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1 Τίτλος Ενότητας

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that is, we
shall study the boundary-value problem

ẋ = JH ′(t, x)

x(0) = x(T )

with H(t, ·) a convex function of x, going to +∞ when ∥x∥ → ∞.

1.1 Τίτλος Υποενότηταs

In this section, wewill consider the case when the HamiltonianH(x) is autonomous.
For the sake of simplicity, we shall also assume that it is C1.

We shall first consider the question of nontriviality, within the general framework
of (A∞, B∞)-subquadratic Hamiltonians. In the second subsection, we shall look into
the special case when H is (0, b∞)-subquadratic, and we shall try to derive additional
information.

Τίτλος Υποϋποενότηταs We assume thatH is (A∞, B∞)-subquadratic at infinity, for
some constant symmetric matrices A∞ and B∞, with B∞ −A∞ positive definite. Set:

γ : = smallest eigenvalue of B∞ −A∞ (1)

λ : = largest negative eigenvalue of J
d

dt
+A∞ . (2)
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Theorem 1 tells us that if λ+ γ < 0, the boundary-value problem:

ẋ = JH ′(x)
x(0) = x(T )

(3)

has at least one solution x, which is found by minimizing the dual action functional:

ψ(u) =

∫ T

o

[
1

2

(
Λ−1
o u, u

)
+N∗(−u)

]
dt (4)

on the range of Λ, which is a subspace R(Λ)2L with finite codimension. Here

N(x) := H(x)− 1

2
(A∞x, x) (5)

is a convex function, and

N(x) ≤ 1

2
((B∞ −A∞)x, x) + c ∀x . (6)

Πρόταση 1. Assume H ′(0) = 0 and H(0) = 0. Set:

δ := lim inf
x→0

2N(x) ∥x∥−2
. (7)

If γ < −λ < δ, the solution u is non-zero:

x(t) ̸= 0 ∀t . (8)

Απόδειξη. Condition (7) means that, for every δ′ > δ, there is some ε > 0 such that

∥x∥ ≤ ε⇒ N(x) ≤ δ′

2
∥x∥2 . (9)

It is an exercise in convex analysis, into which we shall not go, to show that this
implies that there is an η > 0 such that

f ∥x∥ ≤ η ⇒ N∗(y) ≤ 1

2δ′
∥y∥2 . (10)

Since u1 is a smooth function, we will have ∥hu1∥∞ ≤ η for h small enough, and
inequality (10) will hold, yielding thereby:

ψ(hu1) ≤
h2

2

1

λ
∥u1∥22 +

h2

2

1

δ′
∥u1∥2 . (11)

If we choose δ′ close enough to δ, the quantity
(
1
λ + 1

δ′

)
will be negative, and we

end up with
ψ(hu1) < 0 for h ̸= 0 small . (12)

On the other hand, we check directly that ψ(0) = 0. This shows that 0 cannot be a
minimizer of ψ, not even a local one. So u ̸= 0 and u ̸= Λ−1

o (0) = 0. ⊓⊔
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Εικ. 1. This is the caption of the figure displaying important cities location.

Πόρισμα 1. AssumeH is C2 and (a∞, b∞)-subquadratic at infinity. Let ξ1, . . . , ξN be
the equilibria, that is, the solutions ofH ′(ξ) = 0. Denote by ωk the smallest eigenvalue
of H ′′ (ξk), and set:

ω := Min {ω1, . . . , ωk} . (13)

If:
T

2π
b∞ < −E

[
− T

2π
a∞

]
<

T

2π
ω (14)

then minimization of ψ yields a non-constant T -periodic solution x.

We recall once more that by the integer part E[α] of α ∈ IR, we mean the a ∈ ZZ
such that a < α ≤ a + 1. For instance, if we take a∞ = 0, Corollary 2 tells us that x
exists and is non-constant provided that:

T

2π
b∞ < 1 <

T

2π
(15)

or
T ∈

(
2π

ω
,
2π

b∞

)
. (16)

Απόδειξη. The spectrum of Λ is 2π
T ZZ+a∞. The largest negative eigenvalue λ is given

by 2π
T ko + a∞, where

2π

T
ko + a∞ < 0 ≤ 2π

T
(ko + 1) + a∞ . (17)
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Hence:
ko = E

[
− T

2π
a∞

]
. (18)

The condition γ < −λ < δ now becomes:

b∞ − a∞ < −2π

T
ko − a∞ < ω − a∞ (19)

which is precisely condition (14). ⊓⊔

Λήμμα 1. Assume that H is C2 on IR2n \ {0} and that H ′′(x) is non-degenerate for
any x ̸= 0. Then any local minimizer x̃ of ψ has minimal period T .

Απόδειξη. We know that x̃, or x̃+ξ for some constant ξ ∈ IR2n, is a T -periodic solution
of the Hamiltonian system:

ẋ = JH ′(x) . (20)

There is no loss of generality in taking ξ = 0. So ψ(x) ≥ ψ(x̃) for all x̃ in some
neighbourhood of x inW 1,2

(
IR/TZZ; IR2n

)
.

But this index is precisely the index iT (x̃) of the T -periodic solution x̃ over the
interval (0, T ), as defined in Sect. 2.6. So

iT (x̃) = 0 . (21)

Now if x̃ has a lower period, T/k say, we would have, by Corollary 31:

iT (x̃) = ikT/k(x̃) ≥ kiT/k(x̃) + k − 1 ≥ k − 1 ≥ 1 . (22)

This would contradict (21), and thus cannot happen. ⊓⊔

Notes andComments. The results in this section are a refined version of [1]; theminimality
result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16), one
may think of a one-parameter family xT , T ∈

(
2πω−1, 2πb−1

∞
)
of periodic solutions,

xT (0) = xT (T ), with xT going away to infinity when T → 2πω−1, which is the period
of the linearized system at 0.

Πίνακας 1. This is the example table taken out of The TEXbook, p. 246

Year World population

8000 B.C. 5,000,000
50 A.D. 200,000,000

1650 A.D. 500,000,000
1945 A.D. 2,300,000,000
1980 A.D. 4,400,000,000
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Θεώρημα 1 (Ghoussoub-Preiss). AssumeH(t, x) is (0, ε)-subquadratic at infinity for
all ε > 0, and T -periodic in t

H(t, ·) is convex ∀t (23)

H(·, x) is T−periodic ∀x (24)

H(t, x) ≥ n (∥x∥) with n(s)s−1 → ∞ as s→ ∞ (25)

∀ε > 0 , ∃c : H(t, x) ≤ ε

2
∥x∥2 + c . (26)

Assume also thatH is C2, andH ′′(t, x) is positive definite everywhere. Then there
is a sequence xk, k ∈ IN, of kT -periodic solutions of the system

ẋ = JH ′(t, x) (27)

such that, for every k ∈ IN, there is some po ∈ IN with:

p ≥ po ⇒ xpk ̸= xk . (28)

⊓⊔

Παράδειγμα 1 (External forcing). Consider the system:

ẋ = JH ′(x) + f(t) (29)

where the HamiltonianH is (0, b∞)-subquadratic, and the forcing term is a distribution
on the circle:

f =
d

dt
F + fo with F ∈ L2

(
IR/TZZ; IR2n

)
, (30)

where fo := T−1
∫ T

o
f(t)dt. For instance,

f(t) =
∑
k∈IN

δkξ , (31)

where δk is the Dirac mass at t = k and ξ ∈ IR2n is a constant, fits the prescription.
This means that the system ẋ = JH ′(x) is being excited by a series of identical shocks
at interval T .

Ορισμός 1. LetA∞(t) andB∞(t) be symmetric operators in IR2n, depending continuously
on t ∈ [0, T ], such that A∞(t) ≤ B∞(t) for all t.

A Borelian function H : [0, T ] × IR2n → IR is called (A∞, B∞)-subquadratic at
infinity if there exists a function N(t, x) such that:

H(t, x) =
1

2
(A∞(t)x, x) +N(t, x) (32)

∀t , N(t, x) is convex with respect to x (33)

N(t, x) ≥ n (∥x∥) with n(s)s−1 → +∞ as s→ +∞ (34)
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∃c ∈ IR : H(t, x) ≤ 1

2
(B∞(t)x, x) + c ∀x . (35)

If A∞(t) = a∞I and B∞(t) = b∞I , with a∞ ≤ b∞ ∈ IR, we shall say that H is
(a∞, b∞)-subquadratic at infinity. As an example, the function ∥x∥α, with 1 ≤ α < 2,
is (0, ε)-subquadratic at infinity for every ε > 0. Similarly, the Hamiltonian

H(t, x) =
1

2
k ∥k∥2 + ∥x∥α (36)

is (k, k + ε)-subquadratic for every ε > 0. Note that, if k < 0, it is not convex.

Notes and Comments. The first results on subharmonics were obtained by Rabinowitz in
[5], who showed the existence of infinitely many subharmonics both in the subquadratic
and superquadratic case, with suitable growth conditions onH ′. Again the duality approach
enabled Clarke and Ekeland in [2] to treat the same problem in the convex-subquadratic
case, with growth conditions on H only.

Recently, Michalek and Tarantello (see [3] and [4]) have obtained lower bound on
the number of subharmonics of period kT , based on symmetry considerations and on
pinching estimates, as in Sect. 5.2 of this article.
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