ェXE МАТІ $\Sigma М О \Sigma$ ПАРАГ $\boldsymbol{\Omega}$ ГН Σ Параүตүท́s

Гіळ́рүоя $\Lambda v \mu \pi \varepsilon \rho о ́ \pi о v \lambda о \varsigma$
Паveлıбтŋ́ $\mu ı$ Є $\Theta \sigma \sigma \alpha \lambda i ́ \alpha s$
Т $\mu \eta ́ \mu \alpha$ М $\eta \chi \alpha v o \lambda o ́ \gamma \omega v$ М М $\chi \alpha \nu ı \kappa \omega ́ v ~$

PRODUCTION PLANNING AND SCHEDULING Aggregate Planning

George Liberopoulos University of Thessaly

Department of Mechanical Engineering

Introduction

- Aggregate Planning
- Macroscopic decisions
- Determine levels of workforce ("soft/flexible" capacity) and mix of products to be produced in each period over a finite horizon (e.g., the next 12 months)

Introduction

Aggregate Units of Production

- Aggregate units of production corresponding to an "average" item
- If different types of items are produced \Rightarrow aggregate units in terms of weight, volume, workhours, monetary value, etc.
- Example:

(A) Model no.	(B) No. worker hours required to produce one unit	(C) Market share (\%)	(D) Selling price (€)	(B)x(C)
UA32	4,8	35	325	1,68
UA35	5,2	28	390	1,456
UC12	5,4	22	450	1,188
UC48	5,8	15	510	0,87
Aggregate unit		$\mathbf{1 0 0}$		$\mathbf{5 , 1 9 4}$

Overview of Aggregate Planning

Given:

- Demand forecasts $D_{1}, D_{2}, \ldots, D_{T}$, for aggregate product units over planning horizon T
Determine:
- Aggregate production quantities (e.g., number of units)
- Level of resources (e.g., number of workers) required to meet forecasted demand

Overview of Aggregate Planning

Issues

- Smoothing: Costs from changing production from period to period
- Bottlenecks: Inability to meet sudden demand changes due to capacity restrictions
- Planning horizon:
- Small T: Current production levels may not be enough for meeting demand beyond the horizon
- Large T: Inaccurate forecasts for far periods
- End-of-horizon effect: Use "rolling horizon"
- Treatment of Demand: It is assumed that demand is known with certainty (deterministic)
- Disadvantage: Forecast errors
- Advantage: We can incorporate seasonal fluctuations, trends, etc.

Costs in Aggregate Planning

Smoothing costs: Costs from changing production from period to period, mainly by changing workforce size

- Increase of workforce size:
- time + expense to advertise position
- Interview and screen candidates
- Train new hires
- Decrease of workforce size:
- Severance pay ($\alpha \pi 0 \zeta \eta \mu i ́ \omega \sigma \eta$)
- Decline in workforce morale ($\eta \theta$ ккó)
- Decrease in size of workforce pool in the future as laid off workers may find jobs elsewhere
- Assumption: Linear costs

Costs in Aggregate Planning

Inventory holding/shortage costs: Costs from holding inventory or not meeting demand

- Cost of capital (money) tied up in inventories
- Obsolescence, breakage, theft, insurance, special storage conditions, etc.

- In manufacturing for aggregate planning purposes: Mostly backorder cost ($\kappa \alpha \theta \sigma \sigma \tau \varepsilon \rho \eta \mu \varepsilon ́ v \varepsilon \varsigma ~ \pi \alpha \rho \alpha \gamma \gamma \varepsilon \lambda i ́ \varepsilon \varsigma)$
- In highly competitive environments and in retail when managing single items: lost sales ($\chi \alpha \mu \varepsilon ́ v \varepsilon \varsigma ~ \pi \omega \lambda \eta ́ \sigma \varepsilon ı \varsigma)$
- Assumption: Linear costs

$$
\operatorname{Cost}(\boldsymbol{€})
$$

$\leftarrow I_{t}^{-}=$back orders $\quad I_{t}^{+}=$(positive) inventory \rightarrow

Costs in Aggregate Planning

Regular time costs ($\kappa \alpha v o v ı \kappa \eta ́ ~ \alpha \pi \alpha \sigma \chi \mathbf{0} \lambda \eta \sigma \eta)$) Costs of producing one unit of output during regular working hours.

- Payroll costs of regular employees working during regular working time
- Direct and indirect costs of materials
- Other manufacturing costs

When all production takes place in regular time, regular time costs become "sunk" costs ($\mu \eta \alpha \nu \alpha \kappa \tau \eta \sigma \mu \varepsilon \varsigma \zeta \alpha \pi \alpha ́ v \varepsilon \varsigma)$ and are not affected by the planning decision.
Overtime (v $\left.\pi \varepsilon \rho \omega \rho \tilde{c}_{\alpha}\right)$ and Subcontracting (vлєрүoдaßía) costs: Costs of producing one unit of output NOT during regular working hours.

- Overtime: Production of regular employees beyond normal workday
- Subcontracting: Production by an outside supplier

Idle time costs ($\boldsymbol{\alpha} \boldsymbol{\delta} \boldsymbol{\rho} \mathbf{\alpha} \boldsymbol{v \varepsilon ı} \boldsymbol{\alpha}$): Cost of underutilization of workforce

Costs in Aggregate Planning

Regular time costs (каvоvıки́ $\alpha \pi \alpha \sigma \chi 0 ́ \lambda \eta \sigma \eta)$) Costs of producing one unit of output during regular working hours.

- Payroll costs of regular employees working during regular working time
- Direct and indirect costs of materials
- Other manufacturing costs

When all production takes place in regular time, regular time costs become "sunk" costs ($\mu \eta \alpha \nu \alpha \kappa \tau \eta \sigma \mu \varepsilon \varsigma \zeta \alpha \pi \alpha ́ v \varepsilon \varsigma)$ and are not affected by the planning decision.
 producing one unit of output NOT during regular working hours.

- Overtime: Production of regular employees beyond normal workday
- Subcontracting: Production by an outside supplier

Idle time costs ($\boldsymbol{\alpha} \boldsymbol{\delta} \boldsymbol{\rho} \mathbf{\alpha} \boldsymbol{v \varepsilon ı} \boldsymbol{\alpha}$): Cost of underutilization of workforce

Competing Objectives

- "Chase" or "zero-inventory" strategy ($\sigma \tau \rho \alpha \tau \gamma \iota \kappa \eta$
 demand by making frequent and potentially large changes to in the size of labor force.
- May be cost effective
- May be poor long-run business strategy because workers who are laid off may not be available when needed
- Stable workforce strategy ($\sigma \tau \rho \alpha \tau \eta \gamma \iota \kappa \eta ́ \sigma \tau \alpha \theta \varepsilon \rho о v ́ \varepsilon \rho \gamma \alpha \tau ı \kappa о v ́$ סvvaцикоv́)
- May result in large buildups of inventory (manufacturing)
- May incur substantial debt to meet payrolls in slow periods (service)
- Maximize profits over planning horizon

Solution of Aggregate Planning Problems by Linear Programming (LP)

Cost Parameters and Given Information

$c_{H}=$ Cost of hiring one worker
$c_{F}=$ Cost of firing one worker
$c_{I}=$ Cost of holding one unit of stock for one period
$c_{R}=$ Cost of producing one unit on regular time (к $\left.\alpha \nu о \nu \iota \kappa \eta ́ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta\right)$
$c_{O}=$ Incremental cost of producing one unit on overtime (vлє $\rho \rho \rho \kappa \kappa \eta \dot{\alpha} \alpha \pi \alpha \sigma \chi$ ó $\lambda \eta \sigma \eta$)
$c_{U}=$ Idle cost per unit of production (кó $\left.\sigma \tau \circ \varsigma \alpha \delta \rho \alpha ́ v \varepsilon ı \alpha \varsigma\right)$
$c_{S}=$ Cost to subcontract one unit of production
$T=$ Number of periods in planning horizon
$n_{t}=$ Number of production days in period t
$K=$ Number of aggregate units produced by one worker in one day
$I_{0}=$ Initial inventory on hand at the start of the planning horizon
$W_{0}=$ Initial workforce at the start of the planning horizon
$D_{t}=$ Forecast of demand in period t

Solution by LP

Problem Variables

$W_{t}=$ Workforce level in period t
$P_{t}=$ Production level in period t
$I_{t}=$ Inventory level in period t
$H_{t}=$ Number of workers hired in period t
$F_{t}=$ Number of workers fired in period t
$O_{t}=$ Overtime production in units in period t
$U_{t}=$ Worker idle time ("undertime") in units in period t
$S_{t}=$ Number of units subcontracted from the outside in period t

Solution by LP

LP Problem

$$
\text { Minimize } \sum_{t=1}^{T}\left(c_{H} H_{t}+c_{F} F_{t}+c_{I} I_{t}+c_{R} P_{t}+c_{O} O_{t}+c_{U} U_{t}+c_{S} S_{t}\right)
$$

Subject to

$$
\begin{gathered}
W_{t}=W_{t-1}+H_{t}-F_{t}, 1 \leq t \leq T \text { (conservation of workforce) } \\
P_{t}=K n_{t} W_{t}+O_{t}-U_{t}, 1 \leq t \leq T \text { (production \& workforce) } \\
I_{t}=I_{t-1}+P_{t}+S_{t}-D_{t}, 1 \leq t \leq T \text { (inventory balance) } \\
H_{t}, F_{t}, I_{t}, O_{t}, U_{t}, S_{t}, W_{t}, P_{t} \geq 0 \text { (nonnegativity) }
\end{gathered}
$$

Solution by LP

Rounding the variables

Problem: W_{t}, H_{t}, F_{t} and often P_{t} should be integers.
Solution 1
Solve problem as an MILP (mixed integer LP) problem
Problem: More computational effort needed; OK for moderate-sized problems

Solution 2

Solve problem as an LP problem and round variables to nearest solution Problem: May result in infeasible or inconsistent solution

Solution 3

Round W_{t} to next larger integer. Then, H_{t}, F_{t}, P_{t} will also be integers.
Problem: Resulting solution will rarely be optimal. Improve it by trial-anderror experimentation.

Solution by LP

Extensions

Impose minimum buffer inventory to deal with uncertainty in demand

$$
I_{t} \geq B_{t}, \quad 1 \leq t \leq T
$$

Impose maximum number of hires and fires

$$
\begin{gathered}
H_{t} \leq H_{t}^{\max }, \quad 1 \leq t \leq T \\
F_{t} \leq F_{t}^{\max }\left(\text { or } F_{t} \leq \alpha W_{t}\right), \quad 1 \leq t \leq T
\end{gathered}
$$

Additional capacity constraints

$$
P_{t} \leq C_{t}, \quad 1 \leq t \leq T
$$

Solution by LP

Extensions

Backorders allowed

$$
\begin{array}{cc}
I_{t}=I_{t}^{+}-I_{t}^{-}, & 1 \leq t \leq T \\
I_{t}^{+}, I_{t}^{-} \geq 0, & 1 \leq t \leq T
\end{array}
$$

$$
\text { Minimize } \sum_{t=1}^{T}\left(c_{H} H_{t}+c_{F} F_{t}+c_{I} I_{t}^{+}+c_{P} I_{t}^{-}+c_{R} P_{t}+c_{o} O_{t}+c_{U} U_{t}+c_{S} S_{t}\right)
$$

$c_{P}=$ Cost of backordering one unit of stock for one period

Lost sales allowed

$$
\begin{array}{cl}
I_{t}^{+}-I_{t}^{-}=I_{t-1}^{+}+P_{t}+S_{t}-D_{t}, & 1 \leq t \leq T \text { (inventory balance) } \\
I_{t}^{+}, I_{t}^{-} \geq 0, & 1 \leq t \leq T
\end{array}
$$

$$
\text { Minimize } \sum_{t=1}^{T}\left(c_{H} H_{t}+c_{F} F_{t}+c_{I} I_{t}^{+}+c_{L} I_{t}^{-}+c_{R} P_{t}+c_{O} O_{t}+c_{U} U_{t}+c_{S} S_{t}\right)
$$

$c_{L}=$ Cost of lost sales of one unit of stock for one period

Solution by LP

Extensions

Convex piecewise-linear cost functions

$$
\begin{gathered}
H_{t}=H_{1 t}+H_{2 t}, \quad 1 \leq t \leq T \\
H_{1 t} \leq H^{*}, \quad 1 \leq t \leq T \\
H_{2 t} \geq 0, \quad 1 \leq t \leq T \\
\text { Minimize } \sum_{t=1}^{T}\left(c_{H 1} H_{1 t}+c_{H 2} H_{2 t}\right)
\end{gathered}
$$

Disaggregating Aggregate Plans

One possible approach

$X^{*}=$ number of aggregate units of production for a particular planning period ($=P_{t}$)
$Y_{j}=$ number of units of production of item $j=1, \ldots . J$, for the same planning period
Objective function?
Inventory holding costs have already been accounted for in the determination of X^{*}
$K_{j}=$ fixed cost of setting up for production of $Y_{j}, j=1, \ldots ., J$
$\lambda_{j}=$ annual demand rate for item $j, j=1, \ldots, J$ Minimize $\sum_{j=1}^{J} K_{j} \begin{aligned} & \lambda_{j} \\ & Y_{j}\end{aligned} \quad \begin{aligned} & \text { Measure of frequency } \\ & \text { of production }\end{aligned}$
Subject to

$$
\begin{gathered}
\sum_{j=1}^{J} Y_{j}=X^{*} \text { (resource allocation problem) } \\
a_{j} \leq Y_{j} \leq b_{j}, \quad j=1, \ldots, J
\end{gathered}
$$

A Prototype Problem

Setting: A producer of disk drives wants to plan workforce and production levels for the 6-month period from January to June ($T=6 ; t=1, \ldots, 6$)
Number of working days and demand forecasts for a particular line of drives produced at a particular plant:

t	1	2	3	4	5	6
D_{t}	1280	640	900	1200	2000	1400
n_{t}	20	24	18	26	22	15

Initial values (at the end of December): $W_{0}=300$ workers; $I_{0}=500$ drives
Target value (at the end of June): $I_{6} \geq 600$ drives
Costs: $c_{H}=500 ; c_{F}=1000 ; c_{I}=80$
Capacity: In the past, 76 workers produced 245 disk drives over 22 working days

$$
\Rightarrow K=\frac{245}{(22)(76)}=0.14653 \text { drives per worker per day }
$$

