Quantification in Engineering Science)
 Final Exam

Duration: 5 hours

Open books and notes

Problem 1: (20 points)

The posterior distribution of the parameters of a model is given by

$$
p\left(\theta_{1}, \theta_{2} \mid D, I\right) \propto \exp \left[-\frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}+2 \mu \theta_{1} \theta_{2}-2 \mu \theta_{1}-2 \theta_{2}\right)\right]
$$

Find the uncertainty region and plot it in the two-dimensional parameter space (θ_{1}, θ_{2}).
Hint: Need to find the most probable point, the Hessian, the covariance matrix and then clearly plot the contour plots of the posterior distribution in the two-dimensional parameter space, indicate the principal direction of the ellipsoid, as well as the length of the uncertainty along the principal axes of the ellipsoid.

Problem 2: (25 points)

It is given a model with output quantity of interest

$$
y(t)=A e^{\theta_{1} t}+B \theta_{2}+E
$$

where E is an error term arising from the model error. The values of A and B are given, while the parameters θ_{1} and θ_{2} are considered uncertain and independent. The error term E is Gaussian with zero mean and variance s^{2}, i.e. $E \sim N\left(0, s^{2}\right)$. Assuming that the uncertain parameter vector $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right)^{T}$ follows a Gaussian distribution with mean $\underline{\mu}=\left(\mu_{1}, \mu_{2}\right)^{T}$ and covariance matrix

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]
$$

, our problem is to estimate the uncertainty in the response quantity of interest $y(t)$ as a function of time t. Specifically, find the mean and the variance of $y(t)$ in terms of $A, B, \mu_{1}, \mu_{2}, \sigma_{1}$, σ_{2}, s and t.

Problem 3: (20 points)

The posterior probability density function of a set of two parameters $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right)^{T}$ is Gaussian with mean $\underline{0}$ and diagonal covariance matrix

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right]
$$

Let $\underline{\theta}^{(j)}$ be the current sample in the Markov Chain Monte Carlo algorithm generated using a MetropolisHasting algorithm. Following Metropolis-Hasting algorithm, let $\underline{\xi}$ be the candidate sample drawn from a uniform distribution centered at the current sample $\underline{\theta}^{(j)}$. Let $\underline{\theta}^{(j)}=(1,0)^{T}$. If $\underline{\xi} \sim U([0,3],[0,1])$, is drawn from a uniform distribution with bounds $[0,1]$ for the first component ξ_{1} and $[0,2]$ for the first component ξ_{2}

1. find the probability that the next sample in the chain will be $\underline{\theta}^{(j+1)}=\underline{\xi}=(0,1)^{T}$
2. find the probability that the next sample in the chain will be $\underline{\theta}^{(j+1)}=\underline{\xi}=(0,3)^{T}$
3. find the probability that the next sample in the chain will be $\underline{\theta}^{(j+1)}=\underline{\xi}=(3,0)^{T}$

Problem 4: (35 points)

Inference of Acceleration of Gravity and Air Resistance Coefficient for a Falling Object

Consider the mathematical model of a falling object with mass m, acceleration of gravity $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ and air resistance force $F_{\text {res }}=-m \beta v^{2}$, where β is the air resistance coefficient. Using Newton's law, the equation of motion of the falling object is

$$
\begin{equation*}
m \frac{d v(t)}{d t}=m g-m \beta v^{2}(t) \tag{1}
\end{equation*}
$$

or equivalently

$$
a(t)=g-\beta v^{2}(t)
$$

Measurements for the acceleration and the velocity of the falling object are obtained at regular time intervals $k \Delta t$. The acceleration measurements are denoted by $\left(\hat{a}_{1}, \hat{a}_{2}, \ldots, \hat{a}_{N}\right) \equiv\left\{\hat{a}_{k}\right\}_{1 \rightarrow N}$ and the corresponding velocity measurements are denoted by $\left(\hat{v}_{1}, \hat{v}_{2}, \ldots, \hat{v}_{N}\right) \equiv\left\{\hat{v}_{k}\right\}_{1 \rightarrow N}$. Given the observation data $D \equiv\left(\hat{a}_{1}, \hat{a}_{2}, \ldots, \hat{a}_{N}, \hat{v}_{1}, \hat{v}_{2}, \ldots, \hat{v}_{N}\right)$ of the acceleration and velocity of the falling object at time instances $t=\Delta t, 2 \Delta t, \ldots, N \Delta t$, respectively, we are interesting in estimating the uncertainty of the parameter β of the system. Note that the measurements and the model predictions satisfy the model error equation

$$
\begin{equation*}
\hat{a}_{k}=g-\beta \hat{v}_{k}^{2}+E_{k} \tag{2}
\end{equation*}
$$

$k=1, \ldots, N$, where the measurement error terms E_{k} are independent identically distributed (iid) and follow a zero-mean Gaussian distribution $E_{k} \sim N\left(0, \sigma^{2}\right)$. The value of the variance σ^{2} is given.
Assume a uniform prior for the parameter β and derive the expressions for the

1. Posterior PDF $p(\beta \mid D, \sigma, I)$.
2. The function $L(\beta)=-\ln p(\beta \mid D, \sigma, I)$
3. The MPV (or best estimate) $\hat{\beta}$ of β
4. The uncertainty in the parameter β
5. Derive the Gaussian asymptotic approximation for the posterior PDF of $p(\beta \mid D, \sigma, I)$. Is the Gaussian representation of the posterior uncertainty exact or approximate for this case?
6. Find the minimum number of data points required so that the uncertainty in β is less that a given value λ.
7. Find the uncertainty in the resistance force $F_{\text {res }}=-m \beta v^{2}$ given the uncertainties in the parameter β :
a. Compute the mean of $F_{\text {res }}$
b. Compute the standard deviation of $F_{\text {res }}$
c. Find the probability density function that describes the uncertainty in $F_{\text {res }}$
