Social Networks
Shiflet/Shiflet
30

Getting the "Edge" on the Next Flu Pandemic:

We Should'a "Node" Better

By Angela B. Shiflet and George W. Shiflet

Wofford College, Spartanburg, South Carolina
1.
Scientific Question

Introduction
Charlie Bates is a college sophomore, who wakes up this morning feeling really bad.  He assumes that it is just a “hangover.”  He had a pretty wild night of drinking at his fraternity’s welcome back party that traditionally begins the spring semester. His head is pounding, and he is exhausted.


Charlie feels that he can sleep this one off, so he decides to cut his 9 o’clock economics class.   He resets his alarm and rolls over.  Four hours later he is distressed to find that he has also slept through his 11:00 government class.  Even more disturbing is that he feels even worse.  He has never had a sore throat from a hangover, and he is feeling very achy.  So, he gets up, dresses, and stumbles over to the campus infirmary.  The nurse finds that he has a temperature of 102.5(F.  She thinks he has the flu.  


Every year we hear the warnings from public health officials to get our flu shots.  Some of us comply, but many of us do not.  In fact, the CDC reported that less than 40% of the U.S. population was vaccinated during the 2008-2009 flu season (CDC 2009). Influenza can attack any age, race, or sex.  It not only makes us feel miserable, it costs millions of days of lost productivity at school or at work.  Although the highest rates of infection are in children, the most severe, even life-threatening effects are on those over the age of 65. 


So, why don’t we get the shot?  Well, it may be a result of “flu myths.”  Some of these misconceptions are (NFID "Myths" and "Rates" 2008):  

· Flu is not a serious disease.  


Flu is not the common cold, which also can certainly make you miserable.  CDC estimates that the flu is the cause of an average of 36,000 deaths and hundreds of thousands of hospitalizations per year in the U.S (CDC 2009).  

· The vaccination is not necessary.  


Because the influenza virus is so genetically pliable, it changes from year to year.  A vaccination received one year will offer you little to no protection from the influenza virus the next year.  

· You can get the flu from the shot.   


Not likely.  The vaccine is made from inactivated or killed viruses.  The worst side effect you may obtain from a flu shot is a sore arm.  However, if you are allergic to eggs, you should not get a flu shot.  


Public health organizations worldwide are trying to find ways of effectively blunting the inevitable epidemics/pandemics of this disease.  As part of their efforts, officials are using the results of computational science models, which employ computer science and mathematics along with the science, to make informed decisions on how to combat the menace.

The Problem
Computational scientists model the spread of disease in a number of ways.  System dynamics models consider the changing sizes of complex interrelated systems, such as susceptibles, infecteds, and recovereds, as time progresses.  Cellular automaton simulations model reality with one-, two-, or three-dimensional grids that change with time. A grid site has a state, such as susceptible, infected, or recovered.  Rules, such as an infected person recovers in five days, regulate the behavior of the system.  The results of cellular automaton simulations are challenging to verify, and system dynamics models do not provide some of the specificity that would be helpful in making public health decisions in the face of an epidemic.  As (Bisset 2009) writes, "these modeling approaches were limited in their ability to capture the complexity of human interaction that underlies disease transmission." Individual-based (or network-based) epidemiology simulations that track the simulated behavior of individuals in a community provide such specificity and are easier to verify, but they incorporate massive amounts of data that require extensive effort to gather and need massive computing power to process.

To help meet this challenge, scientists at Los Alamos National Laboratory have developed the Epidemiology System EpiSims "for simulating the spread of epidemics at the level of individuals in a large urban region, taking into account realistic contact patterns and disease transmission characteristics" (LANL 2009).  Employing transformation information, census data, and activities surveys from a sample of about 2000 people, researchers have generated hypothetical data that model the movements and demographics of Portland, Oregon.  With EpiSims, they can study a number of important issues:  The efficacy of prevention measures, such as vaccinating particular segments of the population; the value of early detection measures, such as placing fever sensors at high traffic buildings; the effectiveness of public health interventions, such closing schools; and fundamental questions, such as patterns of the spread of disease.


Individual-based epidemiology simulations can estimate some of the following metrics: 

· a smallest set of locations (minimum dominating set) that a given proportion of the population visits


Such information can be helpful in determining sites for fever sensors or in closing of particular public buildings during an epidemic.

· the distribution of the number of contacts people have with other people (degree distribution)

Targeted vaccination of individuals who have many contacts can offer significantly better results than vaccinating people at random (Mason and Verwoerd 2007).

· the probability that two contacts of a randomly chosen person have contact with one another (clustering coefficient) (Newman et al. 2002)


A large probability indicates that a disease can spread rapidly through a community.

· the average smallest number of contacts for a disease to spread from one arbitrary individual to another (mean shortest path length)


A small mean also indicates the probable rapid spread of a disease.

2.
Computational Models

Graphs
The area of mathematics called graph theory has numerous applications in biology. For example, we can produce a graph that represents the contacts between people to predict the spread of a disease and to analyze health care interventions.  By a graph we do not mean a graph of a function, such as f(x) = x2, but rather a set of nodes with undirected or directed edges connecting some of the points, as illustrated in Figure 1.  In that contact network or social network, which is a type of graph, the nodes represent people or groups of people, such as members of a household that can become infected, and places, where the disease can spread from an infected person to a susceptible individual.  Numbers indicate the households, while the places are School, Hospital, Work, Shop, and Cloister.  Each edge represents an association that can lead to transmission of the disease.  For example, one or more individuals in Household 6 go to work, shop, and school, locations where they can contract or spread the disease.

Figure 1
Contact network of households and places

[image: image1.jpg]




An undirected graph G = (V, E) consists of a set V of vertices (singular, vertex) or nodes or points and a set E of edges or arcs connecting pairs of points.  In the graph of Figure 1, V = {1, 2, 3, 4, 5, 6, 7, School, Hospital, Work, Shop, Cloister}.  We denote an undirected edge e between nodes u and v as (u, v) or as (v, u). Here, (u, v) is not an ordered pair.  In the above figure, e = (6, Hospital) = (Hospital, 6) is an edge because there is contact between at least one member of Household 6 and people who are at the Hospital.  The size of the graph is its number of nodes, so the graph in Figure 1 has size 12.

Definitions
An undirected graph G = (V, E) consists of a set V of vertices (singular, vertex) or nodes or points and a set E of edges or arcs connecting pairs of points.  An undirected edge, e, between nodes u and v is denoted as the unordered pair (u, v) or (v, u).  The number of nodes in a graph is the size of the graph.

Quick Review Question 1
Referring to Figure 2, give

a.
the set of vertices, V, for the graph.

b.
two notations for the edge connecting 3 and 6.

c.
the graph's size.
Figure 2
Graph for Quick Review Question 1

[image: image2.jpg]




We need to know several terms to speak the language of graph theory. In Figure 1, points 6 and Hospital are adjacent because there is an edge, e, connecting them. We say that edge e, which can be written as (6, Hospital) or as (Hospital, 6), is incident to points 6 and Hospital.  Vertex Cloister is isolated, having degree 0 or no incident lines, while point 5 has degree 2 or is the endpoint of two edges. 

Definitions
Two vertices u and v of a graph are adjacent if there exists an edge (u, v) connecting them. An edge e is incident to vertex v if v is an endpoint of e. The degree of a vertex v, deg(v), is the number of times v is an endpoint of an edge.  If deg(v) = 0, then v is called an isolated point.

Quick Review Question 2
Referring to Figure 2, give

a.
the vertices adjacent to node 3.

b.
the edge(s) incident to node 1.
c.
the degree of node 3.
d.
the isolated point(s).

Much work on the structural properties of biological networks, such as social networks, has focused on the distribution of degrees.  If n is the number of nodes in a network and nk is the number of nodes of degree k, then the degree distribution is P(k) = nk/n, which is the proportion of nodes having degree k, for k = 0, 1, 2, ….  For example, in the Figure 1, which is a graph of size n = 12, one node (Cloister) has degree 0 and one node (Node 7) has degree 1, so P(0) = P(1) = 1/12.  With five nodes (Nodes 1, 2, 3, 4, and 5) having degree 2, five-twelfths of the nodes (P(2) = 5/12) are incident to two nodes.  

Studies of many other biological networks, such as the central metabolic networks of 43 organisms and protein interaction networks for various organisms, have degree distributions that appear to follow power laws.  A function f follows a power law if f(x) is proportional to xb for some constant b; that is, f(x) ( xb, or f(x) = cxb, for some constants c and b.   In the case of many biological networks, the degree distribution P(k) is proportional to k-r for some constant r.  Specifically for metabolic networks, P(k) ( k-r for 2 < r < 3, or P(k) = ck-r = 
[image: image3.wmf]  

c

k

r

 for 2 < r < 3 and some constant c.  A degree distribution following this power law implies that nodes with small degree are extremely common, while nodes with large degree are quite rare.  Figure 3 shows the graph of P(k) = k-2.5 with the typical broad-tail, or long stretched-out portion to the right, of such a power law form.  


Networks that follow the power law P(k) ( k-r with r > 1 are called scale-free networks.  Interestingly, the World Wide Web is a scale-free network.   In a scale-free network, most nodes have relatively low degree but a few nodes, called hubs, have high degrees.  Removal of hub nodes can easily result in the network being disconnected.  Thus, scale-free networks are particularly vulnerable to attack and failure at the hubs.  Biologists have suggested that in a genetic or protein network, a hub node, which is a gene or protein that participates in a large number of interactions, may be more significant for the survival of an organism than nodes that have small degrees (Mason and Verwoerd 2007).  In a social network that is scale-free, a hub location, which has numerous visitors each day, is a prime site for the spread of disease.

Definitions
A function f follows a power law if f(x) is proportional to xb for some constant b; that is, f(x) ( xb, or f(x) = cxb, for some constants c and b.  If n is the number of nodes in a graph and nk is the number of nodes of degree k, then the degree distribution is P(k) = nk/n, which is the proportion of nodes having degree k. Networks that follow the power law P(k) ( k-r with r > 1 are called scale-free networks.  Hubs are nodes with high degrees in scale-free networks.
Figure 3
Graph of P(k) = k-2.5
[image: image4.jpg]100

80





Paths


Paths through the contact network in Figure 1 can help illuminate the epidemiology of the disease.  Suppose initially someone in Household 1 has the disease.  One way for someone from Household 5 to contract the disease indirectly from 1 is by the path 1, Shop, 6, School, 5.  Someone from Household 1 goes shopping, infecting someone at the shop.  Likewise, an individual from Household 6 goes shopping and catches the disease.  That person or someone in Household 6 who becomes ill from contact with that individual goes to school, spreading the disease further.  An individual from Household 5 also attends the school and contracts the disease there.  With four edges along this path, we say the path length is 4. 

Definition
In a graph G, a path from vertex v0 to vn along edges e0 to en–1 is the sequence




v0, e0, v1, e1, . . . , vn–1, en–1, vn


where ei = (vi, vi+1) for i = 0, 1, . . . , n –1.  If no ambiguity exists, the path can be represented with just the vertices as the sequence v0, v1,. . . , vn or just the edges as the sequence e0, e1, . . . , en–1.  A path of n edges is said to be of length n. 

Quick Review Question 3
Give two paths of length 3 from node 2 to node 6 in Figure 2.


In general, for biological networks, such as protein, gene, or metabolic networks, the average length of a path between nodes is small in comparison to the size of the graph.  Thus, we say such networks exhibit the small world property.  Specifically, if such a graph has n nodes, by definition the average shortest path length is on the order of magnitude of log n or smaller.  For example, metabolic networks have between 200 and 500 metabolites (nodes), but the average path length is between 3 and 5.  Genetic networks contain about 1000 genes (nodes) and 4000 interactions (edges) with an average path length of 3.3.  Because average path length indicates how readily the network can communicate information, biological networks are efficient communicators.  For instance, a metabolic network needs few interactions for one metabolite to influence the behavior of another metabolite (Mason and Verwoerd 2007).  One of the projects considers an algorithm to calculate mean path length.
Definition
A graph with n nodes exhibits the small world property the average shortest path length is on the order of magnitude of log n or smaller.
Clustering

Figure 4 is a subgraph of Figure 1 because every node and every edge of Figure 4 is in Figure 1.  The subgraph of Figure 1 that includes every node and edge except Cloister is connected because there is a way to get from any point to any other point in that subgraph by following edges.  Thus, the disease has the potential of spreading to every node in the subgraph.  
Figure 4
One subgraph of Figure 1 

[image: image5.jpg]




Suppose Household 6 of that graph represents a family of two parents and three children in which every member of the family has contact with every other member.  Figure 5 illustrates the graph of this household, which is complete having every point (vertex or node) connected to every other point directly by exactly one edge.  An ill member of the household will expose everyone in the house.

Figure 5
Complete graph of a household with 5 individuals

[image: image6.jpg]



Definitions
S is a subgraph of graph G if S is itself a graph and every node and edge of S is in G. A graph is connected if there exists a path from any vertex to any other vertex. A graph is complete if each point is adjacent to every other point with exactly one edge between pairs of nodes.


In the graph of Figure 5, each of the five points has four incident edges connecting that node to the remaining nodes.  In other words, each node has degree 4.  Therefore the sum of the degrees of all the points is (5)(4) = 20.  Because in summing the degrees we count each edge twice, once for each endpoint, the number of edges in this complete graph is half the sum, (5)(4)/2 = 20/2 = 10.  In general, a complete graph with n points has n(n - 1)/2 edges.

Theorem
A complete graph with n nodes has n(n - 1)/2 edges.
Quick Review Question 4
Referring to Figure 2, give

a.
the edge sets of all connected subgraphs with V = {7, 8, 9}.

b.
the complete subgraph G = (V, E) of three points containing node 7.

c.
the edge(s) to add to have a complete subgraph with V = {2, 3, 4, 5}.
d.
the number of edges in the complete subgraph formed by this addition.


The concept of completeness is central to the calculation of clustering coefficients, a measure of how rapidly a disease can spread. The clustering coefficient for a vertex, v, is the probability that two nodes adjacent to v are themselves adjacent.  That is, the chance that two arbitrary edges incident to v are part of a triangle of edges in the graph is the clustering coefficient for v.  Thus, if A is the set of nodes adjacent to v, then the clustering coefficient is the quotient of the number of edges in the subgraph with points from A and the number of edges in a complete graph with that number of points.  If a node has degree zero or one, then its clustering coefficient is 0.  The clustering coefficient of v indicates of how close v and its adjacent nodes are to being a complete graph.  For example, Node 2 in Figure 2 is adjacent to 4 nodes, Nodes 1, 3, 4, and 5.  Three edges appear in the subgraph with these adjacent nodes.  However, a complete graph with four nodes has (4)(3)/2 = 6 edges.  Thus, the clustering coefficient for Node 2 is 3/6 = 0.5.  A 50% probability exists that two neighbors of Node 2 are themselves adjacent.  One research project calculated the clustering coefficient of people using the World Wide Web to be 0.1078; but with an edge connecting two actors if they were in a movie together, the clustering coefficient of movie actors is significantly higher, 0.79 (Eggemann and Noble 2008).  

Definition
Suppose A is the set of nodes adjacent to node v in graph G, and n(A) is the number of points in A.  The clustering coefficient for v, C(v), is the number of edges of G in the subgraph with points from A divided by the number of edges in a complete graph with n(A) nodes:




C(v) = 
[image: image7.wmf]  

number of edges of 

G

 in subgraph with set of nodes 

A

number of edges in complete graph with 

n

(

A

) nodes


Quick Review Question 5
Give the clustering coefficient for each of the following:

a.
Node 3 from Figure 2

b.
Node 7 from Figure 2

c.
Node 5 from Figure 1

d.
Node Cloister from Figure 1


Typically, small world networks not only have a small mean path length, but also have a large mean clustering coefficient.  With these characteristics, disease can spread rapidly in social networks.

Bipartite Graphs

Figure 6 shows a contact network of Wards A, B, and C in a psychiatric hospital with healthcare workers, indicated by numbers.  This bipartite graph has its vertices split into two sets, a set of wards and a set of workers, with edges only between vertices in different sets.  As another example, a metabolic network is a directed bipartite graph.  Its nodes are partitioned into the set of metabolites and the set of reactions catalyze by the metabolism's enzymes.

Figure 6
Bipartite contact network

[image: image8.jpg]



Definition
A bipartite graph is a graph with vertices partitioned into two sets, V1 and V2, where arcs are only between vertices in different sets.

Quick Review Question 6
Is Figure 1 a bipartite graph?  If not, explain why.  If so, give two sets of vertices, V1 and V2, where arcs are only between vertices in different sets.

3.
Algorithms

Matrix Representation of Graphs

For a graph to be manipulated in a computer, its structure must be stored in some convenient manner.  Often, we use one- and two-dimensional arrays or matrices to represent graphs.  Such arrays, depending on the representation, can specify such information as adjacent nodes, data stored at nodes or along edges, and existence of paths between nodes.


We will be using adjacency and connection matrices, which can store graphs where we are not interested in the values at the nodes but only in the graph itself. An associated vector can store nodal values.  Take for example the graph Figure 7.

Figure 7
Example graph
[image: image9.wmf]

In the adjacency matrix, A, the element in row i and column j, aij, indicates the number of edges between Node i and Node j, for i and j = 1, 2, 3, 4.  For instance, because two edges connect points 1 and 4 in Figure 7, elements a14 and a41 are both 2.  As the following matrix illustrates, the adjacency matrix for an undirected graph is symmetric about the diagonal, or the line of elements from the top left to the bottom right corners:

	
	
	1
	2
	3
	4

	
	

	1
	  
[image: image10.wmf]  

0

1

0

2

1

0

0

0

0

0

1

0

2

0

0

0

é 

ë 

ê 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

ú 




	2
	

	3
	

	4


	



A connection matrix, C, only indicates existence of an edge from one point to another, not the number of such edges.   As the following connection matrix for Figure 7 illustrates, if at least one edge exists between Node i and Node j, then the element in row i and column j, cij, is 1; while the value is 0 otherwise:

	
	
	1
	2
	3
	4

	
	

	1
	  
[image: image11.wmf]  

0

1

0

1

1

0

0

0

0

0

1

0

1

0

0

0

é 

ë 

ê 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

ú 




	2
	

	3
	

	4


	


Definitions
An adjacency matrix for a graph with n nodes is an n-by-n matrix, where the element in row i and column j indicates the number of edges between Node i and Node j.  A connection matrix for this graph is an n-by-n matrix, where the element in row i and column j is 1 if an edge exists between Node i and Node j and is 0 otherwise. The diagonal for an n-by-n matrix, M, is the set of elements {m11, m22, …, mnn}, which are in the line from the top left corner to the bottom right corner.
People-Location Graph

Suppose we have a file of activities of people in an area, where each record includes, among other data, an identification number for a person (personID) and an identification number for a location (locationID) that person visited during a day.  For example, suppose the file contains the following person-location pairs:

(7, 2938), (7, 27618), (7, 2938)

(8, 2938), (8, 6270), (8, 21032), (8, 2938), (8, 15370), (8, 2938), 

(9, 10628), (9, 29740), (9, 10628), 

(18, 2938), (18, 5212), (18, 2938), (18, 19815), (18, 2938))

Thus, the person with ID 7 started out at location with ID 2938, presumably a home; traveled to location 27618, perhaps work; and then returned home.  The person with ID 8, who lived in the same home (2938), probably did a couple of errands in the morning (to locations 6270 and 21032), returned home for lunch, and made another trip (to 15370) in the afternoon before returning home for dinner.  The activities file is likely to contain much more information, such as the times at each location, but we simplify the modeling by only considering people and locations.  The corresponding bipartite graph indicating connections is in Figure 8.  In this section, we develop a way of storing this information.

Figure 8
Bipartite graph of people and locations

[image: image12.wmf]

After reading the file information into an array of records, activities, we can employ functions, genPersonIDLst and genLocIDLst, to return the list of personID's and locationID's, respectively.  For the above activities, genPersonIDLst(activities) returns the list {7, 8, 9, 18}, while genLocIDLst(activities) returns the list of locations visited, {2938, 27618, 6270, 21032, 15370, 10628, 29740, 5212, 19815}.

genPersonIDLst(activities)


Function to return the list of IDs for people in array, activities, of activity records

genLocIDLst(activities)


Function to return the list of IDs for locations in list, activities, of activity records

A person's or a location's ID is different than its index, or position, in the list of people or locations, respectively.  For example, in locationIDLst above, the index of location ID 2938 is 1, while location ID 21032 has index 3.  To obtain an index, we define a function, index, with parameters of an element and a list to return the index of the element in the list. Thus, for the above example, index(21032, locationIDLst) returns 3; and for personIDLst = {7, 8, 9, 18}, index(8, personIDLst) returns 2.

index(el, lst)


Function to return the index of element el in list lst

We define function genPeopleLocConnMat to generate a type of connection matrix for the bipartite graph of people to locations they visit.  Each person corresponds to a row and each location to a column.  For example, the person with ID personIDLst(4) = 18 visited locations locationIDLst(1) = 2938, locationIDLst(8) = 5212, and locationIDLst(9) = 19815.  Thus, Row 4 of bipartite graph's adjacency matrix has ones in Columns 1, 8, and 9 and zeros elsewhere.  The entire matrix to represent the connections of this people-location graph appears in Figure 9.

Figure 9
Connection matrix for people-location graph in Figure 8, where each person corresponds to a row and each location to a column

	
	
	Location ID

	
	
	
	2938
	27618
	6270
	21032
	15370
	10628
	29740
	5212
	19815
	

	
	
	

	Person
ID
	7
	  
[image: image13.wmf]  

1

1

0

0

0

0

0

0

0

1

0

1

1

1

0

0

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

0

0

1

1

é 

ë 

ê 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

ú 




	
	8
	

	
	9
	

	
	18


	


genPeopleLocConnMat(personIDLst, locationIDLst, activities)


Function to return connection matrix for a people-location graph

Pre:


personIDLst is a list of IDs of people.


locationIDLst is a list of IDs of locations.


activities is a list of activities of people with each record including a person's ID and the ID of a location he or she visited.

Post:

The function has returned a connection matrix with each row corresponding to a person and each column corresponding to a location.

Algorithm:


numPersons ( length of personIDLst


numLocations ( length of locationIDLst

numActivities ( length of activities

connMat ( numPersons-by-numLocations matrix of zeros


for i going from 1 through numActivities do the following:
personID ( ID of person in activities(i)


locationID ( ID of location in activities(i)



row ( index(personID, personIDLst)



column ( index(locationID, locationIDLst)


connMat(row, column) ( 1


return connMat
Minimal Dominating Set

With a looming epidemic, public health might want quickly to place fever detectors or vaccination sites in a relatively small set of locations to which a high percentage of people travel. With realistic contact patterns from a community, determination of such a minimum dominating set is in the realm of graph theory and computer science.  


To compute a minimum dominating set, or a smallest set of locations that a given proportion of the population visits, we can use the FastGreedy Algorithm to obtain an approximation.  First, we arrange the locations in non-decreasing order of degrees in the people-location matrix.  For example, in Figure 8, because Location 2938 has the largest degree, 3, that place is first in any arrangement of degrees in non-decreasing order.  Because all other locations have degree 1, the remainder of the list can be in any order.  With the FastGreedy Algorithm, we keep selecting locations from largest degree down until a given population percentage has visited the set of selected locations (Eubank et al. 2004).  Thus, returning to Figure 8, if we want to "dominate" 75% or less of the people, which in this case is less than or equal to three people, we only need to select the first location, 2938, from our list.  FastGreedy is called a greedy algorithm because at each iteration the most advantageous near-term choice is picked.  

Definitions
A minimum dominating set for a people-locations graph is a smallest set of locations that a given proportion of the population visits.  A greedy algorithm is a method that picks the most advantageous near-term choice at each iteration.

For the design of the FastGreedy Algorithm, we break technique into several smaller functions.  First, we define a function, degLocation, to calculate the degree of a location index in the people-location graph.  For example, in the graph of Figure 8 with connection matrix, connMat, in Figure 9, location 2938 with index 1 has degree 3 because 3 people visit that location.  Thus, degLocation(connMat, 1) returns 3.

degLocation(connMat, j)

Function to return the degree of the location with a given index in a people-location graph

Pre:


j is the index of a location in connection matrix connMat for a people-location graph.

Post:



The function has returned the degree of the location with index j.
Algorithm:


Return the number of ones in column j of connMat.

We must sort the location degrees while continuing to associate the location index with its degree.  Thus, we form a list of ordered pairs of location indices and their degrees.  A function, sortSecond, sorts this list by its second coordinates.  Depending on the sorting algorithm, the function might return the following list for the graph in Figure 8:


{(1, 3), (9, 1), (8, 1), (7, 1), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1)}

The order of the first coordinates (location indices) is unimportant, but the order of the second coordinates (location degrees) must be non-increasing.

sortSecond(pairLst)

Function to return pairLst, a list of ordered pairs, sorted by the second coordinates

To determine coverage, we also have a function, adjacentPeopleLst, to return the list of indices for people adjacent to a particular location with a given index.  Thus, the function indicates the people who travel to a particular location.  For example, with connMat being the connection matrix in Figure 9 for the graph in Figure 8, adjacentPeopleLst(connMat, 1) returns the list {1, 2, 4} because people with ID's 7, 8, and 18 (with indices 1, 2, 4, respectively, in personIDLst) visit location 2938 (with index 1 in locationIDLst).

adjacentPeopleLst(connMat, j)

Function to return a list of the indices of people who visit the location with a given index in a people-location graph 

Pre:


j is the index of a location in connection matrix connMat for a people-location graph.

Post:



The function has returned a list of indices of people who visit the location with index j in a people-location graph with connection matrix connMat.
Algorithm:


Return a list of the row indices where ones occur in column j of connMat.

Using the FastGreedy Algorithm, we now define minDominating to send back a list of locations that "dominates" a given percentage of people; that is, the function returns a list of locations to which that percentage of people visits.  

minDominating(locationIDLst, connMat, percentPeople)


Function to return a dominating set for a proportion of the people in a people-location graph using the FastGreedy Algorithm
Pre:


locationIDLst is a list of locations in a people-location social network.


connMat is a connection matrix associate with the graph. 


percentPeople is a proportion of the people.

Post:

A dominating set has been returned.

Algorithm:


if percentPeople is not between 0 and 1, percentPeople ( 1


people ( empty list


locations ( empty list


locDegPairLst ( list of location indices (j = 1, 2, 3, …, number of columns in connMat) and associated degrees obtained by calling degLocation(connMat, j) for each j

sortedLocDegPairLst ( sortSecond(locDegPairLst)


locDegPair ( 1


percentLength ( percentPeople * (number of rows in connMat)

while (length of people) < percentLength


(locIndex, locDeg) ( sortedLocDegPairLst(locDegPair)



loc ( locationIDLst(locIndex)



locations ( locations with loc appended



people ( people ( adjacentPeopleLst(connMat, locIndex)



locDegPair ( locDegPair + 1


return locations

For example, with locationIDLst = {2938, 27618, 6270, 21032, 15370, 10628, 29740, 5212, 19815}, connMat being as in Figure 9, and percentPeople = 0.75 = 75%, minDominating(locationIDLst, connMat, percentPeople) returns {2938}; 3 out of 4 people go to the location with ID 2938.  With percentPeople = 1.0 = 100%, the function can return {2938, 5212, 19815, 29740}.  One hundred percent of the people go to these four locations.  Examining Figure 8, however, we note that smaller sets, such as {2938, 29740} and {2938, 10628}, dominate one hundred percent of the people.  The FastGreedy Algorithm, which is fast and greedy, provides a heuristic for determining a dominating set.  The algorithm yields a good approximation but not necessarily the best answer.  An even faster approximating algorithm exists, and in the projects we examine a slower greedy algorithm that does give a minimum dominating set.
Degree Distribution

For the distribution of the number of contacts people have with other people (degree distribution), we must first generate a connection matrix for a people-people graph associated with a social network, such as the people-location graph of Figure 8.  For simplicity, we ignore timing and assume two people are adjacent if they visited the same location in a day.  Thus, Figure 10 is the people-people graph corresponding to Figure 8, and the associated connection matrix is as in Figure 11.

Figure 10
People-people graph derived from social network in Figure 8

[image: image14.wmf]
Figure 11
Connection matrix of Figure 10

	
	
	Person ID

	
	
	
	7
	8
	9
	18

	
	
	

	Person
ID
	7
	  
[image: image15.wmf]  

0

1

0

1

1

0

0

1

0

0

0

0

1

1

0

0

é 

ë 

ê 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

ú 




	
	8
	

	
	9
	

	
	18


	



We define a function, peopleToPeople, to return the connection matrix (connPeopleMat) for a people-people graph.  Going through every column of the people-location connection matrix, connMat, we go down each column looking for ones.  For every 1, we look through the rest of the column for ones.  The people corresponding to these indices are adjacent.  For example, connMat of Figure 9 has 1 in element connMat(1, 1).  Because connMat(1, 2) is also 1, we define the 1-2 and 2-1 elements of connPeopleMat, connPeopleMat(1, 2) and connPeopleMat(2, 1), to be 1.  That is, people with indices 1 and 2 are adjacent.  Similarly, in the developing symmetric matrix, we assign 1 to connPeopleMat(1, 4) and connPeopleMat(4, 1).  Then, with 1 in the first column, second row of connMat and another 1 in the last row, we define connPeopleMat(2, 4) and connPeopleMat(4, 2) as 1. Because the matrix is symmetric, we have already indicated that people with indices 2 and 1 are adjacent.

peopleToPeople(connMat)


Function to return a connection matrix for the people-people graph associated with the people-location social network with a given connection matrix 

Pre:


connMat is a connection matrix for a people-location graph.

Post:


The function has returned a connection matrix for the corresponding people-people graph.

Algorithm:

maxPersonIndex (( number of rows of connMat

connPeopleMat ( maxPersonIndex-by-maxPersonIndex matrix of zeros


for locIndex going from 1 through the number of columns of connMat:



for i going from 1 through maxPersonIndex:




if connMat(i, locIndex) is 1





for j going from i + 1 through maxPersonIndex:






if connMat(j, locIndex) is 1







connPeopleMat(i, j) ( 1






connPeopleMat(j, i) ( 1


return connPeopleMat

To obtain a degree distribution, we have a function, degPersonPPG, to calculate the degree of each node in the person-person graph.  For the connection matrix connPeopleMat in Figure 11 with graph in Figure 10, degPersonPPG(connPeopleMat, 1) = degPersonPPG(connPeopleMat, 2) = degPersonPPG(connPeopleMat, 4) = 2, while degPersonPPG(connPeopleMat, 3) = 0.  That is, the people with IDs 7, 8, and 18 and indices 1, 2, and 4, respectively, have degree 2 or two adjacent nodes.  ID 9 (with index 3) is isolated because that person does not go anywhere the other three people visit.

degPersonPPG(connPeopleMat, i)


Function to return the degree of the person with a given index in a people-people graph

Pre:


i is the index of a location in connection matrix connPeopleMat for a people-people graph.

Post:



The function has returned the degree of the person with index i.
Algorithm:


Return the number of ones in row i of connPersonMat.

We define a function, pLst, that returns the a list of ordered pairs, (k, P(k)), of a degree, k, and the corresponding degree distribution value, P(k).  For k = 0, 1, 2, …, maximum(degree), P(k) = nk/n, where nk is the number of nodes of degree k and n is the total number of nodes in a people-people graph.  Thus, for connection matrix of Figure 11, pLst(connPeopleMat) returns {(0, ¼), (1, 0), (2, ¾)}.  For the n = 4 nodes, one-fourth of the nodes have degree 0; no nodes have degree 1; and three-fourths of the nodes have degree 2.  

pLst(connPeopleMat)


Function to return a list of ordered pairs, (k, P(k)), for k = 0, 1, 2, …, maximum(degree), where P(k) is the degree distribution value

Pre:


connPeopleMat is the connection matrix for a people-people graph.
Post:


The function has returned a list of ordered pairs (k, P(k)), k = 0, 1, 2, …, maximum(degree)

Algorithm:


numPeople (( number of rows of connPeopleMat


degreeLst ( list of degPersonPPG(connPeopleMat, i), i = 1, 2, 3, …, numPeople


return list of ordered pairs with first coordinate being deg and second coordinate being (number of occurrences of deg in degreeLst)/numPeople, deg = 0, 1, 2, …, (maximum value in degreeLst)

The plot of the list pLst(connPeopleMat), {(0, ¼), (1, 0), (2, ¾)}, for the graph of Figure 10 is certainly stilted because of the small number of nodes (see Figure 12). Projects investigate some realistic social networks, revealing the more characteristic broad-tailed power law form for probability distributions of biological networks (see Figure 3).  Additionally, the mean degree of the graph in Figure 10 is 1.5 = (2 + 2 + 0 + 2)/4.  However, a typical scale-free network has a few nodes with significantly higher degrees than the graph's mean degree.

Figure 12
Plot of degree distribution for graph of Figure 10 with connection matrix in Figure 11

[image: image16.wmf]
Clustering Coefficient

The clustering coefficient of a person provides an indication of the rapidity with which a disease can spread among his or her associates, and the mean clustering coefficient is a metric on local connectivity of a population.  To determine the clustering coefficient of a node with a given index in a connection matrix, we start by defining a function, adjacentPeople, to return a list of indices of its adjacent nodes.  Another function, numPeopleEdges, returns the number of edges in a subgraph with a given collection of vertex indices.  Thus, for this function, we count the number of ones in the connection matrix with row and column indices in this set.  Because each edge is counted twice, the result is divided by two.

adjacentPeople(connPeopleMat, i)


Function to return a list of indices of the people adjacent to the person with index i in the people-people graph with connection matrix connPeopleMat
numPeopleEdges(connPeopleMat, vertices)

Function to return the number of edges in a subgraph with a given collection of vertex indices

Pre:


connPeopleMat is the connection matrix for a people-people graph.


vertices is a list of indices of nodes for a subgraph.
Post:


The function has returned the number of edges in this subgraph.

Algorithm:


return half the number of ones in elements of connPeopleMat with row and column indices from vertex

With these two functions and degPersonPPG, we can define a function, clusteringCoeff, to return the clustering coefficient of a vertex, given its index.  Using clusteringCoeff, we determine that the mean clustering coefficient for our very small people-people graph in Figure 11 is the high value of 0.75.

clusteringCoeff(connPeopleMat, v)

Function to return the clustering coefficient of a node
Pre:


connPeopleMat is the connection matrix for a people-people graph.


v is a index of a node in this graph.
Post:


The function has returned the clustering coefficient for v.

Algorithm:


deg (( degPersonPPG(connPeopleMat, v)


if deg < 2



return 0


else



adj ( adjacentPeople(connPeopleMat, v)



numerator ( numPeopleEdges(connPeopleMat, adj)



denominator ( deg*(deg - 1)/2.0





//  number of edges in complete graph with deg number of nodes


return numerator/denominator
4.
Software Implementation

Download the files SocNetSampleText.nb and SocNetRandom1000.nb with implementation of the functions in Mathematica. The first file employs the small set of data illustrated in Figure 8.  The second file uses 1000 randomly selected people from a synthetic data set found at http://ndssl.vbi.vt.edu/opendata/download.php (activities-portland-1-v1.dat, using all the activities), and discussed in the next section. This tutorial provides instructions on working in the Mathematica notebook interface and the files SocNetSampleText_Description.pdf and SocNetRandom1000_Description.pdf document the Mathematica implementations of these models. 

Download the file Social_Networks_Parallel.zip, which is a zip archive containing all of the MatLab scripts implementing a parallel version of the social network model, a ReadMe.txt file describing the various script files, and an example output for model verification.
5.
Example Problems

Activities with four people and nine locations served as an example in the "Algorithms" part of this module.  We discovered that the function minDominating, which uses the heuristic FastGreedy Algorithm, can return a set of four locations that dominates all the people and a set with only one location to which seventy-five percent of the people visit.  With a mean degree of 1.5 in the people-people graph, a plot of the degree distribution (Figure 12) has only three points.  The mean clustering coefficient (0.75) is also exaggerated with such a small set.


A more realistic example derives from the activities in a synthetic data set (activities-portland-1-v1.dat) for the population of Portland, Oregon, that the Network Dynamics and Science Simulation Laboratory (NDSSL) at Virginia Technical University generated from real data (NDSSL 2009).  The set contains 8,922,359 activities involving 1,615,860 people.  So that we can perform calculations on a sequential machine, we select 1000 people at random, using all their activities.  


One such set of people has 5511 activities involving 3458 different locations.  Execution of minDominating to cover one hundred percent of the people yields a set of 3455 locations, while 594 locations can cover fifty percent of the population.


A plot of the degree distribution of a people-people graph for the 1000 individuals (Figure 13) reveals a more realistic situation than that of Figure 12.  Moreover, as Figure 14 shows, we can fit the distribution with f(k) = -0.0219242 + 0.259918k-1.2. 

Figure 13
Degree distribution of a 1000 randomly selected people  

[image: image17.wmf]
Figure 14
Degree distribution of Figure 13 with fitted function f(k) = -0.0219242 + 0.259918k-1.2
[image: image18.wmf]

The mean clustering coefficient for this group of 1000 individuals is 0.118524 = 11.8524%, slightly more than that of people on the World Wide Web (Eubank et al. 2004).
6.
Rubric for Assessment

Clearly, the results involving 1000 randomly selected people and their activities from the NDSSL synthetic data set are more realistic than the illustrative example with four people.  Although the FastGreedy Algorithm does not necessarily yield a minimum dominating set even for the larger data set above, (Eubank et al. 2004) proved that the technique does provide a fast method for obtaining a good dominating set.  Thus, public health officials can use the results to designate which locations should have fever-detection sensors or should close during epidemics.


The degree distribution of the larger data set (Figures 13 and 14) with fitted function f(k) = -0.0219242 + 0.259918k-1.2 does approximate the power law, P(k) = ck-r, common for scale-free networks.  The shape reveals only a few nodes, in this case 8 out of 1000 or 0.8% of the population, have degree 6 or more.  Using further demographic information, public health officials might target such "well-networked" people for immediate vaccination.  Moreover, with simulations, they can investigate the impact of this and other vaccination policies on combating the spread of influenza.


The mean clustering coefficient of 0.118524 for our group of 1000 individuals is indicative of small world networks, which exhibit higher cliquishness of an average neighborhood.  By contrast, random graphs with about 300 to 5000 nodes have clustering coefficients of approximately 0.05 to 0.005, respectively, exhibiting almost no clustering (Watts and Strogatz 1998).  
7.
Computing Power

As (Bisset 2009) states, "These far more complex network-based models present a new set of computational challenges that require the use of high-performance computing."  Several reasons exist for requiring this power:

· Social networks are very large, have unstructured shapes, and change frequently.  Thus, computing systems require enormous storage to hold and significant power to manipulate the data.

· Because these models are stochastic, involving chance, scientists must execute a simulation with various intervention scenarios and compliance rates and must replicate each simulation run many times to obtain meaningful results on which to base policy recommendations. 

· Incorporation of the diverse characteristics of people and their activities is important in studying disease propagation in space and time.  By contrast, the study of physical systems usually does not require such diversity.


Computational scientists at such institutions as Los Alamos National Laboratory and Virginia Tech have developed high performance individual-based simulation models to study the nature of epidemics and the impacts of policy decisions on controlling epidemics in urban environments (Bisset 2009 and Eubank et al. 2004).  With petascale computing platforms, researchers anticipate developing soon simulations to model global pandemics (Bisset 2009).


Because of the direction of much research in the study of epidemics, it is advantageous for the modeler to be able to use high performance computing.  The accompanying tutorial on C and MPI provide the necessary background to understand the high-performance computing version of this module's program.

8.
Projects

Develop a sequential or a high-performance computing version of each of the projects below.  Use one of the NDSSL data sets at http://ndssl.vbi.vt.edu/opendata/download.php (NDSSL 2009) or another data set with activity data.
1.
Develop the following functions:

a.
genPeopleLocConnMat(personIDLst, locationIDLst, activities) to return a adjacency matrix for a people-location graph
b.
degPerson to return the degree of a person index in a people-location graph

c.
SPD(connMat, i) to return the number of pairs of vertices in a people-people graph with connection matrix connMat where the length of shortest path (or the distance) between the vertices is i
d.
diameter to return a graph's diameter, or the maximum shortest path length between pairs of vertices in a people-people graph

e.
isolated to return a list of isolated nodes in a graph
2.
This project involves computation of the metric mean shortest path length.  A biological network typically exhibits the small-world property with a small average path length, making the system an efficient communicator of information or disease.


The distance between two points in a graph is the length, or the number of edges, of the shortest path between those points.  Floyd’s Algorithm is a method for finding the distance between each pair of vertices in a network.  We start by replacing each off-diagonal zero in the square connection matrix with (, a value greater than any number.  For example, for the graph in Figure 15, the initial matrix follows:



D = 
[image: image19.wmf]  

0

¥

¥

1

¥

0

1

¥

¥

1

0

1

1

¥

1

0

é 

ë 

ê 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

ú 



For k = 1, 2, 3, 4, we consider each element dij; if dik + dkj is smaller than dij, we replace dij with the sum.  For example, when k = 3, we replace d24 (∞) by d23 + d34 = 1 + 1 = 2; the length of the shortest path from v2 to v4 is 2 and goes through v3.  Symmetrically, d42 is replaced by d43 + d32 = 1 + 1 = 2.  At the end of that iteration, the distance matrix is as follows:



D = 
[image: image20.wmf]  

0

¥

¥

1

¥

0

1

2

¥

1

0

1

1

2

1

0

é 

ë 

ê 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

ú 



When k = 4, d12 becomes d14 + d42 = 1 + 2 = 3; and d14 + d43 = 1 + 1 = 1 replaces d13.  The final distance matrix, which the algorithm returns, is as follows:



D = 
[image: image21.wmf]  

0

3

2

1

3

0

1

2

2

1

0

1

1

2

1

0

é 

ë 

ê 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

ú 



Floyd's Algorithm for finding the length of the shortest path between each pair of vertices in a network of n nodes:


D (( connection matrix for the network



for i going from 1 through n, do the following: 




for j going from 1 through n, do the following:





if i ≠ j and dij is 0






dij(( ∞


for k going from 1 through n, do the following:




for i going from 1 through n, do the following: 





for j going from 1 through n, do the following:






if dik + dkj < dij then







dij ( dik + dkj

Use Floyd's Algorithm to calculate the distance matrix for a social network, and generate a histogram of these distances.  Compute the mean smallest number of contacts for a disease to spread from one arbitrary individual to another. Also calculate the diameter, which is the largest distance in the graph and is a measure of the extent of the graph.  



Studies involving metabolic networks of between 200 and 500 nodes discovered mean-smallest path lengths between 3 and 5 (Mason and Verwoerd 2007).  Genetic networks of about 1000 genes and 4000 interactions were discovered to have a mean-smallest path length of 3.3 (Mason and Verwoerd 2007).  Does your data set exhibit the small-world property with a small mean-smallest path length?  Does your data set have a fairly large mean clustering coefficient?

Figure 15
Graph for Project 2

[image: image22.wmf]
3.
Define a function C(k) to return the average clustering coefficient of nodes that have degree k.  For metabolic networks of 43 organisms, C(k) is approximately proportional to k-1, so that as the degree increases, the clustering coefficient decreases.  Thus, nodes with small degrees tend to be clustered densely, and nodes with large degrees do not (Mason and Verwoerd 2007).  Does your data set exhibit a similar attribute?

4.
Let N(v) be the set of nodes adjacent to the person or location vertex v in a people-location network. For V being a subset of vertices, let N(V) = 
[image: image23.wmf]  

È

v

Î

V

N

(

v

)

, the union of all N(v) for v in V; that is, N(V) is the collection of all nodes adjacent to at least one vertex in V.  The overlap ratio for a subset of locations, S, is the number of elements in N(S) divided by the sum of the degrees of nodes in S.  This value is greater than 0 and less than or equal to 1.  A smaller the overlap ratio indicates a greater overlap, or a greater probability that two people visit the same location.  (Eubank et al. 2004) shows that the FastGreedy Algorithm yields better results for higher overlap ratios of the locations.  Develop a function to compute the overlap ratio for a set of locations.  Calculate the overlap ratios of the locations for the sample data set and a random subset of 1000 people and their activities from the activities-portland-1-v1.dat at (NDSSL 2009).  Based on your results and the work of (Eubank et al. 2004), on which data set should the FastGreedy Algorithm give the best results?

5.
The FastGreedy Algorithm gives a good approximation for the dominating set problem.  Revise the algorithm to return a minimum dominating set.  Compare the speeds of the revised and the original algorithms on graphs of increasing sizes (numbers of nodes).  Plot these speeds verses size, and fit functions to the data.

6.
When data sets are very large, we may wish to approximate metrics using random subsets of some proportion, p (0 < p ≤ 1), of the total size.  Implement each of the techniques below for returning a random sublist of distinct integers from 1 through n, where the size of the sublist is approximately ( pn (, the smallest integer greater than or equal to pn.  For example, if n = 1,615,860, which is the size of activities-portland-1-v1.dat from  (NDSSL 2009), and p = 0.001, then the size of the sublist is ( pn ( = ((0.001)(1,615,860)( = (1615.86( = 1616. Note that getSublist1(n, p) returns exactly ( pn ( elements, while getSublist2(n, p) returns approximately ( pn ( elements.


Technique 1 - getSublist1(n, p):


size ( pn


personIdLst ( empty list


while (number of elements in personIdLst) is less than size do the following:




randInt ( random integer in {1, 2, 3, …, n}




if randInt is not in personIdLst




append randInt to personIdLst


return personIdLst

Technique 2 - getSublist2(n, p):


personIdLst ( empty list


for i going from 1 through n do the following:




if (random floating point number between 0 and 1) is less than p




append i to personIdLst



return personIdLst
b.
Compute the amount of time to execute each function for n = 1615860 and p = 0.001.  

c.
For i going from 1 to 10, compute the time it takes to execute getSublist1(100000, 0.001*i), and plot the time versus the number of elements in the sublist, 100000 * 0.001*i.  Fit a function to this graph.  Repeat this task for getSublist2.  Discuss the results, including the pros and cons of each technique.  Make recommendations on when to use each method.
7.
We can estimate the mean clustering coefficient by evaluating a metric for a random subset of log(|P|) number of people, where |P| is the number of people in the data set  (Eubank et al. 2004).  For i varying from 1 to 50, select a random subset of size log(|P|) * i, compute the mean clustering coefficient, and use commands to determine the time the computer took to perform these two tasks.  Plot the time versus subset size.  Observe the mean clustering coefficients for your subsets.  Discuss the results.

8.
Develop a simulation of the spread of influenza using a people-people graph.  For simplicity, assume people fall into one of three categories, susceptibles (S), infecteds (I), or recovereds (R); recovereds are immune from the disease.  Besides a connection matrix, have a corresponding list of node values recording each person's state as an integer, such as 0 for susceptible, 1 for infected, and 2 for recovered.  Start the simulation at time t = 0 with one infected person and all others being susceptible.  At each time step, a healthy person can catch the flu from an infected adjacent node with a probability of transmissionRate.  The logic for this segment is as follows:



if (a random floating point number between 0 and 1) < transmissionRate



that healthy person becomes sick

A person is sick for only one time unit.  Continue the simulation until the disease no longer exists in the population. Record the total number of people who caught the flu and the number of time steps for the simulation run.  For a given value of transmissionRate, run the simulation at least 10 times and average the totals (Watts and Strogatz 1998). 

9.
Develop the simulation as discussed in Project 8. Define a function to return the percent of the population who became sick.  Have the program run nine experiments with transmissionRate = 10%, 20%, 30%, …, 100%, and conduct each experiment 10 times. Also, have the code determine the average percent of people who became ill for each probability.  Plot the data.  Discuss the results.

10.
Repeat the development in Project 8.  At each time step, count the number of people in each category, S, I, and R.  Plot the number of people in S, I, and R versus time for one run.

11.
Refine the model of Project 8 to account for deaths in some percentage of the infecteds and perform the task of Project 8, 9, or 10.

12.
Repeat any of Projects 8-11 so that a person is sick for two time steps, making a longer infectious period.  Thus, have two states for infected.

13.
Develop Project 9 and the corresponding version in Project 12.  Compare the results.  Compute the clustering coefficient for your data set. (Mason and Verwoerd 2007) states, "for networks with strong local connectivity the fittest strains are those that have high transmission rates and relatively short infectious periods."  Do your results support this statement?

14.
Develop one of Projects 8, 10, or 11 designating percentVaccinated percent of the people with the highest degree as being vaccinated against the flu. Have the program run five experiments with percentVaccinated = 0%, 10%, 20%, 30%, 40%, and conduct each experiment 10 times.  Also, have the code determine the average percent of the population who became ill for each probability.  Plot the data.  Discuss the results.

15.
This project tests the observation that the mean clustering coefficient (MCF) for networks exhibiting the small-world property, such as most social networks, is significantly higher than for random graphs (Mason and Verwoerd 2007).  Using a realistic social network data set, calculate the MCF and the percentage of ones, indicating edges, in its people-people connection matrix.  Develop a function with parameters for a size, n, and a probability, p, to return a random n-by-n connection matrix, where p is the probability of 1 in a position.  Calculate the MCF of a generated random graph for the number of people and the percentage of ones in the realistic social network.  Run this simulation a number of times, say 100 to 1000 times, to obtain an average value for MCF, and compare the results with that of the realistic social network.
16.
Using the function from Project 15 and a fixed size, n, say 20, calculate the mean clustering coefficient (MCF) for networks with probabilities p = 0.0, 0.1, 0.2, …, 1.0.  For each probability, run the simulation a hundred times to obtain an average for MCF.  Plot MCF versus p.  Discuss the results.
17.
Repeat Project 15 for mean path length instead of MCF (see Project 2).

18.
Repeat Project 15 for degree distribution instead of MCF.  For the random graphs, average the number of nodes of degree k to obtain nk.

19.
Develop sequential and parallel versions of any of the above projects or any of the models in the module.  

a.
Time both versions, running them with increasingly larger datasets and with a fixed number of processes on a parallel machine.  Graph the speedup, or the time for the sequential version over the time for the parallel version, versus dataset size.  Discuss the results.

b.
For a large dataset, time the sequential version.  Then, for the same dataset, repeatedly time the parallel version for an increasing number of processes.  Graph the speedup versus number of processes.  Discuss the results.
9.
Answers to Quick Review Questions

1.
a.
V = {1, 2, 3, 4, 5, 6, 7, 8, 9}

b.
(3, 6) = (6, 3)

c.
9
2.
a.
1, 2, 4, 5, 6

b.
(1, 2) = (2, 1) and (1, 3) = (3, 1)
c.
5
d.
none
3.
2, 1, 3, 6; 2, 3, 5, 6; 2, 4, 5, 6; 2, 5, 3, 6

4.
a.
{(7, 8), (8, 9)}, {(7, 8), (7, 9)}, {(7, 9), (8, 9)}, {(7, 8), (7, 9), (8, 9)}

b.
V = {7, 8, 9}, E = {(7, 8), (7, 9), (8, 9)}

c.
(4, 5) = (5, 4)
d.
6 = (4)(3)/2

5.
a.
0.4 = 4 / ((5)(4)/2)

b.
1.0 = 1 / 1

c.
0 = 0 / 1

d.
0

6.
Yes, Figure 1 is a bipartite graph. For example, one possible partition is V1 = {School, Hospital, Work, Shop, Cloister} and V2 = {1, 2, 3, 4, 5, 6, 7}.  However, the node Cloister can belong to either set.
10.
References

Bisset, Keith and Marathe, Madhav. 2009.  “A Cyber Environment to Support Pandemic Planning and Response.”  SciDAC Review 13: 36-47. http://www.scidacreview.org/0903/html/maranthe.html.  Accessed 7/17/9.
CDC (Centers for Disease Control and Prevention). “Prevention and Control of Seasonal Influenza with Vaccines, Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009.” July 24, 2009 / 58(Early Release);1-52. http://www.cdc.gov/mmwr/preview/mmwrhtml/rr58e0724a1.htm?s_cid=rr58e0724a1_e. Accessed 8/12/9.  

Eggemann, Nicole and Steven Noble. 2008. "The Clustering Coefﬁcient of a Scale-Free Random Graph" www.newton.ac.uk/programmes/CSM/seminars/050114001.pdf
 Eubank, S., V.S. Anil Kumar, M. Marathe, A. Srinivasan and N. Wang.  2004. “Structural and Algorithmic Aspects of Large Social Networks.” Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 711-720.

LANL (Los Alamos National Laboratory). "Epidemiology System (EPISIMS)" http://www.ccs.lanl.gov/ccs5/apps/epid.shtml. Accessed 8/27/9.

Mason, Oliver and Mark Verwoerd. 2007. “Graph Theory and Networks in Biology.” IET Systems Biology  1: 89-119. http://www.hamilton.ie/SystemsBiology/files/2006/graph_theory_and_networks_in_biology.pdf
NDSSL (Network Dynamics and Simulation Science Laboratory, Virginia Polytechnic Institute and State University). 2009. "NDSSL Proto-Entities" http://ndssl.vbi.vt.edu/opendata/  Accessed 8/27/9.

_____. 2009. Synthetic Data Products for Societal Infrastructures and Proto-Populations: Data Set 1.0. ndssl.vbi.vt.edu/Publications/ndssl-tr-06-006.pdf
_____. 2009. Synthetic Data Products for Societal Infrastructures and Proto-Populations: Data Set 2.0.  ndssl.vbi.vt.edu/Publications/ndssl-tr-07-003.pdf 

_____. 2009. Synthetic Data Products for Societal Infrastructures and Proto-Populations: Data Set 3.0. ndssl.vbi.vt.edu/Publications/ndssl-tr-07-010.pdf
Newman, M. E. J., D. J. Watts, and S. H. Strogatz.  2002. “Random graph models of social networks”   Proceedings of the National Academy of Science 99 (Suppl 1): 2566-2572. http://www.pnas.org/content/99/suppl.1/2566.full
NFID (National Foundation for Infectious Diseases). 2008. “Influenza Myths” http://www.nfid.org/INFLUENZA/consumers_myths.html. Accessed 8/12/9. 

 ______.  2008. "Mid-Season Flu Immunization Rates are Too Low." Dec. 10, 2008. http://www.nfid.org/pdf/influenza/midseasonrates1208.pdf.  Accessed 8/12/9.

Shiflet, Angela.  1984.  Discrete Mathematics for Computer Science, West Publishing Company, St. Paul.

 Watts, D. J. and Steven Strogatz. 1998. "Collective dynamics of 'small-world' networks.” Nature 393: 440–442.
_1185266630.unknown

_1185475658.unknown

_1185475900.unknown

_1185474243.unknown

_1185350133.unknown

_1185259419.unknown

_1185266428.unknown

_1184239210.unknown

_1184592141.unknown

_1153122420.unknown

