small boxes V; of dimension

A.%'j X ij X AZ]‘
The volume AV; of the ith box is then
AV} = AZL‘jijAZj

Then the Riemann Sum representing [[f;, f(x,y, z)dV is

n

j=1

and the triple integral of f over V is

n—o0,AV;

Jff r@yav = dim ST () AV
v j=1

We can also make general definitions of z-simple and y-simple sets. These definitions
are exactly the same as they were previously but with an added dimension in the
domain.

Example 20.1 Find

2 r3 2x—y
/ / / dzdydx
0 J-2J0
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162 LECTURE 20. TRIPLE INTEGRALS

Solution We integrate first over z, then over y, then over z, because that is the order
of the “d”s inside the integral.

2 3 2x—y 2z— y
L e [
0 J-2J0
= / / 235 y dydx
2 r3
= / (2z — y)dydzx
0 —2

2 3
= / 2y — 1y2
0 2

-2

dzr

2
= / (62 — 9/2 + 4z + 2]dz
0

2
= / (10x — 5/2)dx
0

= [p2%— (5/2)z];
= 5(4)—(5/2)(2)=15 |

w/2 rz py
/ / / sin(xz + y + z)dzxdydz
0 0 JO

Solution We integrate first over x, then over y, then over z. Since [sinudu =
— cos u,

/2 rz oy T2 rz Y
/ / / sin(z 4+ y + z)dzdydz = / / (/ sin(z +y + z)dw) dy} dz
o Jo Jo o Lo \Jo

w/2 [ rz
- [ (cos<x+y+z>|z>dy] -
0 LJO

= /OW/Q :/Oz (—cos(2y + z) + cos(y + z)) dy] dz

Example 20.2 Find

Next we integrate over y, using the fact that [ cosudu = sinu

/K/Q/ / sin(x + y + z)dzdydz = /W/Q [/Z (—cos(2y + z) + cos(y + z)) dy} dz

71'/2 1 z
= [—2 sin(2y + 2) —i—sm(y—i—z)} dz
0
7T/2 1
[(—sm&z—l—stz) — <—2 Sinz—l—sinz>} dz
0
7T/2 1 1
{ — 1n32+sm22—smz] dz
0 2 2
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Finally, we an integrate over z.

/2 w/2 1
/ / / sin(x +y + 2 da:dydz—/ [—smBz—i—stz—zsmz] dz
0

1 1 w/2
[6 cos3z — — cost + 2cosz]
_ 1 +1 T
= 6(:05 cos7r 2co 5
1 1
—[6C080—2C080+2COSO:|
1 1 1
_ _,_1 _ _ _
5(0) =5 )+2(0) 6= 3

Definition 20.1 If S UR? is any solid object and f(x,y,z) : S — R then the
volume integral of f over S

I= ff . f(z,y, z)dzdydz

Theorem 20.1 The volume of S is the volume integral of f(x,y,z) =1 over S

V= Hf dadydz

The volume of S is the volume integral of the function f(z,y,z)=1.

Example 20.3 . Find the volume of the solid in the first octant bounded by the
surfaces
y® + 6427 =4
and
y=x

Figure 20.1: Left: the portion of the elliptic cylinder y? 46422 = 4 in the first octant
. Right: the portion bounded by y = z in the first octant.

segment
Z of cylinder
in 1st octant

Solution. We can solve the equation of the surface for z,

1
=+—/4 —y?
z 3 Yy

Math 250, Fall 2006 Revised December 6, 2006.



164 LECTURE 20. TRIPLE INTEGRALS

Since we are interested in the first octant, we chose the positive solution.

—:I: 4—
z 3 y?

The ellipse where the cylinder crosses the yz-plane intersects the y-axis at y = 2 and
the z-axis at z = 1/4. The base of the object in the xy-plane is a triangle formed
by the lines y = x, y = 2, and the y-axis.Therefore the domain of integration is the
set

)
V:{(x,y,z):ogzgSy,x§y§2,0§x§2}

The volume of this set is [[f;,(1) x dV, namely

(4-y»)'/2/8
% /// dzdydx
- 4 — y2dyd
s VA

From integral formula (54) in the inside back cover

2
/\/a2—y2 dy = %\/az—gﬂ—l-a?sin_lg
a

Setting a = 2,

NS

/\/4—3/2 dy = %\/4—y2+2sin*1

Therefore

2
/\/4—y2dy = [ V4 —1y?+2sin” 1:;}
x xr
= (\/4—22+251n 2) \/ — 22 4+ 2sin” 5)
1

= 7T — 4 — 22 —2sin~

r z
2 2

and hence the volume is

1 (22 1 [? x 1 T
vV = //\/4—y2dydx:/ <7r—§ 4 — 22 —2sin” §>dx
0 T
2
[ /dw—/ x\/4—x2d:n—2/ sm_lgdx}
0
1 [? 1 T
—/ x\/4—3:2dac—/ sin”™ =dx
6 Jo 1), 2

The first integral we can solve with the substitution u = 4 — 22, which implies that

SN ol— o

du = —2dz. Furthermore, when = 0, v = 4, and when 2 = 2, v = 0. Thus
4

1 1 4 8

/xﬂdh_/ ul/zdu:/ B B

0 2 J4 2 Jo 3 o 3 3
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so that

Using formula (69) in the textbook’s integral table,
/sin1 udu = usin™u + /1 — u?
so that

/OQSin—l(x/Q)dx = 2[($/2)Sin_l(x/2)+\/m}z

= 2(sin”'14+vV1I-1-0sin"'0—+v1-0)

= m—2
so that the desired volume is
T 1 1 T 1 1
= — — - — — — 2 = — — — — — - = — .
V=176 1" 9=7"6" 17373
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166 LECTURE 20. TRIPLE INTEGRALS

Triple Integrals in Cylindrical Coordinates

Recall the conversion between Cartesian and cylindrical coordinates: to find (x,y, z)
given (r,0, z),

r=rcos), y=rsinf
with z unchanged; to find (7,6, z) given (x,y, 2)

r?=z? 442 tanf =y/z

again with z unchanged. We observe that cylindrical coordinates are identical to
polar coordinates in the zy-plane, and identical to Cartesian coordinates in the z-
direction. We can fill up volume V with micro-volumes that have bases given by
the volume element in polar coordinates

dA = rdrdf

and height dz, hence
dV = dA x dz = rdrdfdz

fjj f(z,y,2)dV = fjjf(r cosf,rsinb, z) rdr df dz
v v

Example 20.4 Use cylindrical coordinates to find the volume of solid bounded by
the paraboloid

and

z=9— 2% —y?
and the xy-plane.

Solution. The paraboloid intersects the zy-plane in a circle of radius 3 centered
about the origin.In cylindrical coordinates,

z:9—x2—y2:9—r2

2 p3  p9—r2
V = / // dzrdrdf

0 0o Jo
27 3

= / / rdrdﬁ
0 0
2 3

= / / 9r—r )drdf
0 0
27

= / ( 2_ 7’4> df
0

8 81

(3-%) e

81w

1

and therefore

3

4
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Triple Integrals in Spherical Coordinates

Recall that each point in space is represented by a triple (p, 0, ¢) where
x = psin¢cosd
y = psin¢psiné

Z = pcoso
and
2=y 42
tanf = y/z
cosp = z/\/ 2%+ y? + 22
The volume element in spherical coordinates is

dV = p?sin pdpdfde

and hence the triple integral is
fffv f(z,y,2)dV = fjfs f(psin ¢cosh, psin ¢ sin @, p cos ¢)p® sin ¢ dp db de
The total volume of V is thus
V= Hf o sin ¢dpdfdd
Example 20.5 Find the volume of ball of radius a centered at the origin.

Solution.

Vo= ﬂf % sin ¢dpdfdsd

T 21 a
= / / / p? sin ¢pdpdfde
0 0 0

1 ™ 27

= a3// df sin ¢do
3 Jo Jo
1

= 3a3(277)/0 sin ¢pdo

= (- cos o)
= T (- --)=Td m
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168 LECTURE 20. TRIPLE INTEGRALS

Triple Integrals in Any Coordinate Frame
Suppose we have a coordinate frame (u, v, w) where

x = X(u,v,w)

Then the volume element is
dVv = J(u,v,w)dudvdw

where

or Ox O
ou v Ow
oy Oy Oy
ou v Ow
0z 0Oa Oa
ou v Ow
is called the Jacobian of the transformation.

J(u,v,w) =
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Lecture 21

Vector Fields

Definition 21.1 A vector field on R3 is a function F(z,y,2) : D C R3 — R3
that assigns a vector v .= (vz, vy, v;) to every point (x,y,z) in D.

Of course, it is also possible to define a vector field on R?, as a function that assigns
a vector v = (vy,vy) to each point (z,y) in some domain D C R?. We will limit
ourselves to a discussion 2D fields at first because they are easier to visualize on
paper. One way to visualize a vector field is the following:

1. Pick an arbitrary set of points in the domain at which you want to know the
vector field.

2. For each point (z,y) in your set, calculate the vector v = F(x,y) at (x,y).

3. For each vector you have calculated, draw an arrow starting at (z,y) in the
direction of v and whose length is proportional to ||v||.

Example 21.1 Plot the vector field

ro- (45)

on the domain [—2,2] x [—2,2].

Solution. First, we construct a table of values for the function. We will pick the
points at integer coordinates, e.g., (—2,—-2), (-2, —1),...,(2,2).
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LECTURE 21.

VECTOR FIELDS

Uy

T oy Vg
2 2| 1
2 -1 1/2
2 0| 0
2 1 -1/2
2 2 -1
12 1
1-1 1/2
10| 0
11| -1)2
12 -1
0 2| 1
0 -1]1/2
0 0] 0
0 1]-1/2
0 2| -1
1 2| 1
1 -1 1/2
1 0] 0
1 1]-1/2
1 2| -1
2 2| 1
2 -1 1/2
2 0| 0
2 1 [-1/2
2 2| -1

1/2
-1/2
-1/2
-1/2
-1/2
-1/4
-1/4
-1/4
-1/4
-1/4
0
0
0
0
0
1/4
1/4
1/4
1/4
1/4
1/2
1/2
1/2
1/2
1/2

We can then sketch the plot using the data in the table. W

Figure 21.1: A visualization of the vector field —iy/2 + jx /4.

2

e T

/o/«—»‘\o\.
v T

;V
O
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Definition 21.2 A scalar field is a function f(z,y,2) : D C R? — R that asso-
ciates a scalar (number) with each point in a subset D of R3.

Definition 21.3 The gradient of a scalar field f(z,y,z) is the vector field

of of of
d = ==, =, = 21.1
Definition 21.4 The gradient operator is the vector operator
g 0 0
=V=|(—,—,— 21.2
grad =V <8x’ oy 32) ( )

The gradient operator is the 3-dimensional analogue of the differential operators
such as

0 d

ay or -
Just as with these scalar operators, the gradient operator works by operating on
anything written to the right of it. The operations are distributed through to the

different components of the vector operator. Thus, for example,
9 0 oY, _(of of of
ox’ 0y’ 0z) "  \0x 0y’ 0z

Equation 21.3 can be used to derive the product rule for gradients:

and

V(w) = uVv +vVu (21.4)

Definition 21.5 A gradient field F(x,y, z) is a vector field that is the gradient
of some scalar field f(x,y,z). If such a function f exists, it is called the potential

function of the gradient field F and F s said to be a conservative vector
field.

Example 21.2 Find the gradient field F(x,y, z) corresponding to the function f(x,y, z) =

222 + 3xy.
Solution. The gradient field is

F(x,y,z) = Vf(l‘ Y,z )

:V a: z+3a:y)
0
= <8$ o 8) x z—|-3xy)
= < x z+3xy) 0 (az%—l—Sazy),g (J:2z—|—3xy)>
Yy 0z

" Oy
(2502 + 3y, 3x, ar:2) [ |
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172 LECTURE 21. VECTOR FIELDS

Not all vector fields are gradient field. In the next lecture we will derive a test
for determining if a vector field is a gradient field, and a method for determining
the potential function that gives rise to the gradient field.

Example 21.3 Find the gradient field for the scalar function (given in polar coor-
dinates)

f(r,0) =a/r (21.5)

where a 1s a constant.

Solution. We begin by converting to rectangular coordinates, using the substitution

r = /2% + 12, to give

a

f(%y):\/ﬁ

Differentiating,

F(z,y) = <

(

< azr ay >
(22 + y2)3/2" (22 + y2)3/2
B a
- ($2 + y2)3/2 (I’, y)
Returning to polar coordinates, we observe that since r = (z,y) and r? = 22 + 32,
we have

0 a
’8Z/> Va?+y?

9
ox
Q a 0 a
ox

V2 + g2 0y [+ 4

F(r,0) = -2 (21.6)

Equations 21.5 and 21.6 are the formulas for the Newtonian Gravitational poten-
tial and force, respectively, between two bodies of mass m; and ms if we make the
substitution a = Gmyms, where G ~ 6.6742 x 10~ meters® / (second? kilogram)
is the universal constant of gravity. W

We can treat the gradient operator

graszz(a 0 8)

dx’ dy’ Oz
in many ways just like a vector. We can use it, for example, in a dot product or
cross product to define new vector operators.

Definition 21.6 The divergence of a vector field F = (Fy, Fy, F3) is given by
the dot product

oo ot U 21.7
ox’ Oy’ 0z (21.7)

The divergence of a vector field is a scalar field.

divF=V . F= <8F1 OF} 8F3>
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Example 21.4 Find the divergence of the vector field
F(z,y,z) =xi+ (yza: + z)j + ek

Solution.

V-F = <i(;1+jaz+ki>-(xi+(y2w+z)j+exk)
= @+2(y2x+z)+26x
Jdr Oy 0z
= 1422y B

Example 21.5 Show that V- (fa)=a-Vf

Solution. Suppose that a = (a1, az2,a3). Then since a1, ag, and a3 are all constants,

V.(fa) = V:(aif,azf,asf)
(o 0 o
- (oo a)
(a1 f) | O(azf)  Oasf)
ox + oy + 0z
af af 0

alg + a287y + aga

e (2250
- 1, &2, &3 81‘7 ay) Oz
= a-Vf

Definition 21.7 The curl of a vector field F = (Fy, Fy, F3) is given by the cross
product

o 0 0
1F = F={(— —,— F, Fy) F 21.
cur V x (ar’@y’@z) X (I, Fy, F3) (21.8)
The curl of a vector field is another vector field.
We can derive a formula for the curl as follows:
o) 0
0 =% &\ /¢
VxF=| 4 o0 -2||R

-2 2
_(0Fy OF, OR OF; OF, OF,
oy 0z 0z oz’ Oz oy

Example 21.6 Find V x F for

F= (ey2, 2$yey2, 1)
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174 LECTURE 21. VECTOR FIELDS

Solution. The curl is

= (50 g2 (ove?) g2 () = g, 5 (omer’) = 5 ()
= (0, 0, 2yey2 — 2yey2)
=0 N
Example 21.7 Find V x F for
F= (ac2 — yz, 2xy, O)

Solution. The curl is
)
0 5z
o)
VXF: 92 0
_9 9
Jy 0
0 0 0 , 4 9 0 , 4 9
= [ =(0) = = (2 = _ _ =z Z (9 _Z _
(50— 32 o). 57 (0= 42) = 5200 5 o) — 0 (= —7)
:(0,0,4y)I

Definition 21.8 The Laplacian of a scalar field f(x,y, z) is given by the product

2 2 2
o°f L Oof O

2f — . = i =
V4f =V . -Vf=div gradf 5 3y o

(21.9)

The Laplacian of a scalar field is another scalar field.

Theorem 21.1 Properties of Vector Operators Let f : R? — R be a scalar
field and F : R? — R3 be a vector field. Then all of the following properties hold:

(a
(b

VxF=0
xVf=0

C

(fF) = fV-F+F.Vf

e (FxG)=G-VxF-F -VxG

)V
)V
(c) V
(d) VX (fF)=fVxF—-FxVf
(e) V
(f) V- (VfxVg)=0
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Lecture 22

Line Integrals

Suppose that we are traveling along a path from a point P towards a second point
Q, and that are position r(¢) on this trajectory is described parametrically in terms
of a parameter t. We can associate two “directions” of travel along this path: one
from P to Q, and the second back in the other direction from Q to P. We can
visualize these directions by drawing arrows along the path.

Definition 22.1 Let C be a curve connecting two points P and Q that is parame-
terized as

r(t), a<t<b
where r(a) = P and r(b) = Q. Then the curve is said to oriented if we associate a
direction of travel with it, and the path is said to be directed.

Furthermore, the path is said to be positively oriented if the direction of motion
corresponds to increasing t, and negatively oriented otherwise.

Figure 22.1: Examples of oriented curves, where a <t < b, P =r(a), and Q = r(b).
The curve on the left is positively oriented, because the motion follows the direction
of increasing t. The curve on the right is oriented but it is not positively oriented.

A A

P P

Y
Y

The arrows on the oriented curve really represent the direction of the tangent vectors;
we can approximate them by dividing the parameterization up into finite intervals

a=th<t1 <ta<---<t,=b (22.1)
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176 LECTURE 22. LINE INTEGRALS

and breaking the path itself up into points

r(t1),r(t2), ... r(tn) (22.2)
Let us define the differential vector
dr; =r(tit1) — t; (22.3)

and the differential time element
dti =ti+1 — (22.4)
Then in the limit as dt; — 0, we have

d}tim0 dr; = r'(t;)dt = v(t;)dt (22.5)

Now suppose that the curve is embedded in some vector field F(r). Then at any

Figure 22.2: Partitioning of an oriented curve into small segments that approximate

the tangent vectors.
A

\4

point r along the curve we can calculate the dot product

r(t) - F(r(t))

This product is a measure of how much alignment there is between the motion along
the curve and the direction of the vector field. The dot product is maximized when
the angle between the two vectors is zero, and we are moving “with the flow” of
the field. If we are moving completely in the opposite direction, the dot product is
negative, and if we move in a direction perpendicularly to the vector field than the
dot product is zero, as there is no motion with with or against the flow. We define
the line integral of f along C as the Riemann Sum

/C F.dr = dgrgo z; dr; - F(r;) (22.6)

or equivalently
bra
/F-dr—/ [r-F(r(t))] dt (22.7)
C a dt
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Example 22.1 Find the line integral of the vector field
F(r(t)) = (2z,3y,0)
over the path ABC as illustrated in figure 22.3

Figure 22.3: The oriented curve ABC referenced in example 22.1
A
3

C(10,10) !

A(0,2)

B(10,2)

3>
>

Solution. We can parameterize the curve as
t,2,0 0<t<10
r(t) = (t,2,0) - (22.8)
(10,t —8,0) 10<t<18

Based on this parameterization, we can write equations for the individual coordi-
nates x(t) and y(t)

t 0<t<10
x(t) = (22.9)
10 10<t<18
2 0<t<10
t) = == 22.10
v(®) {t—8 10 <t <18 (22.10)

and for the velocity

1,0,0) 0<t<10
r'(t) = (1,0,0) - = (22.11)
(0,1,0) 10<t<18
Therefore
2x,3y,0)-(1,0,0) 0<t<10
F'I'/: ( T, oY, ) ( » ) — — (2212)
(2z,3y,0) - (0,1,0) 10<t<18
20 0<t<10
_ (22.13)
3y 10<t<18
2t 0<t<10
- == (22.14)
3(t—8) 10<t<18
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178 LECTURE 22. LINE INTEGRALS

Therefore the line integral is

10 18
/ F.dr= / 2tdt + / (3t — 24)dt (22.15)
ABC 0 10
10 3 18
=%, + <t2 — 24t> (22.16)
2 10
3 x 182 3 x 102
—10-0+ 2257 _24)(18) - 225 1240 (22.17)
=10 + 486 — 432 + 240 = 304 W (22.18)

Definition 22.2 The work done on an object when it is moved along a path C
and subjected to a force F is

W:/CF-r (22.19)

Example 22.2 Find the work required to lift a satellite of mass 1000 kg from the
earth’s surface (r = 6300 km) to a geostationary orbit (r = 42,000 km) under the
influence of the Farth’s gravity -

F = —%k
where 1 is the distance of the object from the center of the Earth; m is its mass; and
pu=GM = 3.986 x 10 Inete1r3/sec0nd2 is the product of the universal constant of
gravity and the mass of the Earth. (Work is measured in units of joules, where one

joule equals one kilogram meter? /second?.)

Solution.The work is the line integral

42x108
W = F.dr
6.3x106
where we have converted the distances from meters to kilometers. Substituting the
equation for F and assuming the trajectory moves completely in the z directions,

42x108 1
W = —um —dz
6.3x106 T

o |42x10°
T‘6.3><106
1 1
42 x 106 6.3 x 106

= (3.986 x 10') x (1000) ( ) Joules

= —5.4 x 10'° Joules

The work is negative because the line integral measured the work done by the force
field on the satellite, i.e., work must be done by the satellite against the field to
get it into orbit. Converting to day-to-day units, since one watt is the same as one
Joule/second, one kilowatt-hour is the energy used by expending 1000 Joules per
second (one kilowatt) for one hour (3600 seconds), namely 3.6 x 10° Joules.Thus the
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energy required to lift 1000 kg is (5.4 x 1019) /(3.6 x 10%) = 15,000 kW-hours. That’s
equivalent to leaving a 60-Watt light on for 28 years; running a typical 1000-Watt
hair dryer continuously for about 20 months; or running a typical home dryer (2800
Watts) for about 7 months. W

Definition 22.3 A closed curve is a curve that follows a path from a point back
to itself, such as a circle.

Definition 22.4 Let C be a closed curve, and F be a vector field. Then the circu-
lation of the vector field is
j{ F-dr
C

where the special integral symbol § indicates that the path of integration is closed.

The circulation of a vector field is a measure of the “circularity” of its flow.
For example consider the two vector fields in figure 22.4. Suppose we follow the
illustrated circular paths in a counter-clockwise fashion in both cases, such as

r(t) = (cost,sint), 0<t<2xw

In the vector field on the left, the magnitude of the field is the same everywhere,

Figure 22.4: Illustration of the same path through two different vector fields.

R
ii/';;:/'; - ;‘4‘/4/'////;‘
v vy ‘5

INEZ
N S B (S VN

but is direction is circular, giving a flow around the origin.
1

—5— ()

NN N
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the direction of the field is nearly parallel to the direction of motion, during the
entire path. Along this path, 2 = cost and y = sint and r' = (—sint, cost), so

————————(—sint,cost) - (—sint, cost)dt

27
Y{F dr—/
0 +/sin t—i—cos.2

27r
/ sin’ t 4 cos?)Y2dt
0

21
dt

0
2m

Now consider the vector field on the right hand side of figure 22.4. In this field the
vector field is a fixed constant everywhere,

G=(1,2)

The path is the same, which is a circle. Corresponding to any point on the path,
the tangent vector takes on some value T, there is a point directly opposite it on
the path where the tangent vector is —T, and hence the dot products T - G and
—T - G cancel out on these two points of the path.

2
?{G dr = / (1,2) - (—sint, cost)dt
c 0

2w
:/ (—sint + 2cost)dt
0

=0

because the integral of the sine and cosine functions over a complete period is always
Zero.

The question naturally arises, does the circulation decline towards this limit if
we were to move our path away from the origin in the first case? As we move further
and further from the origin, we would observe that the field becomes more and more
nearly constant, and we would expect this occur. We can check this by moving the
path away from the origin, to a new center (z¢,yo), so that

T =x9+cost,y =1yo+sint
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The integral then becomes

2m 1
%F-dr: -
c 0 /(yo+sint)? + (wo + cost)

5 (—yo — sint, xg + cost) - (—sint, cost)dt

yosint + xgcost + sin®t + cos?

dt

/27r
0 \/yg+2y0sint+sin2t+x%+2ngcost+cos2t
B 2 1+ ygsint + xgcost gt
0 \/1+x%+y3+2xocost+2yosint
1 2

_ 1+ ygsint 4+ zgcost gt
Vaz+v2 Jo 1+ (1+2xgcost + 2ygsint)/(zZ + y3)
If 29 > 1 and y0 > 1, then the quantity
14 2xgcost + 2ypsint
5+ g

<1

and we can use the approximation

(1+u)‘1/2z1—%+-~-

to give

1 14+ zgcost + yosint
- =~ 1+ - 2 2y0 +
\/14—(1+2xocost+2yosmt)/(x0+y0) TH + Yo

Hence the circulation becomes
1 2
%F ~dr = / (1 +yosint + xgcost)x
c To Jo

<1+ 1+$ocos7;+yosint+”_>dt

To

where 73 = 23 + y2. Each successive term in the expansion falls off by a factor of
1/rg. Using the facts that fo% sintdt = 0 and f027r costdt =0,

1 2 1 int "t2
fF-dr: [(1—|—yosint+xocost)+( + Yosin ;—xOCOb) +..ldt
c To Jo 7o

9 1 2m

=y — [1+2(yosint + zgcost) + (yosint + g cost)® + - - | dt
or  2m 1 (¥ )

=—+ 5+ (yosint + xgcost)“dt + - - -
ro 15 718 Jo

Now use the facts that fOQﬂ cos? tdt = fo% sin? tdt = 7 and f027r sint costdt = 0,

2r 2w 1 (77
%F dr=" 4T 4 / (y2 sin®t + 2xoyo sint cost + x5 cos® t)dt + - - -
c o o ToJo

2T 2w 777‘(2) 3T
:74_734_73_’_...:7
To TO T‘O To
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182 LECTURE 22. LINE INTEGRALS

Thus the circulation falls off inversely as we move away from the origin, approaching
zero as the arrows become more and more parallel, as our intuitive notion suggested.

Example 22.3 Compute the line integral of the function F = (x,2y) over the curve
C shown in figure 22.5.

Figure 22.5: Integration path for example 22.3.

A

(0,2)

(1,0)

Y

Solution. To complete this integral, we divide the curve into two parts. Let us call
the parabola y = 2 — 222 from (0,2) to (1,0) by the name Cj, and let us call the line
back along y = 2 — 2z from (1,0) to (0,2) by the name Cs, as indicated in figure

22.5.
Y{F-dr:/ F~dr+/ F-dr
C Cq Cs

We can parameterize the path Cq by
r=t y=2-22, 0<t<l1

Thus on Cq, r = (t,2 — 2t2), ¢/ = (1, —4t), and F = (z,2y) = (¢,4 — 4t?) and
1
/ F-dr:/ (t,4 —4t%) - (1, —4t)dt
Cq 0
1
= / (t — 16t + 16t)dt
0

_ (w16t !
B 2 4

15 7

0

On the line y = 2 — 2z, we start at the point (1,0) and move toward the point (0,
2). We can parameterize this as

r=1-t y=2-201—-t)=2t 0<t<l1
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so that the second integral becomes
! d
/ F-dr = / (,29) - L (1~ 1, 20)dt
C 0 dt
1
= / (1 —t,4t) - (—1,2)dt
0
1
:/ (=14 9t)dt
0

92\ |
= —t _
(%)
Therefore the integral over C is

%F-dr—/ F-dr—i—/ F-dr:—z+Z:0l
c o Co 2 2

Example 22.4 A particle travels along the helix

7

0 2

r = (cost,sint, 2t)

in the vector field
F = (z,z,—zy)

Find the total work done over the time period 0 < t < 3m.

Solution. The work is given by

3T
W = / F-r'dt
0
3m d
= / (x,z,—zy) - —(cost,sint, 2t)dt
0 dt
3m
= / (cost,2t,—costsint) - (—sint, cost,2)dt
0

3T
:/ (—costsint + 2t cost — 2costsint) dt
0

3 3T
= —3/ costsintdt + 2/ t cos tdt
0 0

Using the integral formulas [ sin¢ costdt = % sin? ¢ and [ tcost = cost+tsint gives

1
W =-3 < sin® t)
2 0

= 2(cos3m —cos0)=—4 B

3
+2 (cost + tsint)|3"
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184 LECTURE 22. LINE INTEGRALS

Recall from integral calculus the following statement of the fundamental theorem
of calculus: If f is differentiable and f’(t) is integrable on some interval (a,b) then

b
/ f(t)dt = £(b) — f(a)

(22.20)

In the generalization to line integrals, the derivative becomes a directional derivative,

but otherwise the statement of the theorem remains almost unchanged.

Theorem 22.1 Fundamental Theorem of Calculus for Line Integrals Sup-

pose that C' is a piecewise smooth curve that can be parameterized as
C={r(t),a<t<blcs
for some open set S C R3, and let
A =r(a)
B =r(b)
Then if f: S +— R3 is continuously differentiable on S,

/C V/(r)-dr = f(B) — f(A)

Since the directional derivative in the direction of v(¢) is
Dy f(r) = Vf(x(t)) - v(t)

= Vf(e(t) - 2V

then the left-hand side of equation 22.24 can be rewritten to give

/C Vi) T = / " Dy fe(e))de

and the fundamental theorem of calculus for line integrals becomes

b
/ Dy f(x(t))dt = f(B) — f(A)

Proof. Expanding the directional derivative,

Dy f(r(t)) =V f(r(t)) v
_ <8f(r(t)) Af(r(t)) 8f(r(t))) _ (dm dy dz)

ox ' Oy = Oz dt’ dt’ dt
_0f(e() v 0f(e(t) dy | Of(x(r)) d
 Ox dt Jy dt 0z dt
_ df(r(t))
o dt

(22.21)

(22.22)

(22.23)

(22.24)

(22.25)

(22.26)
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where the last step follows from the chain rule. By the fundamental theorem of
calculus,

b
/ Vi) r= / Dy f(x(t))dt (22.27)
C a
[P df(e(®)
_/a et (22.28)
= f(r(0)) = f(r(a)) (22.29)
=fB)-f(A) 1 (22.30)

Theorem 22.2 Path Independence Theorem. Let D be an open connected set,
and suppose that F : D +— R23 is continous on D. Then F is a gradient field, i.e,
there exists some scalar function f such that ¥ =V f, if and only if fCF(r) - dr is
independent of path, i.e.,

R de = £B) = 7(4)
for all smooth paths C in D,
C={r(t),a<t<b}CS
with A =r(a) and B =r(b).
Proof. Suppse that F =V f, i.e., that F is a gradient field. Then
/ F(r)-dr = / Vf(r)-dr
C C
=f(B) - f(A)

by the fundamental theorem of calculus for line integrals. Hence the line integral
depends only its path.

Now suppose that the line integral depends only on its path. To complete the
proof we need to show that there exists some function f such that F = Vf. Let
A = (%4,Ya, 2q) and let B = (x,y, z) denote the end points of C. Then

(z,y,2)
f(m,y,Z)—f(A)=f(B)—f(A)=/F~dr=/( Fdr

C

Za,YarZa)

Define the components of F as
F(z,y,2) = (M(z,y,2), N(z,y,2), P(z,y,%)) (22.31)

Since the domain is connected we can pick a point (x1,y, z) (close to (x,y, z)) so
that

(z1,y,2) (z,y,2)
f(x,y,z)—ﬂA):/ F-dr+/ F - dr
( (

Ta,Ya,%a) *1,Y,2)
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186 LECTURE 22. LINE INTEGRALS

The first integral does not depend on z; in fact the only place that x appears on the
right hand side of the equation is in the upper limit of the second integral. But in
the second integral the values of y and z are constant, hence F - dr = M (z,y, z)dx.

of (z,y,2) _(9/”” _
B el 5 M(u,y,z)du = M(z,y, z) (22.32)

where the last equality follows from the fundamental theorem of calculus. Similarly
we can pick a point (x,y1, z) such that

(z,y1,2) (z,y,2)
f(sc,y,z>—f<A>=/ F-dr+/ F . dr
(xayyayza) (iE,yl,Z)

Now the first integral does not depend on y, and the second integral has z and z
fixed, so that F - dr = N(z,y, z)dy in the second integrand and

of(x,y,2) 0 [Y

= — N(z,u,z)du = N(x,y,z 22.33
5, =gy N@wm= Ny (22.33)

Finally, we can pick a point (x,y, z1) such that
(z,y,21) (z,y,2)
f(x,y,z)—f(A):/ Fdr+/ F .- dr
($a7ya,za) (z,y,z1)
Now the first integral does not depend on z, and the second integral has x and y

fixed, so that F - dr = P(z,y, z)zy in the second integrand and

of(x,y,2) 9 [~ _
Tl /Zl P(z,y,u)du = P(z,y,z2) (22.34)

Combining equations 22.31, 22.32, 22.33, and 22.34, we have

of of 8f>

35 Ty 35 =Vf (22.35)

F:(M,N,P):<

Thus F = Vf, i.e, F is a gradient field. B

Theorem 22.3 A vector field F is a gradient field if and only if

%F-dr:O
C

Proof. F is a gradient field if and only if it is path independent. Pick any two points
on the closed curve C, and call them A and B. Let Cy be one path from A to B
along C', and let C be the path from A to B along the other half of C. Then

%F-dr:/ F‘dr—/ F-dr
C C Ca
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The second integral is negative because the C5 is oriented from A to B and not from
B to A as it would have to be to complete the closed curves.

But the integrals over €y and Cs are two paths between the same two points;
hence by the path independence theorem,

/ F-dr:/ F . dr
01 C12

%F-dr:O. |
C

The following theorem gives an easy test to see if any given field is a gradient field.

and conseequently

Theorem 22.4 F is a gradient field if and only if V. x F = 0.

Proof. First, suppose F is a gradient field. Then there exists some scalar function
f such that F =V f. But
VxF=VxVf=0

because curl gradf = 0 for any function f.

The proof in the other direction, namely, that if V x F = 0 then F is a gradient
function, requires the use of Stoke’s theorem, which we shall prove in the next
section. Stoke’s theorem gives us the formula

jliF-dr:[lf(VxF)-dr

where A is the area encloses by a closed path C. But if the curl F is zero, then

fF~dr:O
C

Since the integral over a closed path is zero, the integral must be path-independent,
and hence the integrand must be a gradient field. W

Theorem 22.5 The following statements are equivalent:
1. F is a gradient field.
2. VxF=0
3. There exists some scalar function f such that F =V f.

4. The line integral is path independent: for some scalar function f,

B
/ F-dr = f(B) - f(A)

A
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188 LECTURE 22. LINE INTEGRALS

5. The line integral around a closed curve is zero, i.e.,

j{F-dr—O
C

for all closed curves C'.
Example 22.5 Determine if
F = (x2 — yz, —2xy, z)
is a gradient field.

Solution. We calculate the curl F,

0 -D, D, 2?2 —y? —D,(—2zy) 4+ Dy(z)
VF=| D, 0 -D, —2zy | = D, (2% — y?) — Dy(2)
-D, D, 0 z —Dy(z% — y?) + Do(—2z2y)

=(0,0,2y —2y) =0
Hence the field is a gradient field. W

Example 22.6 Determine if F = (—y, z,x) is a gradient field.

Solution.
0 -D. D, -y —D.(2) + Dy(x)
VF=| D, 0 -—-D, z | = | D:(—y) — Dy(x
-Dy D, 0 T _Dy(_y) + Dy (2)

Hence the field is not a gradient field. W

Example 22.7 Find the potential function f(x,y, z) for the gradient field in exam-
ple 22.5.

Solution. The vector field is
F = (2” —y*,—2zy,2) = (M, N, P)

where M = z? —y?, N = —2xy, and P = z. Since F is a gradient field, then for
some scalar function f,

fo=M=2a*—y (22.36)
fy=N=—2xy (22.37)
f:=P==z (22.38)

Integrating the first equation with respect to x,

[y, 2) = /fa;dx = /(:c2 —y)dz = %x3 —y*z + h(y, 2) (22.39)
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The function h(y,z) is the constant of integration: we integrated over z, so the

constant may still depend on y or z. Differentiate with respect to y:

fy = —2zy + hy(y, 2)
By equation 22.37

—2zy + hy(y,2) = —2zy
h‘y(ya Z) = 0

Therefore hA does not depend on y, only on z, and we can write

1
f(xvyvz) = §x3 - ny + h(Z)

Differentiating with respect to z,

dh
fo=
By equation 22.38
dh f
_—= 2z = Z
dz

Hence

From equation 22.41

1 1
flx,y,2) = §:r3 — y2:v + 522 +C

where C' is any arbitrary constant. H

(22.40)

(22.41)

(22.42)

(22.43)

(22.44)

(22.45)
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Lecture 23

Green’s Theorem

Theorem 23.1 Green’s Theorem. Let C be a closed, oriented curve enclosing a
region R C R? with no holes, and let F = (M(z,y), N(x,y) be a vector field in R?.

The
7401? dr = 7§C(de + Ndy) = Lf (%{Z - 66]\;) dA (23.1)

Proof. One way to evaluate the line integral about a closed path is to divide up
the enclosed area into small rectangles. Focusing on a pair of small rectangles,

Figure 23.1: A closed curve may be filled with an large number of tiny rectangles.

A

N
\ —~~L [ D

Y

say Ry and Ry, the integral over the enclosing rectangle R3 is equal to the sum of
the line integrals over the individual rectangles because the common side cancels
out, assuming the orientation of each individual small square is the same as the
orientation of the enclosing curve.

/F~dr—/ F-dr+/ F -dr
R3 Ry Ry

The integral over the shared path cancels out because the two times the path
is traversed it is traversed in different directions - hence the two integrals differ by
a minus sign factor. This cancellation repeats itself as we add additional squares,
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192 LECTURE 23. GREEN’S THEOREM

Figure 23.2: The integral over two adjacent rectangles is the sum over the individual
rectangles because the integrals over the common boundary cancels out.

+ p—

eventually filling out the entire original closed curve. The only edges that do not

cancel are the ones belonging to the original curve.

F.dr = %F‘dr
fc ; R;

(23.2)

Let us consider the path integral over a single rectangle as illustrated in figure 23.3

Figure 23.3: The path around a single tiny rectangle.

A

(xy+Ay) € (x+Axy+Ay)

A

D B
¥ R;

(x.y A (x+Axy)

g
>

Figure 23.4: 17-4,5,6,7Fig6.pict about here.

j{ F-dr:/F-dr+/F-dr+/F-dr+/F~dr (23.3)
R; A B c D

Writing the components of F as

F = (M(l‘,y)7N('ray))

Then
x+Az
/F-dr:/ M(u,y)du
A T
y+Ay
/F-dr:/ N(xz + Az,v)dv
B y
/F‘dr:/ M (u,y + Ay)du
C z+Ax

(23.4)

(23.5)
(23.6)
(23.7)

(23.8)
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Therefore

r+Azx y+Ay
j{ F-dr:/ M(u,y)du—i—/ N(z + Az,v)dv
R; T Y

T Y
+ M (u,y + Ay)du + / N(z,v)dv
z+Ax y+Ay

T+Ax
= / [M(u,y) — M (u,y + Ay)] du+

y+Ay
/ [N(z + Az,v) — N(z,v)] dv

r+Ax M - M A
_/ (u,y) (u,y + y)Ay dus

= Ay
/erAy N(z + Az,v) — N(z,v)
y

A Ax dv

Hence

r4-dz M y+dy N
lim F.-dr=-— / a—alydu + / 8—d:zdv
R; x Yy

Az, Ay—0 y ox
— —a;\;dy /:+dx du + %—Z;fdm /yy+dy dv
= —%]\;dyda; + %J;Td:cdy

Hence from equation 23.2

n
F.dr = lim %F-dr
»%C nﬂoo; R;

. ~—/ON oM
— tim > (G5~ G ) dads

=1
N M
[ (3 _ 8) A
ox oy
R
Example 23.1 Let C' be a circle of radius a centered at the origin. Find fCF - dr
for F = (—y,x) using Green’s theorem.
Solution. We have M = —y, N = z. Hence
M, =-1, N, =-1

From Green’s theorem

j[ Fodr= [[(N, = My)dA =2 [[dA=2mc* m
¢ R R
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Example 23.2 Let C' be a circle of radius a centered at the origin. Find fCF -dr
for F = (—2%y, xy?) using Green’s theorem.

Solution. Since M = —x%y and N = xy?, we have
My = _127 Nx = y2

From Green’s theorem

ﬁF dr = LL (Ny — My)dA = fj(mQ +4?)dA

R

Converting to polar coordinates

27 a 2w 4 4
fF-dr:/ /r3drd0:/ Ca="""m
c o Jo o 4 2

Theorem 23.2 Gauss’ Theorem on a Plane Let C be a simple closed curve
enclosing a region S C R?, and let

F = (M(z,y), N(z,y))

be a smoothly differentiable vector field on S. Then

ﬁ F - nds = Lf V. FdA (23.9)

where n(x,y) is a nunit tangent vector at (z,y).

Proof. Suppose that C is described by a parameter ¢ as Recall that we derived

earlier that if s is the arclength,
dr dx dy
=—=|—-—,— 23.1
ds (ds7 ds) (23.10)

is a unit tangent vector, and an outward pointing unit normal vector is

dy dx
— 23.11
(ds ds> ( )

Hence

7§CF ‘nds = jé(M(x,y),N(x,y))- @2,—3”;) ds

:}{ (M (z,y)dy — N(x,y)dx)

_H <aM azv)dA

:/V-FdA [
R
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Flux Integrals & Gauss’
Divergence Theorem

A classic example of flux is the flow of water. Suppose water is flowing through a
hole - say a window in a wall - of area A at some velocity v which makes an angle
with the window’s normal vector. Then the volume of water that passes thorough
the widow during a time interval dt is

V = Al|v|| cos 0dt
Figure 24.1: Flow of fluid through a window

Flow

> Normal

Definition 24.1 Let S be a surface, and dA an infinitesimal surface element. Then
the area vector of S is
dA = ndA

where n is a unit normal vector to the surface element. A surface is said to be
oriented if an area vector has been defined for its surface.

Note that there are two possible orientations for any surface, because the sur-
face unit normal can point in either direction. For a closed surface, these would
correspond to output and inward pointing normal vectors.
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Definition 24.2 The flow through an oriented surface A is the volume of water
that passes through that surface per unit time,

flow = A||v|| cosOdt = v - Adt

Definition 24.3 The flux through an oriented surface A is the rate of flow through
A, namely

flur=v-A
Definition 24.4 The flux of a vector field F through an oriented surface element
dA is

flur =F -dA

Definition 24.5 The flux of a vector field F through an oriented surface A or
flux integral is

n—00 4

fluz = lim Zn:Fi-dAi:ﬂF.dA
=1 A

Figure 24.2: The geometry for example 24.1.
A

—
\4

Example 24.1 Find the fluz integral of the vector field F = (2,3,5) through a
rectangle parallel to the yz-plane (i.e., normal to the x-azis) with corners

(1,0,0),(1,1,0),(1,1,2),(1,0,2)
as illustrated in figure 24.2

Solution. The dimensions of the rectangle are 1 x 2 so the area is 2. A normal vector
is

A = (2,0,0)

hence the flux is
flux=A -F=(2,0,0)-(2,3,5)=4 N
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Example 24.2 Find the flux integral of
F =(2,0,0)
through o disk of radius 2 on the plane
rtyt+z=2
in the upward direction.

Solution. A normal vector to the plane that is oriented upward is
N=(1,1,1)

which has magnitude v/3 and hence a unit normal vector is

1
n = ﬁ(l’l’l)

The area of the disk is A = 7 x 22 = 47r. Hence an area vector is

47

A =nA=
V3

(1,1,1)

Therefore the flux is

a7 8T
flux=F-A=—(2,0,0)-(1,1,1)=— N
\/3( )-(1,1,1) 7
Example 24.3 Find the outward fluz integral of the vector field F = (2 — x,0,0)
over the face of the cube with one corner at the origin, entirely in the first octant,

with each side of length 3.

Solution. Since the vector field is entirely parallel to the z-axis, of the six surfaces
of the cube, four of them have normals that are perpendicular to the vector field.
Since the dot product of these vectors with the vector field is zero, they produce no
contribution to the flux. The remaining two surfaces are those perpendicular to the
x axis, one at x = 3 and the other at x = 0. Each of these two surfaces has an area
of A=9. At the x = 3 surface, n = (1,0,0) and F = (—1,0,0), hence

flux =F -nA = (1,0,0) - (-1,0,0) x 9= -9
At the x = 0 surface, n = (—1,0,0) and F = (2,0,0), hence

flux = F -nA = (~1,0,0) - (2,0,0) x 9 = —18
So the total flux is -9 — 18 = —-27. N

We have previously defined the divergence as
VF == Mz + Ny + Pz

when F = (M, N, P). We can use flux integrals to give an alternate definition of the
divergences, which gives a more physical description of why it is called “divergence.”
In fact, the limit in the following theorem was the original definition of the divergence
and it was not until sometime later that the derivative formula was derived.
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Theorem 24.1 Let ¥ = (M, N, P) be a differentiable vector field defined within
some closed volume V' with surface A. Then the divergence is given by

V-F=M,+N,+P, = hm—ij dA (24.1)

Example 24.4 Find the divergence of the vector field F = (x,y, z).
Solution: Algebraic Method
V-F=M,+N,+P.=1+1+1=3

Solution: Geometric Method Define a volume V' of dimensions dx x dy x dz that is
centered at the point (x,y,z). We can define the following data for this cube.

Side Outward Normal dA dA =nA
zr+dz/2 (1,0,0) dydz  (1,0,0)dydz
x —dz/2 (-1,0,0) dydz (—1,0,0)dydz
y+dy/2 (0, 1,0) dzdz  (0,1,0)dzdz
y—dy/2 (0, -1, 0) dxdz (0,—1,0)dzdz
z+dz/2 (0,0,1) dxdy  (0,0,1)dzdy
z—dz/2 (0,0, -1) dxdy (0,0, —1)dzdy

Assuming the center of the cube is at (z,y, 2) then we also have the following by
evaluating the vector field at the center of each face.

Side F F.-dA
x+dx/2 (x+dz/2,y,2) (z+dx/2)dydz
r—dz/2 (x—dz/2,y,2) —(z—dx/2)dydz
y+dy/2 Ex,y—l—dy/Q,zg (y + dy/2)dzdz

( )
( )

y—dy/2 (z,y—dy/2,2) —(y—dy/2)dedz
z+dz/2 (z,y,z+dz/2 (z + dz/2)dxdy
z—dz/2 (z,y,z—dz/2) —(z—dz/2)dzdy

Adding up all the fluxes, we find that

ﬂ F - dA = 3dadydz

Hence the divergence is

. H F-dA . 3dxdydz
F=lm>="—— =lim ——— =
v Voo V g dxdydz 3

which is the same value we obtained analytically. W

Proof of Theorem 2/4.1. The proof is similar to the example. Consider a box centered
at the point (x +dz/2,y+dy/2,z+ dz/2) of dimensions V = dx x dy x dz. Letting

F(z,y,2) = (M(2,y,2), N(z,y,2), P(z,y,2))
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the surface integral is

[[F-dA =F(@+do,y+ dy/2,2 + dz/2)dydz - (1,0,0)
S

+F
+F

x,y+dy/2,z+ dz/2)dydz - (—1,0,0)
x+dx/2,y+ dy, z + dz/2)dzdz - (0,1,0)
+F(x +dz/2,y,z + dz/2)dzdz - (0, —1,0)
+F(x +dz/2,y + dy/2,z + dz)dzdy - (0,0, 1)
+F(x+dz/2,y + dy/2, z)dzdy - (0,0,—1)
= [M(z+dz,y +dy/2,z + dz/2) — M(z,y + dy/2, z + dz/2)|dyd=z
+ [N(x +dx/2,y +dy,z+ dz/2) — N(z + dz/2,dy, z + dz/2)]dzd=
+ [Pz +dx/2,y +dy/2,z + dz) — P(x + dz /2,y + dy/2, z)|dzdy

~—~~ Y~

Hence

1 1
Vjst.dA: dxddeLfF-dA

M(z +dw,y + dy/2, 2 + dz/2) — M(z,y + dy/2,z + dz/2)
B dx
N N(x+dx/2,y+dy,z+dz/2) — N(x + dz/2,dy, z + dz/2)
dy
n P(x+dx/2,y+dy/2,z+dz) — P(x + dz/2,y + dy/2, z)
dz

Taking the limit as V' — 0,

1
‘}1LnOVLJF-dA_MI+Ny+PZ—V-F |

Theorem 24.2 Gauss’ Divergence Theorem. Let F = (M, N, P) be a vector
field with M, N, and P continuously differentiable on a solid S whose boundary is

0S. Then
[[F-naa=[[[v-Fav (24.2)
oS S

where n is an outward pointing unit normal vector.
Proof. Break the volume down into infinitesimal boxes of volume
AV = Az x Ay x Az

Then we can expand the volume integral as a Riemann Sum

fffv-FdV:iAViV-Fi (24.3)
1% =1
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where F; is the value of F in cube i. Using the geometric definition of the divergence

A/I%V;Fi‘dA

V- F; NG (24.4)
Hence
" [l Fi-dA
w V-FdV = z; AV, %T (24.5)
= i: [[Fi-aa (24.6)
i=19V;

Since the surface integrals over bordering faces cancel out (compare with the proof
of Green’s theorem), all that remains of the sum is over the border of the entire
volume, and we have

[[J[v Fav=[[F-da m (24.7)
|4 oV

Example 24.5 Find the surface integral HSF -dA of the vector field F = (0,y,0)
over a cylinder of radius 1 and height 2 centered about the z-axis whose base is in
the xy plane, where S includes the entire surface (including the top and the bottom
of the cylinder).

Solution. Using the divergence theorem,

Lf F.dA = w V- FdV (24.8)

= [[Jaav = [[[av =r(1)?x (2) =27 = (24.9)
14 14
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Stokes’ Theorem

We have already seen the circulation, whose definition we recall here. We will use
this definition to give a geometric definition of the curl of a vector field, as we did
in the previous section for the divergence.

Definition 25.1 Let D C R? be an open set, C C D a path, and F a vector field
on D. Then the circulation of the vector field is

circ F = 7{ F -dr (25.1)
C

The circulation density about a vector n is

irc F 1
circy F = lim 20 = Jim ~ ]{ F . dr (25.2)
A—0 A A-0 A C

We define the curl of a vector field at a point as vector field having magnitude
equal to the maximum circulation at the point and direction normal to the plane of
circulation, so that

(Vx F)-n=circ, F (25.3)

Theorem 25.1 Let F = (M, N, P) be a differentiable vector field. Then
curl F=V xF = (P, - N,,M, — P,, N, — M,) (25.4)
Theorem 25.2 Stokes’ Theorem. Let D C R® be a connected set, let S C D be

a surface with boundary 0S and surface normal vector n. If F = (M,N,P) is a
differentiable vector field on D then

yéSF-Tds:fo(VxF)-ndS (25.5)

where T is a unit tangent vector of 0S. Here ds is the distance element along C
and dS' is the surface element on S.
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Stokes’ theorem as we have presented here is really a special case in 3 dimensions.
A more general form would have S C R” and 05 C R"!, and would be written
using ”generalized” surface and volume integrals as

!éswziédw (25.6)

where dw represents the “exterior derivative” of a generalized vector field w called
a “differential form.” We have already met several special cases to equation 25.6:

1. In one dimension f: (a,b) C R— R, S is a line segment and 05 is the set
of endpoints {a,b}. The derivative is f’, so that

b
/ f(t)dt = f(b) - f(a) (25.7)

which is the fundamental theorem of calculus.

2. In two dimensions we can write the vector field as F' = (M, N,0), S is an
area A C R?, 0S5 is the boundary C of A, and n = (0,0, 1) so that

(VxF)) n=N,— M, (25.8)

Equation 25.5 then becomes

fc F.dr= %E(de + Ndy) = jj(Nm — M,)dA (25.9)

A

which is Green’s theorem.

3. In three dimensions S =V, 05 =0V, w =F -n and dw =V - F, giving

HF.ndszﬂjv-de (25.10)

ov

which is the divergence theorem (also called Gauss’ theorem).
Example 25.1 Find fCF - dr for
F = (yz2 —y,x2? + nyz)

where C' is a cirlce of radius 3 centered at the origin in the xy-plane, using Stoke’s
theorem.

Solution. Letting S denote the disk that is enclosed by the circle C' will can the
formula
fF.Tds:H(VXF)-ndS
¢ s
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Since C, and hence S, both lie in the zy-plane we have (n) = (0,0, 1). Hence
(VX F)-n=(P,— N.,M. — Py, N, — M,) - (0,0,1)
= N, — M,

ox
=22 4+1-224+1=2

_ 0, 9, 2
= - (22" + 1) ay(yz y)

Hence
fFMrm=2£ﬂw=2ﬂ§y:wnl
¢ s
Example 25.2 Find §,F - dr for
F=(z—2y,3x—4y,z+ 3y

where C' is a cirlce defined by

using Stoke’s theorem.

Solution We are again going to use the formula

ﬁ;ﬂTds_LﬂvXFynds

We again have n = (0,0, 1), and C is a circle of radius 2. Hence

(VXF)-n=(P,— N., M, — P,, N, — M,) - (0,0,1)
=N, — M,
) )
= L Br—dy) — —(2—2
833(332 y) 8y(z Y)
3+2=5

Hence
fﬁtTdyzgﬂdsz5ﬂﬁ):mwl
c S
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