
scientific-python-lectures (/github/jrjohansson/scientific-python-lectures/tree/master) /
Lecture-0-Scientific-Computing-with-Python.ipynb (/github/jrjohansson/scientific-python-
lectures/tree/master/Lecture-0-Scientific-Computing-with-Python.ipynb) /

Introduction to scientific computing with
Python ¶
J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ (http://dml.riken.jp/~rob/)

The latest version of this IPython notebook (http://ipython.org/notebook.html) lecture is
available at http://github.com/jrjohansson/scientific-python-lectures
(http://github.com/jrjohansson/scientific-python-lectures).

The other notebooks in this lecture series are indexed at http://jrjohansson.github.com
(http://jrjohansson.github.com).

The role of computing in science
Science has traditionally been divided into experimental and theoretical disciplines, but during
the last several decades computing has emerged as a very important part of science. Scientific
computing is often closely related to theory, but it also has many characteristics in common
with experimental work. It is therefore often viewed as a new third branch of science. In most
fields of science, computational work is an important complement to both experiments and
theory, and nowadays a vast majority of both experimental and theoretical papers involve
some numerical calculations, simulations or computer modeling.

In experimental and theoretical sciences there are well established codes of conducts for how
results and methods are published and made available to other scientists. For example, in
theoretical sciences, derivations, proofs and other results are published in full detail, or made
available upon request. Likewise, in experimental sciences, the methods used and the results

http://nbviewer.ipython.org/github/jrjohansson/scientific-python-lectures/tree/master
http://nbviewer.ipython.org/github/jrjohansson/scientific-python-lectures/tree/master/Lecture-0-Scientific-Computing-with-Python.ipynb
http://dml.riken.jp/~rob/
http://ipython.org/notebook.html
http://github.com/jrjohansson/scientific-python-lectures
http://jrjohansson.github.com/

are published, and all experimental data should be available upon request. It is considered
unscientific to withhold crucial details in a theoretical proof or experimental method, that would
hinder other scientists from replicating and reproducing the results.

In computational sciences there are not yet any well established guidelines for how source
code and generated data should be handled. For example, it is relatively rare that source code
used in simulations for published papers are provided to readers, in contrast to the open nature
of experimental and theoretical work. And it is not uncommon that source code for simulation
software is withheld and considered a competitive advantage (or unnecessary to publish).

However, this issue has recently started to attract increasing attention, and a number of
editorials in high-profile journals have called for increased openness in computational sciences.
Some prestigious journals, including Science, have even started to demand of authors to
provide the source code for simulation software used in publications to readers upon request.

Discussions are also ongoing on how to facilitate distribution of scientific software, for example
as supplementary materials to scientific papers.

References

Reproducible Research in Computational Science
(http://dx.doi.org/10.1126/science.1213847), Roger D. Peng, Science 334, 1226
(2011).

Shining Light into Black Boxes (http://dx.doi.org/10.1126/science.1218263), A. Morin
et al., Science 336, 159-160 (2012).

The case for open computer programs (http://dx.doi.org/doi:10.1038/nature10836),
D.C. Ince, Nature 482, 485 (2012).

Requirements on scientific computing
Replication and reproducibility are two of the cornerstones in the scientific method. With
respect to numerical work, complying with these concepts have the following practical
implications:

Replication: An author of a scientific paper that involves numerical calculations should
be able to rerun the simulations and replicate the results upon request. Other scientist
should also be able to perform the same calculations and obtain the same results,
given the information about the methods used in a publication.

Reproducibility: The results obtained from numerical simulations should be
reproducible with an independent implementation of the method, or using a different
method altogether.

In summary: A sound scientific result should be reproducible, and a sound scientific study
should be replicable.

To achieve these goals, we need to:

http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1218263
http://dx.doi.org/doi:10.1038/nature10836

Keep and take note of exactly which source code and version that was used to
produce data and figures in published papers.

Record information of which version of external software that was used. Keep access
to the environment that was used.

Make sure that old codes and notes are backed up and kept for future reference.

Be ready to give additional information about the methods used, and perhaps also the
simulation codes, to an interested reader who requests it (even years after the paper
was published!).

Ideally codes should be published online, to make it easier for other scientists
interested in the codes to access it.

Tools for managing source code

Ensuring replicability and reprodicibility of scientific simulations is a complicated problem, but
there are good tools to help with this:

Revision Control System (RCS) software.

Good choices include:
git - http://git-scm.com (http://git-scm.com)
mercurial - http://mercurial.selenic.com
(http://mercurial.selenic.com). Also known as hg.
subversion - http://subversion.apache.org
(http://subversion.apache.org). Also known as svn.

Online repositories for source code. Available as both private and public repositories.

Some good alternatives are
Github - http://www.github.com (http://www.github.com)
Bitbucket - http://www.bitbucket.com (http://www.bitbucket.com)
Privately hosted repositories on the university's or department's
servers.

Note

Repositories are also excellent for version controlling manuscripts, figures, thesis files, data
files, lab logs, etc. Basically for any digital content that must be preserved and is frequently
updated. Again, both public and private repositories are readily available. They are also
excellent collaboration tools!

What is Python?
Python (http://www.python.org/) is a modern, general-purpose, object-oriented, high-level
programming language.

General characteristics of Python:

http://git-scm.com/
http://mercurial.selenic.com/
http://subversion.apache.org/
http://www.github.com/
http://www.bitbucket.com/
http://www.python.org/

clean and simple language: Easy-to-read and intuitive code, easy-to-learn
minimalistic syntax, maintainability scales well with size of projects.
expressive language: Fewer lines of code, fewer bugs, easier to maintain.

Technical details:

dynamically typed: No need to define the type of variables, function arguments or
return types.
automatic memory management: No need to explicitly allocate and deallocate
memory for variables and data arrays. No memory leak bugs.
interpreted: No need to compile the code. The Python interpreter reads and executes
the python code directly.

Advantages:

The main advantage is ease of programming, minimizing the time required to develop,
debug and maintain the code.
Well designed language that encourage many good programming practices:

Modular and object-oriented programming, good system for packaging and
re-use of code. This often results in more transparent, maintainable and bug-
free code.
Documentation tightly integrated with the code.

A large standard library, and a large collection of add-on packages.

Disadvantages:

Since Python is an interpreted and dynamically typed programming language, the
execution of python code can be slow compared to compiled statically typed
programming languages, such as C and Fortran.
Somewhat decentralized, with different environment, packages and documentation
spread out at different places. Can make it harder to get started.

What makes python suitable for scientific computing?

Python has a strong position in scientific computing:

Large community of users, easy to find help and documentation.
Extensive ecosystem of scientific libraries and environments

numpy: http://numpy.scipy.org (http://numpy.scipy.org) - Numerical Python
scipy: http://www.scipy.org (http://www.scipy.org) - Scientific Python
matplotlib: http://www.matplotlib.org (http://www.matplotlib.org) - graphics
library

Great performance due to close integration with time-tested and highly optimized
codes written in C and Fortran:

blas, altas blas, lapack, arpack, Intel MKL, ...
Good support for

Parallel processing with processes and threads
Interprocess communication (MPI)
GPU computing (OpenCL and CUDA)

Readily available and suitable for use on high-performance computing clusters.

No license costs, no unnecessary use of research budget.

The scientific python software stack

Python environments

Python is not only a programming language, but often also refers to the standard
implementation of the interpreter (technically referred to as CPython
(http://en.wikipedia.org/wiki/CPython)) that actually runs the python code on a computer.

http://numpy.scipy.org/
http://www.scipy.org/
http://www.matplotlib.org/
http://en.wikipedia.org/wiki/CPython

There are also many different environments through which the python interpreter can be used.
Each environment have different advantages and is suitable for different workflows. One
strength of python is that it versatile and can be used in complementary ways, but it can be
confusing for beginners so we will start with a brief survey of python environments that are
useful for scientific computing.

Python interpreter

The standard way to use the Python programming language is to use the Python interpreter to
run python code. The python interpreter is a program that read and execute the python code in
files passed to it as arguments. At the command prompt, the command python is used to
invoke the Python interpreter.

For example, to run a file my-program.py that contains python code from the command
prompt, use::

$ python my-program.py

We can also start the interpreter by simply typing python at the command line, and
interactively type python code into the interpreter.

This is often how we want to work when developing scientific applications, or when doing small
calculations. But the standard python interpreter is not very convenient for this kind of work,
due to a number of limitations.

IPython

IPython

IPython is an interactive shell that addresses the limitation of the standard python interpreter,
and it is a work-horse for scientific use of python. It provides an interactive prompt to the
python interpreter with a greatly improved user-friendliness.

Some of the many useful features of IPython includes:

Command history, which can be browsed with the up and down arrows on the
keyboard.
Tab auto-completion.
In-line editing of code.
Object introspection, and automatic extract of documentation strings from python
objects like classes and functions.
Good interaction with operating system shell.
Support for multiple parallel back-end processes, that can run on computing clusters
or cloud services like Amazon EE2.

IPython notebook

IPython notebook (http://ipython.org/notebook.html) is an HTML-based notebook environment
for Python, similar to Mathematica or Maple. It is based on the IPython shell, but provides a
cell-based environment with great interactivity, where calculations can be organized
documented in a structured way.

http://ipython.org/notebook.html

Although using the a web browser as graphical interface, IPython notebooks are usually run
locally, from the same computer that run the browser. To start a new IPython notebook
session, run the following command:

$ ipython notebook

from a directory where you want the notebooks to be stored. This will open a new browser
window (or a new tab in an existing window) with an index page where existing notebooks are
shown and from which new notebooks can be created.

Spyder

Spyder (http://code.google.com/p/spyderlib/) is a MATLAB-like IDE for scientific computing with
python. It has the many advantages of a traditional IDE environment, for example that
everything from code editing, execution and debugging is carried out in a single environment,
and work on different calculations can be organized as projects in the IDE environment.

http://code.google.com/p/spyderlib/

Some advantages of Spyder:

Powerful code editor, with syntax high-lighting, dynamic code introspection and
integration with the python debugger.
Variable explorer, IPython command prompt.
Integrated documentation and help.

Versions of Python
There are currently two versions of python: Python 2 and Python 3. Python 3 will eventually
supercede Python 2, but it is not backward-compatible with Python 2. A lot of existing python
code and packages has been written for Python 2, and it is still the most wide-spread version.
For these lectures either version will be fine, but it is probably easier to stick with Python 2 for
now, because it is more readily available via prebuilt packages and binary installers.

To see which version of Python you have, run

$ python --version
 Python 2.7.3
 $ python3.2 --version
Python 3.2.3

Several versions of Python can be installed in parallel, as shown above.

Installation

Linux

In Ubuntu Linux, to installing python and all the requirements run:

$ sudo apt-get install python ipython ipython-notebook
 $ sudo apt-get install python-numpy python-scipy python-matplotli
b python-sympy
$ sudo apt-get install spyder

MacOS X

Macports

Python is included by default in Mac OS X, but for our purposes it will be useful to install a new
python environment using Macports (http://www.macports.org/), because it makes it much
easier to install all the required additional packages. Using Macports, we can install what we
need with:

$ sudo port install py27-ipython +pyside+notebook+parallel+scientific
 $ sudo port install py27-scipy py27-matplotlib py27-sympy
$ sudo port install py27-spyder

These will associate the commands python and ipython with the versions installed via
macports (instead of the one that is shipped with Mac OS X), run the following commands:

$ sudo port select python python27
 $ sudo port select ipython ipython27

Fink

Or, alternatively, you can use the Fink (http://www.finkproject.org/) package manager. After
installing Fink, use the following command to install python and the packages that we need:

$ sudo fink install python27 ipython-py27 numpy-py27 matplotlib-py27
scipy-py27 sympy-py27
 $ sudo fink install spyder-mac-py27

Windows

Windows lacks a good packaging system, so the easiest way to setup a Python environment is
to install a pre-packaged distribution. Some good alternatives are:

Enthought Python Distribution (http://www.enthought.com/products/epd.php). EPD is
a commercial product but is available free for academic use.
Anaconda CE (http://continuum.io/downloads.html). Anaconda Pro is a commercial
product, but Anaconda Community Edition is free.
Python(x,y) (http://code.google.com/p/pythonxy/). Fully open source.

Note

EPD and Anaconda CE are also available for Linux and Max OS X.

http://www.macports.org/
http://www.finkproject.org/
http://www.enthought.com/products/epd.php
http://continuum.io/downloads.html
http://code.google.com/p/pythonxy/

Further reading
Python (http://www.python.org). The official Python web site.
Python tutorials (http://docs.python.org/2/tutorial). The official Python tutorials.
Think Python (http://www.greenteapress.com/thinkpython). A free book on Python.

Python and module versions
Since there are several different versions of Python and each Python package has its own
release cycle and version number (for example scipy, numpy, matplotlib, etc., which we
installed above and will discuss in detail in the following lectures), it is important for the
reproducibility of an IPython notebook to record the versions of all these different software
packages. If this is done properly it will be easy to reproduce the environment that was used to
run a notebook, but if not it can be hard to know what was used to produce the results in a
notebook.

To encourage the practice of recording Python and module versions in notebooks, I've created
a simple IPython extension that produces a table with versions numbers of selected software
components. I believe that it is a good practice to include this kind of table in every notebook
you create.

To install this IPython extension, run:

In [1]: # you only need to do this once
%install_ext http://raw.github.com/jrjohansson/version_information/master/v
ersion_information.py

Now, to load the extension and produce the version table

In [2]: %load_ext version_information

%version_information numpy, scipy, matplotlib, sympy

Installed version_information.py. To use it, type:
 %load_ext version_information

Out[2]: Software Version

Python
2.7.5 (default, May 19 2013, 13:26:46) [GCC 4.2.1 Compatible Apple Clang 4.1
((tags/Apple/clang-421.11.66))]

IPython 0.13.2

OS posix [darwin]

numpy 1.7.1

scipy 0.12.0

matplotlib 1.2.1

http://www.python.org/
http://docs.python.org/2/tutorial
http://www.greenteapress.com/thinkpython

sympy 0.7.2

Thu Aug 08 11:18:41 2013 JST

