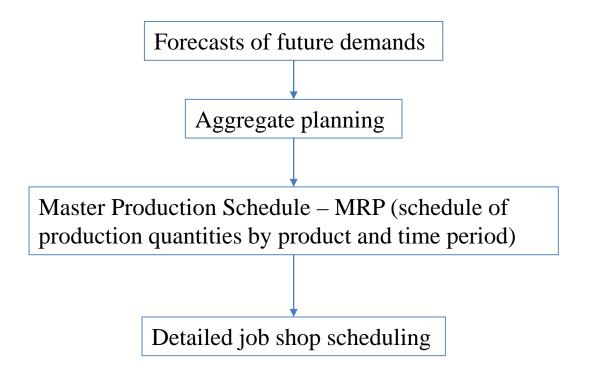
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ-ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Βραχυχρόνιος Προγραμματισμός Παραγωγής

Γιώργος Λυμπερόπουλος Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών

PRODUCTION PLANNING AND SCHEDULING Short-Term Production Scheduling

George Liberopoulos University of Thessaly Department of Mechanical Engineering

Hierarchy of Production Decisions



Characteristics of job shop scheduling problems

- Job arrival pattern (static/dynamic problems)
- Number and variety of machines in the shop
- Number of workers in the shop (ability, speed of workers)
- Particular flow patterns (serial/mixed/rework)
- Evaluation of alternative rules

Objectives of job shop scheduling

- 1. Meet due dates
- 2. Minimize average flow time through the system
- 3. Minimize work-in-process (WIP) inventory
- 4. Minimize machine/worker idle time (maximize utilization)
- 5. Reduce setup times
- 6. Minimize production and worker costs
- 7. Provide for accurate job status information

Impossible to optimize all objectives simultaneously

- $1-2 \Rightarrow$ high customer service
- $3-6 \Rightarrow$ high level of plant efficiency (minimize cost)
- Conflicting objectives: e.g. 3 & 4

Job shop terminology

Flow shop

• *n* jobs must be processed through *m* machines in the same order

Job shop

- Jobs may not all require *m* operations
- Some jobs may require multiple operations on the same machine
- Each job may have different sequencing of operations

Parallel vs. sequential processing

Flow time of job *i*

• Time from the initiation of the first job until the completion of job *i*

Makespan

• Flow time of job completed last

Tardiness & Lateness

- Lateness = Completion time due date
- Tardiness = $(Completion time due date)^+$

Myopic sequencing rules

- First come first served (FCFS)
- Shortest Processing Time (SPT)
- Earliest Due Date (EDD)
- Smallest Critical Ratio (CR)
 - CR = (Due date Current time) / Processing time

 $t_{i} = \text{Processing time for job } i$ $d_{i} = \text{Due date for job } i$ $W_{i} = \text{Waiting time for job } i$ $F_{i} = \text{Flow time for job } i$ $F_{i} = W_{i} + t_{i}$ $L_{i} = \text{Lateness of job } i$ $L_{i} = F_{i} - d_{i}$ $T_{i} = \text{Tardiness of job } i$ $T_{i} = (L_{i})^{+} = \max(L_{i}, 0)$ $E_{i} = \text{Earliness of job } i$ $E_{i} = (-L_{i})^{+} = \max(-L_{i}, 0)$

Performance Measures Examples

- Maximum Tardiness $T_{\text{max}} = \max(T_1, T_2, ..., T_n)$
- Mean flow time $F' = \frac{1}{n} \sum_{i=1}^{n} F_i$

Some results

- Rule that minimizes **mean flow time** *F*': <u>SPT</u>
- The following measures are equivalent
 - 1. Mean flow time $F' = \frac{1}{n} \sum_{i=1}^{n} F_i$
 - 2. Mean waiting time $W' = \frac{1}{n} \sum_{i=1}^{n} W_i$

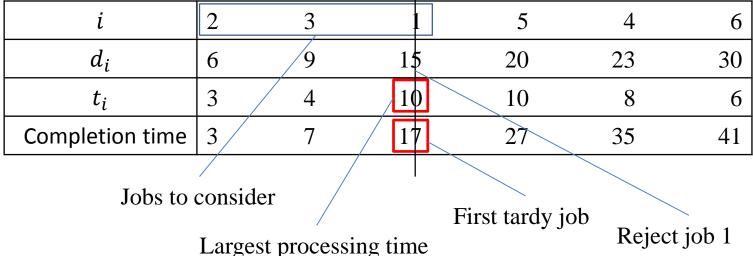
3. Mean lateness
$$L' = \frac{1}{n} \sum_{i=1}^{n} L_i$$

• Rule that minimizes **maximum lateness** L_{max} : **<u>EDD</u>** ($L_{max} = max(L_1, L_2, ..., L_n)$)

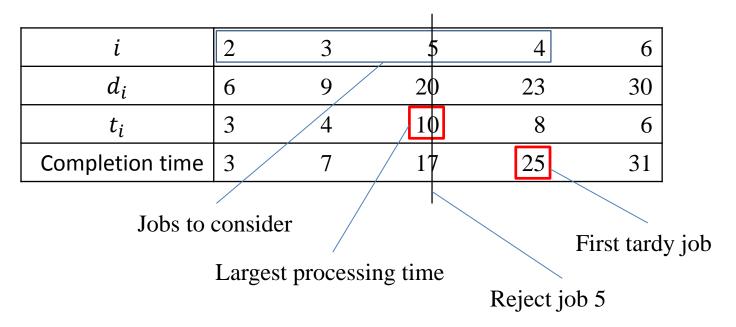
- Minimize **number of tardy jobs**: No simple rule Moore's algorithm
 - 1. Sequence jobs according to EDD to get initial solution.
 - 2. Find first tardy job, say [*i*]. If none exists, GOTO 4.
 - 3. Consider jobs [1], [2], ..., [*i*]. Reject job with largest processing time. GOTO 2.
 - 4. Optimal sequence: Current sequence + rejected jobs in any order

Moore's algorithm: Example

i	1	2	3	4	5	6
d_i	15	6	9	23	20	30
t _i	10	3	4	8	10	6
	1					



Moore's algorithm: Example (cont'd)



Moore's algorithm: Example (cont'd)

i	2	3	4	6
d_i	6	9	23	30
t _i	3	4	8	6
Completion time	3	7	15	21

No tardy jobs!

Optimal sequence: 2, 3, 4, 6 | {1, 5}

Number of tardy jobs: 2

• **Precedence** constraints: Lawler's Algorithm

Minimize $\max_{1 \le i \le n} g_i(F_i)$ $g_i(F_i)$: non decreasing function

Examples:

$$g_i(F_i) = F_i \text{ (flow time)}$$

$$g_i(F_i) = F_i - d_i = L_i \text{ (lateness)}$$

$$g_i(F_i) = (F_i - d_i)^+ = T_i \text{ (tardiness)}$$

- **Precedence** constraints: Lawler's Algorithm (cont'd)
 - 1. Determine set of jobs, say *V*, not required to precede any other.
 - 2. Among the jobs in *V*, choose job *k* satisfying $g_k(\tau) = \min_{i \in V} (g_i(\tau))$, where $\tau = \sum_{i=1}^n t_i$
 - 3. Schedule job *k* last.
 - 4. If there are more jobs to schedule, GOTO 1.

• Lawler's Algorithm: Example

i	1	2	3	4	5	6
t _i	2	3	4	3	2	1
d_i	3	6	9	7	11	7

Precedence constraints:

$$1 \rightarrow 2 \rightarrow 3$$

- $4 \rightarrow 5$
- $4 \rightarrow 6$

Problem: Minimize $\max_{1 \le i \le n} (F_i - d_i)^+$ (minimize maximum tardiness)

• Lawler's Algorithm: Example (cont'd)

i	1	2	3	4	5	6
t _i	2	3	4	3	2	1
d_i	3	6	9	7	11	7

1.
$$V = \{3, 5, 6\}$$

2. $\tau = \{t_1 + t_2 + t_3 + t_4 + t_5 + t_6\} = 15$

$$\min \begin{cases} (15 - 9)^+ = 6, & i = 3\\ (15 - 11)^+ = 4, & i = 5\\ (15 - 7)^+ = 8, & i = 6 \end{cases} = 4 \Rightarrow k = 5$$
3. Optimal sequence: $______5$

• Lawler's Algorithm: Example

i	1	2	3	4	5	6
t _i	2	3	4	3	2	1
d_i	3	6	9	7	11	7

1.
$$V = \{3, 6\}$$

2. $\tau = \{t_1 + t_2 + t_3 + t_4 + t_6\} = 13$

$$\min \begin{cases} (13 - 9)^+ = 4, & i = 3 \\ (13 - 7)^+ = 6, & i = 6 \end{cases} = 4 \Rightarrow k = 3$$

3. Optimal sequence: $___35$

 \rightarrow 3

• Lawler's Algorithm: Example

i	1	2	3	4	5	6
t_i	2	3	4	3	2	1
d_i	3	6	9	7	11	7

1.
$$V = \{2, 6\}$$

2. $\tau = \{t_1 + t_2 + t_4 + t_6\} = 9$
min $\begin{cases} (9-6)^+ = 3, & i = 2 \\ (9-7)^+ = 2, & i = 6 \end{cases} = 2 \Rightarrow k = 6$
 $1 \Rightarrow 2 \Rightarrow 3$
 $4 \Rightarrow 5$
 $4 \Rightarrow 6$

3. Optimal sequence: $___635$

• Lawler's Algorithm: Example

i	1	2	3	4	5	6
t _i	2	3	4	3	2	1
d_i	3	6	9	7	11	7

1.
$$V = \{2, 4\}$$

2. $\tau = \{t_1 + t_2 + t_4\} = 8$
min $\begin{cases} (8-6)^+ = 2, & i = 2 \\ (8-7)^+ = 1, & i = 4 \end{cases} = 1 \Rightarrow k = 4$
 $1 \Rightarrow 2 \Rightarrow 3$
 $4 \Rightarrow 5$
 $4 \Rightarrow 6$

3. Optimal sequence: $\underline{4635}$

• Lawler's Algorithm: Example

i	1	2	3	4	5	6
t _i	2	3	4	3	2	1
d_i	3	6	9	7	11	7

1.
$$V = \{2\}$$

- 2. k = 2
- 3. Optimal sequence: $\underline{24635}$

 $1 \rightarrow 2 \rightarrow 3$ $4 \rightarrow 5$ $4 \rightarrow 6$

- 1. $V = \{1\}$
- 2. k = 1
- 3. Optimal sequence: $\underline{1} \underline{2} \underline{4} \underline{6} \underline{3} \underline{5}$

Note:

- Rule that minimizes **maximum lateness** or **maximum tardiness**, if there are **no precedence** constraints: **EDD**
- Rule that minimizes **maximum flow time** (makespan): Any sequence

- n jobs through m machines in series (flow shop): $(n!)^m$ possible schedules
- Example: n = 5, $m = 5 \implies 24883 \times 10^{10}$ (~25 billion) possible schedules
- Special case: m = 2 machines

$$\rightarrow$$
 A \rightarrow B \rightarrow

- **Result**: If the objective is to **minimize makespan**, the **sequence** of jobs is the **same on both machines** (**permutation schedule**)
- \Rightarrow (*n*!) possible schedules

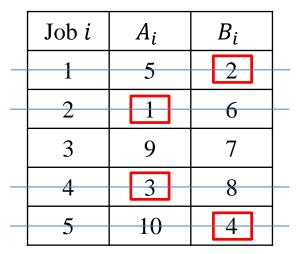
Special case: m = 2 machines
 A_i= Processing time of job *i* on machine A
 B_i= Processing time of job *i* on machine B

Johnson's Algorithm:

Job *i* precedes job *j* if $\min(A_i, B_j) < \min(A_j, B_i)$

- 1. List the values of A_i and B_i in two columns
- 2. Find smallest remaining value. If in **column A**, schedule **next**. If in **column B**, schedule **last**.
- 3. Cross off scheduled jobs.

Johnson's Algorithm: Example



• Optimal schedule: $\underline{2} \quad \underline{4} \quad \underline{3} \quad \underline{5} \quad \underline{1}$

Extension to 3 machines

$$\rightarrow A \rightarrow B \rightarrow C \rightarrow$$

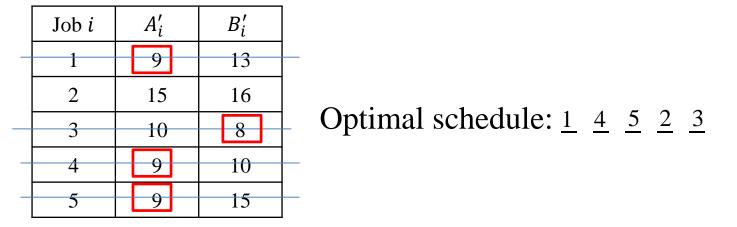
- Considerably more complex
- If the objective is to **minimize makespan**, the **sequence** of jobs is the **same on both machines** (**permutation schedule**)
- 3-machine problem can be reduced to 2-machine problem if: $\min A_i \ge \max B_i \text{ or } \min C_i \ge \max B_i$ Reduction: $\rightarrow A' \rightarrow B' \rightarrow$ $A'_i = A_i + B_i \text{ and } B'_i = B_i + C_i$

If the condition is not satisfied, the reduction yields good but possibly suboptimal solutions

Extension to 3 machines (example)

Job i	A _i	B _i	C _i
1	4	5	8
2	9	6	10
3	8	2	6
4	6	3	7
5	5	4	11

• $\min A_i = 4 \ge 6 = \max B_i$ or $\min C_i = 6 \ge 6 = \max B_i$



G. Liberopoulos: Production Planning