Getting Started with Python

Kevin Sheppard
http://www.kevinsheppard.com

Department of Economics
University of Oxford
This version: February 10, 2014

February 10, 2014

UNIVERSITY OF]

OXFORD &7

= Array Slicing

= Slicing

Array Mathematics and Broadcasting

Basic use of Logical

Loops
Conditional Execution

Activating the Virtual Environment

= Activate

» Windows: c: \Anaconda\Scripts\activate.bat econ
» *nix: source ~/anaconda/bin/activate econ

= One final package to install

» All: pip install pylint
» pip is the (soon to be) default Python package installer

= Using conda

» Updating Anaconda
conda update conda
conda update anaconda
» Updating a virtual environment:
conda update -n environment packages
» Installing additional packages in a virtual environment:
conda install -n environment packages

3/73

Python Interpreter

From inside the virtual environment, run python
Success will show a banner and >>>

The default Python interpreter is not suited to interactive work

= exit() to quit

IPython

= Interactive Python
» Run ipython from an active environment
= Integrated

» History

» Tab completion
» Help

> Magic keywords

= Command line switches
> pylab

5/73

IPython QtConsole

= A more sophisticated IPython terminal

» On Windows, clearly better than IPython/cmd
» On *nix, better but gains are smaller

= Run ipython gtconsole from an active environment

= Command line switches

» colors=linux

> ConsoleWidget.font_size (number)

» ConsoleWidget.font_family (Installed font)
» pylab

= Pop-up help

IPython Notebook

[Python in a web browser
Allows mixing code, formatted text and BTgX math
Install MathJax locally

» Run ipython gtconsole and execute

from IPython.external .mathjax import install_mathjax
install_mathjax()

» Need to be connected to the internet

Should have Chrome or Firefox installed
> Internet Explorer and Safari both have issues

Run ipython notebook to start
Main cell types

» Code
» Markdown
» Heading

7/73

Spyder and PyCharm

Spyder - Scientific PYthon Development EnviRonment
More similar to RStudio or MATLAB than other Python IDEs
Major features:

Code editor

Object inspector (help)

Variable and File explorers

Integrated console (Python or IPython)
Support for debugging

Cell mode

» Reconfigurable

v

Yy vV VYV VYV vV

PyCharm is a commerical IDE, but has free community edition

» Steeper learning curve

» More advanced features:
Static analysis, Code completion, Code formatting, Block commenting,
Git Integration, PEP integration, Spell checking, Quick help,
Refactoring and Renaming, more. ..

Immutable Native Data Types

= Integers

= Floats

= Complex Data
= Long Integers
= Boolean

= Strings

= NoneType

= Tuples

= Xrange

Mutable Data Types

Tasks 2.11-2.13,2.18-2.19

= |ists

» Revisiting strings

= Dictionaries

Note: more native data types available, but less useful to us

Slicing

Tasks 2.14-2.17

= Lists, tuples and strings can all be sliced

» [first:last:step]
» Lists also support assignment from same-sized variable

= n—element array elements are indexed 0,1,...,n— 1
= Shorthands
» [0:n:1]
- [:1.C::0.[0:1.[:n],[@0:n],[0: :],[:n],[:n:]

» [s:n:17], [s:],[s::], [s:n],[s:n]
» [0:e:17], [:e],[:e:]
» [@:n:st], [::st]

= Negative step counts down
» [::-17] isreverse,and is similarto [n-1::-17 (butnot [n:0:-17)

11/73

NumPy Data Types

Tasks 3.1-3.6

= Array

= Matrix

12/73

Array Slicing

Tasks 4.1

= Similar to list and string slicing, except for nested lists

= Array slicing supports explicit multi-dimensional slices

» 2-d Lists: things[3][3]
> Arrays: x[3,3],x[:3,:3],x[2::2,1::3]
» Higher-dimensional arrays use high-order slicing

= Arrays can be indexed using two other methods

» Numeric indexing
» Logical indexing

13/73

flat Slicing

Tasks 4.2

» flat can be use to index the “flattened” version of an array
= A=array([[@,1],[2,3]1])

= ALflat[:]isthenarray([0, 1, 2, 3])

= By default, NumPy arrays are stored in row major format

» First across rows, then down columns
» This is why 0 was next to 1 and not 2
» Consider A.Tand A.T.flat[:]

14/73

Array Mathematics

Tasks 4.3-4.5

= Array mathematics operates element by element

» Addition: +
Subtraction: -
Multiplication: *

v

v

- Linear algebra definition: dot ()

v

Division: /
Exponentiation: **

v

- Linear algebra definition: matrix_power()
- Must be square, X = XX

15/73

Matrix Mathematics Differences

Tasks 4.4-4.5

= Matrices follow the rule of linear algebra

» Matrix multiplication: *
- Element-by-element: mulitply()
» Matrix exponentiation (square): **

- Element-by-element: power()

Broadcasting

Tasks 4.6-4.8

= NumPy does not respect the laws of matrix addition, subtraction and
Hadamard multiplication and division

= Under some circumstance arrays can be promoted to be as-if bigger
than they are

= Let s; =(511,512,-..,S1x) be the shape of array 1, and
Sy = (821,522, .- .,S2m) be the shape of array 2

» Assume WLOG m >k, letn=m — k

= Two arrays are broadcastable if:

» Let$=(1,1,...,1,511, 812, ..., S1x), then for all j
S‘UZSZI'USUZIUSZ]':l

- Alternative max (5yj, S3) /min (3y, 53) € {1, max (3y;, %) }

» Either same size or at least one is unity
» Common broadcast size is b; = max (5y;,)

Broadcasting Examples

Tasks 4.6-4.8

= Note: You can always choose to avoid broadcasting using functions
like tile to explicitly replicate arrays

» Still exposed to accidental or unintended broadcasting

= Which are broadcastable?

X y X+y?
(1,2) @)
(5,5) (5,)
(5,5 (1,5
(5,5) (5,1

(1,2,3) (4,1,3)

Array Assignment

Task 4.9

= Array slices can be used for assignment

» Simple if dimension of target same as slice
» Also can use broadcasting

- Scalar: A[:]=1
- Note that 1 is O-dimensional, so always broadcastable

Array Manipulation

Tasks 4.11-4.12

= Basic Information

» shape,ndim, size
= Reshaping an array

» shape, reshape, or [: ,None](technically a slice)
» squeeze
» transpose, .transpose(), .T

= Copying an array

> copy
> +0.0

» Call array ormatrix
= Building
» tile
» concatenate
- hstackor vstack

Array Memory Management

Slices are views into arrays

Contain same elements

Good from performance point of view

» Use .flags to determine if original

Slices do not copy

Use copy() to copy data
» Or+0.0
- Math ops produce copies

» Or array/matrix

Operator Precedence

Tasks 4.12

Operator Name Rank

CH),. L1, CH Parentheses, Lists, Tuples 1
*% Exponentiation 2

+, - Unary Plus, Unary Minus 3

*, /,//, % Multiply, Divide, Modulo 4

+,- Addition and Subtraction 5

<, <=, >, >= Comparison operators 9

==, |= Equality operators 9
=,+=,-=,/=,%=,%¥¥= Assignment Operators 13

22/73

Scalar Logical Operations

NumPy arrays can be used in logical operations

» Discussion later

Scalar logical operations evaluate to True or False
> == >’ <, >=, <=, !=
- == also works with strings or lists

» Combine using and, or, not
> If testing for None, use isasin x is None

Empty things are generally False

> NOT\e, I::l, (’)’ ”’ [{%1)
» Test using not

Care is needed when testing equality with floating point numbers

» allclose from NumPy may be better

Task 5.1

= for and while loops
= Generic structure of for loop:

for i in iterator:
Do something with i

= Note: whitespace matters!

» Tabs or spaces are whitespace
» Use only spaces - 4 per level of indention

= jterator is anything that supports iteration:

» array and matrix

» range, arange and xrange
» list and tuple

= enumerate can be useful when using arrays or lists

24/73

Nested For Loops

= for loops can be nested

for i in iteratorl:
for j in iterator2:
Do something with i and j

= while loops are similar, but end when a condition is met

= Generically, they are given by

while some_condition:
Do something
Update condition

= |t is important that the condition is updated inside the while loop

25/73

6.1-6.7

= jf statements implement conditional flow control
= Always use scalar logical values
= Generic structure

if condition:

Code to run if condition true
elif other_cond:

Code to run if other cond and not condition
else:

Code to run if not (condition and other_cond)

= elif and else are optional
= Whitespace delimited
= Python has a ternary operator

X = a if condition else b

List Comprehensions

6.7-6.9

= List comprehensions are syntactically dense method to build lists

= Basic

x = [item for item in iterable]

Can be combined with logicals

x = [item for item in iterable if item>0]

» Only items that satisfy the logical condition will be added

Can use nested loops

Mostly syntactic sugar, but also have additional optimizations over
using for and List.append

Calling Functions

Tasks 5.1-5.2

= Function calls are simple: function()
Functions can return multiple outputs
» Take them as a tuple: out = function()
» Unpack them a,b,c = function()
- Tuple can be unpacked later: a,b,c = out
- Also similar to multiple assignment a,b,c = x,y,z
Two input methods
> In order (positional): function(x,y)
» Keyword: function(file="input.csv’, skiprows=10)
Two special constructs
» *args: Additional positional arguments
» *¥kwargs: Additional keyword arguments

= Mandatory vs. optional arguments

array(object, dtype=None, copy=True, order=None,
subok=False, ndmin=0)

Array generating functions

Task 5.3

» arange

= Llinspace, Logspace
= Zeros, ones, empty
» See also zeros_like, ones_like, empty_Llike
= eye
=T andc_

» These are special purpose, are not normal functions
» Use slice-like inputs

Core Array Functions

Tasks 6.1-6.7

= sum, prod, cumsum, cumprod

» Importance of axis
= exp, Log, Logl0
= sqrt, square
= abs, sign
s diff
= around, floor and ceil

= Set functions: unique, inld, intersectld, unionld and
setdiffild

Sorting and Extremes

Task 6.8

= sortvs .sort

= agmax and amin or .max and .min

31/73

Functions vs. Methods & Properties

= Many operations can be used as a function or method

» x.dot(x.T), dot(x,x.T)
» x.sum(axis = @), sum(x, axis=0)

= Generally a personal choice, some uses may be easier to read than
others

Linear Algebra Functions

Tasks 12.1-12.2

= Large library of useful linear algebra routines

» inv, inverse

» det and trace, determinant and trace

» eig and svd, eigenvalues/eigenvectors and singular values
» slogdet, the signed log determinant

- More accurate than Log(det(x))
» pinv (Moore-Penrose) Pseudo Inverse (X’X)_lX’

- Note that dot(pinv(x),y) is more accurate than
dot(inv(dot(x.T,x)),dot(x.T,y))

» diag, tril, triu, diagonal and triangular matrices

33/73

inf and nan

Tasks 7.1 and 7.4

= inf represents infinity
» exp(800)
= nan is not a number

» exp(800)/exp(1000)
> nan corrupts other functions, such as mean
» Can use nan-functions to compute values using only non-nan values

- nansum
- nanmin and nanmax

- 1isnan, a logical function

- NumPy 1.8.0 adds nanmean, nanstd, nanvar

34/73

Numeric Limits

Tasks 7.2-7.4

= inf represents infinity: exp(800)
nan is not a number: exp(800)/exp(1000)
Computer math has limits for floating point data
Computer numbers are of the form a x 10? where a has about 15
digits stored and b is within +308.
» Absolute magnitudes
- finfo(np.floaté64).max, finfo(np.floatb64).tiny
» Relative Magnitudes
- finfo(np.float64).eps

Examples

» 1.0 ==1.0 + (finfo(np.float64).eps)/2
» 1.0 ==1.0 + (finfo(np.floaté64).eps)
» 10.0%%30 + 10.0%**12 == 10.0%*30

= Best Practices: Scale large/small data

35/73

Importing Data using pandas

pandas is the main data-management package in the Scientific
Python stack

= pandas provides a DataFrame based on NumPy arrays, but with
additional features

» Meaningful row and column indices
» Support for merge/join operations
» Lots of other helpful features

pandas includes a number of importers from common formats
» csv, Excel, formatted text, STATA, tables on the web

Also includes exporters to most common formats

Examples of Importing Data

Tasks 8.1

= Federal Reserve Economic Database

» Real GDP
> http://research.stlouisfed.org/fred2/data/GDPCl.csv

= Ken French Data

> http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/
F-F_Research_Data_Factors.zip

= WorldBank Data: Central Government Debt, % of GDP

> http://api.worldbank.org/v2/en/indicator/gc.dod.totl.gd.zs?
downloadformat=excel

= Filesathttp://kevinsheppard.com/wiki/Python_Course

http://research.stlouisfed.org/fred2/data/GDPC1.csv
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors.zip
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors.zip
http://api.worldbank.org/v2/en/indicator/gc.dod.totl.gd.zs?downloadformat=excel
http://api.worldbank.org/v2/en/indicator/gc.dod.totl.gd.zs?downloadformat=excel
http://kevinsheppard.com/wiki/Python_Course

Examples of Saving Data

Tasks 8.2-8.4

= pandas DataFrames can be directly exported to a range of formats

= When working with data, better to use binary formats since there is
never a loss of precision

= Preferred format is h5, which is provided by PyTables

= rgdp.to_hdf(filename,key, complevel=6,
complib="zlib’)
= Saving multiple: HDFStore
> Works like a dictionary
» store = HDFStore(filename, mode,
complevel=6,complib="zLlib’)
» store[’var_name’]=variable
» store.close()

= More on pandas next term

Logical Operator

Tasks 10.1, 10.7

= Logical operators are similar to mathematical operations

» x L ywhere Lisoneof > >= < <= == 1=
» Scalars or broadcastable arrays

Logical operators can be joined using Logical _and,
logical _or, logical_not, logical _xor
all and any can be used to test multiple operations

Scalars support short-circuit operators: and, or and not

Long list of logical information functions: is*

» isinf, isnan,isfinite, iscomplex, isreal, isposinf,
isneginf, isscalar

Numeric Indexing

Tasks 10.3-10.5

= Numeric indexing returns arrays with the same shape as the arrays
used as indices

» Arrays used as indexes must be broadcastable
= Simply solution is to use ix_ if interested in selecting rows and
columns
= Scalar selection is different than numeric indexing

» x[0] vs x[[0]] or x[array([0])]
» Also x[@] vs x[[:1]]

Logical Indexing

Task 10.2, 10.6

= Logical statements can be used to select elements of an array

= One dimensional selection is simple

» X = arange(5.0)
»y = x<3
> x[y]

= Higher dimensional selection vectors must be broadcastable

» Usually use ix_
» See nonzero which is used to turn logical indexes into numeric
indices

41/73

Writing functions

Tasks 11.1-11.2

Functions start with def

Return single value or tuple using return

Whitespace used to denote function boundaries

» (Can use pass to explicitly end function

Functions are available in the same file after they are declared

Order of inputs determines positions

Name determines keyword use

Default values given using form input = default

» Do not use mutable values as defaults, use None and test

42/73

= Docstrings are the embedded help in IPython

= Standard NumPy-encouraged format for numerical code
def L12_norm(x,y)

Computes the L2—normed distance between two vectors

Parameters

x : array—Llike,

1-dimensional
y : array—Llike

, 1—dimensional

Returns

L2 distance between functions

Notes

The L2 distance is the squareroot of average the squared deviation
of the elements of the vectors

return np.mean ((x—y)*=2.0)

43/73

Allowing arbitrary args and kwargs

Tasks 11.3-11.4

= Arbitrary arguments can be passed in using *args

» Appear as tuple in function

= Arbitrary keyword arguments using ¥*kwargs

» Appear as dictionary in function
» Only keywords not in function appear
» See .keys()

Calling functions in other files

Task 11.6

= Use from file import function

» Also from file import *
» Also import file and then file.function

45/73

Variable scope

= Variables declared in a function are local to that function
» These do not overwrite variables with the same name
= Variables declared before the function are available read only

» Unless used with global
» Rarely needed

= Mutable variables passed to functions can be changed, so care is
needed

» Copy if required
» Important to not use inputs for temporary values

= Immutable cannot be changed in a function

Random Number Generation

= Two methods to generate random numbers

» numpy .random
» scipy.stats

- scipy.stats.DIST
= |mportant to be able to re-produce random sequences

» numpy.random.RandomState()
» get_state/set_state

Working with Common Distributions

= SciPy contains a large statistics library
» scipy.stats
= Faster to use frozen RV objects for repeated calls

» Especially true if calls are simple

Common Statistics Functions

Normal

> norm

I%Z

» chi2

» gamma

Log-normal

» lognormal

Non-linear Optimization

Non-linear optimization is provided by scipy.optimize

Usually imported using import scipy.optimize as opt

Main routines

» fmin_bfgs - Gradient descent
(Broyden-Fletcher—Goldfarb—Shanno)

» fmin - Derivative free (Simplex)

» fmin_slsqgp - Constrained (Sequential LS Quadratic Programming)

All optimizers minimize

» Not a problem since can multiply by -1

Nonlinear optimization

= Optimizers require an objective function
» Function should take values as first input, usually a 1d numpy array
= Other values (e.g. data) can be passed as additional arguments

» Usually passed through a tuple
» Positional arguments, so order matters

= Some optimizers take additional arguments like gradient

» Improves performance and precision, but not required

Canonical import name: pd

Provides three key structures that provide meaning to NumPy arrays

» Series - a 1-dimensional array with a name and index
» DataFrame - a collection of Series, 2-dimensional
» Panel - a collection of DataFrames, 3-dimensional

pandas data structures are both array-like and dict-like

» np.log(df): array-like
» df[’series’]: dict-like

Other features

» Reading and writing data

» Merging/joining multiple datasets

» Quick access to common plots and statistics

» Access to underlying NumPy arrays using values

pandas: Reading Data

read_csv

» Important keyword arguments: skiprows, index_col,
parse_dates, na_values

= read_excel

» Requires filename and sheet name, same keyword args
= read_table: Read text files, such as tab delimited

» Important keyword arguments: sep
= read_stata: Read Stata .dta files

= read_hdf: Read data from HDF files (h5), which provide
compression

» Important keyword arguments: complevel, complib
= read_pickle: Read the native Python pickle format
= QOther: json, sql, clipboard, html

53/73

pandas: Exporting Data

df .to_csv: Export to csv

» Keyword argument sep allows tab delimited

df .to_excel: Export to excel (97 (xls) or 2007+ (xLsx))

» Advanced usage allows multiple sheets in a single file

df .to_stata: Write Stata .dta files
df .to_hdf: Writes files to HDF files (h5)

» Important keyword arguments: complevel, complib

df . to_pickle: Writes the native Python pickle format
df . to_string: Output tabular data

df .to_latex: Writes to a latex table

Others: json, sql, dict

Series

Series is building block of DataFrame
.head(), .tail() (or .tail(n)), .info(), .dtype()
= _name to assign a name, or create using the keyword argument name

= _index to assign an index, or create using the keyword argument
index

» .index.name to assign name to an index
= Series is array-like, and work with NumPy functions (e.g. np. lLog)

» Math on multiple series works aligning indices!

dropna() to remove NaNs.
= Series can be created from arrays (or other lists) or dictionaries.

Slicing a Series can be done

» Numerically, scalar or slice
» Using index labels, scalar or slice of these as well

55/73

DataFrames

Main data structure in pandas

.head(), .tail() (or .tail(n)), .info(), .dtypes()
.describe() to get a simple summary

Columns have names, and can be changed or reordered
Series can be accessed using

» Dictionary style syntax - df[’series_name’]
> Attribute syntax df . series_name

- Only Dictionary if name has spaces (avoid this)

Series can be added to DataFrames

» Dictionary style adding a series - left join
» pd.concat performs an outer join using tuple of series input

Multiple series extracted with dictionary-syntax and list of column
names

» Also how columns are re-ordered

More DataFrame

= |ndices can be subseted or supersetted using reindex
= Removing rows or columns with NaNs: dropna
= Rows extracted using
» . ix[slice]
= Extracting rows and columns
» ix[slice, columns]
» Pure numeric ix[:2, : 27]or mixed labels
= Selection comes with same caveats with scalar selection vs slice
selection (or arrays)
= Extracting rows: xs which is a function (xs())
= Deleting columns or rows

> del
> pop
» drop(rows, axis=1)

57/73

More DataFrames

Underlying NumPy with .values
Get or set index using . index
Construction from arrays or lists of lists
» Keyword arguments: index, columns
» Can also set later (correct number of elements)
Also can construct from dict of series
.copy() to copy
Logical indexing works on rows
.drop to remove rows
» Can also slice rows to keep

Sorting
» sort_index
» sort()
- Keyword arguments: inplace
pivot transforms flat data to be converted to more meaningful
array

Multiple Indices

= Can construct indices composed of multiple items

» Example country and year

= Use ix[outerIindex] or xs(outerIndex)

= xs(innerindex, level=1) to access inner index

= Direct access to specific elements with ix[outer, inner]
= swaplevel to alter order for easier access

= sortlevel to sort a specific level

= Can fill or drop missing values

» .fillna, .££ill, .bfill
» .interpolate
» .dropna

Newton-Cotes Quadrature

= SeeJudd 1998, Ch. 6-7

= Integrals are the limits of sums, so sums can be used to approximate
integrals

= Newton-Cotes , .
[fedes > o)
a i=1

= Midpoint Rule
» Simple Version

/abf(x)dxz (b—a)f(b;a)

» Composite Version
b _ n _
/ fx)dx ~ (b " 9 Zf(x,-) where x; = a+ (j — 1/2) (b - 9)
a 1-:1

Better Approximations

= Trapezoid Rule
» Simple Version

b bh—
| s 2 [ra+f)]
» Composite Version

/f dx~(2f X1)+Zf)(k> wherex,—a+1(—a)

= Simpson’s Rule, based on piecewise quadratic
» Simple Version

[rrmars(532) o (557) 0]

» Composite Version

/ fx dx~ (L) [f(x,»)+4f (X”lT-H(’) +f(x,»+1} wherex,—a-H(—a)

Problems

Compute values for
1. f(x) = x3, where x is [0, 1], with n = 100.
2. f(x) = 1/x, where x is [1, 100] with n = 1000
3. f(x) = x where x is [0, 5000] with n = 5,000, 000.

Change of Variables

= Integrals can be modified to change the range of integration

t/gwdy / lb X)) ¢’ (x) dx

= Where
»y=¢((x)

Orthogonal Polynomials

Orthogonal polynomial are useful for approximating
non-polynomial functions

Polynomials are orthogonal if

b
(f.8) = / g WX dr =0

with respect to a weighting function w (x)
A family {¢n (x)} is mutually orthogonal if

(Qir@j) =0Vi#]j

Can also be orthonormal if

(@i 0i) =1

ETNIITES

Family w(x) [a,b] Definition
Legendre 1 [-1,1] Py (x) = (Z_nln),n g—;,, [(1 7)(2)"]
Chebyshev (1—x)~"2 [—1,1] Ty (x) = cos (ncos™! x)
2\ — 2
Gen. Chebyshev (1 ~ (Z5e2)) [a,b] T, (25et)
Laguerre exp (—x) [0, 0] Ly (x) = % ﬁ% (x" exp (—x))
Hermite exp (—x?) [—o00,00] Hn(x)=(—1)"exp (x?) % (exp (—x?))

Recusions

Legendre, Py(x)=1, Pi(x) =x

2n+1 n
Py (x)= mxpn (x) — mpn—l (x)

Chebyshev, To(x)=1, T1 (x) =x

Toi1 () = 2XT (%) — Tp1 (%)

Laguerre, Lo(x)=1, Li(x)=1—x

1 n
Lpy1 (%) = n+i (2n+1-x)Ly(x) — an—l x)

Hermite, Hy (x) = 1, Hy (x) = 2x

Hyi1 (X) = 2xHp (x) — 2nHp 1 (X)

Gaussian Quadrature

= Gaussian quadrature is similar but solves a related problem
b n
[feownde~ Y wif o)
a i=1

= The weighting function defines different classes

= Have the property that if n nodes are used, and if f is a polynomial
in x of degree 2n — 1, then the integral is exact

» Newton-Cotes are generally not exact in most non-trivial cases

Guass-Chebyshev Quadrature

/_llf(x) (1-#) "o T gf(xi)

where x; = cos (2’2;171), i=1,...,nare nodes

= Change of variables to get
b b—a (!, [(x+1)(b-a) (l—xz)l/2
/a fydy= 9 /_1f<2 +a (l—xz)l/zdx

» Linearrx=—-1+2(y—a)/ (b—a)

Guass-Chebyshev Quadrature

= So that

b bh— n
/ f(y)dy%ﬂ(Zna)

i=1

f <(x,- + 1)2(b —a) N a) (1 B xiz)l/z

where x; are the Gauss-Chebyshev nodes nodes on [—1, 1].

= Compute the integral of x* for a € {0.5,1},a € {0.2,1} and
b e {2,5} forne {3,6,15}

Guass-Legendre Quadrature

= Similar to Gauss-Chebysheyv, only using Gauss-Legedre nodes and
weights

» Legendre orthogonal polynomials

= After change of variables
b b—a % +1) (b —a)
| Fmdy~ 25 D

» w; and x; are the G-L weights and nodes on [—1, 1].
» Note: G-C uses w; = (1 — x;)~ "

= Guass-Legendge has a smaller error than Gauss-Chebyshev in most
cases

Guass-Legendre Nodes and Weights

= Interested in n nodes, which are the roots of the nth order Legendre
polynomial

= Polynomials can be constructed using Py (x) =1, P; (x) = x

2n+1
Ppi(x)= n + Pp (x) — 71Pn 1(x)
= Derivatives are also recursive
+1
Pr(x)= 71 (XPn (X) — Pp_q (x))

Guass-Legendre Nodes and Weights

= Roots are not analytical, but can use

X1 = X — i

j— 1
Xoj = cos | m—4
n+ 2
for the jth root

= Weights can be computed from root using

to iterate starting from

2
(1) [Ph)]

Wi =

Topics Next Term

= Random Number Generation

= Statistical Distributions and Related Quantities
= Plotting

= Non-linear Optimization

= Working with Dates and Times

= Using pandas to Manage Data

= Performance Considerations

= Using Classes to manage Complex Code

73/73

