
Taxes, Death, and Parallelism are
Inevitable

Introduction to Parallel Computing

• Abstract

• Overview

– What is Parallel Computing?

– Why Use Parallel Computing?

• Concepts and Terminology

– von Neumann Computer Architecture

– Flynn's Classical Taxonomy

– Some General Parallel Terminology

Introduction to Parallel Computing.htm
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/

The FUTURE: The race is already on for Exascale
Computing!

 Marcus.Hardt@iwr.fzk.de

● New method for medical imaging
● Focus: Breast cancer diagnosis

)omography (USCTTomputer Cound sltraU

http://www.interactive-grid.eu

 Marcus.Hardt@iwr.fzk.de

USCT setup

 Marcus.Hardt@iwr.fzk.de

USCT Algorithm

• Characteristicts:
– Input: 20 GB (full set)
– Computing time depends

• on output size / resolution
• amount of input data

• Matlab
– Strategic development platform (95%

sourcecode)

35MB 20GB 20GB Data
Voxels

1 Hour 1.5 Months 150 Years Time
40962 1282x100 40962x3410

 Marcus.Hardt@iwr.fzk.de

USCT Algorithm

• Characteristicts:
– Input: 20 GB (full set)
– Computing time depends

• on output size / resolution
• amount of input data

• Matlab
– Strategic development platform (95%

sourcecode)

Goals for grid access:
●Seamless
●Interactive
●from Matlab

35MB 20GB 20GB Data
Voxels

1 Hour 1.5 Months 150 Years Time
40962 1282x100 40962x3410

 http://interactive-grid.eu Marcus.Hardt@iwr.fzk.de

 Computation takes long (days, weeks, years)

 Grid in order to speed up

USCT reconstruction := “Black Box”

 http://interactive-grid.eu Marcus.Hardt@iwr.fzk.de

Idea: Computer power <=> Electrical power

From Electrical power grid => computational grid

• Across organisationsal domains / countries

• Transparent access to
● Computing

● Data

● Network

• Large scale installations

Grid Computing

 http://interactive-grid.eu Marcus.Hardt@iwr.fzk.de

Grid middleware

 Middleware
:= Layer between application and operating system

 gLite: one grid middleware
● Development driven by CERN

● Tools for data+computing of new accelerator

● 10 TB/year * 20 years, random access

 Paradigm: Send job to where the data is

 Job: Self contained application

 http://interactive-grid.eu Marcus.Hardt@iwr.fzk.de

Putting things together

 Marcus.Hardt@iwr.fzk.de

g

 gLite installations in Europe

The race is already on for Exascale

Computing!

 http://interactive-grid.eu Marcus.Hardt@iwr.fzk.de

 Initial approach to parallel execution:
● Partitioning of data

● Many parallel jobs

Using gLite

 http://interactive-grid.eu Marcus.Hardt@iwr.fzk.de

 Lets take a closer look

Using gLite

Parallel Matlab

Elias Houstis

About MATLAB

• MATLAB (with Simulink) – programming language for
science and engineering

• Over 1 milion users, over 3500 universities and colleges

• Engineering in industry + biotech, medical, financial

• Toolboxes for different fields –
– Engineering, Bioinformatics, Economics etc.

• Parallel computing support
– Job execution on multicore/cluster systems

– MPI support

AHM Riga May 12-14, 2009

Matlab in Parallel

 Beautifully parallel Message Passing

e.g., Multi, paralize, Plab, ParMatlab e.g., MultiMatlab, CMTM,
DPToolbox,MatlabMPI, pMatlab

www-math.mit.edu/~edelman/homepage/papers/pmatlab.pdf

Parallel Computing With MATLAB

• Support for third party schedulers

 AHM Riga May 12-14, 2009

Parallel

Computing

Toolbox™

TOOLBOXES

BLOCKSETS

Computer Cluster

CPU

CPU

CPU

CPU

MATLAB Distributed Computing Server

MATLAB

Scheduler

Worker

Worker

Worker

Worker

User side

Architecture of PCT

Normal Matlab session in which the
job and its tasks are defined by

using the functions provided by PCT.
Often, it is on the machine where

user programs Matlab.

Coordinates the execution of
jobs and the evaluation of
their tasks, distributes the
tasks for evaluation to the
individual Matlab sessions

called workers

Matlab sessions which evaluates
the task distributed by scheduler

Distributed Computing
Server (DCS)

• Parallel Computing Toolbox

– Only four local workers on a multicore or
multiprocessor computer

• PCT + DCS -> Cluster-based applications

• Coordinate and execute independent MATLAB
operations simultaneously on a cluster of
computers

MATLAB gLite integration

Parallel

Computing

Toolbox™

gLite

user

Interface

TOOLBOXES

BLOCKSETS

GRID

• API for generic scheduler

Developed by EGEE&Mathworks

AHM Riga May 12-14, 2009

MDCS

MDCS

MDCS

MDCS

Parallel Computing Toolbox (PCT)

• Data and task parallelism using

– Parallel-for loops

– Distributed arrays

– Parallel numerical algorithms

– Message Passing functions

• Easy transition between serial and parallel

http://www.mathworks.com/products/parallel-computing/description1.html

Mathworks – Parallel Computing toolbox

• The toolbox provides eight workers (MATLAB
computational engines) to execute
applications locally on a multicore desktop

• Parallel for-loops (parfor) for running task-
parallel algorithms on multiple processors

• Computer cluster and grid support (with
MATLAB Distributed Computing Server)

Vectorization

• >> clear all;

tic;

for i=1:50000

a(i) = sin(i);

end

toc

• Elapsed time is
3.211070 seconds.

>> clear all;

tic;

i = [1:50000];

a = sin(i);

toc

Elapsed time is 0.016062
seconds.

>> speedup=3.211070 /0.016062

=199.9172

parfor - Parallel for loop

parfor - Parallel for loop
Syntax
parfor loopvar = initval:endval; statements; end
parfor (loopvar = initval:endval, M); statements; end

Description
parfor loopvar = initval:endval; statements; end executes a series of MATLAB
commands denoted here as statements for values of loopvar between initval
and endval, inclusive, which specify a vector of increasing integer values.
Unlike a traditional for-loop, there is no guarantee of the order in which the
loop iterations are executed.
The general format of a parfor statement is:
parfor loopvar = initval:endval
 <statements>
end

parfor – Perform three large eigenvalue
computations using four computers or cores

>> clear all;

>> ntasks=4;tic;for
i=1:ntasks

c(:,i)=eig(rand(100
0));

end;toc

Elapsed time is
8.575804 seconds.

• >> clear all;
• matlabpool open
• ntasks=4;tic;parfor

i=1:ntasks
• c(:,i)=eig(rand(1000));
• end;toc
• Starting matlabpool using

the 'local' configuration ...
connected to 4 labs.

• Elapsed time is 5.198244
seconds.

• Speedup= 1.6522

>> clear all;
>> ntasks=4;tic;parfor i=1:ntasks
c(:,i)=eig(rand(2000));
end;toc
Elapsed time is 42.475697 seconds.
>> clear all;
>> matlabpool open
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.
>> ntasks=4;tic;parfor i=1:ntasks
c(:,i)=eig(rand(2000));
end;toc
Elapsed time is 26.891233 seconds.
>> matlabpool close
speedup=1.5794
Sending a stop signal to all the labs ... stopped.

Parallel mode-I: matlabpool

• Open or close a pool of MATLAB sessions for parallel computation

• Syntax:

 MATLABPOOL

 MATLABPOOL OPEN

 MATLABPOOL OPEN <poolsize>

 MATLABPOOL CLOSE

 MATLABPOOL CLOSE FORCE

 ……

• Work on local client PC

• Without open matlabpool, parallel code will still run but runs sequentially

• %% Parameter Sweep of ODEs
• % This is a parameter sweep

study of a 2nd order ODE system.
• %
• % $m\ddot{x} + b\dot{x} + kx = 0$
• %
• % We solve the ODE for a time

span of 0 to 25 seconds, with
initial

• % conditions $x(0) = 0$ and
$\dot{x}(0) = 1$. We sweep the
parameters b

• % and k and record the peak
values of x for each condition.
At the end,

• % we plot a surface of the results.

• Computing in serial...
• Elapsed time is 27.64 seconds.
• Computing in parallel...
• Starting matlabpool using the

'local' configuration ...
connected to 4 labs.

• Elapsed time is 12.39 seconds.
• Sending a stop signal to all the

labs ... stopped.

• Speed up (time serial / time
parallel): 2.23

%% Parameter Sweep (Parallel)

% Next, we convert the |for| loop to a |parfor| loop and start a pool or

% MATLAB workers.

disp('Computing in parallel...');drawnow;

matlabpool open

tic;

parfor idx = 1:numel(kGrid)

 % Solve ODE

 [T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...

 [0, 25], ... % simulate for 25 seconds

 [0, 1]) ; % initial conditions

 % Determine peak value

 peakVals(idx) = max(Y(:,1));

end

t2 = toc;

fprintf('Elapsed time is %0.2f seconds.\n', t2);

% Close MATLAB Pool

matlabpool close

0

2

4

6 1

2

3

4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e
a
k
 R

e
s
p
o
n
s
e

Task Parallel applications

• parallel problems by organizing them into independent tasks (units of
work)

 - parallelize Monte Carlo simulations

• Parallel for-Loops (parfor)

 parfor (i = 1 : n)
 % do something with i
 end

 - Mix task parallel and serial code in the same function
 - Run loops on a pool of MATLAB resources
 - Iterations must be order-independent

Iterations run in parallel in the MATLAB pool
(local workers)

Data Parallel applications

• Single Program Multiple Data (spmd)
 spmd (n)

 <statements>

 end

For example, create a

random matrix on four labs:

matlabpool open

spmd (2)

 R = rand(4,4);

end

matlabpool close

create different sized

arrays depending on

labindex:

matlabpool open

spmd (2)

 if labindex==1

 R = rand(4,4);

 else

 R = rand(2,2);

 end

end

matlabpool close

Demo

Demo

Distributed arrays and operations (matlabpool mode)
codistributor()

codistributed()

• Parallel mode on a MATLAB Pool (1)

 matlabpool Open or close pool of MATLAB sessions for

 parallel computation

 parfor Execute code loop in parallel

 spmd Execute code in parallel on MATLAB pool

• Interactive Functions
help Help for toolbox functions in Command Window

 pmode Interactive Parallel Command Window

• Parallel mode on a MATLAB Pool (2)
batch Run MATLAB script as batch job

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/matlabpool.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/parfor.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/spmd.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/help.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/pmode.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/batch.html

function [time1,time2,time3] =
newSPMDVersion

n=10^8; step = 1/n;

% Serial Version

tic; s=0;

for i=1:n-1

x=(i-0.5)*step; s=s+4./(1+x^2);

end

time1 = toc;

% Parallel Version

matlabpool open 4

tic;

spmd

slocal = myTestSum(n,step);

end

time2 = toc;

% Parallel Version parfor
nstep=10^8; step = 1/nstep;
tic;s=0;
parfor i=1:nstep-1
x=(i-0.5)*step;
s=s+4./(1+x^2);
end
time3 = toc;matlabpool close
end

function slocal = myTestSum(n,step)
nlo = (n * (labindex - 1)) / numlabs + 1;
nhi = (n * labindex) / numlabs;
slocal = 0;
for i=nlo:nhi
x=(i-0.5)*step; slocal=slocal+4./(1+x^2);
end
end

Profiling (profile on…profile viewer)

• profile on

• computations

• profile viewer

../Function details for newSPMDVersion.html
../Function details for newSPMDVersion.html
../Function details for newSPMDVersion.html
../Function details for newSPMDVersion.html

Parallel mode-II: pmode

>> pmode start

P>> pmode exit

pmode demo

P>> help magic % ask for help on a function

P>> PI = pi % set a variable on all the labs

P>> myid = labindex % lab ID

P>> all = numlabs % total No. of labs

P>> segment = [1 2; 3 4; 5 6] % create a replicated array on all the labs

P>> segment = segment + 10*labindex % perform on different labs

P>> x = magic(4) % replicated on every lab

P>> y=codistirbuted(x) % partitioned among the lab

P>> z = y + 10*labindex % operate on the distributed array whole

P>> combined = gather(y) % entire array in one workspace

The combined is now a 4-by-4 array in the client workspace.

 whos combined

To see the array, type its name.

 combined

Demo: distributed array operations (repeat)

Parallel pi in pmode

use the fact that

to approximate pi by approximating the integral on the left.

divide the work between the labs by having each lab calculate the integral

the function over a subinterval of [0, 1] as shown in the picture

http://www.mathworks.com/products/demos/fullsize.html?src=/products/demos/shipping/distcomp/paralleldemo_quadpi_mpi_01.png

Steps

• All labs/workers will compute the same function: F=4/(1+x^2)

• Each worker/lab will calculate over a subinterval [a,b] of [0, 1],

 for 2 labs, the subinterval will be:

 [0, 0.50]

 [0.50, 1.0]

 a = (labindex-1)/numlabs

 b = labindex/numlabs

• Use a MATLAB quadrature method to compute the integral

 myIntegral = quadl(F, a, b)

• Add together to form the entire integral over [0,1]

 piApprox = gplus(myIntegral)

Parallel pi in matlabpool-mode

Batch mode

• Name a .m file as ‘mybatch’ with

 for i=1:1024

 A(i) = sin(i*2*pi/1024);

 end

• run in batch mode

job = batch('mybatch')

• The batch command does not block MATLAB, so you must wait

 for the job to finish before you can retrieve and view its results:

 wait(job)

• The load command transfers variables from the workspace of the

 worker to the workspace of the client, where you can view the

 results:

 load(job, 'A')

 plot(A)

• When the job is complete, permanently remove its data:

 destroy(job)

A batch parallel loop

% mybatch

parfor i=1:1024

 A(i) = sin(i*2*pi/1024);

end

% run job in batch

job=batch('mybatch',‘configuration,‘local’,'matlabpool',2)

% To view the results:

wait(job)

load(job, 'A')

plot(A)

% remove its data:

destroy(job)

Key Function List
• Job Creation
 createJob Create job object in scheduler and client
 createTask Create new task in job
 dfeval Evaluate function using cluster

• Interlab Communication Within a Parallel Job
 labBarrier Block execution until all labs reach this call
 labBroadcast Send data to all labs or receive data sent to all labs
 labindex Index of this lab
 labReceive Receive data from another lab
 labSend Send data to another lab
 numlabs Total number of labs operating in parallel on current job

• Job Management
 cancel Cancel job or task
 destroy Remove job or task object from parent and memory
 getAllOutputArguments Output arguments from evaluation of all tasks in job
 object
 submit Queue job in scheduler
 wait Wait for job to finish or change states

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/createjob.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/createtask.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/dfeval.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/labbarrier.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/labbroadcast.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/labindex.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/labreceive.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/labsend.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/numlabs.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/cancel.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/destroy.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/getalloutputarguments.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/submit.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/wait.html

• Parallel for-Loops (parfor)

 allowing several MATLAB workers to execute individual loop iterations
simultaneously

 restriction on parallel loops is that no iterations be allowed to depend on any
other iterations.

• Large Data Sets

 allows you to distribute that array among multiple MATLAB workers, so that
each worker contains only a part of the array

 Each worker operates only on its part of the array, and workers automatically
transfer data between themselves when necessary

• Batch Jobs

 offload work to a MATLAB worker session to run as a batch job.

 the MATLAB worker can run either on the same machine as the client, or if
using MATLAB Distributed Computing Server, on a remote cluster machine.

Typical Use Cases

Matlab in Parallel

 Beautifully parallel Message Passing

e.g., Multi, paralize, Plab, ParMatlab e.g., MultiMatlab, CMTM,
DPToolbox,MatlabMPI, pMatlab

www-math.mit.edu/~edelman/homepage/papers/pmatlab.pdf

MPI+SMP Parallel Paradigms

• http://ist.uwaterloo.ca/ew/saw/parallel/FLAS
H/swf/mpi+smp.swf

http://ist.uwaterloo.ca/ew/saw/parallel/FLASH/swf/mpi+smp.swf
http://ist.uwaterloo.ca/ew/saw/parallel/FLASH/swf/mpi+smp.swf

Parallel Computing Toolbox and
MATLAB Distributed Computing

MPI Library

MatlabMPI implements the fundamental
communication operations in MPI using
MATLAB’s file I/O functions.

MatlabMPI
http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html#introduction

http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html

pMatLab example

FFT with pMatLab

Available examples:

 xbasic.m Extremely simple MatlabMPI program that prints out the rank of

 each processor.

 basic.m Simple MatlabMPI program that sends data from processor 1 to

 processor 0.

 multi_basic.m Simple MatlabMPI program that sends data from

 processor 1 to processor 0 a few times.

 probe.m Simple MatlabMPI program that demonstrates the

 using MPI_Probe to check for incoming messages.

 broadcast.m Tests MatlabMPI broadcast command.

 basic_app.m Examples of the most common usages of MatlabMPI.

 basic_app2.m Examples of the most common usages of MatlabMPI.

 basic_app3.m Examples of the most common usages of MatlabMPI.

 basic_app4.m Examples of the most common usages of MatlabMPI.

 blurimage.m MatlabMPI test parallel image processing application.

 speedtest.m Times MatlabMPI for a variety of messages.

 synch_start.m Function for synchronizing starts.

 machines.m Example script for creating a machine description.

 unit_test.m Wrapper for using an example as a unit test.

 unit_test_all.m Calls all of the examples as way of testing the

 entire library.

 unit_test_mcc.m Wrapper for using an example as a mcc unit test.

 unit_test_all_mcc.m Calls all of the examples using MPI_cc

 as way of testing the entire library.

xbasic

%%
% Basic Matlab MPI script that
% prints out a rank.
%
% To run, start Matlab and type:
%
% eval(MPI_Run('xbasic',2,{}));
%
% Or, to run a different machine type:
%
% eval(MPI_Run('xbasic',2,{'machine1' 'machine2'}));
%
% Output will be piped into two files:
%
% MatMPI/xbasic.0.out
% MatMPI/xbasic.1.out
%
%%
% MatlabMPI
% Dr. Jeremy Kepner
% MIT Lincoln Laboratory
% kepner@ll.mit.edu
%%

% Initialize MPI.
MPI_Init;

% Create communicator.
comm = MPI_COMM_WORLD;

% Modify common directory from default for better performance.
% comm = MatMPI_Comm_dir(comm,'/tmp');

% Get size and rank.
comm_size = MPI_Comm_size(comm);
my_rank = MPI_Comm_rank(comm);

% Print rank.
disp(['my_rank: ',num2str(my_rank)]);

% Wait momentarily.
pause(2.0);

% Finalize Matlab MPI.
MPI_Finalize;
disp('SUCCESS');
if (my_rank ~= MatMPI_Host_rank(comm))
 exit;
end

Demo folder ~/matlab/, watch top at the other machine

Parallel Matlab (Octave) using pMatlab

Global arrays – “…Communication is hidden from the programmer; arrays
are automatically redistributed when necessary, without the knowledge of the
programmer…”

“…The ultimate goal of pMatlab is to move beyond basic messaging (and its
inherent programming complexity) towards higher level parallel data structures and
functions, allowing any MATLAB user to parallelize their existing program by simply
changing and adding a few lines,

Source: http://www.ll.mit.edu/mission/isr/pmatlab/pMatlab_intro.pdf

Parallel Computing with Matlab on
Amazon Cloud

Example -Problem Description

• System of 2^6 (=64) square matrices
– Each matrix Sparse, square,2^17 (=131072)

dimension

– Matrix is generated by ‘spdiags’ using a
‘random’ array

• To extract first 100 eigenvectors
– ‘eigs’ function is used

• See handout for the code

• Each matrix calculation is distributed

Example - Serial Matlab

• ‘eigen’ is a function

– Input : (vector of random numbers, dimension of
the matrix)

– Output : eigenvectors

n = 2^16;

p = 2^7;

e = rand (n,1,p);

for i = 1 : p

 a = e(:,:,i);

 ans(i) = eigen(a,n);

end

Independent calculations

Example-Parallel Matlab

1. Find available distributed computing resources
(findResource function)

nprocs = [getenv('DMATLAB_NPROCS')]

 np = sscanf(nprocs, '%d')

 mgr_name = [getenv('JOBMANAGER')]

 mgr_host = [getenv('JOBMANAGERHOST')]

jm =findResource('jobmanager','Name',mgr_name,'LookupURL',mgr_host);

2. Create distributed job

 j = createJob(jm,'FileDependencies',{<path>});

 Path to additional files

Example – Parallel Matlab

3. Create Tasks for each worker

 n = 2^16;

 p = 2^7;

 e = rand (n,1,p);

 for i = 1 : p

 a = e(:,:,i);

 createTask(j, @eigen, 1, {a,n});

 end

Same as Serial Code

Creating tasks

Name of
the job

Parallel Task
function

Number of
output

arguments

Input arguments
to each task

Example – Parallel Matlab

4. Submit the job and wait for the results

5. Remove the individual task or parent job object
 destroy(j);

submit(j);

get(jm);

waitForState(j);

results = getAllOutputArguments(j)

If there are M tasks created
and each task has N output

arguments, then ‘results’ is a
MxN cell array

