brief_tutorial

September 16, 2014

This IPython notebook is a direct translation of Chapter 1 of

D. J. Higham and N.J. Higham.

MATLAB Guide, Second edition,

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2005, ISBN 0-89871-578-4

with MATLAB code converted to equivalent Python/Numpy (and IPython/Matplotlib/Scipy) code.
There are a small number of additions in the text to address Python/Numpy/IPython differences and
additions. You can find out more about IPython and the IPython Notebook here and in reference [2]. All
the errors here are, of course, mine. I hope you find it useful.

Don MacMillen: don (sometimes) at macmillen dot net

1 Chapter 1 A Brief Tutorial

The best way to learn Python/Numpy is by trying it yourself, and hence we begin with a whirlwind tour.
Working through the examples below will give you a feel for the way that Python/Numpy operates and an
appreciation of its power and [U+FB02]exibility.

The tutorial is entirely independent of the rest of the book—all the Python/Numpy features introduced
are discussed in greater detail in the subsequent chapters. Indeed, in order to keep this chapter brief, we
have not explained all the functions used here. You can use the index in [1] to [U+FB0O1]lnd out more about
particular topics that interest you.

We will be using the IPython interactive shell as well as the IPython notebook (which is what you are
reading now) throughout this tutorial. You can install these by following the directions at IPython install.
This tutorial contains commands for you to type at the IPython command line. Alternatively, if you are
viewing this notebook in a “live” mode served from a local IPython notebook server, you can directly modify
any of the cells and rerun the cell. Just be aware that in some cases you may need to choose the “Run All”
option from the cell drop down menu to satisfy intercell dependences.

In the last part of this brief tutorial we give examples of script files and functions. These [U+FB01]les
are short, so you can type them in quickly or cut and paste them into an IPython shell (using the %cpaste
magic), or you can just modify values in place in the IPython notebook and re-evaluate the cell. You should
experiment as you proceed, keeping the following points in mind.

e Upper and lower case characters are not equivalent (Python/Numpy are case sensitive).

e Typing the name of a variable will cause IPython to display its current value.

e Python/Numpy uses parentheses, (), square brackets, [], and curly braces, { }, and these are not
interchangeable.

e In the IPython shell, the up arrow and down arrow keys can be used to scroll through your previous
commands. Also, an old command can be recalled by typing the first few characters followed by up
arrow. You can also use ctrl-p (type p while holding the control key down) to scroll back through the
command history stack.

e You can type help(topic) to access online help on the command, function, or object topic. Note that
hyperlinks, indicated by underlines, are provided that will take you to related help items and the Help
browser.

http://ipython.org/
http://www.ec-securehost.com/SIAM/ot92.html
http://ipython.org/
http://ipython.org/install.html

e If you press the tab key after partially typing a function or variable name, IPython will attempt to
complete it, offering you a selection of choices if there is more than one possible completion.
e You can quit IPython by typing exit or quit or ctrl-d twice.

Having entered the IPython command, you should work through this tutorial by typing in the text that
appears after the IPython prompt, ‘In [n]:" where n is a number which indicates the command’s location
in the command stack, in the command window. After showing you what to type, we display the output
that is produced. We begin with arrays. In native Python arrays are lists denoted with the square bracket
syntax. However, we want Numpy arrays, so first you import the numpy module and shorten the prefix to
“np” (this is a common usage convention)

In [2]: Ymatplotlib inline
import numpy as np
a = np.array([1, 2, 3])
a

Out[2]: array([1, 2, 31)

)

If you type in the three lines listed in the box ‘In[1]:
result listed in ‘Out[1]:’

This example sets up a 3 element array, which is also called a vector. In some other languages, a
distinction is made between a row vector and a column vector, but that is not the case in Numpy. If you
define a new vector ¢

above into the IPython shell, then you will see the

In [3]: = np.array([4, 5, 6])

c
c
Out[3]: array([4, 5, 6])

Now you can multiply the arrays a and c:
In [4]: ax*c
Out[4]: array([4, 10, 18])

Here, you performed an element by element mulitpy of the two vectors, not the scalar or dot product
that some other languages would have done. Notice that in this example, the product a*c was not explicitly
assigned to any variable. When there is no explicit assignment, IPython automatically assigns the result of
the expression to the variable named ‘.’ (underscore) as you can see by the following:

In [5]: _

Out[5]: array([4, 10, 18])

If you wanted to get the dot product of the two vectors, use the dot function from numpy, as in the
following

In [6]: np.dot(a, c)
Qut[6]: 32

Inputs to Python functions are speci [U+FBO1] ed after the function name and within parentheses, as you
just saw above with the ‘dot’ function from the numpy module. You may also form the outer product of the
two vectors by calling another function from numpy

In [7]: A = np.outer(c, a)
A

Out [7]: array([[4, 8, 12],
[5, 10, 15],
[6, 12, 18]11)

Here the answer is a 3-by-3 array that has been assigned to A.
The product a * a, since the **’ operation is element-wise, is equivalent to squaring a, which uses the
operator

kko

In [8]: a * a
Out[8]: array([1, 4, 91)

In [9]: b = a **x 2
b

Out[9]: array([1, 4, 9])

Arithmetic operations on matrices and vectors come in two distinct forms. Array sense operations are
de [U+FBO1]ned to act elementwise and, as mentioned before, are the default behavior of Numpy.

Matrix sense operations are based on the normal rules of linear algebra and are obtained with either
matrix objects, or calling the specific matrix function from numpy. For matrix objects, the usual symbols
+a) *'

In [10]: am = np.matrix(a)
cm = np.matrix(c)
am * cm.T

Out[10]: matrix([[32]1)

Notice that you had to take the transpose of ¢ in order to make it into a column vector. For numpy
matrix objects, there is a difference between row and column vectors. Also, matrix object can only have one
or two dimensions. For instance, the numpy function ‘ones’ takes a tuple and returns a numpy array of that
dimensionality. The following will give us a 3 by 3 by 3 array of ones.

In [11]: g = np.ones((3, 3, 3))

g
Out[11]: array([[[1., 1., 1.1,
(1., 1., 1.1,
(1., 1., 1.11,
(tc:, 1., 1.1,
, 1., 1.7,

(1., 1., 1.1,
[1., 1., 1.1,
1., 1., 1.11D

If you try to turn this into a matrix object, you will get an error

In [12]: #h = np.matriz(g)
print "Error has a problemjQuery203048471758025698364_14097306944597"

Error has a problemjQuery203048471758025698364_14097306944597

Here you see how errors are displayed in Python. You see the call stack from the top to the bottom and
the error message that is finally displayed.

Numpy has many mathematical functions that operate on arrays element wise when given an array
argument. For example,

In [13]: np.exp(a)

Out[13]: array([2.71828183, 7.3890561 , 20.08553692])
In [14]: np.log()

Out[14]: array([1., 2., 3.1)

In [15]: np.sqrt(a)

Out[15]: array([1. , 1.41421356, 1.73205081])

By default, Numpy displays [U+FB02]oating point numbers to 8 decimal digits, but always stores num-
bers and computes to the equivalent of 16 decimal digits. The output format can be changed using the
set_printoptions function

In [16]: np.set_printoptions(precision=4)
print (np.sqrt(a))

[1. 1.4142 1.7321]
You can find out much more about the function set_printoptions by using IPython’s help command
In [17]: help(np.set_printoptions)

Help on function set_printoptions in module numpy.core.arrayprint:

set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=]
Set printing options.

These options determine the way floating point numbers, arrays and
other NumPy objects are displayed.

Parameters
precision : int, optiomnal
Number of digits of precision for floating point output (default 8).
threshold : int, optional
Total number of array elements which trigger summarization
rather than full repr (default 1000).
edgeitems : int, optiomal
Number of array items in summary at beginning and end of
each dimension (default 3).
linewidth : int, optional
The number of characters per line for the purpose of inserting
line breaks (default 75).
suppress : bool, optional
Whether or not suppress printing of small floating point values
using scientific notation (default False).
nanstr : str, optional
String representation of floating point not-a-number (default nan).
infstr : str, optional

String representation of floating point infinity (default inf).
formatter : dict of callables, optional

If not None, the keys should indicate the type(s) that the respective

formatting function applies to. Callables should return a string.

Types that are not specified (by their corresponding keys) are handled

by the default formatters. Individual types for which a formatter

can be set are::

- ’bool’

- ’int’

- ’timedelta’ : a ‘numpy.timedelta64‘

- ’datetime’ : a ‘numpy.datetime64°

- ’float’

- ’longfloat’ : 128-bit floats

- ’complexfloat’

- ’longcomplexfloat’ : composed of two 128-bit floats

- ’numpy_str’ : types ‘numpy.string_ ¢ and ‘numpy.unicode_°
- ’str’ : all other strings

Other keys that can be used to set a group of types at once are::

- ’all’ : sets all types

- ’int kind’ : sets ’int’

- ’float_kind’ : sets ’float’ and ’longfloat’

- ’complex kind’ : sets ’complexfloat’ and ’longcomplexfloat’
- ’str_kind’ : sets ’str’ and ’numpystr’

See Also

‘formatter‘ is always reset with a call to ‘set_printoptions‘.

Examples

Floating point precision can be set:

>>> np.set_printoptions(precision=4)
>>> print np.array([1.123456789])
[1.1235]

Long arrays can be summarised:

>>> np.set_printoptions(threshold=5)
>>> print np.arange(10)

[012 ..., 789]

Small results can be suppressed:
>>> eps = np.finfo(float).eps

>>> x = np.arange(4.)
>>> x*k*2 - (x + eps)**2

array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)

>>> xkx2 - (x + eps)**2

array([-0., -0., 0., 0.1)

A custom formatter can be used to display array elements as desired:

>>> np.set_printoptions(formatter={’all’:lambda x: ’int: ’+str(-x)})
>>> x = np.arange(3)

>>> x

array([int: O, int: -1, int: -2])

>>> np.set_printoptions() # formatter gets reset

>>> x

array ([0, 1, 2])

To put back the default options, you can use:

>>> np.set_printoptions(edgeitems=3,infstr="inf’,
. linewidth=75, nanstr=’nan’, precision=8,
. suppress=False, threshold=1000, formatter=None)

You set precision back to 8 to get the default behavior

In [18]: np.set_printoptions(precision=8)
np.sqrt(a)

Out[18]: array([1. , 1.41421356, 1.73205081])

Large or small numbers are displayed in exponential notation, with a power of 10 scale factor preceded
by e:

In [19]: 2 *x -24
Out[19]: 5.960464477539063e-08
Various data analysis functions are also available.
In [20]: b.sum()
Out [20]: 14
In [21]: c.mean()
Out[21]: 5.0

Here you see an example of the object oriented nature of Numpy. All Numpy arrays are of type “ndarray”
and have many methods associated with them. You can list them all by using a ‘dir’ command in IPython,
use the following

In [22]: dir(a)

Out[22]: ['T’,
’__abs__’,
’__add__’,
> _and_’ s
’__array__’,
’__array_finalize__’,

’__array_interface__’,
’__array_prepare__’,
’__array_priority__’,
’__array._struct__’,
’__array._wrap-_’,
’__class__’,
’__contains__’,

) 77C0Py77’ s
’__deepcopy--’,
’__delattr__’,

’__delitem__’,
’__delslice__’,

’_div__’,
’__divmod__’,
’__doc__’,

) 77eq77: s
’__float__’,
’__floordiv__’,
’__format__’,

) 77g6777 s

’__getattribute__’,
’__getitem__’,
’__getslice__’,

) 77gt77’ s
’__hash__’,
’__hex__’,
’__jadd__’,
’__diand__’,
’_ddiv__’,
’__ifloordiv__’,
’__ilshift__’,
’__imod__’,
?_dimul__’,
’__index__’,
’_dinit__’,

’_int__?,
’__invert__’,
’__dior__’,

’__ipow__’,
’__drshift__’,
’__isub__’,
’__iter__’,
’__itruediv__’,
’__ixor__’,

) e ? s
’__len__’,
’_long__’,
’_1shift_ 7,
’_ 1t >’ s
’_mod__’,
’_mul__’,
’_ne__’,
’,Jleg,,’ s

’_new__’,

’__nonzero__’,

’__oct__?,
:770r777’

) 77p03771 s
) ,,pOW,,’ s

’__radd__’,
’__rand__’,
’__rdiv__’,
’__rdivmod__’,
’__reduce__’,
’__reduce_ex__’,
’_repr__’,
’_rfloordiv__’,
’_rlshift__’,
’__rmod__’,
J__rmul__’,
’_ror__’,
’__rpow__’,
’_rrshift__’,
’__rshift__’,
’__rsub__’,
’__rtruediv__’,
’__rxor__’,
’__setattr__’,
’__setitem__’,
’__setslice__’,
’__setstate__’,

’__sizeof__’,
’_str__’,
’__sub__’,

’__subclasshook__’,
’__truediv__’,
’_xor__’,
’all’,

:anya’
’argmax’,
’argmin’,
’argpartition’
’argsort’,
’astype’,
’base’,
’byteswap’,
’choose’,
’clip’,
’compress’,
’conj’,
’conjugate’,
’Copy’,
’ctypes’,
’cumprod’,
’cumsum’ ,
’data’,
’diagonal’,
’dot’,

’dtype’,
’dump’ s
’dumps’,
f£ill’,
’flags’,
’flat’,
’flatten’,
‘getfield’,
’imag’,
’item’,
’itemset’,
’itemsize’,
‘max’,
‘mean’,
‘’min’,
’nbytes’,
’ndim’,
’newbyteorder’,
’nonzero’,
’partition’,
’prod’,
thpa,
’put’ s
’ravel’,
‘real’,
’repeat’,
’reshape’,
‘resize’,
’round’,
’searchsorted’,
’setfield’,
’setflags’,
’shape’,
’size’,
’sort’,
’squeeze’,
’std’,
’strides’,
’sum’,
’swapaxes’,
‘take’,
’tofile’,
’tolist’,
’tostring’,
’trace’,
’transpose’,
’var’,
‘view’]

To find out more about any of these methods, use the help command
In [23]: help(a.argmax)

Help on built-in function argmax:

argmax(...)
a.argmax (axis=None, out=None)

Return indices of the maximum values along the given axis.
Refer to ‘numpy.argmax‘ for full documentation.

See Also

numpy.argmax : equivalent function
In [24]: np.pi
Out[24]: 3.141592653589793
In [25]: _
Out [25]: 3.141592653589793

In [26]: y = np.tan(np.pi/6)

y
y
Out[26]: 0.57735026918962573

“won

The Variable np.pi is a permanent Variable with value w. The variable “.” always contains the most
recent unassigned expression, as described earlier, so after the assignment to y, “_” still holds the Value 7.
You may set up a two dimensional array by concatenating columns using the np.c_|] array notation

In [27]: B = np.c_[[-3, 2, -11, [0, 5, 41, [-1, -7, 8]]

B
Out[27]: array([[-3, 0, -11,
(2, 5, -71,
-1, 4, 81D

At the heart of Numpy is a powerful range of linear algebra functions. For example, recalling that c is a
3-by-1 Vector, you may wish to solve the linear system B * 2 = c¢. This can be done with the solve function
from the numpy.linalg module

In [28]: import numpy.linalg as nl
x = nl.solve(B, c)
X

Out [28]: array([-1.29953917, 1.37788018, -0.10138249])
In [29]: nl.norm(np.dot(B,x) - ¢) / (nl.norm(B) * nl.norm(x))
Out [29]: 3.6020385703775424e-17

Some times we see a 0 here, but we usually expect to see something nonzero because of rounding errors.
The eigenvalues of B can be found using eig from the numpy.linalg module

In [30]: np.set_printoptions(precision=5) # make it the m*lab default

w, _ = nl.eig(B)
W
Out [30]: array([-3.13605+0.j , 6.56803+5.10454j, 6.56803-5.10454j])

10

Notice two things about this code snippet. First, nl.eig returns two values, w are the eigenvalues and v
would be the eigenvectors. Since in this instance we did not want the eigenvectors we set it to the underscore
¢, which is a common idiom in Python. Finally, the solution shows the j is the imaginary unit, v/—1. To
get the eigenvectors you can do the calculation again

In [31]: w, v = nl.eig(B)

v
Out[31]: array([[-0.98290+0. , 0.03854+0.03928j, 0.03854-0.039283],
[0.12656+0.] , 0.80053+0.] , 0.80053-0. j 1,
[-0.13372+0. , —0.16831-0.57254j, -0.16831+0.57254j11)

The columns of v are the eigenvectors of B.
To get vectors of evenly spaced values, use the np.arange function

In [32]: v = np.arange(6)

v
v
Out[32]: array([O, 1, 2, 3, 4, 5])

Note that the default starting value is zero. Also, as noted earlier, all Numpy arrays start at index zero

and end at index n - 1 for an array of size n.
Nonunit increments can be specified by a third number, often called the ‘stride’.

In [33]: w = np.arange(2, 10, 3)

W
W
Out[33]: array([2, 5, 8])

In [34]: y = np.arange(1l, 0, -0.25)
y

Out[34]: array([1. , 0.75, 0.5, 0.25])

This last example illustrates a peculiarity of Python and numpy, that the ending value or index is actually
one position short of what you might expect. In the previous example, to have the array actually increment
down to zero, you have to specify an end value that is strictly less than 0 (but greater than -(0.25 + delta)
). Here we just use -0.001.

In [35]: y = np.arange(l, -0.001, -0.25)
y

Out[35]: array([1. , 0.75, 0.5, 0.25, 0. 1)

You may construct big matrices out of little ones by using the numpy functions hstack and vstack and
the previously mentioned c_[| and r_[] notations

In [36]: C = np.c_[A, [8, 9, 10]]
C

Qut[36]: array([[4, 8, 12, 8],
[5’ 10’ 15, 9] b
[6, 12, 18, 10]11)

In [37]: D = np.r_[B, B, B]
D

11

Out [37]: array([[-3, O, -1],
[2, 5, -7],
-1, 4, s8],
[-3, o0, -11,
[2, 5, -71,
-1, 4, 8],
[-3, o0, -1],
(2, 5, -7],
-1, 4, 81D

In [38]: E = np.vstack((B, B, a))

E

Out[38]: array([[-3, 0, -11,
[2, 5, -7],
-1, 4, 81,
[-3, o0, -1],
[2, 5, -71,
[-1, 4, 8],
[1, 2, 31D

Notice well that np.vstack takes a single argument that is a tuple of arrays. That way you can stack as
many arrays as needed with a single call to vstack or just use the r_[| notation.

The element in row i and column j of the matrix C (where i and j always start at 0) can be accessed as
cfi, j]
In [39]: C[1, 2]
Out[39]: 15

More generically, C[i1:12, j1:j2] picks out the submatrix formed by the intersection of rows il to i2-1 and
columns j1 to j2-1. This type of operation on arrays is generally called slicing.

In [40]: C[1:3, 0:2]

Out [40]: array([[5, 10],
[6, 1211)

You can build certain types of matrices automatically. For example, identities and matrices of zeros and
ones can be constructed with eye, zeros, and ones:

In [41]: I3 = np.eye(3)

13
Out[41]: array([[1., O0., 0.1,
(o., 1., 0.1,
0., 0., 1.11)
In [42]: Y = np.zeros((3,5))
Y
Out[42]: array([[0., ©O0., 0., 0., 0.1,
[o., 0., 0., 0., 0.1,
[o0., 0., 0., 0., 0.1D

In [43]:

12

Out[43]: array([[1., 1.1,
(1., 1.1D

Note that these functions take a single argument which is a tuple (except for np.eye, which has a different
interface). The first argument of the tuple speci[U+FBO1]es the size of the first dimension of the array and
SO on.

The methods rand and randm on an object returned from numpy.random.RandomState() do not take
tuples. They are convenience functions that have a similar interface to another math envirionment. These
two methods generate random entries from the uniform distribution over [0,1] and the normal (0,1) (ie zero
mean with unit variance) distribution, respectively.

Note that it is always good for you to intialize a new instance of RandomState when using random
numbers. This ensures that the random stream is for you alone, and you can reset the seed to make the
sequence repeatable. Here we set the starting seed to 20.

In [44]: rn = np.random.RandomState() # initialize a new RandomState object
rn.seed(20)
F = rn.rand(3, 3)
F

Out[44]: array([[0.58813, 0.89771, 0.89153],
[0.81584, 0.03589, 0.69176],
[0.37868, 0.51851, 0.65795]])

In [45]: G = rn.randn(1, 5)
G

Out [45]: array([[-0.62064, -0.83453, 0.91636, 0.70784, 0.41968]1])

At this point several variables have been created in the workspace. You can obtain a list with the %who
command, where the % indicates an IPython ‘magic’ command.

In [46]: %who

A B C D E F G I3 Y
Z a am b c cm g nl np
rn v W X

The %whos magic will additionally give the types and some additional information

In [47]: Ywhos

Variable Type Data/Info

A ndarray 3Lx3L: 9 elems, type ‘int32‘, 36 bytes

B ndarray 3Lx3L: 9 elems, type ‘int32°, 36 bytes

C ndarray 3Lx4L: 12 elems, type ‘int32‘, 48 bytes
D ndarray 9Lx3L: 27 elems, type ‘int32‘, 108 bytes
E ndarray 7Lx3L: 21 elems, type ‘int32°, 84 bytes
F ndarray 3Lx3L: 9 elems, type ‘float64‘, 72 bytes
G ndarray 1Lx5L: 5 elems, type ‘float64‘, 40 bytes
I3 ndarray 3Lx3L: 9 elems, type ‘float64‘, 72 bytes
Y ndarray 3Lx5L: 15 elems, type ‘float64‘, 120 bytes
Z ndarray 2Lx2L: 4 elems, type ‘float64‘, 32 bytes
a ndarray 3L: 3 elems, type ‘int32¢, 12 bytes

am matrix [([1 2 3]]

b ndarray 3L: 3 elems, type ‘int32¢, 12 bytes

13

c ndarray 3L: 3 elems, type ‘int32°¢, 12 bytes

cm matrix [[4 5 6]]
g ndarray 3Lx3Lx3L: 27 elems, type ‘float64‘, 216 bytes
nl module <module ’numpy.linalg’ fr<...>mpy\linalg_ _init__.pyc’>
np module <module ’numpy’ from ’C:\<...>ages\numpy__init__.pyc’>
rn RandomState <mtrand.RandomState object at 0x0000000003563978>
v ndarray 6L: 6 elems, type ‘int32°, 24 bytes
W ndarray 3L: 3 elems, type ‘int32°¢, 12 bytes
X ndarray 3L: 3 elems, type ‘float64‘, 24 bytes
y ndarray BL: 5 elems, type ‘float64‘, 40 bytes
Like most languages Python has loop contructs. The following example uses a for loop to evaluate the
continued fraction ! N
1+ 1
1+ 1
1+ 1
1+ 1
1+ 1
1+ 1
1+ 1
1+ —
1+ 1

which approximates the golden ratio, (1 4+ v/5)/2. The evaluation is done from the bottom up:

In [48]: g = 2.
for k in range(10):
g=1+1/g
g

Out [48]: 1.6180555555555556

Many constants can be found in the scipy submodule constants. You can access them in the following
way

In [49]: import scipy.constants as sconst
sconst.golden

Out [49]: 1.618033988749895

Loops involving the while statement can be found later in this tutorial.

The plot function from the matplotlib module pylab produce two dimensional pictures. You can assess
these ploting and graphics functions by importing this module. It is a common practice to rename it to plt,
as in the following example.

In [50]: #import mpld3
#mpld3.enable_notebook ()
import matplotlib.pylab as plt
t = np.arange(0, 1.005, 0.005)
z = np.exp(10 * t * (t - 1)) * np.sin(12 * np.pi * t)
plt.plot(t, z)
plt.title("Figure 1.2. Basic 2D picture produced by plt.plot")

Out [50]: <matplotlib.text.Text at 0x6446dd8>

14

Figure 1.2. Basic 2D picture produced by plt.plot

0.8

Here, plt.plot(t, z) joins the points tl[i], z[i] using the default solid linetype. Matplotlib opens a figure
window in which the picture is displayed. In this IPython notebook, the matplotlib figures are included ‘in
line’ since the notebook was invoked with the “ipython notebook —pylab=inline” (the —pylab=inline option
will be deprecated in the 3.0 notebook in favor of the %matplotlib inline cell magic) command. When
you are using IPython as a command line interpreter, after opening a plot figure window, you can close it
in the normal way, ie by clicking on the x in the window title bar.

You can produce a histogram with the function plt.hist

In [51]: plt.hist(np.random.randn(1000))
plt.title("Figure 1.3. Histogram produced by plt.hist.")

Out[51]: <matplotlib.text.Text at 0x66687b8>

15

200 Figure 1.3. Histogram produced by plt.hist.

250

200

150

100

Here, hist is given 1000 points from the normal (0, 1) random number generator
You are now ready for more challenging computations. A random Fibonacci sequency {x,} is generated
by choosing x; and x5 and setting

Tptl = Tn T Tp_1, 1> 2

Here, the + indicates that + and - must have equal probability of being chosen. Viswanath [121] listed
in [1] analyzed this recurrence and showed that, with probability 1, for large n the quantity |x,| increases
like a multiple of ¢”, where ¢ = 1.13198824... (see also [25]). You can test Viswanath’s result as follows:

In [52]:

hreset -f
import numpy as np
import pylab as plt
rd = np.random.RandomState ()
rd.seed(100)
x = np.zeros(1000)
x[0:2] =1, 2
for n in range(1l, 999):
x[n + 1] = x[n] + np.sign(rd.rand(1) - 0.5) * x[n - 1]

xx = np.arange(l, 1001)

plt.semilogy(xx, np.abs(x))

c = 1.13198824

plt.hold(True)

plt.semilogy(xx, c ** xx)

plt.title("Figure 1.4. Growth of a random Fibonacci sequence")
plt.hold(False)

16

Figure 1.4. Growth of a random Fibonacci sequence

10%°
10%* +
10%7
10°° +
1D32‘ u
10°% +
10°
10°° +
10 +
10
10°
10° +
10°

0 200 400 c00 800 1000

Here, %reset -f removed all variables and imported modules from the workspace, which is why we needed
to import numpy and pylab again. The for loop stores a random Fibonacci sequence in the array x; we pre-
allocate x to the size needed and initial to zero using the np.zeros() function. The plt.semilogy function then
plots n on the x-axis against | X | on the y-axis, with logarithmic scaling for the y-axis. Typing np.hold(True)
tells matplotlib to superimpose the next picture on top of the current one. The second semilogy plot produces
a line of slope c. The overall picture, shown in Figure 1.4, is consistent with Viswanath’s theory.

We can make the above code into a command by writing it out to a file. If you cut and paste it into a
file called fib.py, you can then run it in IPython by typing “run fib” or “run fib.py” to reproduce the above
graph.

However, you can experiment directly in this IPython notebook by changing any of the values and then
hitting the ‘play’ button above.

Our next example involved the Collatz iteration, which, given a positive integer x1, has the form zy; =
f(xg), where

f(x){ 3z4+1 :2%2==0

x/2 cx%2==1
Here x % y is the modulus function of x and y, sometimes also written as mod(x, y). It is the remainder
of x when divided by y. In this case x % 2 == 0, if true, means that x is even and if x % 2 == 1 is true, then

x is odd. Note that these are perfectly good Python functions

In [53]: x =3
if x % 2 ==
print (°x is even’)
else:
print (°x is odd’)

X is odd
But now returning to our quest, the equation above in words means: if x is odd, replace it by 3z + 1, and

if = is even, halve it. It has been conjectured that this iteration will always lead to a value of 1 (and hence

17

thereafter cycle between 4, 2, and 1) whatever starting value x; is chosen. There is ample computational
evidence to support this conjecture, which is variously known as the Collatz problem, the 3z +1 problem, the
Syracuse problem, Kakutani’s problem, Hasse’s algorithm, and Ulam’s problem. However, a rigorous proof
has so far eluded mathematicians. For further details, see [63] listed in [1] or type “Collatz problem” into
your favorite Web search engine. You can investigate the conjecture by creating the python script [U+FB01]le
collatz.py shown below. In this file a while loop and an if statement are used to implement the iteration.
You can run this in the notebook simply by changing the value of n and hitting the play button. Or, you
can save this to a file named collatz.py (remembering to uncommment out the line ’#n = int(raw_input. ..”
and commenting out the line “n = 27”. Then, from the [Python shell prompt, type “run collatz”. The input
command prompts you for a starting value. The appropriate response is to type an integer and then hit
return.

In [54]: #COLLATZ Collatz iteration.

#n = int (raw_input (’Enter an integer bigger than 2: °))
init_n = n = 27

narray = np.zeros(1000) # only a mazimum of 1000 titerations
narray[0] = n

count = 0

while n != 1:
if n % 2 ==1: # Remainder modulo 2.
n=33*xn+1
else:
n=n/2

count += 1
narray[count] = n # Store the current iterate

Plot with * marker and soltd line style.

Only plot the non zero entries in narray

plt.plot(narray[narray != 0], ’*-’)

plt.title(’Figure 1.5. Collatz iteration starting at %d’ % init_n)

Out [54]: <matplotlib.text.Text at 0x646£630>

18

A couple of things you should note about the code above. This first is that it will fail if the number of
iterations goes beyond 1000. For most of the inputs I have tried, it ‘converged’ in under 200 iterations. But
you should try to break it! The second thing to note is that we only want to plot the non zero values. All
the zero values at the end of the array add no new information and we want to drop them. That is easily
accomplished by using the narray[narray != 0] syntax which selects only the non-zero values out of narray.

To investigate the Collatz problem further, the script collbar in the next listing plots a bar graph of the
number of iterations required to reach the value 1, for starting Values 1,2,. .
Figure 1.6. For this picture, the function plt.grid adds grid lines that extend from the axis tick marks, while

10000

Figure 1.5. Collatz iteration starting at 27

8000

6000 |

4000 |

3
i)

™

™

2000

plt.title, plt.xlabel, and plt.ylabel add further information.

In [55]:

#COLLBAR Collatz tteration bar graph.

N = 29 # Use starting values 1,2,...,N.
niter = np.zeros(N); # Preallocate array.
for i in range(N):

count = 0
n=1++1
while n != 1:
ifnY 2 ==1:
n=3%*xn+1
else:
n=n/2

count += 1
niter[i] = count

left = np.arange(29)
plt.bar(left, niter) # Bar graph.
plt.grid()

80 100

Add horizontal and vertical grid lines.

plt.title(’Figure 1.6. Collatz iteration counts’)

19

120

. ,29. The result is shown in

plt.xlabel(’Starting value’) # Label X-azis.
plt.ylabel (’Number of iterations’) #Label y-azis.

Out [65]: <matplotlib.text.Text at 0x64af8d0>

120 Figure 1.6. Collatz iteration counts

100

Mumber of iterations

0 5 10 15 20 25 a0
Starting value

The Well-known and much studied Mandelbrot set can be approximated graphically in just a few lines
of Python/Numpy. It is de[U+FBO1]lned as the set of points ¢ in the complex plane for which the sequence
generated by the map z — 22 +c¢, starting with z = ¢, remains bounded [91, Chap. 14] listed in [1]. The script
mandel in the next listing produces the plot of the Mandelbrot set shown in Figure 1.7. The script contains
calls to np.linspace of the form np.linspace (a, b ,n), which generate an equally spaced vector of n values
between a and b. The meshgrid and complex functions are used to construct a matrix C that represents the
rectangular region of interest in the complex plane. The plot itself is produced by plt.contourf, which plots
a [U+FBO1]lled contour. The expression abs(Z) < Z_mazx in the call to contourf detects points that have
not exceeded the threshold Z_max and that are therefore assumed to lie in the Mandelbrot set; the double
function is applied in order to convert the resulting logical array to numeric form. You can experiment with
mandel by changing the region that is plotted, via the linspace calls, the number of iterations it_max, and
the threshold Z_max. Also note that on some runs we may see a RuntimeWarning printed becase we have
an overflow on z. This can be silenced with a context manager but we will wait to introduce detailed control
of errors and warnings.

In [56]: #MANDEL Mandelbrot set.
x = np.linspace(-2.1, 0.6, 301)
y = np.linspace(-1.1, 1.1, 301)
[X,Y] = np.meshgrid(x, y)
C=X+1j %Y

Z_max = le6

20

it_max = 50
Z=2C

for k in range(it_max):
Z=2Z%k2+C

plt.contourf(x, y, np.float64(np.abs(Z) < Z_max))
plt.title("Figure 1.7 Mandelbrot Set")

-c:13: RuntimeWarning: overflow encountered in square
-c:13: RuntimeWarning: invalid value encountered in square
-c:15: RuntimeWarning: invalid value encountered in less

Out [66] : <matplotlib.text.Text at 0x65011d0>

Figure 1.7 Mandelbrot Set

Next we solve the ordinary differential equation (ODE) system

d/dt y1(t) = 10(y2(t) — y1 (1)),

d/dt ya(t) = 28y1(t) — y2(t) — y1(t)ys(t),

d/dt ys(t) = y1(t)y2(t) — 8ys(t)/3.

This is an example from the Lorenz equations family; see [H1] listed in [1]. We take initial conditions
y(0) = [0, 1, 0] and solve over 0 < ¢ < 50. The next listing, titled Lorentz, is an example of a Python
function. Given t and y, this function returns the right-hand side of the ODE as the vector yprime. This is
the form required by Scipy’s ODE solving functions. The rest of the listing uses the scipy function odeint to
solve the ODE numerically and then produces the (y1, y3) phase plane plot shown in Figure 1.8. You can
try different values of the constants defining the derivatives to see what happens. For instance, change the
3 to an 8 in lorenzde and observe how the plot changes

21

In [57]: import scipy.integrate as si

def lorenzde(y, t):
’?’LORENZDE Lorenz equations.
YPRIME = LORENZDE(Y,T)
yprime = np.array([10. * (y[1] - y[0]), 28. * y[0] - y[1] - y[0] =* y[2],
y[01 * y[1] - 8. x y[2] / 3.1)

return yprime
#lrun ODE solving example: Lortez.

t = np.arange(0, 50.01, .01) # time points on which to solve
yzero = np.array([0., 1., 0.1)

print (len(yzero))

y = si.odeint(lorenzde, yzero, t)

plt.plot(y[:, 01, y[:, 21)
plt.xlabel(’y_0)

plt.ylabel(’y_2’)

plt.title(’Figure 1.8 Lorenz equations’)

3

Out [57]: <matplotlib.text.Text at 0x7d3c278>

- Figure 1.8 Lorenz eguations

10

Now we give an example of a recursive function, that is, a function that calls itself. The Sierpinski gasket
[90, Sec. 2.2] listed in [1] is based on the following process. Given a triangle with vertices P,, Py, and P., We

22

remove the triangle with vertices at the midpoints of the edges, (P, + P)/2, (Py + P.)/2, and (P. + P,)/2.
This removes the “middle quarter” of the triangle, as illustrated in Figure 1.9. (The code in the function
‘gasket’ will be explained below)

In [68]: def gasket(pa, pb, pc, level):

220

GASKET Recursively generated Sierpinski gasket.

GASKET(PA, PB, PC, LEVEL) generates an approzimation to

the Sierpinskt gasket, where the 2-vectors PA, PB, and PC Z define the triangle vertices.

LEVEL s the level of recursion.

220

if level ==
Fill the triangle with wvertices Pa, Pb, Pc.
plt.£fill([pal0], pb[0], pcl01]l, [palill, pbli1l, pcl1l]l, ’g’)
plt.hold(True)

else:
Recursive calls for the three subtriangles.
gasket(pa, (pa + pb) / 2., (pa + pc) / 2., level - 1)
gasket(pb, (pb + pa) / 2., (pb + pc) / 2., level - 1)
gasket(pc, (pc + pa) / 2., (pc + pb) / 2., level - 1)

pa = np.array([0, 0])

pb = np.array([1, 0])

pc = np.array([0.5, np.sqrt(3)/2.1)

level = 1

gasket(pa, pb, pc, level)

plt.hold(False)

plt.title("Figure 1.9 Gasket level = 1")
plt.axis(’equal’)

Out[58]: (0.0, 1.0, 0.0, 0.90000000000000002)

0.9 Figure 1.9 Gasket level = 1

0.8
0.7
0.6
05
0.4
0.3
0.2

01

0.0

23

Effectively, we have replaced the original triangle with three “subtriangles”. We can now apply the
middle quarter removal process to each of these subtriangles to generate nine subsubtriangles, and so on.
The Sierpinski gasket is the set of all points that are never removed by repeated application of this process.
The function gasket in the listing above implements the removal process. The input arguments P_a, P_b,
and P_c de[U+FB01]ne the vertices of the triangle and level speci[U+FB01]es how many times the process
is to be applied. If level is nonzero then gasket calls itself three times with level reduced by 1, once for
each of the three subtriangles. When level [U+FBO1]nally reaches zero, the recursion ‘bottoms-out’ and the
appropriate triangle is drawn. The following code generates Figure 1.10.

In [59]: level = 5
gasket(pa, pb, pc, level)
plt.hold(False)
plt.title("Figure 1.10 Gasket level = 5")
plt.axis(’equal’)

Out[59]: (0.0, 1.0, 0.0, 0.90000000000000002)

0.9 Figure 1.10 Gasket level =5

0.8
0.7
0.6
0.5
04
03
0.2

01

0.0

0.4 0.6 0.8

(Figure 1.9 was generated in the same way with level = 1.) In the last line, the call to axis makes the units
of the z— and ylaxes equal and turns off the axes and their labels. You should experiment with different
initial Vertices P,, P,, and P,, and diiferent levels of recursion, but keep in mind that setting level bigger
than 8 may overstretch either your patience or your computer’s resources.

The Sierpinski gasket can also be generated by playing Barnsley’s “chaos game” [90, Sec. 1.3] listed in
[1]. We choose one of the vertices of a triangle as a starting point. Then we pick one of the three vertices
at random, take the midpoint of the line joining this vertex with the starting point and plot this new point.
Then we take the midpoint of the line joining this point and a randomly chosen vertex as the next point,
which is plotted, and the process continues. The script barnsley in Listing 1.8 implements the game. Figure
1.11 shows the result of choosing 1000 iterations:

24

In [60]: #BARNSLEY Barnsley’s game to compute Sierpinskt gasket.

rd = np.random.RandomState() # Initialize a new RandomState object
rd.seed (1) # and (re)set the seed

V = np.c_[[0, 0], [1, 0], [0.5, np.sqrt(3)/2]] # Columns give triangle vertices.
point = V[:, 0] # Start at a Vertez.

n = 1000 # Change this number to experiment

for k in range(n):
node = int(np.ceil(3 * np.random.rand()) - 1) # node is 0, 1, or 2 with equal prob.
point = (V[:, node] + point)/2;
plt.plot(point[0], point[1], ".", markersize=15)
plt.hold(True)

plt.axis(’equal’)
plt.hold(False)

0.9

0.8

0.7

0.6

0.5

04

03

0.2

01

0.0

Try experimenting with the number of points, n, the type and size of marker in the plot command, and
the location of the starting point.

We [U+FBO1]nish with the listing of sweep, which generates a volume—swept three—dimensional (3D)
object; see Figure 1.12. Here, the command surf (X,Y,Z) creates a 3D surface where the height Z[i, j] is
speci [U+FBO1]ed at the point (X[i, j] ,Y[i, j]) in the x-y plane. The script is not written in the most obvious
fashion, which would use two nested for loops. Instead it is vectorized. To understand how it works you
will need to be familiar with Chapter 5 and 21.4 of reference [1]. You can experiment with the script by
changing the parameter N and the function that determines the variable radius: try replacing sqrt by other
functions, such as log, sin, or abs.

In [61]: # SWEEP Generates a volume-swept 3D object.
import numpy as np

25

import matplotlib.pylab as pld

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter

fig = plt.figure()
ax = fig.gca(projection=’3d’)

n = 10 # Number of increments - try increasing

zz = np.linspace(-5, 5, n).reshape(n, 1)

radius = np.sqrt(l + zz **x 2) # Try changing sqrt to cos, sin, log or abs
theta = 2 * np.pi * np.linspace(0, 1, n)

x = radius * np.cos(theta)

y = radius * np.sin(theta)

zz[:, n * [0]] # Tony’s trick! Who ts Tony? No tdea.

Z

surf = ax.plot_surface(x, y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=.2, antialiased=True)

fig.colorbar(surf, shrink=0.5, aspect=5)

plt.title(’Figure 1.12 3D picture produced by sweep’)

Out[61]: <matplotlib.text.Text at 0xf667e48>

Figure 1.12 3D picture produced by sweep

]‘ B
! 4
4 3
2 2
L |] 1
0
-1
-2
-3
-4

In [62]: cd
C:\Users\Elias

[1] D. J. Higham and N. J. Higham.
MATLAB Guide, Second edition,

26

http://www.ec-securehost.com/SIAM/ot92.html

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2005, ISBN 0-89871-578-4

[2] Fernando Pérez, Brian E. Granger, IPython: A System for Interactive Scientific Com-
puting, Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL: http://ipython.org

27

