Supply Chain Network Design Dr. Georgios K.D. Saharidis

Disruption in Supply Chain

• Disruptions occur in supply chains, and their negative financial and technical impacts make the recovery process very slow.

Capacitated Supply Chain Network Design

- A capacitated supply chain network design (SCND) model under random disruptions both in facility and transportation is presented.
- The model seeks to determine the optimal location and types of distribution centers (DC) and also the best plan to assign customers to each opened DC.

Improved Design

Assumptions:

- (1) Failure of DCs might be partial, i.e. a disrupted DC might still be able to serve with a portion of its initial capacity;
- (2) The lost capacity of a disrupted DC shall be provided from a non-disrupted one;
- (3) The lost capacity fraction of a disrupted DC depends on its initial investment amount in the design phase.

Improved Design

Improved vs Traditional

Indices & Sets

- k Index of customers; $k \in K$
- i, j Index of potential locations of DCs; $j \in J$
- n Index of available investment levels for opening and operating unreliable DCs; $n \in N$
- r Index of available unsafe transportation modes between DCs and customers; $r \in R$

Parameters - Costs

fU _{jn}	Fixed cost of oper	ning	and o	perating un	reliab	le I	C	at
	j with investment	: leve	el n;					
fR _i	Fixed cost of open	ning	and or	perating reli	able I	DC a	at j	•
e _{jkr}	Transportation of	cost	from	unreliable	DC	at	j	to

customer k with unsafe transportation mode r.

Parameters - Costs

dp _{ik}	Transportation cost in the primary assignment from
,	unreliable DC at j to customer k with safe
	transportation mode;
db _{jk}	Transportation cost in the secondary assignment
ý	from unreliable DC at j to customer k with safe
	transportation mode;
dr _{ik}	Transportation cost from reliable DC at j to
,	customer k;
C _{ij}	Transportation cost from reliable DC at i to
	unreliable DC at j (i≠j).

Additional Parameters

D_k	Demand of customer k;		
ĸ	Capacity of unreliable DC at j;		
τ _{in}	Percentage of total capacity of unreliable DC at j		
,	that is affected by disruption when it is opened		
	with investment level n;		
q _i	Disruption probability in unreliable DC at j;		
П _{jkr}	Disruption probability between DC at j and		
, ,	customer k when the unsafe transportation mode r		
	is used.		

Decision variables

- XU_{jn} 1, if unreliable DC is opened at j with investment level n; 0, otherwise
- XR_i 1, if reliable DC is opened at j; 0, otherwise

YR_{jk} 1, if customer k is assigned to reliable DC at j; 0, otherwise

Decision variables

YM _{jkr}	1, if customer k is assigned to unreliable DC at j		
	with unsafe transportation mode r in the primary		
	assignment; 0, otherwise		
YS _{jk}	1, if customer k is assigned to unreliable DC at j		
ý	with safe transportation mode in primary		
	assignment; 0, otherwise		
T _{ij}	Amount of goods to be shipped from reliable DC		
)	at i to unreliable DC at j (i≠j)		

Assignment of customers

• Constraint (2) ensures that each customer is assigned exactly to one DC and one transportation mode.

$$\sum_{j} \left(\sum_{r} YM_{jkr} + YS_{jk} + YR_{jk} \right) = 1 \quad \forall k \quad (2)$$

Reliable DC

• Constraint (3) guarantees that at least one reliable DC is located based on *goods sharing strategy*.

 $\sum XR_j \ge 1$ (3)

Max One DC per Location

• Constraint (4) states that reliable and unreliable DCs cannot be located at same potential location *j*, simultaneously.

$$XR_{j} + \sum_{n} XU_{jn} \le 1 \qquad \forall j \quad (4)$$

Location - Allocation

• Constraints (5) and (6) link the location and allocation variables in unreliable and reliable DCs, respectively. Constraint (5) also denotes the capacity constraint associated with unreliable DCs.

$$\sum_{k} D_{k} \left(\sum_{r} YM_{jkr} + YS_{jk} \right) \leq \sum_{n} \kappa_{j} XU_{jn} \quad \forall j \quad (5)$$
$$YR_{jk} \leq XR_{j} \quad \forall j, k \quad (6)$$

Sharing Strategy

• Constraint (7) ensures that in disruption situation goods cannot be shipped for potential node *i*, unless a reliable DC is opened at it.

 $T_{ij} \leq \sum_{k} D_{k} \cdot XR_{i} \qquad \forall i, j \quad (7)$

Ship to unreliable DC

• Constraint (8) ensures that in a disruption situation, goods cannot be shipped to potential node j, unless an unreliable DC is opened at it.

 $T_{ij} \leq \kappa_{j} \sum XU_{jn} \qquad \forall i, j(i \neq j) \quad (8)$ n

Capacity

• Constraint (9), states that for each unreliable DC at *j*, sum of shipped goods from reliable DCs and total capacity which is not affected by disruption, must be greater than total demands of its assigned customers.

$$\sum_{i} T_{ij} + \kappa_{j} \left(\sum_{n} \left(1 - \tau_{jn} \right) X U_{jn} \right) \ge \sum_{k} D_{k} \left(\sum_{r} Y M_{jkr} + Y S_{jk} \right) \qquad \forall j \quad (9)$$

Nature of Decision Variables

 $XR_{j}, XU_{jn}, YM_{jkr}, YS_{jk}, YR_{jk} \in \{0,1\}$

 $T_{ii} \geq 0$

Parameters - Costs

fU _{jn}	Fixed cost of opening and operating unreliable DC at
,	j with investment level n;
fR _i	Fixed cost of opening and operating reliable DC at j;
e _{jkr}	Transportation cost from unreliable DC at j to
	customer k with unsafe transportation mode r.

Parameters - Costs

dp _{jk}	Transportation cost in the primary assignment from
,	unreliable DC at j to customer k with safe
	transportation mode;
db _{jk}	Transportation cost in the secondary assignment
,	from unreliable DC at j to customer k with safe
	transportation mode;
dr _{ik}	Transportation cost from reliable DC at j to
, ,	customer k;
C _{ij}	Transportation cost from reliable DC at i to
)	unreliable DC at j (i≠j).

Objective Function

Objective function (1) aims to minimize total fixed cost of opening DCs, cost of assigning customers to the DCs, and expected cost of allocation to unreliable DCs in disruption situation. The 1st & 2nd terms represent the fixed cost of locating unreliable and reliable DCs, respectively. The 3rd term indicates the cost of assigning customers to reliable DCs. The 4th and 5th terms state the expected cost of assigning customers to unreliable DCs in primary assignment if unsafe and safe transportation modes are used, respectively. The 6th term interprets the expected cost of assigning customers to unreliable DCs in disruption situation if unsafe mode in primary assignment is adopted. Finally the 7th term depicts the expected costs of shipping goods from reliable to unreliable DCs during disruption in unreliable DCs.

$$Min \sum_{j} \sum_{n} fU_{jn} XU_{jn} + \sum_{j} fR_{j} XR_{j} + \sum_{j} \sum_{k} dr_{jk} D_{k} YR_{jk} + \sum_{j} \sum_{k} \sum_{r} (1 - \pi_{jkr}) e_{jkr} D_{k} YM_{jkr}$$
$$+ \sum_{k} \sum_{n} dp_{jk} D_{k} YS_{jk} + \sum_{k} \sum_{r} \sum_{j} \pi_{jkr} db_{jk} D_{k} YM_{jkr} + \sum_{k} \sum_{r} \sum_{i} q_{j} C_{ij} XU_{jn} T_{ij}$$
(1)

