
R
e

H
M
a

b

c

d

e

f

A
R
R
A

K
B
C
M
M
P
R

1

b
e
a
e

(
(
(

1
h

Ecological Indicators 33 (2013) 45– 59

Contents lists available at SciVerse ScienceDirect

Ecological  Indicators

jou rn al hom epage: www.elsev ier .com/ locate /eco l ind

emote  sensing  for  conservation  monitoring:  Assessing  protected  areas,  habitat
xtent,  habitat  condition,  species  diversity,  and  threats

arini  Nagendraa,∗ ,  Richard  Lucasb ,  João  Pradinho  Honradoc , Rob  H.G.  Jongmand , Cristina  Tarantinoe ,
aria  Adamoe, Paola  Mairota f

Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore 560064, India
Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 2EJ, United Kingdom
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a  b  s  t  r  a  c  t

Monitoring  protected  areas  and  their  surrounds  at  local  to regional  scales  is essential  given their  vulnera-
bility  to  anthropogenic  pressures,  including  those  associated  with  climatic  fluctuation,  and  important  for
management  and  fulfilment  of national  and  international  directives  and agreements.  Whilst  monitoring
has  commonly  revolved  around  field  data,  remote  sensing  can  play  a  key  role  in  establishing  baselines
of  the  extent  and  condition  of habitats  and  associated  species  diversity  as well as quantifying  losses,
degradation  or recovery  associated  with  specific  events  or processes.  Landsat  images  constitute  a major
data source  for habitat  monitoring,  capturing  broad  scale  information  on  changes  in  habitat  extent  and
spatial  patterns  of  fragmentation  that  allow  disturbances  in protected  areas  to  be identified.  These data
are, however,  less  able  to  provide  information  on changes  in  habitat  quality,  species  distribution  and
fine-scale  disturbances,  and  hence  data from  other  spaceborne  optical  sensors  are  increasingly  being
considered.  Very  High  Resolution  (VHR)  optical  datasets  have  been  exploited  to  a  lesser  extent,  partly
because  of  the  relative  recency  of  spaceborne  observations  and challenges  associated  with  obtaining  and
routinely  extracting  information  from  airborne  multi-spectral  and  hyperspectral  datasets.  The  lack  of  a
shortwave  infrared  band  in  many  VHR  datasets  and  provision  of too  much  detail  (e.g.,  shadows  within
and  from  landscape  objects)  also  present  challenges  in  some  cases.  Light  Detection  and  Ranging  (LiDAR)

and  Synthetic  Aperture  Radar  (SAR)  data,  particularly  when  used  synergistically  with  optical  data,  have
benefited  the  detection  of  changes  in the  three-dimensional  structure  of  habitats.  This  review  shows
that remote  sensing  has  a strong,  yet  underexploited  potential  to  assist  in  the  monitoring  of  protected
areas.  However,  the data  generated  need  to be utilized  more  effectively  to  enable  better  management  of
the condition  of  protected  areas  and  their  surrounds,  prepare  for  climate  change,  and  assist  planning  for
future  landscape  management.
. Introduction

In an era of increasing human pressure on ecosystems and
iodiversity, protected areas have emerged as a cornerstone of

fforts towards conservation (Nelson and Chomitz, 2011). There
re currently close to 133,000 protected areas worldwide, cov-
ring over 12% of the surface area of terrestrial biomes, which
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represents an increase of 400% since the 1970s (Butchart et al.,
2010). Conservation agencies and governments routinely use infor-
mation on the number of protected areas, the area under protection
and expenditure on conservation to demonstrate commitment to
and the impact of conservation measures. For instance, the Conven-
tion on Biological Diversity (CBD) endorses and has used protected
area coverage as an indicator for testing progress towards its tar-
get of reducing the rate of biodiversity loss by 2010 (Chape et al.,
2005; Butchart et al., 2010). A similar approach was  followed by the
European Union to measure progress towards the ambitious goal

of halting biodiversity loss (Pereira and Cooper, 2006; EEA, 2009).

Protected areas can range from “paper parks” that do not exist on
the ground, to extremely effective conservation areas with innova-
tive, inclusive and adaptive programs for sustainable management
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Timko and Innes, 2009). Consequently, whilst the area that is
rotected is an indicator of conservation inputs, this measure
oes not provide an assessment of conservation effectiveness in
erms of habitat protection, preservation of biodiversity and/or
revention of habitat fragmentation (Nagendra, 2008; Nelson and
homitz, 2011). There is therefore a real need for developing more
ocused targets, including aiming for improvements in habitat con-
ition within protected areas (Mace et al., 2010). Information on
rogress towards or away from these targets is essential to evaluate
he effectiveness of protected area establishment and manage-

ent, and to put in place adaptive measures to address emerging
hallenges such as climate change. Monitoring of habitat patches
ocated outside protected areas, which may  serve as important
onnecting elements of protected areas networks (e.g., corridors
r “stepping stones”), is also critical when assessing biodiver-
ity conservation success within protected areas (DeFries et al.,
005; Mücher et al., 2009). Such monitoring (including within the
rotected areas) is needed to evaluate functional links between
ocal places under protection and their context (including threats),
hich define the “effective area” (Wiens, 2009) of such places.

inally habitat, protected area and effective area monitoring by
eans of remote sensing is an important component of the com-

rehensive monitoring advocated by Wiens et al. (2011) which
equires the detection of signals of changes in the distribution and
bundance of species.

A number of global databases, notably those developed by the
orld Database on Protected Areas (WDPA) as well as other efforts

y the International Union for Conservation of Nature (IUCN),
uropean Commission – Joint Research Centre (EC-JRC), World
ide Fund for Nature (WWF)  and National Aeronautics and Space

dministration USA (NASA), have attempted to provide improved
ssessments of conservation progress by providing global spatial
ata on protected area coverage, biodiversity and land cover. While
seful for making international assessments at regional and global
cales, these datasets may  suffer from spatial inaccuracies and
ack sufficient spatial and thematic detail for local governments,

anagers or communities to use for effective monitoring of single
rotected areas (Chape et al., 2005; Gillespie et al., 2008) or even
egional park networks (Pereira and Cooper, 2006). Regional to
lobal land cover products from satellite sensors such as the Land-
at Thematic Mapper (TM), SPOT (Système Pour l’Observation de la
erre) High Resolution Geometric (HRG) and Terra-1 Moderate Res-
lution Imaging Spectroradiometer (MODIS) are becoming more
idely available. However, there are often discrepancies between

hese different products, as well as between maps generated at the
ocal scale (DeFries et al., 2005; Nelson and Chomitz, 2011).

An adaptive management approach is needed to buffer political,
trategic, tactical and operational uncertainties over how best to
anage processes such as natural and human-induced vegetation

ynamics for biodiversity conservation. Consideration also needs
o be given to the uncertainties posed by climate changes (Lawer
t al., 2010). Adaptive management (Holling, 1978; Nyberg, 1998)
s a systematic process of enquiry that relies on observations of the
mpact of human interventions to acquire knowledge on the system
bserved and then applies this knowledge to improve management
ractices in a continuous cycle. The system requires the produc-
ion of fine scale local datasets to generate targeted maps (Mayaux
t al., 2005; Fuller, 2005) and inferences on ecosystem functioning.
hese are of use in at least three different phases of adaptive man-
gement, namely problem assessment, monitoring and evaluation
f the management practices implemented. As examples, adaptive
anagement has been used in conjunction with remote sensing
tudies to improve management in private ranges in California,
valuate park networks in Spain (Alcaraz-Segura et al., 2009), and
et conservation priorities and monitor conservation effectiveness
n US forests (Wiens et al., 2009).
dicators 33 (2013) 45– 59

Moderate to high resolution sensors, such as those on board
the Landsat and SPOT satellites, provide opportunities for rapid
detection of habitat clearing and degradation, particularly as
the multi-year and seasonal data provided are free or relatively
inexpensive and provide capacity to detect changes over sev-
eral decades (Hansen et al., 2008; Eva et al., 2010). Since the
start of this century, a number of Very High Resolution (VHR)
commercial satellites have provided new opportunities for habi-
tat mapping at a finer spatial scale and with a greater thematic
resolution and accuracy than previously possible (Nagendra and
Rocchini, 2008; Hamel and Andréfouët, 2010). The wider appli-
cation of these instruments for protected area monitoring was
initially limited because of their cost and difficulties in acquir-
ing images for certain locations, but these products are now
beginning to be widely used for ecological monitoring (Nagendra
and Rocchini, 2008). Hyperspectral imagery, with data on sur-
face radiation measured from a large number of narrow bands,
has also improved opportunities for habitat mapping and condi-
tion assessment (e.g., by increasing the accuracy of measurement
of functionally relevant variables such as the Leaf Area Index
(LAI)), which can then be related to important vegetation habi-
tat properties including biomass and forest age (Boyd and Danson,
2005).

Cloud cover and haze creates challenges for monitoring using
optical remote sensing, but active remote sensing is largely unaf-
fected by atmospheric conditions. As a result, instruments such
as the Synthetic Aperture Radar (SAR) are increasingly being
used, with a number of new satellites (e.g., TerraSAR/Tandem-X;
Gillespie et al., 2008) providing significant opportunities for land-
scape monitoring at finer spatial resolution. Although influenced by
atmospheric conditions, active Light Detection and Ranging (LiDAR)
also allows more targeted assessment and monitoring of land-
scapes. In particular, both SAR and LiDAR have proved useful for
retrieving above ground biomass and also the structure (e.g., height,
cover) of woody vegetation, with these relating to forest condition
and disturbance regimes. However, their use has been somewhat
limited so far because of the technological challenges associated
with their use and interpretation (Hyyppä et al., 2000; Boyd and
Danson, 2005).

In summary, a wide range of remote sensing data sources (e.g.,
hyperspatial, hyperspectral and active) and products (e.g., vegeta-
tion indices such as the Normalized Difference Vegetation Index
(NDVI) and Foliage Projected Cover (FPC)) are beginning to be
used for ecological monitoring in a variety of research projects
and programs, although their utilization by protected area man-
agers continues to be limited. Several satellite sensors (e.g., those
on board the Landsat, Indian Remote Sensing Satellite (IRS) and
SPOT satellites) have been providing temporal datasets for several
decades. However, significant opportunities are being presented
with the increased availability of VHR, hyperspectral, SAR and
LiDAR data. However, these data have yet to be used routinely
and operationally by many charged with conservation of protected
areas, including their surrounds. The following sections of this
paper therefore discuss local, regional and global requirements for
ecological monitoring and evaluate and convey the utility of dif-
ferent remote sensing platforms for assessing habitat change and
degradation, monitoring biodiversity and identifying impacts and
pressures.

The paper draws on the experiences of the European Union’s
Seventh Framework Programme (EU-FP7) project Biodiversity
Multi-SOurce Monitoring System: From Space To Species (BIO SOS,
GA 263435), that aims to develop tools and models for consistent

multi-annual monitoring of protected areas and their surroundings
in the Mediterranean, Northern Europe and other regions including
Brazil and India, with these sites located within different climate
zones of the world.
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. Local, regional and global requirements for protected
rea monitoring

Despite the growing awareness of the utility of remote sensing
or protected area monitoring, few managers are able to use unpro-
essed remote sensing data because of the lack of technical skills
ithin management teams and the time-intensive nature of data
rocessing (McDermid et al., 2005; Gross et al., 2009). As an
xample, a survey of 23 experts from the Bavarian State Forest
dministration indicated that the majority considered local forest

nventories to be useful for the management of nature conservation
reas but they would prefer to work with processed spatial datasets
enerated routinely for use (Felbermeier et al., 2010). Vanden Borre
t al. (2011a) found that although a majority of member states of
he EU Habitats Directive (Council Directive 92/43/EEC of 21 May
992) indicated they had used remote sensing data to assess habitat
rea and conservation status, they largely relied on subjective and
ime consuming visual interpretation and were limited by technical
xpertise.

At the continental scale, the European Union has adopted two
irectives that are of particular importance for biodiversity con-
ervation – the Council Directive 79/409/EEC of 2 April 1979 on
he conservation of wild birds (the Birds Directive: codified as
009/147/EC); and the Habitats Directive (Schmeller, 2008). The
abitats Directive requires EU member states to conserve rare
nd/or threatened habitats and species of “community interest”
isted in annexes to the Directive. Articles 11 and 17 of the Direc-
ive also require member states to report on four parameters of
abitat conservation status every six years: habitat area, range,

ndicators of habitat quality, and future prospects for habitat sur-
ival in the member state (European Commission, 2005; Vanden
orre et al., 2011a). A study by Lengyel et al. (2008) of 148 habitat
onitoring initiatives across Europe found that the majority of the

rograms were launched to comply with EU Directives, thus under-
ining their importance in European assessments of habitat change.
et, at present, the member states are only able to produce robust
rend figures on the range of about 1.7% of habitat types and for no

ore than 4% of the populations of species listed. Most countries did
ot produce trend figures at all (European Topic Centre Biodiversity,
008).

Remote sensing datasets are increasingly being considered by
U member states to satisfy their reporting obligations under the
abitats Directive (Lengyel et al., 2008; Vanden Borre et al., 2011b).
or instance, an approach proposed by Jongman et al. (2006) is
ased on environmental stratification along with detailed field sur-
eys in selected sites, with this utilising remote sensing data in
onjunction with GIS databases and modelling. Remote sensing
ata are also being used by other countries across the world to
atisfy their conservation reporting requirements. In Canada, a Par-
iamentary amendment to the Canada National Parks Act obliges
he government to prioritize the maintenance or restoration of eco-
ogical integrity while considering park management. The Parks
anada Agency is entrusted with the task of meeting this obliga-
ion by preparing a report on park status and ecological integrity
or every Canadian park at five year intervals (Fraser et al., 2009). In
he USA, the National Parks Service conducts a Vegetation Mapping
rogram in collaboration with the United States Geological Service
USGS) that uses remote sensing data to map  the vegetation of over
70 national parks across the USA (Wang et al., 2009b).

At a global scale, the 10th meeting of the Conference of the
arties (COP), held in Nagoya in October 2010, adopted a revised
nd updated Strategic Plan for Biodiversity for 2011–2020. Strate-

ic Goal B seeks to “Reduce the direct pressures on biodiversity and
romote sustainable use”. As part of this goal, protected area man-
gers need to pay special attention to Target 5, “By 2020, the rate of
oss of all natural habitats, including forests, is at least halved and
dicators 33 (2013) 45– 59 47

where feasible brought close to zero, and degradation and fragmen-
tation is significantly reduced”, and to Target 9, “By 2020, invasive
alien species and pathways are identified and prioritized, prior-
ity species are controlled or eradicated, and measures are in place
to manage pathways to prevent their introduction and establish-
ment.” Strategic Goal C seeks to “Improve the status of biodiversity
by safeguarding ecosystems, species, and genetic diversity”. Target
12, a sub-component of Goal C, is particularly relevant for con-
servation, “By 2020 the extinction of known threatened species
has been prevented and their conservation status, particularly of
those most in decline, has been improved and sustained.” Remote
sensing data can play a prominent role in providing information
on habitat change, degradation and fragmentation as well as on
the spread of invasive species, thereby allowing progress towards
meeting these Targets to be monitored (Muchoney and Williams,
2010). However, remote sensing should be used in conjunction with
in situ information. The Group on Earth Observations Biodiversity
Observation Network (GEO BON), which is recognized by the Parties
to the Convention on Biological Diversity and coordinates activ-
ities to organize and improve terrestrial, freshwater and marine
biodiversity observations globally, has proposed in its observation
capabilities report for the CBD to determine Essential Biodiversity
variables (EBV) that can be used comparably to and in conjunction
with the Essential Climate Variables (GEO BON, 2011). While select-
ing specific remote sensing datasets, it is critical to keep these goals
in mind, as the types of habitats and their correlation with land
cover maps can influence the choice of sensors used (McDermid
et al., 2005). In particular, to advance towards meeting Target 5, the
spatial, spectral and temporal resolution of datasets should enable
the assessment of changes in habitat loss, degradation and frag-
mentation. To progress towards meeting Targets 9 and 12, remote
sensing datasets can be used in conjunction with modelling and
field information to predict changes in specific species of interest,
including endangered and invasive species (e.g. Asner and Martin,
2009; He et al., 2011).

In conclusion, local, regional and global monitoring require-
ments indicate that monitoring for biodiversity conservation
should include four critical areas of assessment – changes in habi-
tat extent and landscape structure, habitat degradation, alterations
in biodiversity, and tracking of pressures and threats within and
outside protected areas. Consideration also needs to be given
to “climate space” shift scenarios (Wiens et al., 2011). Accurate
and timely information in these four areas will greatly facilitate
informed, active adaptive management by allowing to modify
management strategies based on information about their impacts,
thereby allowing for more effective conservation. Remote sensing
can play a key role, particularly when coupled with field data
(Nagendra, 2001). For instance, Nagendra et al. (2010b) use remote
sensing in conjunction with field datasets on biodiversity distri-
butions in different management zones in a tiger reserve in India
to evaluate the impact of different types of human pressure and
management strategies aimed at combatting such pressure. Such
approaches hold great promise for adaptive conservation manage-
ment, requiring the integration of remote sensing analyses with
field datasets across different institutional regimes and manage-
ment gradients, thereby allowing impacts on land cover and habitat
change (Nagendra et al., 2008) or fragmentation (Mairota et al.,
2012) to be explored. While remote sensing offers great poten-
tial for the statistical upscaling of data for regional assessments,
downscaling of such datasets to provide local information of use
to protected area managers has so far largely been limited by the
availability of high quality field information relevant to the scales of

observation (Feld et al., 2010). However, the advent of VHR imagery
may  provide a new and alternative approach to gather informa-
tion on within habitat heterogeneity (e.g., in terms of condition,
structure and species composition).
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. Remote sensing to monitor protected areas

.1. Habitat mapping and change detection

While the vast majority of remote sensing studies focus on the
apping and delineation of land cover categories, habitat mapping

s much harder to undertake although a rule-based approach for
enerating a national scale habitat map  for Wales has just been
eveloped (Lucas et al., 2011). The correspondence between land
over and habitat is far from straightforward. Direct attribution of
pectral signatures to habitats requires a great deal of field informa-
ion (for calibration and validation) and interpretation by experts,
ith this complicated further by ontological difficulties in relat-

ng land cover and habitat classification schemes (McDermid et al.,
005; Lucas et al., 2007; Haest et al., 2010; Tomaselli et al., 2011).
abitat change detection is further complicated by differences in

he physical environment and also by the phenological behaviour
f plant species comprising habitats, with images acquired ideally
rom the same season for change detection and from several periods
uring a year such that discrimination of habitats is optimised. A
igh level of geometric accuracy between images is also important
o avoid erroneous detection of change (Jensen, 2005; Kennedy
t al., 2009). A time correspondence between image acquisitions
nd field campaigns is also desirable for developing and validating
lassification schemes.

Habitat mapping has hitherto largely been addressed through
apping of one or a few dominant species in the upper canopy

Nagendra, 2001) or by establishing links with their broader bio-
hysical characteristics (e.g., seasonal differences in the relative
mounts of photosynthetic and/or non-photosynthetic compo-
ents; Lucas et al., 2011). Mapping in less complex habitat mosaics

s relatively straightforward (Lucas et al., 2007; Lengyel et al., 2008)
ut is far more challenging where landscapes are more hetero-
eneous and fine-grained and variation between habitats is more
ontinuous (Varela et al., 2008; Lucas et al., 2011). The structure and
omplexity of landscapes also often differs between the protected
reas and their surrounds and different approaches to mapping
ften need to be considered.

Some of these issues can be addressed by developing innovative
pproaches to automated classification including rule-based clas-
ification, fuzzy classification, object oriented methods and the use
f possibility theory (Bock et al., 2005; Förster and Kleinschmit,
008; Comber et al., 2010; Haest et al., 2010; Lucas et al., 2011;
osmidou et al., 2011). Yet fundamentally, the choice of remote
ensing datasets will determine the amount of information that
s actually available to map  complex, fine scale and structurally
nd floristically variable habitats to sufficient degrees of accu-
acy and to monitor changes over time. Issues of scale are most
ritical in the selection of datasets for habitat mapping and the ade-
uacy/quality of spatial datasets and data sources (i.e. their fitness
or use, Devillers et al., 2007)) is an important consideration. Per-
aps the most obvious and most discussed aspect, certainly the
ne that comes to the mind of most users of remote sensing data,
s that of spatial scale which is comprised of two  major compo-
ents – extent and grain (Kotliar and Wiens, 1990; Forman, 1995).
xtent refers to the spatial size of the study area under consider-
tion. While the boundary of interest can, in theory, be extended
o encompass a very large area, most managers and end-users in
ractice will be interested in a relatively small buffer around this
rea, which is generally defined according to opportunistic criteria
nd does not necessarily bear any functional relation to processes
ccurring between the protected area and its context. Grain refers to

he size of the smallest unit for which pixel information is available
nd is the aspect of spatial scale that is most commonly discussed
hen selecting data. Although there has been extensive discus-

ion for decades on the need to match the spatial scale to the type
dicators 33 (2013) 45– 59

of objects (e.g. habitats, species) of focal interest, there is a broad
assumption in the ecological community that higher spatial resolu-
tion is better and, in general, there is a preference for ordering VHR
(small pixel size) data whenever costs permit and data coverage is
available (Nagendra and Rocchini, 2008). However, it is also impor-
tant to note that the spatial grain and extent required depends on
the spatial scale of distribution and the heterogeneity of the species
and habitats being monitored, the factors that impact species dis-
tributions, and the availability of ancillary datasets relating to, for
example, soils, drainage networks, geology, topography, popula-
tion and/or management regimes, that provide additional insights
required for interpretation of remote sensing datasets (Nagendra,
2001). As an example, Costanza et al. (2011) found different types
of relationships between landscape heterogeneity (measured using
the Normalised Difference Vegetation Index (NDVI) as a measure of
productivity) and plant species richness as a function of land cover
at four different scales.

Whilst the use of VHR data is preferred, there are trade-offs
in increasing the spatial resolution to levels that are much finer
than the scale of the objects (such as trees, species assemblages or
habitats) being studied. For example, shadows caused by objects in
the landscape (e.g., buildings, tree canopies) can decrease accura-
cies in their classification (Fuller, 2005; Nagendra et al., 2010a,b),
although suitable image analysis procedures such as segmenta-
tion and separate classification of shadow regions using rule-based
approaches or spectral unmixing can improve the accuracy of this
process (Sawaya et al., 2003; Förster and Kleinschmit, 2008; Haest
et al., 2010; Mucher and Kooistra, 2011). Other research has nev-
ertheless demonstrated the benefits of VHR QuickBird imagery for
mapping successional fine-scale habitats such as bogs (Bock et al.,
2005) and of VHR (<1 m)  colour aerial photographs for mapping
ecotones and mosaic areas in a landscape in Wales containing com-
plex, fine scale mixture of acid grassland, scattered bracken and acid
flushes (Comber et al., 2010).

In many cases, the use of high to moderate (∼10–30 m)  spatial
resolution data, such as provided by the Landsat and the Indian
Remote Sensing Satellite (IRS) may  be sufficient to capture the
broad extent and spatial patterns of habitats (Lucas et al., 2007,
2011). In a complex mountain landscape in the NW Iberian coast,
Varela et al. (2008) used Landsat Thematic Mapper imagery with a
Digital Elevation Model (DEM) and aerial photographs for a hier-
archical habitat classification into 15 classes. However, whilst land
cover types such as Eucalyptus plantations were easily discerned,
different types of heathland and complex agricultural mosaics were
more challenging to separate because of the limitations associated
with the low spatial and spectral resolution of Landsat TM imagery.
An assessment of recent landscape change in mountainous areas of
Northern Portugal (Pôç as et al., 2011a), also based on Landsat TM
imagery, identified a decrease of crop areas and a strong increase
of meadows, which the authors related to both demographic and
political changes.

Ideally, the size of the pixel should be matched so that it is
one quarter to one third of the size of the smallest patches of
habitat, species assemblage or individual plant/tree being mapped
(Nagendra, 2001). In practice, cost issues often constitute a limita-
tion to mapping, as VHR data from the QuickBird, IKONOS, GeoEye
and WorldView-2 sensors tend to be much more expensive com-
pared to HR imagery from SPOT, IRS and Landsat (with the latter
now available free of charge). Given that any area will be a heteroge-
neous mix  of objects of different sizes, a multi-scaled analysis using
different image datasets may  be useful to map  specific focal habi-
tat types or species. The spatial scale of remotely sensed data may

be coarser or finer than the spatial scale of key ancillary environ-
mental datasets. For instance, ancillary datasets on site conditions
for the local scale typical of Natura 2000 habitats in Europe vary
from 1:25,000 to 1:50,000 (e.g., for some soil maps) to 1:1,000 to
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:5,000 for some field generated habitat maps and Digital Elevation
aps (Weiers et al., 2004; Förster and Kleinschmit, 2008; Bock et al.,

005; Lucas et al., 2011). Förster and Kleinschmit (2008) found that
ncillary datasets on site conditions such as altitude, aspect, slope
nd soil type were able to improve the classification of forest habi-
ats in a pre-alpine area in Bavaria using QuickBird data. However,
uch information may  be more useful for classifying habitat types
hat have distinct and defined state factors (e.g., alluvial forests).
abitats with clear boundaries (e.g., grassland and agriculture) can
enerally be mapped with greater accuracy (Bock et al., 2005; Lucas
t al., 2007; Förster and Kleinschmit, 2008).

Tradeoffs between spatial and spectral resolution also need to
e kept in mind. The currently popular VHR platforms of QuickBird,

KONOS, GeoEye and WorldView-2 lack shortwave infrared and
hermal infrared bands, which have proved to be useful for discrim-
nating some vegetation types using, for example, Landsat sensor
ata (Nagendra, 2001). Thus, Gao (1999) found that 30 m Landsat
ata were more useful than 10 m SPOT data for discriminating man-
rove forests in New Zealand, simply because of their spectrally
mportant thermal infrared bands, despite the lower spatial reso-
ution of these bands. Oldeland et al. (2010) successfully used 5 m
esolution HyMap hyperspectral data to map  differences in veg-
tation within a challenging, low contrast semi-arid rangeland in
entral Namibia, using a fuzzy approach to achieve classification
ccuracies of 98%. Thenkabail et al. (2004) found that the space-
orne hyperspectral imager Hyperion, with 196 bands and a spatial
esolution of 30 m,  significantly outperformed a number of other
ptical sensors – Landsat ETM+ with 6 bands and a spatial resolu-
ion of 30 m,  IKONOS with 4 bands and a spatial resolution of 4 m,
nd the Advanced Land Imager (ALI) with 9 bands and a spatial res-
lution of 30 m – in terms of its ability to distinguish between forest
uccessional classes in the rainforests of Congo. The shortwave
nfrared bands of Hyperion, which represent a region of the elec-
romagnetic spectrum not covered by the other sensors, appeared
o be especially important for habitat mapping in this location.

Although Hyperion was the first spaceborne imaging spectrom-
ter for civilian use, other airborne hyperspectral sensors such as
ASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
ave stimulated a number of monitoring studies (Turner et al.,
003; Papes et al., 2009). Schmidtlein and Sassin (2004) utilized
he AVIRIS-2 with bands between 400–874 nm and a spatial res-
lution of 2 m to successfully map  floristic gradients in a Bavarian
rassland, which can be useful to separate different grassland habi-
ats. A recent study by Haest et al. (2010) in a Belgian heathland
atura 2000 landscape demonstrated the ability of airborne hyper-

pectral line-scanner radiometer (AHS-160) imagery with 63 visual
nd near-infrared bands with a spatial resolution of 2.4 m for map-
ing habitat extent and quality, despite the relatively low levels
f contrast between heathland habitat types. Increasing tempo-
al resolution can facilitate the accurate delineation of spectrally
imilar habitats in areas with seasonal environmental fluctuations,
articularly if images are selected at critical stages that empha-
ize phenological differences between them (Nagendra, 2001). de
olstoun et al. (2003) found that the discrimination of 11 differ-
nt land cover types in a recreational park in the USA increased
ubstantially when using multi-season Landsat ETM+ imagery.
ucas et al. (2007) also used multi-date Landsat TM imagery to
uccessfully distinguish a range of semi-natural habitats and agri-
ultural land covers. Acquiring different remote sensing datasets
t multiple, spectrally and phenologically important seasons poses

 challenge however, especially in areas where cloud cover is
n issue. Nevertheless, habitat mapping in Wales was conducted

sing multi-temporal imagery, including those that partly con-
ained cloud (Lucas et al., 2011).

Finally, issues of radiometric resolution should be consid-
red when selecting remote sensing data for habitat mapping.
dicators 33 (2013) 45– 59 49

Rao et al. (2007) observed a small but definite increase in classi-
fication accuracy when a simulated 12-bit Indian Remote Sensing
satellite (IRS) LISS 3 dataset was used instead of the original 7-
bit dataset. The greatest improvement in classification accuracy
was observed for more heterogeneous land use/land cover classes.
Legleiter et al. (2002) also found a slight improvement of the over-
all accuracy in the classification of stream habitats when using data
of a higher radiometric resolution, although this was  secondary to
the improvement delivered by an increase in spectral or spatial
resolution.

Active remote sensing data, including SAR and LiDAR, provide
information that is clearly complementary to optical sensors
(Strittholt and Steininger, 2007). SAR data represent a useful alter-
native to passive remote sensing in areas where cloud cover is high
and in specific habitats such as wetlands and seasonally inundated
forests, although these data are especially challenging to use suc-
cessfully in areas of high topographic variability. Radar and also
LiDAR can assist in discriminating between habitat types based on
their three-dimensional (3D) structure and biomass (Koch, 2010),
which can be related to age, succession and species composition
(Lim et al., 2003; Strittholt and Steininger, 2007; Mallet and Bretar,
2009). The ALOS PALSAR and RADARSAT-2 SAR have shown great
potential for mapping wildlife habitat, particularly when combined
with optical remote sensing through data fusion (Wang et al.,
2009a). In particular, ALOS PALSAR L-band SAR allows detection
of forest and non-forest and retrieval of above ground biomass
(Rahman et al., 2010; Karjalainen et al., 2009). X- and C-band data
can also be used to discriminate non-woody vegetation based on
differences in, for example, stem and/or leaf size and orientation.
The archives of SAR data (e.g. the European Space Agency (ESA),
ENVISAT, the JERS-1 SAR and ALOS PALSAR) also provide a valuable
resource for multi-temporal analysis and change detection. The
fusion of optical and SAR data is beneficial for separating land cover
types that are structurally distinct but spectrally similar (Treuhaft
et al., 2004) and hence challenging to distinguish through optical
remote sensing alone (Wang et al., 2009a; Zhu et al., 2011).

In conclusion, while VHR datasets are frequently mentioned
as being the ideal option for fine scale mapping of habitats with
high spatial heterogeneity, high resolution imagery such as Land-
sat, SPOT, ASTER and IRS are often sufficient for the purpose of
habitat mapping over large areas, even in complex fine-scale habi-
tat mosaics (Lucas et al., 2011). VHR and high resolution datasets
suffer from problems of shadowing from and within objects and
mixed pixels, and can be expensive and time consuming to procure
and process. Hyperspectral imagery, though technically challeng-
ing, holds considerable promise for habitat mapping, especially
in cases of high habitat and species diversity and fine-scale suc-
cessional change. Recent VHR satellites such as WorldView-2 are
beginning to open up the possibility of combining high spatial and
spectral resolution in one same platform (Nagendra and Rocchini,
2008). Active remote sensing through SAR and LiDAR also holds
great potential for the mapping and identification of structurally
complex habitats and in areas where there is high and/or frequent
cloud cover (in the case of SAR). Data fusion techniques that enable
the integration of information from both active and passive sensors
hold particular promise for habitat mapping and monitoring.

3.2. Assessing habitat degradation

Assessing the more cryptic and subtle process of habitat degra-
dation is even more challenging than habitat mapping, often
involving sub-canopy changes in structure, species composition

and/or structure that are difficult to detect (Ingram et al., 2005;
Joseph et al., 2011). Yet, habitat modification and degradation tends
to be much more widespread even in seemingly intact landscapes
– thus, developing methods to quantify and monitor changes of
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roxies for habitat quality/pressures are critical for adaptively man-
ging protected areas. However, there has been comparatively
uch less research on this topic.
Changes in the spatial and temporal patterns of vegetation

unctioning can be used to support the detection of habitat mod-
fication and landscape change (Garbulsky and Paruelo, 2004).
n the National Park network of Spain, the NDVI derived from
OAA/AVHRR was used to assess changes in photosynthetic activ-

ty between 1982 and 2006, with the contrast between growing and
on-growing seasons increasing over the period (Alcaraz-Segura
t al., 2009). Although the coarse spatial resolution (typical of the
igh temporal resolution sensors required for detailed phenological
tudies) is not appropriate for local scale monitoring of individ-
al habitat patches, these products may  provide early warning of
egional scale ecological change and support decisions on the allo-
ation of further resources for more detailed spatial assessments.
emote sensing data also provide insights into the impacts of cli-
atic variability through analysis of changes in the extent and

ondition of vegetation (e.g. phenological shifts and species ranges
hifts). For example, time-series of NDVI data have been used
o indicate changes in LAI globally, with these reflecting human-
nduced and natural events and processes, including those related
o climatic fluctuation (Silang et al., 2010).

Souza et al. (2003) combined information from the IKONOS and
POT-4 sensors to differentiate intact forest from logged, degraded
nd regenerating forest using a decision tree classifier, with 86%
verall accuracy. Ingram et al. (2005) used Landsat ETM+-derived
nformation in conjunction with field measurements to predict
ree basal area, associating this with human disturbance. Rouget
t al. (2006) calculated intra-annual variances in NDVI from Landsat
magery to locate degradation due to livestock grazing in south-
rn Africa. Linderman et al. (2005) mapped the availability of
nderstory bamboo, through innovative neural network analysis
f Landsat TM imagery, to estimate giant panda habitat suitability.
heau et al. (2005) also used Landsat TM to derive information on
ichen land cover in northern Canada, with this being an indicator
f caribou habitat, using Enhancement Classification methods and
pectral Mixture Analysis.

In a very different desert habitat in China, Chen et al. (2005)
sed Landsat ETM+ to identify biological soil crusts, which repre-
ent communities of important species such as lichens and mosses.
s crusts are extremely susceptible to erosion related to deserti-
cation and climate change, this research identified an important
onitoring capability for tracking desertification in cold deserts. In

 hot desert in New Mexico, Muldavin et al. (2001) used a grass-
and biodiversity index computed from Landsat TM to accurately
dentify grasslands with limited degradation and high conserva-
ion value. Their results suggested that traditionally used indices
f vegetation, including NDVI and tasselled-cap greenness, may  be
ess useful in arid regions. Tong et al. (2004) used Landsat TM data
n combination with field studies and ancillary vegetation datasets
o develop an index of steppe degradation in Inner Mongolia, with
his information being relevant to management interventions.

Hyperspectral imagery has also been used widely to assess
abitat degradation, perhaps most commonly through assess-
ents of habitat stress based on parameters such as nutrient

eficiency (Joseph et al., 2011). Hyperspectral bands can enable the
ssessments of changes in chemical and structural traits includ-
ng alterations in the level of chlorophyll, nitrogen, phosphorus
nd other foliage compounds, that can be linked with variations
n enabling environmental factors such as soil quality (Townsend
t al., 2008). Haest et al. (2010) used the greater spectral res-

lution provided by airborne hyperspectral imagery (AHS-160)
ith a spatial resolution of 2.4 m to map  habitat quality, using

xpert-defined indicators based on vegetation pattern within habi-
at patches. Spanhove et al. (2012) compared the potential of
dicators 33 (2013) 45– 59

airborne hyperspectral imagery against field assessments to
provide information on conservation status in two  Natura 2000
heathland areas, finding that field estimates were able to explain
up to 43% of the variation in fine-scale indicators of habitat condi-
tion, while information derived from remote sensing could explain
up to 39% of the variation in fine-scale habitat indicators. In spe-
cific instances, when field assessments were susceptible to high
inter-observer variability, remote sensing predictions provided a
significant improvement, illustrating the potential for the further
use of hyperspectral imagery for fine-scale mapping and monitor-
ing of changes in habitat condition and quality. SAR and LiDAR
imagery, with its ability to penetrate below the top vegetation
canopy, can be very useful for monitoring habitat degradation.
Kuplich (2006) used a combination of Landsat and SAR to differ-
entiate between Amazonian forest patches in different stages of
regrowth. The discrimination ability of SAR imagery alone was
limited, but improved substantially when integrated with TM data.
Waser et al. (2008) used VHR airborne imagery and LiDAR data to
create early warning signals of tree and shrub encroachment into
non-wooded habitats, such as mire, an approach of fractional cover
analysis. Graf et al. (2009) used LiDAR imagery alone to derive infor-
mation on the horizontal and vertical stand structure in a forest
reserve in central Europe, mapping habitat suitability for an endan-
gered forest grouse species and providing important management
recommendations at the local scale. Hyde et al. (2006) integrated
LiDAR, SAR, Landsat and/or QuickBird to map  wildlife habitat
quality in the Sierra National Forest (Sierra Nevada, California),
finding that the combination of LiDAR and ETM provided the best
results, while incorporating QuickBird and SAR resulted in marginal
improvement. LiDAR was  especially useful in estimating canopy
height and biomass, two  important indicators of habitat suitability
in this ecosystem.

Landscape fragmentation, through the disruption of habitat con-
nectivity, can impact species dispersion and habitat colonization,
gene flows and population diversity, and species mortality and
reproduction. Thus, quantitative analyses of changes in landscape
structure have been used to provide early warnings of habitat
degradation. For instance, effective mesh size, which describes the
probability that any two  habitat patches are connected in a land-
scape, was used to compare the relative impacts of different types
of land use disturbance such as roads and agriculture in California
(Girvetz et al., 2008). A similar approach was also found to be use-
ful for monitoring anthropogenic and natural disturbance in the
Swiss Monitoring System of Sustainable Development (Jaeger et al.,
2008). Riitters et al. (2009) developed an additional indicator of
landscape composition, the “landscape mosaic”, which described
the composition of the landscape locally adjacent to each pixel, and
used this to assess dominant drivers of disturbance and identify
vulnerable locations in the southern United States. Morphologi-
cal image processing (Vogt et al., 2007) is another approach that
has been utilized to map  internal and external fragmentation in
protected areas in Italy. Mairota et al. (2012) suggest that the com-
bined use of traditional landscape pattern analysis, morphological
spatial pattern analysis and landscape mosaic analysis can be useful
to obtain synthetic quantitative descriptors of landscape structure
and provide baselines for habitat fragmentation monitoring, within
and outside protected areas, again using a case study of a landscape
in Italy.

3.3. Assessing species diversity and distribution

Obtaining early warning signals of changes in the occurrence

and spread of key species is critical for managers (He et al., 2011).
Invasions and modifications of habitat structure and condition by
alien species also present an urgent problem for managers of many
nature reserves (Vicente et al., 2011). Remote sensing data provide
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n effective and evident way to address these issues at multiple
cales although, in general, species distribution patterns are easier
o map  at a broader scale compared to fine scale distributions (Kerr
nd Ostrovsky, 2003).

Despite the relatively low spatial resolution (30 m)  of Landsat
magery, several studies point to the continued utility of this plat-
orm to predict the most commonly used surrogates to measure
iodiversity (e.g. species richness and diversity). Gillespie (2005),
tudying tropical dry forests in southern Florida, found the NDVI to
e more strongly correlated with evergreen rather than with decid-
ous species density, but more strongly correlated with deciduous
ather than evergreen species richness. Combining metrics of land-
cape structure – in particular, estimates of forest patch area – with
DVI data provided a significant improvement in the accuracy of
rediction of plant species richness. A study by Feeley et al. (2005)

n a dry tropical forest in Venezuela, also found vegetation indices
NDVI, Infra Red Index and Middle Infra Red Index) with be corre-
ated with species diversity indices, but not stand density. Nagendra
t al. (2010a) found that spectral information from Landsat ETM+
as not strongly correlated with tree density in a dry tropical for-

st ecosystem, but instead appeared most sensitive to total species
ichness, followed by indices of tree species diversity.

Landsat and lower resolution datasets have also been used with
uccess in a variety of other ecosystems. In a heterogeneous land-
cape in North and South Carolina, USA, Costanza et al. (2011) found
hat land cover heterogeneity, calculated using a land cover map
t 30 m resolution, was not significantly related with local plant
pecies richness. However, heterogeneity across different ecore-
ions was positively related to plant species richness, possibly
ecause this provides a measure of the variability between differ-
nt habitat types within an ecoregion. In a high diversity tropical
orest in Borneo, Foody and Cutler (2006) used a neural network
nalysis of Landsat TM imagery to predict the spatial distribution
f species richness with high success. Hernández-Stefanoni et al.
2011) used an innovative combination of remote sensing predic-
ors of tree species richness derived from Landsat TM imagery in
onjunction with kriging interpolation techniques to improve the
ccuracy of tropical species richness maps in a study conducted
n Yucatan, Mexico. In western Africa, Torres et al. (2010) used
andsat TM imagery combined with landscape pattern analysis
nd predictive modelling to relate the occurrence and conservation
f chimpanzee with forest patterns and dynamics. Mohammadi
nd Shataee (2010) have used indices derived from Landsat
TM+ to model tree species diversity in the Hyrcanian forests of
ran.

As with habitat mapping, VHR data sets are widely consid-
red to hold great promise for species distribution mapping.
emote imagery from optical sensors has been largely used to
ap  the distribution of canopy foliage, but the scope for animal

pecies mapping is more limited. There have, however, been recent
ttempts in this regard (e.g. to utilize audio (acoustic) remote
ensing to monitor amphibians (Sueur et al., 2012), and to use radar
o track birds (Robinson et al., 2009)) – we do not discuss these in
urther detail as these technologies are largely in the development
hase. In an innovative approach, St-Louis et al. (2006) used derived
exture information from digital ortho-photographs, and combined
his with information on other environmental attributes including
levation and coarse habitat type, to predict bird species richness in

 semi-arid landscape of New Mexico. Hall et al. (2011) employed
uickBird with success to derive relationships with fine-scale plant

pecies richness in a semi-natural grassland in Sweden, finding that
pecies richness and species turnover were significantly associated

ith the NDVI, demonstrating a non-linear, U shaped relationship.
f all image-derived variables, the spectral heterogeneity in the
ear-infrared band had the greatest explanatory power in this field
ontext.
dicators 33 (2013) 45– 59 51

There is a need for analysis at multiple spatial scales, as pat-
terns that are hidden at some spatial scales may  be revealed at
others (Rocchini et al., 2010). For instance, Kumar et al. (2009)
found that spatial heterogeneity, as assessed by the satellite image-
derived NDVI, strongly influenced butterfly species richness in a
national park in the USA, but the strength of this relationship varied
with spatial scale. Using high spatial resolution QuickBird imagery,
Levanoni et al. (2011) confirmed this close relation between the
local variability in NDVI (interpreted as a surrogate for spatial het-
erogeneity in productivity) and butterfly species richness along an
altitude gradient in Israel.

Everitt et al. (2005) utilized QuickBird to map the distribution of
invasive giant reed populations along the Rio Grande in Texas. This
species was particularly easy to distinguish due to its characteristic
association in large clumps, and they achieved very high accura-
cies of 86–100%. Gillespie et al. (2008) reviewed a number of other
studies that utilize VHR data to map specific tree species within
temperate and mangrove forests, concluding that these datasets
provided important information for managers on the distribution
of selected species and rates of tree mortality.

Sánchez-Azofeifa et al. (2011) used QuickBird imagery to map
the distribution of a Tabebuia tree species in the Barro Colorado
island in Panama, relying on images covering a short 2-day span
of synchronized flowering. They successfully detected flowering
trees, but missed a large proportion of trees not flowering at the
time of image acquisition. Although this species was not an inva-
sive, the authors conclude that this type of approach can be adapted
to identify the location of individuals of invasive species when they
are flowering. Somodi et al. (2012) developed a low-cost, simple
approach to map  the distribution and monitor the spread of the
invasive woody species Robina pseudoacacia in a mixed wooded
habitat in Slovenia, using a combination of Landsat ETM imagery
and 1:5000 airborne orthophotographs from two  seasons – sum-
mer  and spring. The best results were obtained when using the
orthophotograph taken in spring, when the species being mapped
was flowering – and improved further when a GIS map  of forest
distribution was  used to filter specific locations for mapping.

In contrast to the conclusions of these studies, Fuller (2005)
attempted to map  Melaleuca quinquenervia,  an invasive tree species
in southern Florida, using IKONOS imagery, but concluded that
VHR imagery was  unsuitable because of the very small pixel sizes,
increasing the variability between different tree canopies and
hence difficulty in identifying the tree crowns of the species under
study. This was  particularly challenging at the early stage of inva-
sion where densities were low, but when it was most feasible and
useful for managers to manage invasive plant species. In a dry trop-
ical Indian forest, Landsat sensor data appeared more suited to tree
species mapping than IKONOS, because of the inclusion of the short
wave infrared channel (Nagendra et al., 2010a). Similar conclu-
sions were drawn in a recent review by He et al. (2011). Nagendra
and Rocchini (2008) and Lucas et al. (2008b) also pointed out the
challenges of dealing with VHR data for discriminating individual
plants and trees, as shadow effects caused by tree canopies begin
to predominate.

Spectral heterogeneity can also play a very important role in
assessing habitat and species diversity within habitats. Oldeland
et al. (2010) mapped seven different types of vegetation assem-
blages in a relatively low-variation rangeland landscape in Namibia
using airborne hyperspectral imagery, finding added improvement
in accuracy when species abundance as well as composition was
considered. Ward et al. (2012) predicted plant communities of
floodplain grasslands and salt marshes in Estonia with an accuracy

between 60 and 100%. In a review of the application of hyperspec-
tral imagery for species diversity assessment in forests, Ghiyamat
and Shafri (2010) concluded that wavelet transforms applied to
hyperspectral data can be very useful in discriminating between
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ifferent species in tropical forests. Sluiter and Pebesma (2010)
ound that the classification of semi-natural Mediterranean vege-
ation communities in southern France using ASTER data improved
hen high spatial resolution hyperspectral HyMap data were incor-
orated, but only to a very small extent. In a moist grassland in a
oodplain in central Japan, hyperspectral images collected at 1.5 m
patial resolution and with 68 contiguous bands in the 398–984 nm
avelength ranges acquired by the Airborne Imaging Spectrome-

er for Applications (AISA) Eagle, were used successfully to map
rassland communities of differing understory species composi-
ion, based on the ability of the sensor to discriminate differences
n density of the dominant top-canopy species present in each com-

unity (Ishi et al., 2009).
A number of other studies have used spectral heterogeneity as

 proxy for species diversity, as summarized in a recent review
y Rocchini et al. (2010). The spectral distance between locations
an be a powerful predictor of variation in species composition
Rocchini and Cade, 2008). Hyperspectral imagery, which pro-
ides additional power for spectral discrimination, should hold
n increased capacity for species mapping in heterogeneous and
pecies rich ecosystems and landscapes.

Clark et al. (2005) used imagery from the airborne HYperspec-
ral Digital Imagery Collection Experiment (HYDICE) sensor, with
10 bands in the 400–2500 nm range, and a spatial resolution
f 1.6 m,  to examine the spectral separability of seven emergent
ree species in a tropical rain forest in Costa Rica. Within-species
pectral variability was significantly lower than between-species
pectral variability in all spectral regions, but the maximum sepa-
ability between species was observed in the near infra-red region.
pecies classification accuracies using hyperspectral imagery were
ignificantly higher than accuracies achieved using simulated mul-
ispectral imagery. This study focused on emergent trees, which
end to be less influenced by problems of shadows or spectral over-
aps with crowns of adjacent tree species, and the approach may
e difficult to extrapolate to larger tropical forest areas.

Lucas et al. (2008a) discriminated trees to the species or genus
evel by extracting spectra from the sunlit portion of crowns
elineated within 1 m spatial resolution Compact Airborne Spectro-
raphic Imager (CASI) data in Australian woodlands. They found an
mprovement in classification accuracy after incorporating short-

ave infrared data from 2.6 m resolution HyMap data. Papes et al.
2009) provided the first instance of use of Hyperion data to map
he crowns of emergent trees in tropical forests, using imagery
rom dry and wet seasons. A relatively narrow set of bands was
ufficient for discriminating between five non-related taxa, with
00% accuracy achieved. Pengra et al. (2007) also used Hyperion to
uccessfully map  the presence and extent of an invasive tall grass,
hragmites australis, that impacts native wetland habitat in North
merica.

Timing the acquisition of remotely sensed datasets to coincide
ith critical phenological stages of flowering or leaf senescence can

e important when mapping invasive species (He et al., 2011). For
nstance, Ramsey et al. (2005) demonstrated the utility of space-
orne hyperspectral data from Hyperion to map  Chinese tallow
rees, Triadica sebifera, an invasive species, in a coastal wetland
n southwestern Louisiana to accuracy levels of 78%. Andrew and
stin (2008) used 3 m 128-band airborne hyperspectral HyMap

magery to successfully discriminate invasive pepperweed Lepid-
um latifolium in relatively simple wetland and riparian habitats in
he USA, but failed to do so in more challenging complex habitat

osaics.
A number of other studies of invasive species assessment,
eviewed by He et al. (2011), concluded that hyperspectral images
re particularly useful for mapping individual species when the
nvader shows a scattered distribution of low density. Collecting
magery that corresponds to unique phenological stages, such as
dicators 33 (2013) 45– 59

flowering or senescence, increases the likelihood of accurate identi-
fication. Approaches to classification such as end-member analysis
can be useful in discriminating between pure stands of conifers
and deciduous species, as shown with HyMap data (Darvishsefat
et al., 2002). A study of ten tree species in Kruger National Park
(Cho et al., 2010) similarly found that, while intra-species spectral
variability was  considerable, its impacts on classification accu-
racy could be minimized by using multiple end-members for each
species.

Accurate discrimination of all top-canopy species is unlikely,
particularly in high biodiversity forests of the tropics and sub-
tropics where there is a substantial amount of overlap between
leaves and branches of individual plants and trees from different
species. Consequently, the reflectance spectra from these different
tree crowns will result in mixed pixels. This problem is unlikely
to disappear even if hyperspectral image resolution and noise to
signal ratios improve significantly in the future (Nagendra, 2001;
Fuller, 2007). Asner and Martin (2009) have suggested the poten-
tial for a new approach of “airborne spectranomics” combining
spectral and chemical remote sensing for the high resolution map-
ping of canopy forest species. This approach utilizes the ability
of recently developed High-fidelity Imaging Spectrometers (HiFIS)
to provide two-dimensional hyperspectral imaging in addition to
a third dimension that provides a detailed spectroscopic signa-
ture of plant canopies. Algorithms are still being developed to
analyse these data and link canopy chemistry to species identity.
Further, since fine-scale variations in canopy three-dimensional
structure lead to shadowing and brightness, increasing within-
canopy spectral variation, new sensors are being developed to
integrate HiFIS with LiDAR technology, which are anticipated to
further improve the prospects for mapping canopy species (Asner
and Martin, 2009). High-fidelity imaging spectroscopy, which pro-
vides very small pixel sizes of less than a meter, coupled with
very high spectral resolution through a large number of narrow
bands, can also provide major advances towards the goal of map-
ping tropical forest diversity – especially when coupled with LiDAR
(Townsend et al., 2008). In a recent review, Koch (2010) suggested
the utility of a multi-sensor approach, using optical data to delin-
eate tree crowns and identify possible tree species type, and LiDAR
to corroborate this by assessing tree height, to improve species
identification.

The use of LiDAR for tree species mapping has been relatively
limited to date (Koch, 2010). A combination of crown volume
measurements taken at different tree heights, and measurements
of tree height and intensity distribution, can be used for species
mapping. A study in Finland found that Scots Pine and Norway
Spruce were classified to an accuracy of 83% and 90% respec-
tively, while birch trees were confused with the other species
(Vauhkonen et al., 2010). Asner et al. (2008) used a combination
of airborne optical and active remote sensing to map  five invasive
plant species in Hawaii. This fusion of datasets enabled them to
identify transformations in 3-dimensional forest structure due to
invasives replacing native plants at mid-canopy, understory and
ground levels. Several studies have also used LiDAR successfully
to monitor specific bird species or, less often, mammal species
by modelling species-habitat relationships, as reviewed in Vierling
et al. (2008).

These studies also clearly establish the importance of in situ data
on species distribution for accurate interpretation of imagery. Thus,
it is important to have well designed programs of field data collec-
tion that maximize the use of data for remote sensing interpretation
and conservation assessments. In situ field sampling networks

therefore need to be designed in combination with remote sensing
using, for instance, stratified sampling designs to carefully assess
species distributions across different habitat types and enhance
interpretative power (Nagendra, 2001).
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.4. Tracking pressures and threats

While there can be many types of threats to conservation
epending on the landscape, context and time period of focus,
he more common types of disturbance observed in and outside
rotected areas include urbanization, road construction, mining,

ogging, agriculture, fire, invasion by alien species, hunting, graz-
ng and drought (DeFries et al., 2005; Nagendra, 2008). An in-depth
iscussion of the use of remote sensing to detect invasive plants is
rovided in Section 3.3 above. Remote sensing datasets of medium
o fine spatial resolution can also provide important informa-
ion on the “signature” of human pressure related to land use,

anagement and other disturbances in and around protected
reas such as logging roads and burn scars (Fuller, 2007). Spa-
ial datasets that provide information on aspects such as road
etworks, human and livestock population densities, agriculture

n ecological vulnerable areas, air quality or point sources of pollu-
ion can greatly enhance the potential of remote sensing to provide
ressure/stressor assessments. Ingram et al. (2005) used Landsat
TM+ imagery in conjunction with field plots to assess climatic
nd human pressures on forest biomass, relating the relatively low
mpact of a road bisecting the forest on basal area to the lack of

echanized logging in this forest. Nagendra et al. (2010b) also
sed Landsat TM and ETM+ imagery to find a clear signal of for-
st fragmentation and deforestation at the periphery of an Indian
iger park because of extraction by local residents of villages outside
he boundary. Applying landscape pattern analysis to a land cover
ime series derived from Landsat imagery, Pôç as et al. (2011b) were
ble to detect a trend for increased landscape fragmentation in high
ature value mountain farmland in northern Portugal. Asner et al.
2004) used sub-pixel fractions to estimate the percentage of shade
n pixels, correlating this with tree gaps caused by selective logging
n the Amazon. Blanco et al. (2009) used Landsat TM to compare the
mpacts of continuous grazing against a rest-rotational system of
razing in a rangeland in Argentina. In Amazonia, the time-series
lassifications of Landsat sensor data enabled the reconstruction of
re and land-use history (Prates-Clark et al., 2009), with these col-

ectively dictating the pathways of tropical forest regeneration and
he capacity of these forests to recover biodiversity. The presence
f the shortwave infrared band in AVHRR imagery, and therefore
resumably also in Landsat data, is also considered to be critical for

dentifying the impact of drought on vegetation (Boyd et al., 2002).
Fire is an important driver of vegetation dynamics in many land-

capes (Neary et al., 1999; Hudak and Brockett, 2004). A number
f different remote sensing datasets, ranging from coarse scale

 km AVHRR data to VHR images, have been employed to map  fires
Kerr and Ostrovsky, 2003). Overall, the time of image acquisition
ppears to be more critical for fire studies than the spatial or spec-
ral scale of imagery. MODIS has been widely used at regional scales
or automated mapping of fires. Its pixel size of 250–500 m makes it
nsuitable for local scale studies, but useful for longer term strate-
ic regional planning (Lentile et al., 2006). Using a national fire
ap  derived from Landsat 5 TM images, Nunes et al. (2005) con-

rmed that wildfires burn land cover types selectively in Portugal,
ince there is a marked positive bias towards shrublands over forest
reas, while agricultural areas are clearly avoided.

VHR datasets can be very important to detect fine scale distur-
ances such as urbanization and human movement, mapping tree
alls, and small scale pest attacks (Fuller, 2007). Allard (2003) used
KONOS data to map  very fine scale impacts of grazing in a dry
warf shrub heath in a mountainous landscape in Sweden, detec-
ing erosion due to grazing at low levels that were easy to manage.

sner et al. (2002) used IKONOS to map  the crown diameter of the

argest trees in an Amazonian forest, as these trees were most com-
only targeted by loggers. VHR datasets can also be very useful for

tudying fine scale pollution sources and their impact on wetlands
dicators 33 (2013) 45– 59 53

and water bodies (e.g. Lee et al., 2010). For some kinds of distur-
bances that have an extremely short and focused temporal span,
such as wildfires, cyclones or flash floods, high temporal resolution
is required so that before and after studies of habitat distribution
and condition can be conducted as close to the event as possible,
for maximum information.

Hyperspectral information may  also be useful in specific
instances such as when studying foliage discolorations caused by
specific pest attacks (Coops et al., 2007). Studies in Wales (Breyer,
2009) have suggested that the red edge wavebands are most sensi-
tive to grass biomass and hence grazing levels and the availability of
this waveband on several sensors (e.g., WorldView-2) may  provide
an opportunity for detecting grazing pressure. SAR data can also
be used to indicate disturbance and deforestation patterns. For
example, Lucas et al. (2008b) established the use of ALOS PALSAR
data and Landsat-derived Foliage Projected Cover (FPC) for detec-
ting dead standing trees and patterns of clearing in Queensland,
Australia. Siegert et al. (2001) used data acquired by a high reso-
lution (25 m)  SAR on board the ERS-2 satellite, to map patterns of
fire damage in forests in Indonesia and relate these to management
categories.

4. Discussion and conclusions

The research cited in the previous sections has demonstrated
the utility of remote sensing to provide spatial data for managers
of protected areas, generating information on changes in habitat
area, habitat degradation, alterations in species diversity and distri-
bution, and trends in pressures and threats. As indicated in Table 1,
and corroborated by other studies (Newton et al., 2009), the vast
majority of studies have used Landsat TM/ETM+ images to assess
changes in and around protected areas, highlighting the contin-
ued utility of these data and the invaluable historical record that
now covers a period of four decades. In recent years, VHR datasets
have been widely promoted for habitat and species monitoring,
yet this review has established that whilst such datasets provide a
greater level of detail, the extraction of information is often com-
promised by, for example, shadowing (e.g., from trees, terrain).
Whilst more habitat categories can often be resolved, the issues
surrounding spectral mixing still remain despite the higher resolu-
tion. The lack of a shortwave infrared band in many VHR datasets
including IKONOS, QuickBird and GeoEye has significantly ham-
pered their potential for monitoring complex environments with a
high diversity of species (e.g., tropical forests) or spectrally homo-
geneous environments of low diversity (e.g. heathlands). However,
the recent advent of satellite sensors such as WorldView-2 with
its additional coastal, yellow, red edge and near infrared bands is
anticipated to provide benefits over other VHR sensors observing
only in the visible blue, green, red and/or near infrared. The use
of multi-temporal datasets acquired during periods where spectral
discrimination of vegetation types is maximally possible (e.g., dur-
ing periods of phenological differentiation such as senescence or
flowering) can further assist habitat classification.

In recent years, the benefits of using hyperspectral, LiDAR and
SAR data for discriminating species within vegetation communi-
ties and habitats have increasingly been realised. LiDAR has proved
particularly useful for understanding habitat degradation, track-
ing more subtle changes in structure and providing information on
below-canopy pressures and threats (e.g., in highly biodiverse trop-
ical forests). However, for many tropical regions, the capability for
acquiring data from these sensors is limited at least at the spatial

resolutions required for habitat monitoring. In the coming years,
it is anticipated that such datasets will become more available as
new satellite sensors are launched and remote sensing analysts fur-
ther develop the necessary algorithms to process these effectively.
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Table 1
Summary of active and passive remote sensing data useful for protected area monitoring.

Sensor Habitat mapping and change detection Assessing habitat degradation Biodiversity assessment Tracking pressures and threats

Coarse spatial resolution
(e.g., MODIS, AVHRR)

Not very useful Near-real time alerts of deforestation
in threatened forests (e.g., Amazon;
Joseph et al., 2011); Mapping overall
changes in photosynthetic activity to
provide early warnings of regional
ecological change and climate change
(Alcaraz-Segura et al., 2009; Silang
et al., 2010)

Not very useful Tracking fires and changes in overall
photosynthetic activity (Boyd et al.,
2002; Lentile et al., 2006;
Alcaraz-Segura et al., 2009)

Medium  to high spatial
resolution (e.g., Landsat,
IRS, SPOT)

Captures broad extent and spatial patterns of
habitats (de Colstoun et al., 2003; Lucas et al.,
2007, 2011; Varela et al., 2008; Pôç as et al., 2011a)

Broad scale loss and degradation of
habitats (e.g., semi-arid vegetation
degraded through desertification;
useful input to habitat suitability
models; Muldavin et al., 2001; Tong
et  al., 2004; Chen et al., 2005; Ingram
et al., 2005; Linderman et al., 2005;
Theau et al., 2005)

Indicators of overall species richness and
diversity (Feeley et al., 2005; Gillespie,
2005; Foody and Cutler, 2006; Mohammadi
and Shataee, 2010; Nagendra et al.,
2010a,b; Torres et al., 2010; Costanza et al.,
2011; Hernández-Stefanoni et al., 2011)

Identifying disturbances in protected
areas (e.g., urbanization, road
construction, mining, logging,
agriculture, fire, alien species, hunting,
grazing and drought; Asner et al.,
2004; DeFries et al., 2005; Ingram
et al., 2005; Nunes et al., 2005; Fuller,
2007; Nagendra et al., 2008, 2010a,b;
Blanco et al., 2009; Prates-Clark et al.,
2009; Pôç as et al., 2011b)

High  temporal resolution
data (multi-season data
or images corresponding
to specific seasons)

Separation of habitat types spectrally similar in
single date imagery (Lucas et al., 2007, 2011)

Intra-annual variances in retrieved
measures of biophysical properties
(e.g., productivity; Rouget et al., 2006)

Information on invasive species and other
species of interest (e.g., using images
acquired corresponding to critical
phenological stages of flowering or leaf
senescence; Everitt et al., 2005; Ramsey
et al., 2005; Andrew and Ustin, 2008;
Sánchez-Azofeifa et al., 2011; He et al.,
2011).

Detection of specific events (e.g.,
selective logging, fires) achieved
through greater frequency of
observation

Very  high spatial resolution
(e.g., IKONOS, QuickBird,
GeoEye, WorldView-2)

Mapping successional fine-scale homogeneous
habitats, ecotones and mosaic areas (Bock et al.,
2005; Comber et al., 2010), but with challenges of
mixed pixel and object shadowing

Identifying fine scale degradation in
forests (Souza et al., 2003)

Indicators of overall species richness and
diversity (St. Louis et al., 2006; Kumar et al.,
2009; Levanoni et al., 2011; Hall et al.,
2011); Delineation of tree crowns/clumps
to  species level (Everitt et al., 2005;
Gillespie et al., 2008; Sánchez-Azofeifa
et  al., 2011; Somodi et al., 2012). Problems
of mixed pixels and shadowing of objects
(Fuller, 2005; Nagendra and Rocchini,
2008; Lucas et al., 2008b; Nagendra et al.,
2010a,b; He et al., 2011)

Detection of fine-scale disturbances
(e.g., pollution, urbanization and
human movement, mapping tree falls,
and small scale pest attacks; Asner
et al., 2002; Allard, 2003; Fuller, 2007;
Lee et al., 2010)

Hyperspectral (e.g. ASTER,
HyMap, AVIS-2,
AHS-160)

Distinguishing habitat types in low-contrast
environments, and identifying forest successional
classes (Papes et al., 2009; Thenkabail et al., 2004;
Prates-Clark et al., 2009; Oldeland et al., 2010;
Schmidtlein and Sassin, 2004; Haest et al., 2010)

Assessment of habitat stress based on
changes in chemical composition of
foliage, which can be related to
parameters such as nutrient deficiency
and changes in soil (Townsend et al.,
2008; Joseph et al., 2011).

Differentiation of plant communities that
are spectrally similar (Ishi et al., 2009;
Ghiyamat and Shafri, 2010; Oldeland et al.,
2010; Sluiter and Pebesma (2010); Ward
et  al., 2012). Mapping top canopy trees to
species or genus level and identifying
invasive species (Darvishsefat et al., 2002;
Clark et al., 2005; Pengra et al., 2007; Lucas
et al., 2008a; Papes et al., 2009; Cho et al.,
2010; He et al., 2011); Relating spectral
heterogeneity to species richness and
diversity (Rocchini and Cade, 2008;
Rocchini et al., 2010; He et al., 2011).

Identifying disturbances (e.g., pest
attacks that lead to changes in foliage
color, and fine-scale modifications in
grass biomass due to disturbances such
as grazing; Coops et al., 2007; Breyer,
2009)

Active  remote sensing data
– e.g. SAR, LiDAR

Discriminating structurally complex habitats (e.g.,
forests) based on 3D structure, either alone or in
combination with optical remote sensing (Lim
et  al., 2003; Treuhaft et al., 2004; Strittholt and
Steininger, 2007; Rahman et al., 2010; Karjalainen
et  al., 2009; Mallet and Bretar, 2009; Wang et al.,
2009a; Koch, 2010; Zhu et al., 2011)

Monitoring habitat degradation,
including within canopy (Kuplich,
2006; Hyde et al., 2006; Waser et al.,
2008; Graf et al., 2009)

Floral and faunal diversity in habitats (e.g.,
forest) with complex three-dimensional
structure (Asner et al., 2008; Koch, 2010;
Vauhkonen et al., 2010).

Detecting dead standing trees, patterns
of  clearing and patterns of damage
caused by fire (Siegert et al., 2001;
Lucas et al., 2008b)
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echniques and software for processing these data are also likely
o become more available in future years, and the increase in open
ource material will benefit many managers of protected areas in
ountries where funding is more limited.

While the research reviewed primarily highlights the role that
emote sensing can play in assisting protected area managers to
haracterise and map  habitats and monitor change, the data gen-
rated can also provide information on modifications of ecosystem
onditions related to climate change (e.g. community traits). If cou-
led with “climate space” shift regional scale scenarios, such as
hose proposed by Wiens et al. (2011), such approaches might be
f great use for strategic planning aimed at anticipating possible
hifts of conservation targets from protected areas due to species
igration and setting out measures to identify new candidate sites

or protection (Hannah et al., 2007), as well as assisting target
pecies migration whilst controlling the expansion of invaders.
hus, remote sensing can offer a means of responding to the
hotspots of opportunity” described by Wiens et al. (2011) by
eans of enhancement of the conditions that enable and facili-

ate functional links between areas that are currently protected. For
his, there is a need for remote sensing analyses to be integrated
ith models (e.g., of species distributions) as well as accurate,

ime-matched in situ datasets to develop and validate the mod-
ls and conclusions. Unless the spatial grain, extent and timing of
emote sensing data and in situ data and models are well matched,
he robustness of conclusions on management effectiveness, and
he interpretative power of the analytical techniques used, will
e limited. Remote sensing interpretation needs to be grounded

n field data, and this is an important concept that is critical for
ffective adaptive management and monitoring.

In many situations, the need to improve the condition of pro-
ected areas relies first upon an assessment of the existing state
f vegetation which can then assist understanding of how this
ay  be best managed to improve its condition in the future, using

rinciples of adaptive management as discussed previously. As
n example, Prates-Clark et al. (2009) used time-series of Land-
at sensor data acquired north of Manaus, Brazil, to establish the
onditions imposed by forest clearance mechanisms and agricul-
ural land management prior to abandonment. Different land use
ntensities were shown to lead to different pathways of tropical for-
st regeneration, as determined by the composition of the pioneer
ommunity, and their ability to recover the carbon and biodiversity
ost during clearance of the original forest. Such information could
otentially play a key role in landscape planning at an Amazon-
ide level by identifying those areas that are either regenerating

r still in agriculture and which would be most suited to be kept in
roduction or managed to restore ecosystem values. Similarly, in
ustralia, Lucas et al. (2008b) identified different methods of clear-

ng savanna woodlands using a combination of airborne radar and
andsat-derived Foliage Projected Cover (FPC), information which
an be used to establish the likely composition of species in the
egenerating forests and the time taken for these to revert to the
ature state. In the Brigalow Belt Bioregion of southeast Queens-

and, these same datasets can be used to identify areas of regrowth
t different stages of development and sites where the implemen-
ation of management strategies (e.g., thinning) could promote
eestablishment of the forest or increases in structural diversity
nd biomass and also biodiversity (Bowen et al., 2009; Dwyer et al.,
010).

Remote sensing data can also be very useful in helping managers
dentify early warning signs of climate change at regional (Alcaraz-
egura et al., 2009; Silang et al., 2010; Altamirano et al., 2010) and

ocal scales (Lucas et al., 2008a,b), based on early identifications of
hanges in plant physiology and phenology. The impact of these
nvironmental changes may  be minimized through early identifi-
ation using combinations of satellite remote sensing data coupled
dicators 33 (2013) 45– 59 55

with targeted field management (Jump et al., 2010). Such infor-
mation may  be particularly useful in marginal areas (e.g., deserts,
semi-arid areas) or in mountainous regions or latitudes where dis-
tinct vegetation zonation occurs.

In many countries, forests are fragmented and often located
within a mosaic of agricultural land (e.g., Hill and Curran, 2003).
However, studies using remote sensing have often focused on map-
ping the extent of forest cover or classifying land covers within
protected areas with less emphasis placed on the landscape that
is surrounding them. Remote sensing data can however be used to
indicate the spatial pattern and condition of these fragments, the
causes of fragmentation (e.g., whether human-induced or natural)
and the type and condition of land covers which could poten-
tially be used to link important habitat patches. As an example,
in the Biological Dynamics of Forest Fragments Project (BDFFP;
Laurance et al., 2011) in Amazonas State, Brazil, fragments of forest
which were isolated during clearance operations rapidly became
surrounded by secondary forests, with the development of these
observable using time-series of Landsat sensor data (Prates-Clark
et al., 2009). These regrowth forests provided connections between
the fragments and the larger extent of undisturbed forests, thereby
facilitating movement of fauna and flora. Hence, satellite sensor
data can be used to better understand the impacts of the surround-
ing and changing landscape on their longer term role of forest
fragments. These data can also be used to identify events or pro-
cesses that may  be occurring before it is too late or expensive to
undertake remediation measures.

The success in using remote sensing data for mapping habitats
and monitoring change, both within protected areas and also in the
surrounding landscape, is dependent upon the provision of infor-
mation that is useful to those charged with management. In many
cases, conservation organisations are presented with maps, often of
land cover, which do not adequately represent the habitats occur-
ring and of importance to biodiversity. Use is also compromised by
inappropriate classes, the lack of spatial detail and the use of hard
classifications where often a transition or gradient occurs between
habitats. While a large number of maps exist at various scales, these
are often of limited utility and hence may  not be adopted. Further-
more, many maps are also generated once, with no capacity for
updates and, where different sensor data are used for classifica-
tion, inconsistencies occur and hence the detection of changes is
often problematic. The development of habitat and species moni-
toring that facilitates routine mapping and monitoring is therefore
desirable (Lucas et al., 2011). Representation of the 3D structure of
habitats is also important, particularly in habitat suitability mod-
elling and assessments of forest condition. Focus has often been
on the two dimensional distribution of habitats (e.g., forests), with
this frequently obtained using optical remote sensing data. Indeed,
many landscape metrics and species distribution models consider
only the type of forest occurring (e.g., broad-leaved, needle-leaved)
and less consideration is given to the 3D structure. With the advent
of active remote sensing data, namely LiDAR and lower frequency
as well as interferometric SAR, the potential for obtaining infor-
mation on the 3D state of vegetation has increased significantly
and habitat models need to be developed to better integrate this
information.

In conclusion, remote sensing can play a key role in characteri-
sing and mapping habitats within and surrounding protected areas
and ultimately assisting their management. Whilst the Landsat sen-
sors have been the workhorse of many monitoring programs and
activities, new sensors are resolving more detail in the landscape
in both two  and three dimensions, and the increased frequency

of observation by many is allowing changes to be better identified.
These data can be used to inform on changes in the landscape which
may have an adverse impact on biodiversity but also allow for long-
term restoration of habitats (e.g., through replanting, establishment
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f corridors and/or promotion of regeneration) and protection from
he adverse effects of factors such as climate change (Jones et al.,
009). Most importantly, these data can provide managers of pro-
ected areas with spatial and temporal information on the extent
nd condition of habitats and their response to change over vary-
ng time scales. Their use needs to be made standard practice. So
ar this has not happened, despite much discussion on the utility of
emote sensing. This may  be largely due to the technical challenges
aced by managers in conducting and accurately interpreting image
nalyses, but also because of insufficient integration between the
n situ data and expert knowledge provided by local ecologists
nd the technical expertise of remote sensing analysts. There is

 need for ecologists, conservation biologists, policy makers, pro-
ected area managers, conservation consultants and practitioners
“experts”) to be provided with a basic technical understanding of
emote sensing. This would allow them to interact with remote
ensing analysts to provide expert inputs for the proper collection
nd interpretation of data to fulfil their monitoring and planning
equirements.

Simultaneously, the lack of utilization of earth observation data
or conservation planning so far poses a challenge for the remote
ensing community. One approach that has significant potential
o bridge this gap is for remote sensing analysts to work with
experts” to take their inputs, and use these to develop semi-
utomated, operational tools for mapping and monitoring habitat
xtent and quality. In the process, “experts” can learn how to bring
heir practice closer to remote sensing needs. The BIO SOS project
www.biosos.eu) aims to provide a step further towards this goal,
y working towards protocols and pre-operational software to map
hanges in habitat extent and quality, and track human pressure on
rotected areas. The interdisciplinary approach of this project dif-
ers from previous ones largely focused on the use of remote sensing
ata for the semi-automated mapping of changes in land use and

and cover (e.g. Fraser et al., 2009). Such an approach, as well as the
roducts thereby generated, have the potential to make it easier for
anagers and practitioners with a basic technical understanding

f remote sensing to generate information on conservation sta-
us routinely, quickly and relatively inexpensively, with reasonable
evels of accuracy, that can be useful for adaptive management of
rotected areas as well as of their geographic context.
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