ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ-ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνολικός Προγραμματισμός Παραγωγής

Γιώργος Λυμπερόπουλος Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών

PRODUCTION PLANNING AND SCHEDULING Aggregate Planning

George Liberopoulos University of Thessaly Department of Mechanical Engineering

Introduction

- Aggregate Planning
 - Macroscopic decisions
 - Determine levels of workforce ("soft/flexible" capacity) and mix of products to be produced in each period over a finite horizon (e.g., the next 12 months)

Introduction

Forecast of aggregate demand for a planning horizon of *T* periods

Aggregate Production Plan Determination of aggregate production and workforce levels for *T*-period planning horizon

Master Production Schedule Determination of production levels by item by time period

> Material Requirements Planning Detailed timetable for production and assembly of components and subassemblies

Aggregate Units of Production

- Aggregate units of production corresponding to an "average" item
- If different types of items are produced ⇒ aggregate units in terms of weight, volume, workhours, monetary value, etc.
- Example:

(A) Model no.	(B) No. worker hours required to produce one unit	(C) Market share (%)	(D) Selling price (€)	(B)x(C)
UA32	4,8	35	325	1,68
UA35	5,2	28	390	1,456
UC12	5,4	22	450	1,188
UC48	5,8	15	510	0,87
Aggregate unit		100		5,194

Overview of Aggregate Planning

Given:

• Demand forecasts $D_1, D_2, ..., D_T$, for aggregate product units over planning horizon T

Determine:

- Aggregate production quantities (e.g., number of units)
- Level of resources (e.g., number of workers) required to meet forecasted demand

Overview of Aggregate Planning

Issues

- **Smoothing**: Costs from changing production from period to period
- **Bottlenecks**: Inability to meet sudden demand changes due to capacity restrictions
- Planning horizon:
 - Small T: Current production levels may not be enough for meeting demand beyond the horizon
 - Large T: Inaccurate forecasts for far periods
 - End-of-horizon effect: Use "rolling horizon"
- **Treatment of Demand**: It is assumed that demand is known with certainty (deterministic)
 - Disadvantage: Forecast errors
 - Advantage: We can incorporate seasonal fluctuations, trends, etc.

Smoothing costs: Costs from changing production from period to period, mainly by changing workforce size

• Increase of workforce size:

- time + expense to advertise position
- Interview and screen candidates
- Train new hires

• Decrease of workforce size:

- Severance pay (αποζημίωση)
- Decline in workforce morale (ηθικό)
- Decrease in size of workforce pool in the future as laid off workers may find jobs elsewhere

Inventory holding/shortage costs: Costs from holding inventory or not meeting demand

- Inventory holding costs (Κόστος διατήρησης αποθέματος):
 - Cost of capital (money) tied up in inventories
 - Obsolescence, breakage, theft, insurance, special storage conditions, etc.
- Shortage costs (Κόστος έλλειψης):
 - In manufacturing for aggregate planning purposes: Mostly backorder cost (καθυστερημένες παραγγελίες)
 - In highly competitive environments and in retail when managing single items:
 lost sales (χαμένες πωλήσεις)
 Cost (€)
- Assumption: Linear costs.

Regular time costs (κανονική απασχόληση): Costs of producing one unit of output during regular working hours.

- Payroll costs of regular employees working during regular working time
- Direct and indirect costs of materials
- Other manufacturing costs

When all production takes place in regular time, regular time costs become "sunk" costs ($\mu\eta \alpha \nu \alpha \kappa \tau \eta \sigma \mu \epsilon \zeta \delta \alpha \pi \alpha \nu \epsilon \zeta$) and are not affected by the planning decision.

Overtime ($\upsilon \pi \epsilon \rho \omega \rho i \alpha$) and Subcontracting ($\upsilon \pi \epsilon \rho \gamma o \lambda \alpha \beta i \alpha$) costs: Costs of producing one unit of output NOT during regular working hours.

- Overtime: Production of regular employees beyond normal workday
- Subcontracting: Production by an outside supplier

Idle time costs (αδράνεια): Cost of underutilization of workforce

Regular time costs (κανονική απασχόληση): Costs of producing one unit of output during regular working hours.

- Payroll costs of regular employees working during regular working time
- Direct and indirect costs of materials
- Other manufacturing costs

When all production takes place in regular time, regular time costs become "sunk" costs ($\mu\eta \alpha \nu \alpha \kappa \tau \eta \sigma \mu \epsilon \zeta \delta \alpha \pi \alpha \nu \epsilon \zeta$) and are not affected by the planning decision.

Overtime ($\upsilon \pi \epsilon \rho \omega \rho i \alpha$) and Subcontracting ($\upsilon \pi \epsilon \rho \gamma o \lambda \alpha \beta i \alpha$) costs: Costs of producing one unit of output NOT during regular working hours.

- Overtime: Production of regular employees beyond normal workday
- Subcontracting: Production by an outside supplier

Idle time costs (αδράνεια): Cost of underutilization of workforce

Competing Objectives

- "Chase" or "zero-inventory" strategy (στρατηγική «κυνηγητού» ή «μηδενικού αποθέματος»): Quickly react to demand by making frequent and potentially large changes to in the size of labor force.
 - May be cost effective
 - May be poor long-run business strategy because workers who are laid off may not be available when needed
- Stable workforce strategy (στρατηγική σταθερού εργατικού δυναμικού)
 - May result in large buildups of inventory (manufacturing)
 - May incur substantial debt to meet payrolls in slow periods (service)
- Maximize profits over planning horizon

Solution of Aggregate Planning Problems by Linear Programming (LP)

Cost Parameters and Given Information

- $c_H =$ Cost of hiring one worker
- c_F = Cost of firing one worker
- $c_I =$ Cost of holding one unit of stock for one period
- c_R = Cost of producing one unit on regular time (κανονική απασχόληση)
- c_0 = Incremental cost of producing one unit on overtime (υπερωριακή απασχόληση)

 c_U = Idle cost per unit of production (κόστος αδράνειας)

$$c_S$$
 = Cost to subcontract one unit of production

$$T$$
 = Number of periods in planning horizon

$$n_t$$
 = Number of production days in period t

- K = Number of aggregate units produced by one worker in one day
- I_0 = Initial inventory on hand at the start of the planning horizon
- W_0 = Initial workforce at the start of the planning horizon
- D_t = Forecast of demand in period t

Problem Variables

- W_t = Workforce level in period t
- P_t = Production level in period t
- I_t = Inventory level in period t
- H_t = Number of workers hired in period t
- F_t = Number of workers fired in period t
- O_t = Overtime production in units in period t
- U_t = Worker idle time ("undertime") in units in period t
- S_t = Number of units subcontracted from the outside in period t

LP Problem

Minimize
$$\sum_{t=1}^{T} (c_H H_t + c_F F_t + c_I I_t + c_R P_t + c_O O_t + c_U U_t + c_S S_t)$$

Subject to

$$\begin{split} W_t &= W_{t-1} + H_t - F_t, 1 \leq t \leq T \text{ (conservation of workforce)} \\ P_t &= Kn_tW_t + O_t - U_t, 1 \leq t \leq T \text{ (production & workforce)} \\ I_t &= I_{t-1} + P_t + S_t - D_t, 1 \leq t \leq T \text{ (inventory balance)} \\ H_t, F_t, I_t, O_t, U_t, S_t, W_t, P_t \geq 0 \text{ (nonnegativity)} \end{split}$$

Rounding the variables

Problem: W_t , H_t , F_t and often P_t should be integers.

Solution 1

Solve problem as an MILP (mixed integer LP) problem

Problem: More computational effort needed; OK for moderate-sized problems

Solution 2

Solve problem as an LP problem and round variables to nearest solution *Problem*: May result in infeasible or inconsistent solution

Solution 3

Round W_t to next larger integer. Then, H_t , F_t , P_t will also be integers.

Problem: Resulting solution will rarely be optimal. Improve it by trial-anderror experimentation.

Extensions

Impose minimum buffer inventory to deal with uncertainty in demand

$$I_t \geq B_t, \qquad 1 \leq t \leq T$$

Impose maximum number of hires and fires $H_t \leq H_t^{\max}$, $1 \leq t \leq T$ $F_t \leq F_t^{\max}$ (or $F_t \leq \alpha W_t$), $1 \leq t \leq T$

Additional capacity constraints

$$P_t \leq C_t$$
, $1 \leq t \leq T$

Extensions

Backorders allowed

$$I_{t} = I_{t}^{+} - I_{t}^{-}, \qquad 1 \le t \le T$$
$$I_{t}^{+}, I_{t}^{-} \ge 0, \qquad 1 \le t \le T$$

Minimize $\sum_{t=1}^{N} (c_H H_t + c_F F_t + c_I I_t^+ + c_P I_t^- + c_R P_t + c_O O_t + c_U U_t + c_S S_t)$

 c_P = Cost of backordering one unit of stock for one period

Lost sales allowed

$$I_{t}^{+} - I_{t}^{-} = I_{t-1}^{+} + P_{t} + S_{t} - D_{t}, \qquad 1 \le t \le T \text{ (inventory balance)}$$
$$I_{t}^{+}, I_{t}^{-} \ge 0, \qquad 1 \le t \le T$$

Minimize
$$\sum_{t=1}^{T} (c_{H}H_{t} + c_{F}F_{t} + c_{I}I_{t}^{+} + c_{L}I_{t}^{-} + c_{R}P_{t} + c_{0}O_{t} + c_{U}U_{t} + c_{S}S_{t})$$

 c_L = Cost of lost sales of one unit of stock for one period

Extensions

Convex piecewise-linear cost functions

Disaggregating Aggregate Plans

One possible approach

 X^* = number of aggregate units of production for a particular planning period (= P_t) Y_j = number of units of production of item j = 1, ..., J, for the same planning period **Objective function**?

Inventory holding costs have already been accounted for in the determination of X^* K_j = fixed cost of setting up for production of Y_j , j = 1, ..., J

$$\lambda_j = \text{annual demand rate for item } j, j = 1, ..., J$$

Minimize $\sum_{j=1}^{J} K_j \frac{\lambda_j}{Y_j}$ Measure of frequency of production

Subject to

$$\sum_{j=1}^{J} Y_j = X^* \text{ (resource allocation problem)}$$
$$a_j \le Y_j \le b_j, \qquad j = 1, \dots, J$$

A Prototype Problem

Setting: A producer of disk drives wants to plan workforce and production levels for the 6-month period from January to June (T = 6; t = 1, ..., 6)

Number of working days and demand forecasts for a particular line of drives produced at a particular plant:

t	1	2	3	4	5	6
D_t	1280	640	900	1200	2000	1400
n_t	20	24	18	26	22	15

Initial values (at the end of December): $W_0 = 300$ workers; $I_0 = 500$ drives **Target value (at the end of June):** $I_6 \ge 600$ drives **Costs:** $c_H = 500$; $c_F = 1000$; $c_I = 80$

Capacity: In the past, 76 workers produced 245 disk drives over 22 working days $\Rightarrow K = \frac{245}{(22)(76)} = 0.14653 \text{ drives per worker per day}$