
PREDICTIVE MODELING:  REGRESSION 

REGRESSION: DATA ANALYSIS 
REGRESSION: MACHINE LEARNING 



What is Regression? 

 

• Type of Data Mining 

– Data Mining is the analysis of large amounts of 

data in order to discover meaningful patterns 

•  Regression models analyze the correlation 

of several variables  

• Ex: Linear Regression models a linear 

graph 



Purpose of Modeling 

• Prediction: The fitted regression line is a prediction rule! 

– The regression equation is Price = 38.9 + 35.4 Size 

• What is the definition of a Prediction Rule? 

– Put in a value of X for a Y we haven’t yet seen, and out comes a prediction (a 

function or black box). 

– f(X)= b0 + b1X 

– You give me any new value of X and I can predict Y. 

 

 









Simple Linear Regression 

• Observe the data recorded as the pairs (Xi, Yi), i = 1,…,n. 

– Xi is called independent variables or explanatory variables 

– X is used to explain part of the variability in the dependent variable Y . 

• Look at some scatterplots of samples with varying degrees of 

correlation. 

 

 





Data in Matrix Form 

ID Income Age …. Monthly Debt Good Risk? 

 

18276 65,000 55  …. 2200  Yes 

72514 28,000 19  …. 1500  No 

28163 120,000 62  …. 1800  Yes 

17265 90,000 35  …. 4500  No 

… … …  …. …  … 

… … …  …. …  … 

61524 35,000 22  …. 900  Yes 

Measurements 

Entities 

 “Measurements” may be called “variables”, 

    “features”, “attributes”, “fields”, etc 









Growth of the economy 

• Consider a simplified version of economic forecasts using 
regression models.  

• Consider the problem of predicting growth of the economy in the 
next quarter.  

– Some relevant factors might be last quarter's growth, this quarter's growth, the 
index of leading economic indicators, total factory orders this quarter, 
aggregate wholesale inventory levels, etc.  

– A linear model for predicting growth would then take the following form: 

     next qtr growth = b0 + b1(last qtr growth) + b2(this qtr growth)  

                                   + b3(index value) + b4(factory orders)  

                                   + b5(inventory levels) + error 

• Estimate b0 and the coefficients b1,…, b5 from historical data, in 
order to make predictions. 



Levels of advertising 

• Determine appropriate levels of advertising and promotion for a 
particular market segment.  

• Consider the problem of managing sales of beer at large college 
campuses.  

– Sales over, say, one semester might be influenced by ads in the college paper, 
ads on the campus radio station, sponsorship of sports-related events, 
sponsorship of contests, etc.  

• Use data on advertising and promotional expenditures at many 
different campuses to tell us the marginal value of dollars spent in 
each category. 

• A marketing strategy is designed accordingly.  

• Set up a model of the following type: 

    sales = b0 + b1(print budget) + b2(radio budget)  

                + b3(sports promo budget) + b4(other promo) + error 



Motivating Examples 

• Suppose we have data on sales of houses in some area.  
– For each house, we have complete information about its size, the number of 

bedrooms, bathrooms, total rooms, the size of the lot, the corresponding 

property tax, etc., and also the price at which the house was eventually sold.  

– Can we use this data to predict the selling price of a house currently on the 

market?  

– The first step is to postulate a model of how the various features of a house 

determine its selling price.  

– A linear model would have the following form: 

            selling price = b0 + b1(sq.ft.) + b2 (no. bedrooms) + b3 (no. bath)  

                                    + b4 (no. acres) + b5 (taxes) + error 

• In this expression, b1 represents the increase in selling price for each additional 

square foot of area: it is the marginal cost of additional area.  

•  b2 and b3 are the marginal costs of additional bedrooms and bathrooms, and so on.  

• The intercept b0 could in theory be thought of as the price of a house for which all 

the variables specified are zero; of course, no such house could exist, but including 

b0 gives us more flexibility in picking a model. 











How to make money with 

machine learning? 



Notation 

• Variables X, Y….. with values x, y (lower case) 
– Vectors indicated by X  

• Components of X indicated by Xj with values xj  

• “Matrix” data set D with n rows and p columns 

– jth column contains values for variable Xj  

– ith row contains a vector of measurements on object i, indicated by 
x(i) 

– The jth measurement value for the ith object is xj(i) 

• Unknown parameter for a model =  q   

– Can also use other Greek letters, like a, b, d, g  

– Vector of parameters = q 
 

 



Example: Multivariate Linear 

Regression 
• Task: predict real-valued Y, given real-valued vector X 

 

• Score function, e.g., least squares is often used  

•  

             S(q) = Si [y(i) – f(x(i) ; q) ]2   

 

 

 

 

• Model structure:  e.g., linear f(x ; q)  = a0 + S aj xj 

• Model parameters = q = {a0, a1, …… ap } 

 

  predicted value   target value 



Note that we can write 

 

 S(q) = Si [y(i) – S aj xj]
2  

 

               = Si ei
2 

 

        =  e’ e                               where e = y – X q   

                  

        =  (y – X q)’ (y – X q) 

  
 y = N x 1 vector  

  of target values 

  N x (p+1) vector  

  of input values 

   (p+1) x 1 vector  

    of parameter values 



S(q) = S e2 =  e’ e    =  (y – X q)’ (y – X q) 

 

                               =  y’ y  –  q’ X’ y  –  y’ X q  + 

q’ X’ X q 

 

                               =  y’ y  –  2 q’ X’ y  + q’ X’ X q 

 
 

Taking derivative of S(q) with respect to the components 

of q gives…. 

dS/d q =  -2 X’ y  +  2 X’ X q 

 

Set this to 0 to find the extremum (minimum) of S as a 

function of q … 



 

Set to 0 to find the extremum (minimum) of S as a function of q … 

 

  - 2 X’ y  +  2 X’ X q  = 0      

 

    X’ X q = X’ y           (known in statistics as the Normal Equations) 

 

 

Letting X’ X = C, and X’ y = b,   

        we have C q = b, i.e., a set of linear equations 

 

 

We could solve this directly, e.g., by matrix inversion  

                              q = C-1 b  =  ( X’ X )-1  X’ y 

 

  

 

 
 
 
 



Solving for the q’s 
• Problem is equivalent to inverting X’ X matrix 

– Inverse does not exist if matrix is not of full rank 

• E.g., if 1 column is a linear combination of another (collinearity) 

• Note that X’X is closely related to the covariance of the X data 

– So we are in trouble if 2 or more variables are perfectly correlated 

• Numerical problems can also occur if variables are almost collinear 

• Equivalent to solving a system of p linear equations 

– Many good numerical methods for doing this, e.g., 

• Gaussian elimination, LU decomposition, etc 

– These are numerically more stable than direct inversion 

• Alternative: gradient descent 

– Compute gradient and move downhill 

• Will say more later on why this is better than direct solutions for certain types of 

problems 

 

 



Comments on Multivariate Linear 

Regression 
• Prediction model is a linear function of the parameters 

 

• Score function: quadratic in predictions and parameters 

  Derivative of score is linear in the parameters 

  Leads to a linear algebra optimization problem, i.e., C q = b 

 

• Model structure is simple…. 

– p-1 dimensional hyperplane in p-dimensions 

– Linear weights => interpretability 

 

• Often useful as a baseline model  

– e.g., to compare more complex models to 

 

• Note: even if it’s the wrong model for the data (e.g., a poor fit) it can still be useful for 
prediction 

 

 



Limitations of Linear Regression 

• True relationship of X and Y might be non-linear 

– Suggests generalizations to non-linear models 

 

• Complexity: 

– O(N p2  + p
3

)  - problematic for large p 

 

• Correlation/Collinearity among the X variables 

– Can cause numerical instability (C may be ill-conditioned) 

– Problems in interpretability (identifiability) 

 

• Includes all variables in the model… 

– But what if p=1000 and only 3 variables are actually related to Y? 



Non-linear models, but linear in 

parameters 
• We can add additional polynomial terms in our equations, e.g., all “2nd order” terms 

         f(x ; q)  = a0 + S aj xj + S bij xi xj 
 

• Note that it is a non-linear functional form, but it is linear in the parameters (so still 
referred to as “linear regression”) 

– We can just treat the xi xj terms as additional fixed inputs 
– In fact we can add in any non-linear input functions!, e.g. 

          f(x ; q)  = a0 + S aj fj(x) 
 
Comments: 
- Exact same linear algebra for optimization (same 

math) 
- Number of parameters has now exploded -> greater chance of overfitting 

- Ideally would like to select only the useful quadratic terms 
- Can generalize this idea to higher-order interactions 

 
 

 



Non-linear (both model and 

parameters) 
• We can generalize further to models that are nonlinear in all aspects 

          f(x ; q)  = a0 + S ak gk(bk0 +S bkj xj ) 
where the g’s are non-linear functions with fixed functional forms. 

 

In machine learning this is called a neural network 

 

In statistics this might be referred to as a generalized linear model or 
projection-pursuit regression 

 

For almost any score function of interest, e.g., squared error, the score 
function is a non-linear function of the parameters.  

 

Closed form (analytical) solutions are rare. 

 

Thus, we have a multivariate non-linear optimization problem 

(which may be quite difficult!) 

 

 

 



Optimization in the Non-Linear 

Case 
• We seek the minimum of a function in d dimensions, where d is the 

number of parameters (d could be large!) 

 

• There are a multitude of heuristic search techniques (see chapter 8) 

– Steepest descent (follow the gradient) 

– Newton methods (use 2nd derivative information) 

– Conjugate gradient 

– Line search 

– Stochastic search 

– Genetic algorithms 

 

• Two cases: 

– Convex (nice -> means a single global optimum) 

– Non-convex (multiple local optima => need multiple starts) 

 

 

 

 



Other non-linear models 
• Splines 

– “patch” together different low-order polynomials over 
different parts of the x-space 

– Works well in 1 dimension, less well in higher 
dimensions 
 

• Memory-based models 
      y’ = S w(x’,x) y,    where y’s are from the training data   
      w(x’,x) = function of distance of x from x’ 

 

• Local linear regression 
       y’ =   a0 + S aj xj  , where the alpha’s are fit at prediction    time 
just to the (y,x) pairs that are close to x’ 
 

 



Selecting the k best predictor 

variables 
• Linear regression: find the best subset of k variables to put in model 

– This is a generic problem when p is large 
(arises with all types of models, not just linear regression) 

 

• Now we have models with different complexity.. 

– E.g., p models with a single variable 

– p(p-1)/2 models with 2 variables, etc… 

– 2
p

 possible models in total 

• Can think of space of models as a lattice 

– Note that when we add or delete a variable, the optimal weights on the 
other variables will change in general 

• k best is not the same as the best k individual variables 

 

• Aside: what does “best” mean here? (will return to this shortly…) 



Search Problem 

• How can we search over all 2p possible models? 
– exhaustive search is clearly infeasible 

 
– Heuristic search is used to search over model space: 

• Forward search (greedy) 
• Backward search (greedy) 
• Generalizations (add or delete) 

– Think of operators in search space 

• Branch and bound techniques 
 

– This type of variable selection problem is common to 
many data mining algorithms 

• Outer loop that searches over variable combinations 
• Inner loop that evaluates each combination 

 

 



Empirical Learning 

• Squared Error score (as an example: we could use other scores) 

             S(q) = Si [y(i) – f(x(i) ; q) ]2   

 

     where S(q) is defined on the training data D 

 

• We are really interested in finding the f(x; q) that best predicts y on 

future data, i.e., minimizing 

               E [S] = E [y – f(x ; q) ]2     (where the expectation is over future data) 

 

• Empirical learning 

– Minimize S(q) on the training data Dtrain 

– If Dtrain is large and model is simple we are assuming that the best f  on 

training data is also the best predictor f on future test data Dtest 



Complexity versus Goodness of 

Fit 

x 

y 
Training data 



Complexity versus Goodness of 

Fit 

x 

y 

x 

y 
Too simple? Training data 



Complexity versus Goodness of 

Fit 

x 

y 

x 

y 

x 

y 

Too simple? 

Too complex ? 

Training data 



Complexity versus Goodness of 

Fit 

x 

y 

x 

y 

x 

y 

x 

y 

Too simple? 

Too complex ? About right ? 

Training data 



Complexity and Generalization 

Strain(q) 

Stest(q) 

Complexity = degrees 

of freedom in the model 

(e.g., number of variables) 

Score 

Function 

e.g., 

squared 

error  

Optimal model 

complexity 



Complexity and Generalization 

Strain(q) 

Stest(q) 

Score 

Function 

e.g., 

squared 

error  

High bias 

Low 

variance 

Low bias 

High 

variance 



Defining what “best” means 

• How do we measure “best”? 
– Best performance on the training data? 

• K = p will be best (i.e., use all variables), e.g., p=10,000 

• So this is not useful in general  

– Performance on the training data will in general be optimistic 
 

• Practical Alternatives: 
– Measure performance on a single validation set 

 

– Measure performance using multiple validation sets 
• Cross-validation 

 

– Add a penalty term to the score function that “corrects” for optimism 

• E.g., “regularized” regression: SSE + l sum of weights squared 

 

 



Training Data 

Training Data 

Use this data to find the 

best q for each model 

fk(x ; q)  



Validation Data 

Training Data 

Validation Data 

Use this data to find the 

best q for each model 

fk(x ; q)  

Use this data to  

(1)calculate an estimate of  

Sk(q) for each fk(x ; q) 

and  

(2)select k* = arg mink Sk(q)  



Validation Data 

Training Data 

Validation Data 

Use this data to find the 

best q for each model 

fk(x ; q)  

Use this data to  

(1)calculate an estimate of  

Sk(q) for each fk(x ; q) 

and  

(2)select k* = arg mink Sk(q)  

can generalize to cross-validation…. 



2 different (but related) issues 

here 
1. Finding the function f that minimizes S(q) for future data 

 

2. Getting a good estimate of S(q), using the chosen function, on future 

data, 

– e.g., we might have selected the best function f, but our estimate of its 

performance will be optimistically biased if our estimate of the score uses 

any of the same data used to fit and select the model. 

 



Test Data 

Training Data 

Validation Data 

Test Data 

Use this data to find the 

best q for each model 

fk(x ; q)  

Use this data to  

(1)calculate an estimate of  

Sk(q) for each fk(x ; q) 

and  

(2)select k* = arg mink Sk(q)   

Use this data to calculate 

an unbiased estimate of   

Sk*(q) for the selected 

model  



Another Approach with Many Predictors: Regularization 

• Modified score function: 

               Sl(q) = Si [y(i) – f(x(i) ; q) ]2 +  l S qj 
2 

 
• The second term is for “regularization” 

– When we minimize -> encourages keeping the qj‘s near 0 

– Bayesian interpretation: minimizing - log P(data|q) - log P(q) 

 
• L1 regularization 

              Sl(q) = Si [y(i) – f(x(i) ; q) ]2 +  l S | qj |   

 
(basis of popular “Lasso” method, e.g., see Rob Tibshirani’s page on lasso methods: http://www-

stat.stanford.edu/~tibs/lasso.html) 

http://www-stat.stanford.edu/~tibs/lasso.html
http://www-stat.stanford.edu/~tibs/lasso.html
http://www-stat.stanford.edu/~tibs/lasso.html


Time-series prediction as 

regression 
• Measurements over time x1,…… xt 

 

• We want to predict xt+1 given x1,…… xt 

 

• Autoregressive model 

                  xt+1 = f( x1,…… xt ; q )  =  S ak xt-k  
 

– Number of coefficients K = memory of the model 

– Can take advantage of regression techniques in general to solve this 
problem (e.g., linear in parameters, score function = squared error, etc) 

 

• Generalizations 
– Vector x 

– Non-linear function instead of linear 

– Add in terms for time-trend (linear, seasonal), for “jumps”, etc 
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Other aspects of regression 

• Diagnostics 

– Useful in low dimensions 

 

• Weighted regression 

– Useful when rows have different weights 

 

• Different score functions 

– E.g. absolute error, or additive noise varies as a function 
of x 

 

• Predicting y values constrained to a certain range, e.g., 
y > 0, or 0 < y < 1 

 

• Predicting binary y values 

– Regression as a generalization of classification 

 

 



Generalized Linear Models 

(GLMs) 

     (McCullagh and Nelder, 1989) 

• g(y) =   u(x) = a0 + S aj xj 
– Where g [ ] is a “link” function 

– u(x) is a linear function of the vector x    

 

• Examples: 
– g = identity function -> linear regression 

– Logistic regression: g(y) = log(y / 1-y)  = a0 + S aj xj 
 

– Logarithmic link:  g(y) = log(y) = a0 + S aj xj 
 

– GLMs are widely used in statistics 

 

– Details of learning/fitting algorithm depend on the specifics of the link function 

 
 

 

 

 



Task  

What’s in a Data Mining Algorithm? 

Representa
tion  

Score 
Function  

Search/Optimiza
tion  

Data 
Manageme

nt 

Models, 
Parameters 



Task  

Multivariate Linear Regression 

Representa
tion  

Score 
Function  

Search/Optimiz
ation  

Data 
Manageme

nt 

Models, 
Parameters 

Regressio
n 

Y = Weighted linear 
sum of X’s  

Least-
squares  

   Linear algebra  

None 
specified 

Regression 
coefficients 



Task  

Autoregressive Time Series Models 

Representa
tion  

Score 
Function  

Search/Optimiz
ation  

Data 
Manageme

nt 

Models, 
Parameters 

Time  Series 
Regression 

X = Weighted linear 
sum of earlier X’s  

Least-
squares  

   Linear algebra  

None 
specified 

Regression 
coefficients 



Task  

Neural Networks 

Representa
tion  

Score 
Function  

Search/Optimiz
ation  

Data 
Manageme

nt 

Models, 
Parameters 

Regressio
n 

Y = nonlin function 
of X’s  

Least-
squares  

   Gradient 
descent  

None 
specified 

Network 
weights 



Task  

Logistic Regression 

Representa
tion  

Score 
Function  

Search/Optimiz
ation  

Data 
Manageme

nt 

Models, 
Parameters 

Regressio
n 

Log-odds(Y) = 
linear function of 

X’s  
Log-

likelihood  

   Iterative (Newton) 
method  

None 
specified 

Logistic 
weights 



Sales of Houses 
– The error reflects the fact that two houses with exactly the same characteristics 

need not sell for exactly the same price.  

• There is always some variability left over, even after we specify the value of a large 

number variables.  

• This variability is captured by an error term, which we will treat as a random 

variable. 

• Regression analysis is a technique for using data to identify 

relationships among variables and use these relationships to make 

predictions.  



Forecast Accuracy 

• Our forecast is not going to be right on the money every time and 

we need to develop the notion of forecast accuracy. 

• Two things we want: 

– What kind of Y can we expect for a given value of X? 

– How sure are we about this forecast?  

– How different could y be from what we expect? 

• Goal: Provide a measure of the accuracy of forecasts or equivalently 

how much uncertainty is there in our forecasts.  

• Proposal: Provide a range of possible Y values that are likely given 

this x value. 

 



Prediction Interval 

• Prediction Interval: range of possible Y values that are likely given 
X 

• What influences the length of the prediction interval?  

– Intuitively, the answer must lie in observed variation of the data points about 
the prediction rule or fitted line. 

• Key Insight: To construct a prediction interval, we have to assess 
the the likely range of residual values which will occur for an as 
yet unobserved Y value! 

• How can we achieve this?  

– Develop a probability model for distribution of these residuals values.  

– If the residuals were normally distributed with a given standard deviation, 
then we could make formal probability statements about the range of likely 
residuals!!  

– With 95% probability, the residuals will be between -$28,000 and $28,000. 



Simple Linear Regression Model 

• Once we come to the view that the residuals might come from a 

probability distribution, we must also acknowledge that the “fitted” 

line might be fooled by the particular realizations of the residuals. 

• The model will enable us to think about uncertainty and which uses 

a particular distribution for the deviations from the line. 

• The power of statistical inference comes from our ability to make 

very precise probability statements about the accuracy of estimates 

and forecasts.  

– There is no free lunch, in order to make these statements and to understand the 

output from the regression procedure, we must invest in a probability model. 



Simple Linear Regression Model 

• Y  = b0 +b1X + e, e ~ N(0,s2) 

• Part of Y related to X (What we can expect): b0 +b1X  

• Part of Y independent of X (How different can Y be): e 

• Note that e is a random variable which is called the error term.  
– This can be thought of as a sort of “trash can” which contains all of the 

omitted influences on the Y variable.  As an example, it represents the other 
omitted factors which change the price of the house other than the house size. 

– E(e)=0. 

– standard deviation: The size of e is measured by [Var(e )]1/2 . 

• The “systematic” part is given by the term b0 +b1X.  

• The conditional expectation of Y given X, E(Y|X), is b0 +b1X. 



Linear Regression 

• A regression model species a relation between a dependent variable 

Y and certain independent variables X1,…,XK. 

• A simple linear regression refers to a model with just one 

independent variable, K=1.  

      Y  = b0 +b1X + e 

– Independent variables are also called explanatory variables; in the equation 

above, we say that X explains part of the variability in the dependent variable 

Y . 

• Example: A large corporation is concerned about maintaining 

parity in salary levels across different divisions.  

– As a rough guide, it determines that managers responsible for comparable 

budgets in different divisions should have comparable compensation.  

– Data Summary 



Example 

• The following is a list of salary levels ($1000s) for 20 managers and 

the sizes of the budgets ($100,000s) they manage: (59.0,3.5), 

(67.4,5.0), (50.4,2.5), (83.2,6.0), (105.6, 7.5), (86.0,4.5), (74.4,6.0), 

(52.2,4.0), (59.0,3.5), (67.4,5.0), (50.4,2.5), (83.2,6.0), (105.6,7.5), 

(86.0,4.5), (74.4,6.0), (52.2, 4.0) 

 

 

 

 



Best Line 

• Want to fit a straight line to this data. 

– The slope of this line gives the marginal increase in salary with respect to 

increase in budget responsibility. 

• We need to define what we mean by the best line.  
– Regression uses the least squares criterion, which we now explain.  

– Any line we might come up with has a corresponding intercept b0 and a slope 

b1.  

– This line may go through some of the data points, but it typically does not go 

through all of them. 

• The least squares criterion chooses b0 and b1 to minimize the sum of 

squared errors  S1in (yi - b0 - b1xi)
2 where n is the number of data 

points. 

 



Least Squares 

• For the budget level Xi, the least squares line predicts the salary 
level 

    SALARY = 31.9 + 7.73 BUDGET or PYi = 31.9 + 7.73Xi  

– Unless the line happens to go through the point (Xi; Yi), the predicted value 
PYi will generally be different from the observed value Yi.  

– Each additional $100,000 of budget responsibility translates to an expected 
additional salary of $7,730.  

– The average salary corresponding to a budget of 6.0, we get a salary of 31:9 + 
7:73(6:0) = 78:28. 

– The difference between the two is the error or residual ei = Yi - PYi. 

• The least squares criterion chooses b0 and b1 to minimize the sum of 
squared errors S1in ei

2 . 
– A consequence of this criterion is that the estimated regression line always 

goes through the point             .  
),( YX



Questions 

• Q1: Why is the least squares criterion the correct principle to 

follow? 

• Q2: How do we evaluate and use the regression line? 

• Assumptions Underlying Least Squares 

– The errors e1,…, en are independent of the values of X1,…,Xn. 

–  The errors have expected value zero; i.e., E[ei] = 0. 

–  All the errors have the same variance: Var[ei] = s2, for all i = 1,…,n. 

– The errors are uncorrelated; i.e., Corr[ei, ej] = 0 if i  j. 

• Q1: What are the angle between (1,…,1) and (e1,…, en) and that of 

(e1,…, en) and (X1,…,Xn)? 

 



Discussion on Assumptions 

• The first two are very reasonable: if the ei's are indeed 
random errors, then there is no reason to expect them to 
depend on the data or to have a nonzero mean.  

• The second two assumptions are less automatic. 

–Do we necessarily believe that the variability in salary levels 
among managers with large budgets is the same as the 
variability among managers with small budgets?  Is the 
variability in price really the same among large houses and small 
houses?  

–These considerations suggest that the third assumption may not 
be valid if we look at too broad a range of data values. 

–Correlation of errors becomes an issue when we use regression 
to do forecasting.  If we use data from several past periods to 
forecast future results, we may introduce correlation by 
overlapping several periods and this would violate the fourth 
assumption. 



Linear Regression 

• We assume that the outcome we are predicting depends 
linearly on the information used to make the prediction.  

–Linear dependence means constant rate of increase of one 
variable with respect to another (as opposed to, e.g., diminishing 
returns). 

–E(Y|X) is the population “average” value of Y for any given 
value of X.   For example, the average house price for a house 
size = 1,000 sq ft. 

• Regression models are really all about modeling the 
conditional distribution of Y given X. 

–Distribution of House Price given Size 

–Distribution of Portfolio return given return on market 

–Distribution of wages given IQ or educational attainment 

–Distribution of sales given price 



Evaluating the Estimated Regression Line 

• Feed data into the computer and get back estimates of the model 

parameters b0 and b1.  
– Is this estimated line any good? 

– Does it accurately reflect the relation between the X and Y variables?  

– Is it a reliable guide in predicting new Y values corresponding to new X values?  

• predicting the selling price of a house that just came on the market, or 

setting the salary for a newly defined position 

• Intuitively, the estimated regression line is useful if the 

points (Xi,Yi) are pretty well lined up.  The more they look 

like a cloud of dots, the less informative the regression 

will be. 



Reduction of Variability 

•Our goal is to determine how much of the 
variability in Y values is explained by the X values.  

–We measure variability using sums of squared 
quantities.  

–Consider the salary example. The Yi's (the salary levels) 
exhibit considerable variability |-not all managers have 
the same salary.  

–We conduct the regression analysis to determine to 
what extent salary is tied to responsibility as measured 
by budget: the 20 managers have different budgets as 
well as different salaries.  

•What extent the differences in salaries are 
explained by differences in budgets? 

 



Analysis of Variance Table 

• s = 12.14,  R2 = 72.2%, R2 (adj) = 70.7% 

    SOURCE      DF       SS           MS 

    Regression     1      6884.7     6884.7 . . . 

    Error             18     2651.1       147.3 

    Total             19     9535.8 

– DF stands for degrees of freedom, SS for sum of squares, and MS for 
mean square.   The mean squares are just the sum of squares divided by 
the degrees of freedom: MS = SS/DF. 

• A sum of squares measures variability.  

– The Total SS (9535.8) measures the total variability in the salary levels.  

– The Regression SS (6884.7) is the explained variation.  It measures how 
much variability is explained by differences in budgets.  

– The Error SS (2651.1) is the unexplained variation.  



The Error SS  

• This reflects differences in salary levels that cannot be attributed to 

differences in budget responsibilities.  

• The explained and unexplained variation sum to the Total SS. 

• How much of the original variability has been explained?  

– The answer is given by the ratio of the explained variation to the total 

variation, which is 

          R2 =SSR/SST=6884.7/9538.8= 72.2% 

– This quantity is the coefficient of determination, though everybody calls it 

R-squared. 

 



Normal Distribution 

• The following figure depicts two different normal distributions 

both with mean 0 one with s=.5 one with s=2. 

– one s : 68%, two s : 95.44%, two s : 99.7% 

 



How does s determine the dispersion of points about 

the true regression line? 

s small/e small 

 

s large/e large 

 



Office Trip Study  
• Traffic Planners often refer to results from a classic study done in 

1989 for the Maryland Planning Commission by Douglas & 
Douglas Inc.  

– The study was done in Montgomery County, MD.  
– Goal: Predict the volume of traffic associated with office buildings. 
– Such information is useful for several purposes.  

• For example if a new office building of 350,000 sq. ft. were being planned,  
   planners and zoning administrators, etc., would need to know how much  

   additional traffic to expect after the building was completed and occupied.  
• Data AM: traffic counts over a period of time at 61 office building 

sites within the county.  
– X-variable: size of the building measured in occupied gross square feet of  
                        floor space (in 1000 sq. ft. units).  
– Y-variable: average daily number of vehicle trips originating at or near the  
                       building site during the AM hours.  

• Data PM:  Similar data for PM hours was also measured, and some  
  other information about the size, occupancy, location, etc., of the  
  building was also recorded. 



Scatterplot: AM Trips By Occup. Sq. Ft. (1000) 

• Fit：AM Trips = -7.939 + 1.697 Occup. Sq. Ft. (1000)  

• Summary of Fit：R2 = 0.800  

 



Residual Plot  
• How do you know that a correct model is being fitted? 

– Prediction: For a 350,000 sq. ft. bldg, it generates -7.939 + 1.697×350 = 586.0 

trips. The 95% confidence interval for this prediction is 535.8 to 636.1.  

 

 Noticeable 

heteroscedasticity 

by looking at scatter plot.  

undesirable histogram of 

residuals 



Transformation Attempt #1  
• Since the (vertical) spread of the data increases as the y-value  

  increases a log transformation may cure this heteroscedasticity.  

Scatter plot after transforming y to Log(y) 

 
Residual Plot  

Linear Fit: Log Trips = 1.958 + 0.00208 Occup. Sq. Ft. (1000)  

Summary of Fit: R2 = 0.761  



New analysis introduces a new problem!  
• An undesirable degree of non-linearity: It is evident in both the 

residual plot and the scatterplot.  

Transformation Attempt #2  

• Try to fix nonlinearity with an additional transformation from x to  

   log(x).  

 
        Residual Plot  

Linear Fit: log Trips = 0.639 + 0.803 log(OccSqFt)  

Summary of Fit: R2 = 0.827  



Standard Assumptions  
• After log-log transformation: Linearity, homoscedasticity, 

and normality of residuals are all quite OK.  

 

 

 



Prediction 

• If a zoning board were in the process of considering the zoning appli- 

  cation from a proposed 350,000 sq. ft. office bldg, what is their prima

ry concern? 
–Proposal I: Find the 95% confidence limits for 350,000 sq. ft. office buildings.  

                                         Lower 95% “Pred”    Upper 95% “Pred”  

          Log (Trips)                     2.6262                         2.7399  

          Number of Trips:           422.9 = 102.6262             549.4  
•Compare this to the confidence interval of 535.8 to 636.1 from the initial model.  

  These CIs are very different. The latter one, based on the log-log analysis, is the valid  

  one, since the analysis leading to it is valid.  

–Proposal II: Consider 95% Individual Prediction intervals - that is, in 95% 

   intervals for the actual traffic that might accompany the particular proposed  

   building. These are  

                                         Lower 95% “Indiv”   Upper 95% “Indiv” 

           Log (Trips)                       2.3901                     2.9760  

           Number of Trips:              245.5                        946.2  

 



Comparison of the two analyses on a single plot  



Does an Increasing Crime Rate Decrease House Prices?  
• This data was gathered in 1996.  

–For each community in the Philadelphia area, it gives the crime rate (reported  

crimes/1000 population/year) and the average sale price of a single family 

home.  

–Center City Philadelphia is not included on the following plot and data  

  analyses.         

                          House Price ($10,000) versus Crime Rate 



Least squares straight line fit to this data  

Linear Fit  
Hs Prc ($10,000) = 22.53 – 0.229 Crime Rate 

Summary of Fit  
R2 = 0.184  

R2 Adj = 0.176  

Root Mean Square 

Error  = 7.886 

Observations=98  



(1) Linear fit with all data  
(2) Linear fit with five points removed  

Linear Fit number (2)  

Hs Prc ($10,000) = 19.91 - 0.184 ×Crime Rate  



Linear Fit Number (1) 

•Hs Prc ($10,000) = 22.52 – 0.229×Crime Rate  
•Summary of Fit  

–R2 =0.184,  RMSE = 7.886 

•Analysis of Variance  
         Term         Estimate       Std Error      t Ratio     Prob>|t|  

Intercept          22.52             1.649           13.73         <.0001  
Crime Rate     -0.229           0.0499           -4.66         <.0001  
 

 

 



Linear Fit Number (2) 

•Hs Prc ($10,000) = 19.91 – 0.184×Crime Rate  
•Summary of Fit  

–R2 =0231,  RMSE = 5.556 

•Analysis of Variance  
         Term         Estimate       Std Error      t Ratio     Prob>|t|  

Intercept          19.91             1.193           16.69         <.0001  
Crime Rate     -0.184           0.0351           -5.23         <.0001  
 

 

 



Normal  Quantile Plot  

Normal  Quantile Plot  

Residuals Hs Prc 

($10,000); Analysis 1  

Residuals Hs Prc 

($10,000); Analysis 2 



Analysis of Car Mileage Data  
• Data set: It gives mileage figures (in MPG (City)) for various 

makes of cars, along with various characteristics of the car engine 

and body as well as the base price for the car model.  

• Objective:  
– Create a multiple regression equation that can be used to predict the MPG for 

a car model having particular characteristics.  

– Get an idea as to which characteristics are most prominent in relation to a car 

mileage.  

• Build a regression model: 

• Step 1: Examine the data 
a. Look for outliers and influential points.  

b. Decide whether to proceed by predicting Y or some function of Y.  

– Preliminary analysis: Consider X to be weight.  
•Linear Fit: MPG City = 40.266964 - 0.006599 Weight(lb)  

•Transformed Fit to Log: MPG City = 171.42143 - 18.898537 Log(Weight(lb)) 

•R2 changes from 0.75093 to 0.803332. 

•RMSE changes from  2.136611 to 1.898592.  



Log(Weight) version provides a somewhat better fit. 
A slight curve is evident in the residual plot (and in the 
original scatter plot if you look carefully).  
No outliers or influential points that seem to warrant 
special attention.  



Another Fit 

•Fit of MPG City By Horsepower  
–MPG City = 32.057274 - 0.0843973 Horsepower  
–MPG City = 76.485987 - 11.511504 Log(Horsepower)  

--- Linear Fit 
--- Transformed Fit to Log  

This suggests that we might want 
to try also transforming the Y-
variable somehow, in order to 
remove the remaining curved 
pattern.  



Step 1b: Try transformations of Y 
•One transformation that has been suggested is to transform Y 

to  1/Y = Gallons Per Mile.  
–Since this is a rather small decimal, we consider Y* = Gallons Per 
1000Miles.  
–Linear Fit:  GP1000M City = 9.2452733 + 0.0136792 Weight(lb)  
–Another Fit: GP1000M City = 25.559124 + 0.1806558 Horsepower  

R2 = 0.774344  
RMSE = 4.151475  

R2 = 0.705884  
RMSE = 4.739567 



Transformation 
•The first analysis looks nicely linear, but there is some 

evident heteroscedasticity.  
•The second analysis seems to be slightly curved; maybe we 

could try using log(HP) as a predictor.  
•It seems reasonable to also try transforming to Log(Y) =  

Log10 (MPG).  
– Since MPG was nearly linear in Wt, it seems more reasonable to try 

Log10 (Wt) as a predictor here, and similarly for Log10 (HP).  

 

Log10(MPG) = 4.2147744  
             - 0.8388428 Log10(Wt)  



Transformation 
•Linearity looks fine on these plots.  
•There may be a hint of heteroscedasticity - but not close to 

enough to worry about.  
•Again, there are no leverage points or outliers that seem to 

need special care.  
•Log10(MPG) = 2.3941295  - 0.5155074 Log10(HP) 



Step 2: Choose predictor variables for the 
Multiple Regression 

•Use the chosen form of Y variable and of X variables - and 
perhaps other X-variables as well. 

Multivariate Correlations  
                           Log_10(MPG)  Log_10(HP)  Log (Displ)  Log_10(Wt)  Log_10(Cargo)   Log_10(Price)  cylinders    length  
Log_10(MPG)          1.0000            -0.8791         -0.8624         -0.9102              -0.1361                -0.8208           -0.7572       -0.7516  
Log_10(HP)            -0.8791             1.0000           0.8530          0.8260               -0.0440                0.8335             0.7976        0.6592  
Log (Displ)           -0.8624              0.8530          1.0000           0.8809          0.1060                0.6757             0.8700        0.8073  
Log_10(Wt)           -0.9102              0.8260           0.8809          1.0000          0.1449             0.8055             0.7483        0.8768  
Log_10(Cargo)       -0.1361            -0.0440           0.1060          0.1449          1.0000               -0.0684            -0.0225       0.0020  
Log_10(Price)         -0.8208             0.8335          0.6757          0.8055         -0.0684             1.0000              0.6860       0.6221  
cylinder           -0.7572              0.7976          0.8700          0.7483         -0.0225                0.6860             1.0000        0.6724 
length           -0.7516              0.6592          0.8073          0.8768         -0.0020                0.6221             0.6724        1.0000   

•The biggest correlation is with Log(Wt). Therefore this 
variable gives the best fitting linear regression.  
–Note that MPG City = 171.42143 - 18.898537 Log(Weight(lb)) 

–In that analysis, the SSE was 0.1327.  
–Add Log(HP) to this model as another predictor. This creates a 
multiple regression with two predictor variables.  
–MPG City = 3.61 – 0.513 Log(Weight(lb)) –0.25Log(HP)  
–Choose one (or sometimes more) variables as the most important 
among the predictor variables.   The best single choice is that having 
the largest correlation with the y-variable. 



Scatterplot Matrix  



Plots 

Actual by Predicted Plot Residual by Predicted Plot  



Software 

• MATLAB 
– Many free “toolboxes” on the Web for regression and prediction 

– e.g., see http://lib.stat.cmu.edu/matlab/ 
   and in particular the CompStats toolbox 

 

• R 
– General purpose statistical computing environment (successor to S) 

– Free (!) 

– Widely used by statisticians, has a huge library of functions and 
visualization tools 

 

• Commercial tools 
– SAS, Salford Systems, other statistical packages 

– Various data mining packages 

– Often are not progammable: offer a fixed menu of items 

 


