
Iordanis Koutsopoulos

NETWORK OPTIMIZATION

LECTURE NOTES

Part 2 1

1Based on Notes from Fall 2006, and Fall 2010. Organized by Stella Gaki.

1

Contents

1 Example: Optimization problem formulation 3

2 Descent Methods 9
2.1 Properties 10

3 Gradient Descent Method 11
3.1 Properties of Gradient Descent 12

3.2 General descent method algorithm 16

3.3 Gradient method with Constrains on x 17

4 Upper and lower bounds on Hessian matrix of f 18
4.1 Condition Number 19

5 Convergence of Gradient Method 22

6 Newton descent method 23

7 Selection of step size α 24
7.1 Steepest descent method 24

7.1.1 Examples 25

7.2 The Armijo rule 29

7.3 Diminishing step size 29

8 Convergence Order 30
8.1 Further issues with Convergence 31

8.2 Example . 34

2

9 The use of gradient method in communication net-
works 36
9.1 Localization of jammers in wireless networks . . 36

9.2 Content distribution and caching 38

9.3 Throughput maximization with power control in

wireless communications 41

10 Other remarks on gradient descent method 51
10.1 Distributed implementation 51

10.2 Gauss-Seidel method and Jacobi methods . . . 52

References 53

3

1 Example: Optimization problem for-

mulation

Source Destination

λ bits
λ

G

Hop 1 Hop 2

Hop N

BER ≤ ǫ at each receiver

Fig.3 : Multi-hop transmission in a sensor network

r

Figure 1: Bit transfer from a source to a destination in multi-hop

in a wireless sensor network.

Consider a sensor network, in which λ bits have to be

transmitted from a source (S) to a destination (D). Destination

can be a processing (fusion) center.

The λ bits are generated by the sensing / measurement

process at the sensor in (S). The bits need to be forwarded

through the multi-hop network from S to D. At each hop, λ bits

are transmitted from the transmitter to the corresponding re-

ceiver. Here, the multi-hop path to the destination is known.

Suppose the number of hops is N .

There exist L possible data transmission rates, r1, ...rL.

4

Each transmitter i = 1, . . . , N − 1 has to choose a rate

ri ∈ {r1, . . . , rL} out of the rate set. Each rate ri de-

notes bits/symbol that can be transmitted and can be mapped

to choosing the level of modulation transmitter i.
For example, for QPSK and 8-QAM modulation, r = 2 and

r = 3 bits/symbol respectively.

Reminder from Digital Comm: To transmit data, a trans-

mitter divides the stream of coming bits into teams of r bits.

E.g. for BPSK, QPSK, 8-QAM modulation, r = 1, 2, 3 respec-

tively. The transmitter then “loads” the r in a pulse (symbol),

so that we have that it transmits r bits/symbol. The transmit-

ter circuitry generates pulses with rate s symbols/sec (symbol

rate).

Fix attention at hop i. Suppose ti is the time duration of

transmission of the λ bits. Then,

λ(bits) =
bits

symbol
·

symbols

sec
· sec (1)

⇒ λ = ri · s · ti (2)

where s is the symbol rate in symbols/sec, with s = 1
Ts

, where

Ts is the symbol (pulse) duration. Bits are loaded on symbol

pulses (which can be square pulses or sigmoid ones).

Rate ri determines the number of transmitted bits per sym-

bol in hop i, namely it determines the modulation level. The to-

tal time needed for the transmission of the λ bits across hops,

5

is:
N∑

i=1

ti =
λ

s

N∑

i=1

1

ri
. (3)

In this problem, the modulation level ri for the transmitter

of each hop i is controllable. In fact, we assume that ri is

continuous variable.

At each receiver along the path, the SNR should satisfy:

SNRi ≥ −
ln(5ǫ)

1.5
(2ri − 1) (4)

if rate ri is used at transmitter i, so that BER ≤ ǫ at each

receiver, where ǫ is a prespecified number (e.g.10−6, 10−7)

that shows the maximum tolerable bit error rate (BER) at each

transmission hop. The inequality above results from the follow-

ing approximate formula for BER:

BER ≈
1

5
e−

1,5·SNR
2r−1 . (5)

The relation SNRi (2
ri − 1) may also be derived from the

Shannon capacity formula, ri = log2(1 + SNRi).
The receiver is aware of transmitter rate and tries to de-

code the signal according to that. If ri is too large, this means

that signal points in the constellation diagram are too close to

each other, so there is a difficulty in distinguishing what has

been sent. Thus, good quality channel is needed to reduce the

errors.

6

The minimum required SNR is related to transmission power

as follows:

SNRi =
giPi

σ2
(6)

where gi ∈ [0, 1] is the link gain between transmitter-receiver

at hop i (it shows the losses in the power of the transmitted

signal) and σ2 is the noise power at receiver. By using equality

and solving for Pi we have the following:

Pi =
σ2a

gi
(2ri − 1) ≈ k · 2ri (7)

where a = − ln(5ǫ)
1.5 and k is a proportionality constant. Thus

Pi is exponential in rate ri. The energy consumed for trans-

mission at hop i is:

Energy(joules) = Power(Watt)× time(sec) (8)

¿From equation (2) the energy is :

Ei = Pi ·
λ

s
· ri (9)

⇒ Ei =
k · 2ri
s·ri
λ

⇒ Ei = k · 2ri ·
λ

sri

7

What is the optimization problem that arises ?

(a) Given a route from S to D, what is the transmission rate ri
in each hop i so that the total energy

∑N
i=1 Ei is minimized?

If there are no constraints on the time by which the λ bits

need to be transferred, and since

Ei = ki ·
2ri

ri
(10)

and there are L choices for the rate, r ∈ {b1, ldots, bL}, with

b1 < b2 < . . . < bL, the optimal choice is to operate with the

minimum rate for each hop, namely ∀ hops i, choose ri = b1.

(b) What happens when there is a deadline by which bits need

to be transferred to the destination?

Deadlines arise since the information that needs to be trans-

mitted is time-critical. Then λ bits need to be transferred from

source to destination within some deadline time D. We also

assume that only one hop is active at a time, the one that trans-

mits.

There are two conflicting views: Sum
∑N

i=1 Ei needs to

be low (because in a sensor network battery consumption has

to be low). That means that energy transmission in each hop

has to be low. Thus, in order to have low energy consumption,

each ri has to be low. But, on the other hand, if each ri is low,

it takes longer for the λ bits to be transmitted and the dead-

line D is more difficult to respect. Therefore, we can formulate

the following optimization problem (assuming that the rates are

8

continuous variables):

min
r

N∑

i=1

ki ·
2ri

ri
,

subject to:
λ

s

N∑

i=1

1

ri
≤ D

with r = {r1, ...rN}, r ≥ 0.

Objective function f(r) =
∑N

i=1 ki
2ri

ri
is convex in r ,

since it is the sum of convex functions of the form ex

x
. Also the

constraints are convex. Therefore, we have a convex optimiza-

tion problem.

Remark 1: Another optimization problem could be formed,

where the total delay in transferring the information would be

minimized, subject to a constraint on the total energy consump-

tion.

Remark 2: In the formulation above, we assumed that

the link gains gi for each hop i are fixed quantities. A large

gi (good channel, few losses) means that smaller energy is

needed to achieve a certain BER at the corresponding receiver.

Gain gi can be measured as follows. The transmitter sends a

signal of known power p (known, also to the receiver). The re-

ceiver then measures the received signal power, p′ and finds

gain g = p′/p.

9

Remark 3: The optimization problem formulated above as-

sumes that all gains g1, . . . , gN−1 are known to a central con-

troller node which then computes the solution and sends it to

each transmitter. However, another version of the problem, an

online one can be as follows. Each transmitter i only knows its

own gain gi and decides (perhaps greedily) on its own transmit

rate ri, based on that and the remaining time until the deadline.

Then the next transmitter i + 1 get the bits and decides on its

own rate ri+1 and so on. In this second version of the prob-

lem, not all the information is available a priori, but it is revealed

gradually at each node.

2 Descent Methods

We want to minimize a function of many variables, f(x). There

are no constraints to this problem.

A first way to solve the problem is to apply the sufficient

conditions that involve ∇f(x) and the Hessian matrix. How-

ever, this requires the gathering of all variables to a central

point, and the solution of (possibly complicated) equations. Al-

ternatively, we can use the Descent methods.

Descent methods are iterative numerical methods which,

starting with an initial guess x(0), improve gradually the value

of the objective function f . To do so, they move from one point

10

to the next one, by applying the general rule:

x(k+1) = x(k) + α(k)d(k) , (11)

where α is a positive scalar parameter called the step size at

iteration k, and d is a direction vector, d ∈ Rn, called the

descent direction of iteration k.

Thus, the descent method generates a sequence of points

x(0) → x(1) → . . . → x∗. The sequence {x(k)} con-

verges to the point x∗.

The point x∗ is (at least) a local minimum of f . We sym-

bolize the fact that x∗ minimizes the value of f as x∗ =
argminx f(x).

At each iteration, it must be:

f(x(k+1)) < f(x(k)), ∀k . (12)

2.1 Properties of search direction d

How to choose the descent direction d(k)?

In a descent method, the descent direction must be such

that ∇f(x(k))Td(k) < 0 for all k, so that the value of the

function decreases with iteration k. In that case, the direction

is called descent direction for f at x(k). That is, the search

direction should make an acute angle with the direction of the

gradient at x(k) (otherwise it will be f(x(k+1)) > f(x(k))).

11

Indeed, since we want f(x(k+1)) < f(x(k)), and it is

x(k+1) = x(k) + α(k)d(k), we recall the Taylor first or-

der expansion formula to have: f(x(k+1)) = f(x(k)) +
α(k)∇f(x(k))Td(k) and it must be ∇f(x(k))Td(k) < 0.

In the next figure below we depict some descent directions.

(k)f(x)
x(k)

���
���
���

���
���
������

���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����

����
����
����

∇
∆

Figure 2: Descent directions for the Gradient Descent method.

3 Gradient Descent Method

The Gradient Descent Method is a special descent method

where the search direction is: d(k) = −∇f(x(k)).

12

The iteration for the gradient descent method is:

x(k+1) = x(k) − α(k)∇f(x(k)). (13)

We will show that f(x(k+1)) < f(x(k)).
We have:

f(x(k+1)) = f(x(k))− α(k) ∇f(x(k)) (14)

Using Taylor’s expansion formula, equation becomes:

f(x(k+1)) = f(x(k))− α(k)‖∇f(x(k))‖2 (15)

Sinceα(k) and
∥
∥∇f(x(k))

∥
∥
2

are positive, we have f(x(k+1)) <

f(x(k)).
Note: We will present various ways of how to determine α(k)

later.

Remark: Gradient methods can be efficient in systems /

networks in which each node can control one component (vari-

able) of the problem (i.e. of the vector x(k)). Then each node

i can run the gradient descent algorithm locally on its variable

xi and thus get to optimal solution x∗
i . In these cases, the

gradient descent method facilitates distributed computations.

3.1 Properties of Gradient Descent

1. The direction of ∇f(x0) is orthogonal to the tangent

vector to an arbitrary smooth curve passing through x0

at the level set f(x) = f(x0) (see Figure 3).

13

Remark: The level set of a function f at level c ∈ R is

the set of points S = {x : f(x) = c}.

The level set can be visualized as follows. Imagine a

(say three-dimensional) function f (imagine in the shape

of a bell for example). Imagine we cut the bell with a

horizontal plane at the vertical axis position c. What will

remain is a circle. The set of points on the circle is the

level set at level c.

2. ∇f(x) is always the direction of maximum rate of in-

crease of f at point x.

X2

X1

, 2XX1))f = c

X02

X01

)f X0)

∆

X0 t0

)

)X=

t0

)

)’X

level set

γ

Figure 3: Orthogonality of the gradient to the level set

14

First, we will define the directional derivative of f at di-

rection d.

Directional derivative: Define as
∂f(x)
∂d

the directional

derivative of function f : Rn −→ R in the direction d

at point x as:

∂f

∂d
= lim

α→0

f(x+ αd)− f(x)

α
= dT∇f(x).

(16)

where dT∇f(x) denotes the rate of increase of f at

direction d at point x and α is a small number.

When the direction vector becomes the gradient, i.e.

d = ∇f(x)
||∇f(x)|| , the above rate becomes maximum.

This can be proved if we apply the Cauchy-Schwartz

inequality. This says that, for vectors a and b, it is:

(aTb)2 ≤ ||a||2||b||2 ⇒ aTb ≤ ||a||||b||), with

equality if a,b are co-linear.

Then,we have that:

dT∇f(x) ≤ ||d|| ||∇f(x)|| . (17)

Thus, the maximum value of the left side of expression

(19) is ||∇f(x)|| which is achieved for direction

d =
∇f(x)

||∇f(x)||
, (18)

15

namely the unit-norm direction of gradient.

Thus: the direction of gradient is the one along which

the value of f increases with maximal rate.

3. For each iteration k, the points produced by the iteration

are such that:

(x(k+2) − x(k+1)) ⊥ (x(k+1) − x(k))

Thus, vector (x(k+1) − x(k)) is orthogonal to vector

(x(k+2) − x(k+1)), which equivalently means:

∇f(x(k+1)) ⊥ ∇f(x(k)), or ∇f(x(k)) is parallel to

the tangent plane to the level set {f(x) = f(x(k+1))}
at x(k+1).

A depiction of the possible iteration of the gradient method

is given in the figure below.

Remark 1: For minimization problems, the gradient algo-

rithm moves towards direction opposite to the one of gradient.

For maximization problems, the algorithm moves towards the

direction of the gradient. This direction is then called an ascent

direction.

Remark 2: The Euclidean Norm of vector d indicates the

velocity with which f changes in every point (i.e. the magnitude

of d indicates the greatest rate of change).

16

��
��
��
��

0 1 2c > c > c > c3

x(0)

x(1)

x(2)

x(3)
x*

f=c0

f=c1

f=c2
f=c3

Figure 4: Point Sequence in the gradient descent method.

3.2 General descent method algorithm

The algorithmic steps for a General Descent Method
Start with initial point x(0).

At each iteration k:

1. Determine a descent direction d(k).

2. Determine a step α(k).

3. Update the point according to equation:

x(k+1) = x(k) + α(k)d(k)

STOP if ‖∇f(x(k))‖ ≤ ε, where ε a small positive number.

Another (more general) form of descent methods is as fol-

lows:

x(k+1) = x(k) − α(k)Dk∇f(x(k)) (19)

17

where Dk is a symmetric, positive definite matrix. The descent

direction isd(k) = −Dk·∇f(x(k)). It is∇f(x(k))Td(k) <
0 as it should be for all descent methods, since Dk is positive

definite.

Note that this more general form can be used to weigh ap-

propriately each component of Gradient vector.

Note that for Dk = I (where I is the unit matrix), we

get the Gradient’s descent method iteration and for Dk =
[∇2f(x(k))]−1, we get the Newton’s method iteration.

3.3 Gradient method with Constrains on x

The gradient methods above work when x ∈ Rn. In many

problems however, especially in networks, the variables of vec-

tor x are subject to various constraints. A most common con-

straint is the fact that these are non-negative (i.e. x ≥ 0).

Then, for problem minx≥0 f(x), the iteration for the Gradient

descent method, for each component i is:

x
(k+1)
i = (x

(k)
i − α(k)∇

∂f(x(k))

∂xi

)

+

(20)

where x+ is equal to x if x > 0, and zero for negative values

of x.

18

4 Upper and lower bounds on Hessian

matrix of f

Suppose that f is defined in a domainΩ and is a strictly convex

function. Then there exist real numbers m,M > 0 such that:

mI ≤ ∇2f(x) ≤ MI (21)

where 0 < m ≤ M and I is the identity matrix of size n
(assuming xǫRn).

Proof of lower bound : Since f is convex, Hessian matrix

is positive definite (∇2f(x) > 0), that is, yT ∇2f(x) y > 0,

∀y 6= 0. Then ∃m such that:

yT (∇2f(x)−mI) y > 0 ∀y 6= 0

⇒ ∇2f(x) ≥ mI (22)

Proof of upper bound : Assume that λ(x) is the eigen-

value of∇2f(x) and omega(x) is the corresponding eigen-

vector of ∇2f(x). This means that:

∇2f(x)ω(x) = λ(x)y. (23)

Note that λ(x) and ω(x) depend on the particular point

x, since ∇2f(x) depends on x and that ω(x) > 0, since

∇2f(x) is positive definite.

19

Define Λ as follows:

Λ = max
x∈Ω

λ(x) (24)

which leads us to inequality:

∇2f(x)ω(x) ≤ Λω(x). (25)

Multiply from the left by ω(x) > 0 to get:

ω
T (x)∇2f(x)ω(x) ≤ ω

T (x) Λω(x) = ω(x)T Λ I ω(x)
(26)

and finally set M = Λ to get:

∇2f(x) ≤ MI. (27)

4.1 Condition Number

Note that the ratio

maxx∈Ω λ(x)

minx∈Ω λ(x)
≥

M

m
(28)

is called the Condition Number of the Hessian matrix of func-

tion f .

Later, we will show that the condition number is related to

the speed of convergence of gradient descent methods.

More information about these upper and lower bounds can

be found in section 9.1.2 of the book ”Convex Optimization” by

Boyd and Vandenberghe.

20

In the special case that f(x) is quadratic, i.e.

f(x) =
1

2
xTQx (29)

with Q n × n positive definite matrix, it is ∇2f(x) = Q
and the condition number is defined as the ratio of its largest

eigenvalue to its smallest eigenvalue.

ConditionNumber =
λmax(Q)

λmin(Q)
(30)

where the maximum and minimum eigenvalues are now fixed

numbers.

The condition number gives a measure of:

• The convergence of Gradient Method (i.e. how fast the

sequence of points of the Gradient algorithm converges

to a minimum x∗).

• The anisotropy (eccentricity) of the set Ω in the case of

generic functions f(x).

• The distance of f(x(k)) from the optimal value of ob-

jective function (i.e. f(x∗)) for every iteration k (see

the proof below).

Proof:

21

We will show that:

1

2M
‖∇f(x)‖

2
≤ f(x(k))− f(x∗) ≤

1

2m
‖∇f(x)‖

2

(31)

Proof of upper bound:
¿From Taylor’s expansion formula we have:

f(y) = f(x)+∇T f(x) (y−x)+
1

2
(y−x)T ∇2f(x) (y−x)

(32)

Also from the bound above:

(y − x)T ∇2f(x) (y − x) ≥ m ‖y − x‖
2

(33)

¿From the above, and after bounding further the second term

of the right hand side of the inequality, we have:

f(y) ≥ f(x)+min
y

{

∇T f(x) (y − x) +
m

2
‖y − x‖

2
}

︸ ︷︷ ︸

g(y)

(34)

We can now find that minimum value of g(y) with respect to

y, and this is g(y∗) = − 1
2m ‖∇f(x)‖

2
, achieved for y∗ =

x−∇f(x)/m.

Therefore we have:

f(y) ≥ f(x) −
1

2m
‖∇f(x)‖

2
(35)

22

Finally setting the y → x∗ we take:

f(x) − f(x∗) ≤
1

2m
‖∇f(x)‖

2
(36)

In similar spirit, we can prove the lower bound starting with

inequality:

(y − x)T ∇2f(x) (y − x) ≤ M ‖y − x‖
2
. (37)

5 Convergence of Gradient Method

The gradient algorithm with fixed step size (α(k) = α) con-

verges to the minimum x∗ in at most

k =
log(

|f(x(0))− x∗|

ε
)

log
1

1− m
M

(38)

⇒ k ≈
M

m
log(

|f(x(0))− x∗|

ε
) (39)

steps. Here, ε is a termination condition and satisfies the fol-

lowing relation:
∣
∣f(x(k))− f(x∗)

∣
∣ ≤ ε.

The number of steps (and thus the delay) it takes for the

algorithm to converge depends on:

23

1. Accuracy ε (the stricter the accuracy, i.e. the smaller the

ε, the more the number of steps).

2. Initial point x(0) selection, and the initial distance of

f(x(0)) from the optimal value (i.e.
∣
∣f(x(0))− f(x∗)

∣
∣).

3. Condition number M/m (i.e. Parameters m,M). The

bigger the condition number,the more steps are needed.

Remark: If m
M

≪ 1 we can make the approximation

log 1
1− m

M

= − log(1− m
M
)

m
M

≪1
≈

m

M
since log(1 + x) ≈ x, for x ≪ 1.

6 Newton descent method

Newton method is a special form of descent methods where

the descent direction is Dk = [∇2f(x(k))]−1.

The iteration for the Newton descent method is:

x(k+1) = x(k) − [∇2f(x(k))]−1∇f(x(k)) (40)

Note that Newton’s method converges much faster towards

a local minimum (or maximum, if the iteration above is with a

”+”) than the gradient descent method. Specifically, Newton

method converges quadratically.

Note: We already have discussed Newton method for one

variable in previous sections.

24

7 Selection of step size α

We want to find methods to choose the value of step α(k) at

each iteration k of the iterative descent algorithm.

If the step is small, we will have little progress from step to

step. On the other hand, if the step is large, we will go fast but

we will zig-zagging in the solution space.

One idea is to choose the step size so that the value f
(
x(k+1)

)
,

in the (k + 1)-th stage of descent method, is as small as pos-

sible.

Some of the most prevalent ways to choose α(k) are the fol-

lowing.

7.1 Steepest descent method

The steepest descent method is a special case of descent

methods, where the step size is selected such that the value

of the objective function at the next iteration is as small as pos-

sible. Assuming a step α(k) and a descent direction d(k), the

step for steepest descent method is found as:

α(k) = arg min
α

f(x(k) + αd(k)) (41)

where x(k+1) = x(k) + αd(k) is the (k + 1)-th point in the

descent direction method.

We can view f(x(k)−α(k)d(k)) as a function of one vari-

able (the step), and its optimum is found by taking the derivative

25

equal to 0. Thus, at each iteration, the step is optimized so that

it causes the largest decrease in the value of the objective func-

tion at iteration k + 1, f(x(k+1)).

df(x(k) − α(k)d(k))

dα(k)
= 0 . (42)

This method accelerates the search of global minimum x∗

for a function f . Note that this method is characterized as

greedy because it makes the locally optimal choice at each

stage with the hope of finding the global optimum faster.

7.1.1 Examples

Example 1

Consider the quadratic function f(x) =
1

2
xTQx − bTx,

where Q is a n × n symmetric (Q = QT) positive-definite

matrix, b ∈ ℜn, x ∈ ℜn. We want to find the form of iteration

of gradient descent using the steepest descent method.

Thus, we need to find the step a(k) and the gradient

∇f(x(k)) = g(k) at each step, and then the iteration will be:

• x(k+1) = x(k) − α(k)∇f(x(k)).

We have:

• ∇f(x(k)) = Qx(k) − b = g(k)

26

• α(k) = argminα f(x(k+1))
= argminα f(x(k) − αg(k))

= argminα
1

2
(x(k) − αg(k))TQ(x(k) −

αg(k))− bT (x(k) − αg(k))

• Define

Φ(α) =
1

2
(x(k) − αg(k))TQ(x(k) − αg(k))−

bT (x(k) − αg(k))

• By differentiating Φ(α) with respect to step size α, we

get:

Φ
′

(α) =
1

2
[(−g(k))TQ(x(k) − αg(k))]

+
1

2
[(x(k) − αg(k))TQ(−g(k))] + bTg(k)

= (x(k) − tg(k))TQ(−g(k)) + bTg(k).

In order to find α which minimizes Φ(α), we take the

derivative of Φ
′

(α) equal to zero:

Φ
′

(α) = 0

⇔ αg(k)TQg(k) = (x(k)T Q− bT)g(k) = 0
Observe that:

(x(k)TQ− bT) = g(k)T (43)

Then we get that

a(k) =
g(k)T g(k)

g(k)TQg(k)
=

||g(k)||2

g(k)TQg(k)
. (44)

27

Finally, the iteration is:

x(k+1) = x(k) −
||g(k)||2

g(k)TQg(k)
g(k). (45)

Example 2

Consider function f(x) = f(x1, x2) =
1
2

(
x2
1 + γx2

2

)
, that

has minimum value 0, achieved at x∗ = (0, 0).

This is a quadratic function where Q =

(
1 0
0 γ

)

and

b =

(
0
0

)

. We want to find the form iteration of gradient

descent using the steepest descent method.

The iteration for each variable will be:

x
(k+1)
1 = x

(k)
1 − α(k)∇f(x

(k)
1) =

(

1− α(k)
)

x
(k)
1

x
(k+1)
2 = x

(k)
2 − α(k)∇f(x

(k)
2) =

(

1− γα(k)
)

x
(k)
2

Thus,we need to find step α(k) at each stage.

28

We have:

α(k) = argmin
α

f(x(k+1))

= argmin
α

f(x
(k+1)
1 , x

(k+1)
2)

= argmin
α

1

2
(1− α(k))2(x

(k)
1)2

+
1

2
γ(1− γα(k))2(x

(k)
2)2

Define:

G(α) =
1

2

[

(1− α(k))2(x
(k)
1)2 + γ(1− γα(k))2(x

(k)
2)2

]

.

By differentiating G(α) with respect to step size a, setting

the derivative equal to zero and we find α∗, and replacing α∗,

the iterations become:

x
(k+1)
1 = γ

(
γ − 1

γ + 1

)k

(46)

and

x
(k+1)
2 =

(

−
γ − 1

γ + 1

)k

(47)

Actually, we can observe that as γ approaches 1, then Q
becomes closer to the unit function, and the minimum and max-

imum eigenvalue of Q become equal (and equal to 1 each.

Function f is an ellipsoid, which tends to a circle as γ goes

to 1. As γ goes to 1 the convergence to the global optimum

becomes faster.

29

7.2 The Armijo rule

The Armijo rule for the step is to start with mk = 0, then mk

is set to the first nonnegative integer m for which

f(x(k)+α·βmU (k))−f(x(k)) ≤ α·βm ∇T f(x(k))U (k) ,
(48)

where α, β are positive constant numbers, with 0 < β < 1,

U (k) = −∇f(x(k)).

7.3 Diminishing step size

The Diminishing step rule is choosing any step size that satis-

fies the following conditions:

(a) The produced sequence of steps {α(k)} → 0 as

k → ∞

(b)
∑∞

k=1 α
(k) = ∞

This rule is guaranteed to converge to the optimum x∗.

Note:
There is also another descent method with constant step a at

all iterations, which is simpler to implement but not as efficient

as the methods above.

30

8 Convergence Order

We now provide a systematic methodology to study conver-

gence of descent methods.

Consider that e(x(k)) =
∥
∥x(k) − x∗

∥
∥ or equal to

∥
∥f(x(k))− f

denotes the error at iteration k. Given a sequence of points

generated by the gradient descent algorithm, x(k), k = 1, 2, 3...,we

say that it converges linearly to vectorx∗, if there exists a num-

ber β ∈ (0, 1) such that:

lim
k→∞

e(x(k+1))

e(x(k))
≤ β < 1.

If the above holds with β = 0,then is said to converge

superlinearly. So, for superlinear convergence (which is faster

than linear):

lim
k→∞

e(x(k+1))

e(x(k))
= 0.

In superlinear convergence, the sequence defined by ratios

of errors in two successive steps must go to zero.

The convergence order ofx(k) is p ∈ R (1 ≤ p ≤ ∞),

if

0 < lim
k→∞

e(x(k+1))
[
e(x(k))

]p < ∞

Then we get:

e(x(k+1)) ≈ c·e
(

x(k)
)p

for some c ∈ R, 0 < c < ∞

31

The larger the p, the faster the convergence. It turns out that:

• The Gradient descent method has p = 1 (linear

convergence)

• The Newton method has p = 2 (quadratic convergence),

which is faster than the gradient method.

8.1 Further issues with Convergence

Any descent method produces a sequence of pointsx(0),x(1), . . . ,x(

which converges to minimum x∗ when it reaches a point such

that ∇f(x∗) = 0. This means that the function f(x) does

not changes at this point (the point is called stationary point
of the function) that is, in every subsequent iteration, the value

of x(k+1) will be stationary and equal to x∗.

What is the problem that arises?

Is every limit point of the sequence of points {x(k)} gen-

erated by the descent method a stationary point?

In some iteration of the algorithm, if the descent direction

is almost orthogonal to the gradient vector, then we will have

∇T f(xk)dk
∥
∥f(x(k))

∥
∥ ‖dk‖

−→ 0 (49)

and the algorithm will therefore stop, while it is ∇f(x∗) 6=
0. In these cases, the algorithm gets stuck at a limit point

32

which is not a stationary point. These situations arise if I do

not choose correctly the descent direction.

In order to avoid this serious problem, we need to put some

constraints on how we choose the descent direction, so that

∇T f(xk)dk is sufficiently large.

Proposition 1:

Assume that the eigenvalues of Dk are bounded above and

also bounded away from zero, Namely, there always exist two

number c1, c2 6= 0,such that:

c1 ‖z‖
2
≤ zTDkz ≤ c2 ‖z‖

2
∀z ∈ Rn . (50)

We also have that zTDkz = λ ‖z‖
2
, where λ denotes

any of the eigenvalues of Dk, that is:

c1 ‖z‖
2
≤ λ ‖z‖

2
≤ c2 ‖z‖

2
. (51)

Thus, if dk = −Dk∇f(x(k)) and we choose Dk such that

its eigenvalues be upper and lower bounded, then:

∣
∣
∣∇T f(x(k))dk

∣
∣
∣ ≥ c1

∥
∥
∥∇f(x(k))

∥
∥
∥

2

(52)

and

‖dk‖
2
≤ c2

2
∥
∥
∥∇f(x(k))

∥
∥
∥

2

(53)

Since, we ensured that ∇T f(x(k))dk 6= 0 and ‖dk‖ is up-

per bounded, the problem is no longer exists.

33

Note that if Dk = I (case of Gradient method) then the

conditions in the inequalities above are obeyed and c1 = c2 =
1.

Definition:

The sequence of directions {dk} is called gradient-related to

the sequence of the points {xk}, if for every subsequence

{xk}k∈K that converges to a non-stationary point x (such that

∇f(x) 6= 0), the corresponding subsequence {dk}k∈K is

bounded and it satisfies:

limk→∞k∈K
∇T f(x(k))dk < 0.

So, if the conditions above with the eigenvalues of Dk are

satisfied, direction dk = −Dk∇f(x(k)) is gradient-related

to {xk}.

We now state some additional propositions:

1. Consider a sequence of points {xk} produced by a gra-

dient algorithm which dk is gradient-related and ak is selected

according to the Armijo’s rule. Then every marginal point of

{xk} is also a stationary point (i.e. ∇f(x(k)) = 0.)

2.Consider a sequence of points {xk} produced by a gra-

dient algorithm which dk is gradient-related. Assume also that

there exists an L > 0 such that:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ . (54)

34

If αk is selected so as to satisfy the following equation:

ǫ < ak ≤ (2− ǫ)

∣
∣∇T f(x(k))dk

∣
∣

L ‖dk‖
2 (55)

or according to the diminishing step rule, then every limit point

of {xk} is also a stationary point.

8.2 Example

We will now consider the special case of quadratic functions

and will study their convergence.

Consider function f(x) = 1
2x

TQx where Q > 0 (pos-

itive definite), and consider the Gradient descent algorithm for

finding the minimum of f(x) (which is x∗ = 0. We need to

find the optimal value a∗k, so that fast convergence of the algo-

rithm be achieved.

The iteration of the algorithm is:

x(k+1) = x(k) − α(k)Qx(k) = (I − α(k)Q)x(k) , (56)

which is equal to:

‖x(k+1)‖2 = (x(k))T (I − α(k)Q)2x(k) (57)

Knowing that
(
x(k)

)T
Ax(k) ≤ λmax(A) ‖x‖

2
for nay ma-

trix A and its maximum eigenvalue λmax(A), we get:

∥
∥
∥x

(k+1)
∥
∥
∥

2

≤ λmax(I − α(k)Q)2
∥
∥
∥x

(k)
∥
∥
∥

2

(58)

35

where λmax(I −α(k)Q)2 is the maximum eigenvalue of ma-

trix (I − α(k)Q)2.

Observe that:

λmax(I−α(k)Q)2 = max{
(

1− α(k)m2
)

,
(

1− α(k)M2
)

}

(by using the property that λ(A2) = λ(A)2, where λ(A)
denotes the eigenvalues of matrix A). Let m,M denote the

minimum and maximum eigenvalue of matrix Q respectively,

then we get:

‖x(k+1)‖

‖x(k)‖
≤ max{|1− α(k)m‖, ‖1− α(k)M‖} (59)

Since Q > 0 then m,M > 0. Thus, we have
‖x(k+1)‖
‖x(k)‖

< 1,

which shows that ‖x(k+1)‖ is decreasing in every step of the

algorithm.

Now we want to determine α(k) so that the convergence

decreases with maximum rate. We have the problem:

min
α(k)

max{(1− α(k)m), (1− α(k)M)} (60)

Which gives that αk
∗ = 2

M+m
and consequently

∥
∥x(k+1)

∥
∥

∥
∥x(k)

∥
∥

≤
M −m

M +m
. (61)

36

9 The use of gradient method in com-

munication networks

9.1 Localization of jammers in wireless networks

Consider a sensor network or any other type of network, where

there is wireless communication among sensors, and there is

one jammer-sensor(attacker) which transmits intermittent sig-

nals to disrupt communication.

The network must have the ability:

1. Detect the jammer

2. Localize the jammer based only on the network (without

adding new infrastructure), i.e estimate its location with

good accuracy.

3. Respond to the attack (defend against or capture the

jammer)

We will address the localization problem. We need to use

an inherent property of wireless networks, against which the

jammer cannot hide. We note the following:

• In wireless networks the received power is

exponentially decreasing with the distance d from the

source (transmitter):

Preceived(d) ≈
c · P

da
for a ≥ 2 (62)

37

where P is the transmission power of the source and c
is a constant.

• For every node, we define a packet delivery ratio PDR =
f(SINR) which denotes the probability that a trans-

mitted packet is received at the node correctly. Note that

the packet error rate PER = f(SINR) is the proba-

bilistic complement of PDR (i.e. PER = 1−PDR).

When a node (let it be nodeA) is closer to the jammer

than another node (nodeB) then the communication of nodeB
is disrupted by jammer less than the one of nodeA , that is

PDRnodeB < PDRnodeA . This is because the farther lo-

cated node receives less power by the jammer.

To localize the jammer with maximum accuracy, we need

to find the node which has the lowest PDR. This will be found

by a variant of the gradient method.

In this problem the Gradient method corresponds to a kind

of routing algorithm which finds the closest node to the jam-

mer. The points are the node positions on the two-dimensional

plane.

Suppose an arbitrary node n0 starts the localization pro-

cess. the node checks his own PDR and asks its neighbors

to tell his their PDR. If there exists at least one neighbor with a

smallest PDR, then the token is passed to the neighbor with the

smallest PDR (kind of steepest descent), say node n1. Then,

node n1 does a similar comparison of its PDR with the PDRs

38

of its neighbors, and so on.

The algorithm stops when every neighbor node has higher

PDF than the current node.

Remark: Due to the randomness of the wireless channel

signal quality (due to fading etc) which is superimposed to the

path loss, it may happen that a node that is farther from the

source has a larger received signal than a node that is closer

to the source. Thus, the algorithm might also have errors in

some cases.

9.2 Content distribution and caching

Consider a network, that is represented by a graphG = (V,E),
with M unit size items. Each node n can receive and store

some items and its storage capacity is Kn. In a smaller scale,

its cache memory can be Kn.

An information item request triggers traffic from the requester

to the node that has the file. The replication scheme of items

across the network is important.

Performance metric: total traffic generated. If node y needs

to access a file stored at node x, the traffic load is equal to the

length of the path from x to y.

The operation of the network is as follows:

• Replication: Replicates items in different nodes of the

network.

39

For each item m the replication frequency fm that the

item is copied in the network must be determined.

Note that, for every node i
∑M

m=1 xmi ≤ Kn (i.e. the

total size of items that reside at a node cannot exceed

its storage capacity).

• There is no reason not to operate the network at full stor-

age capacity, so we assume that there are Kn items

stored at each node.

• Access: If a node x requests an item m, it will take m
from the closest node that has it.

• For each item m we define set Hm which denotes the

set of all possible configurations of the item in the net-

work. For example, in a network with n nodes, Hm will

be the set of all n-dimensional vectors with zeros and

ones, where a 1 in component i means that the item is

stored in node i, and a 0 it is not stored in i. Of course,

the total number of ones in node i must not exceed Kn.

Also denote H the set of all possible caching configurations for

all items in the network.

• Traffic load for configuration H ∈ H is

T (H) =
∑n

m=1 T (Hm where T (Hm) is the traffic

load for each item.

40

• Define Ni
m: being the set of all nodes that receive

item m from node i (i.e. all nodes for which node i is

the closest node that has item m).

• We consider λj
m the request rate of item m from node

j.

Thus, we have:

T (Hm) =

fm∑

i=1

∑

j∈Ni
m

λm
j Dij (63)

where Dij denotes the distance of node i that has the item m
from the node j that asks for it.

In this problem an algorithm that resembles the Gradient

method becomes as follows:

Starting from a feasible initial solution H0, create a sequence

of configurations H0 → H1 → H2 → ... , where in each

step we want to minimize the traffic load rearranging the way

items are stored (Heuristic algorithm). Specifically we swap the

pair of items m,m′ that reduces the total load with maximal

amount.

For each item m in the cache of node i:
(a) Compute the increase in traffic if m is removed from the

cache (because all requests that access the particular item at

node i will need to access it at another node j).

41

(b) For each item m′ not in the cache of i, compute the

decrease in overall traffic load if m′ is cached at node i (since

some requests will access m′ as their closest replica).

If (maximum traffic decrease over all items m′) > (mini-

mum traffic increase over all items m), then swap m, m′. Con-

tinue until no further improvements in traffic load can be made.

We reach a local minimum in the optimization problem above.

9.3 Throughput maximization with power con-
trol in wireless communications

Example: There are N transmitters, N receivers, and each

transmitter i is connected to a receiver i.
The Signal to Interference and Noise Ratio at each re-

ceiver i as a function of the transmitter power vector P =
(P1, . . . , PN) is given by

SINRi(P) =
GiiPi

N∑

j=1,j 6=i

GjiPj + ni

(64)

where ni is the thermal noise power at receiver i and Pi is the

transmission power of transmitter i.
The capacity for each link i is

Ci = log2(1+SINRi(P))≈ log2(SINRi(P)) for large

42

1

2

N

Figure 5: N transmitters connected to N receivers. The different

transmitter-receiver links can have different relative positions.

enough SINRs. This denotes the maximum rate at which in-

formation can b e transmitted on link i (from Shannon capacity

formula in information theory).

We assume that at each transmitter i, where packets ar-

rive and wait in a queue before being transmitted. Let qi be the

number of packets (size of queue) that are waiting for transmis-

sion. The product qiCi(P) is called throughput of link i.
Note that throughput is different than capacity. Capacity

does not take into account the queue length, it just says how

much can be transmitted on the link. If we activate some queue

for which the transmitter-receiver link has large capacity, but the

43

queue is empty, finally no traffic with go through (zero through-

put) since the queue is empty.

The queue length changes dynamically with time since the

packet arrival processes at each queue is dynamic and the rate

at which information is transmitted (packets leave the queue) is

also dynamic and depends on the link quality.

Our purpose: We wish to maximize the sum of qiCi(P),
namely the total system throughput, or

max
P

N∑

i=1

qiCi(P),

by appropriately controlling the transmit power vector P.

Thus, we have to optimize the function:

max
(P1,...,PN)

N∑

l=1

ql log(SINRl) =

max
(P1,...,PN)

N∑

l=1

ql log

(

GllPl
∑N

k=1,k 6=l GklPk +Nl

)

=

max
(P1,...,PN)

f
(
P
)

by controlling transmission power vector P = (P1, . . . , PN),
where qi is the queue size of transmitter i and Ci(P) is the

capacity of link i.

44

Although f(P) does not seem to be a concave function of

P , we will transform it to a concave function. If we prove that

f
(
P
)

is concave the local maximum is global as well.

Consider transformation: P̃l = lnPl,for l = 1, . . . , N
and the vector P̃ = (P̃1, . . . , P̃N).

f(P̃) =
N∑

l=1

ql log

(

Glle
P̃l

∑N
k 6=l GkleP̃k +Nl

)

=

N∑

l=1

ql

[

log
(

Glle
P̃l

︸ ︷︷ ︸

term 1

)

− log
(N∑

k 6=l

Gkle
P̃k +Nl

︸ ︷︷ ︸

term 2

)]

Term 1 is linear in P̃. We will prove that term 2 is convex in

P̃. In order to do that, we shall examine first under which con-

ditions a function f(·) that arises as composition of functions

h(·) and g(·) is convex or concave.

Let f(x) = (h ◦ g)(x), with f(x) = h(g(x)). For

functions of one variable x, h : R −→ R and g: Rn −→
R, assume that h and g are twice differentiable. In this case

convexity of f(·) means f ′′(x) ≥ 0 for all x ∈ R. The first

and the second derivatives of f(·), f = h ◦ g are:

f ′(x) = h′(g(x))g′(x),

45

f ′′(x) = h′′(g(x))(g′(x))2 + h′(g(x))g′′(x)

Function f is concave if: (i.) h is concave, increasing and

g is concave, or

(ii.) h is concave, decreasing and g is convex.

Function f is convex if:

(i.) h is convex, increasing and g is convex, or

(ii.) h is convex, decreasing and g is convex.

Vector Composition: Consider the case where f(.) is the

composition of several functions, that is:

f(x) = h(g1(x), . . . , gk(x)) = h(g(x))

with h : Rk −→ R, gi : R −→ R.

The first and the second derivatives of f(.) are as follows:

f ′(x) = ∇hT (g(x))g′(x)

f ′′(x) = g′T (x)∇2h(g(x))g′(x) +∇hT (g(x)g′′(x)

where g′(x) = (g′1(x), . . . , g
′
k(x)). Function f is convex if:

(i.) h is convex, increasing in each argument and gi is

convex.

(ii.) h is convex, decreasing in each argument and gi is

concave.

Proof of concavity of f(P̃):

Consider function h(z) = log(
∑k

i=1 e
zi). As a first step for

46

proving concavity of f(P̃), we will prove that h(z) is convex,

or that its Hessian matrix H(z) > 0.

The first derivative of the function h(z) is:

ϑh(z)

ϑzi
=

ezi

k∑

k=1

ezi

The second derivative with respect to the i-th component:

ϑ2h(z)

ϑz2i
=

ezi

k∑

j=1

ezj

−
e2zi

(

k∑

j=1

ezj)2

The second derivative with respect to component zi, zj with

(i 6= j) is:
ϑ2h(z)

ϑziϑzj
= −

ezi+zj

(

k∑

j=1

ezi)2

Consider the case of N = 2 to better visualize the situation.

Let A = ez1 + ez2 . Then for any v ≥ 0, v = (v1, v2) the

quadratic for vHHv, with H the Hessian of h(z), should be

shown non-negative. Thus:

vTHv ≥ 0 ⇔

47

⇔
(
v1 v2

)

(
Aez1−e2z1

A2 − ez1+z2

A2

− ez1+z2

A2
Aez2−e2z2

A2

)(
v1
v2

)

≥ 0

⇔ v21

(

ez1

A
−
e2z1

A2

)

−2v1v2
ez1+z2

A2
+v22

(

ez2

A
−
ez2

A2

)

=

=
A(v21e

z1 + v22e
z2)− (v1e

z1 + v2e
z2)2

A2
≥? 0. (65)

In order to prove the above, we use the Cauchy-Schwartz in-

equality for vectors q,b:

(aTa)(bTb) ≥ (aTb)2

for vectors

a =
(

e
z1
2 e

z2
2

)
,b =

(

v1e
z1
2 v2e

z2
2

)
.

Once we proved that inequality (3) holds, we have proved that

h(z) = log(
∑k

i=1 e
zi) is convex, h(.) is increasing (ր) in

its argument zi. Thus, function h(g(x)) = log(
∑k

i=1 e
gi(x))

is convex if gi(x) is convex [rule (i.)].

Now, we have f(P̃ equals to:

N∑

l=1

ql

[

log

(

Glle
P̃l

)

︸ ︷︷ ︸

term 1

− log

(
∑

k 6=l

elnGkl+P̃k +Nl

)

︸ ︷︷ ︸

term 2

]

48

Term 1 is linear in P̃, as we said before. Also, gk(x) =
lnGkl + P̃k is linear in P̃k, so it is convex as well. Thus,

log
∑

k 6=l e
lnGkl+P̃k + Nl is convex in P̃ and thus

(
−

log
∑

k 6=l e
lnGkl+P̃k +Nl

)
is concave and the whole f(P̃)

is concave in P̃.

Now, we use the gradient ascent method to find the global

maximum of f(P) (we come back to the initial notation with P,

since we have used the transformation to P̃ only to show the

concavity of f(·)).

f(P) =

N∑

l=1

ql log
GllPl

N∑

k 6=l

GklPk +Nl

ϑf(P)

ϑPl

=
ql
Pl

−
∑

j 6=l

qjGjl
∑

k 6=j GjkPk +Nj

1. Start with initial vector P(0) = (P
(0)
1 , . . . , P

(0)
N).

2. At the (k+1)-th step of the algorithm, we have iteration:

P(k+1) = P(k) + β∇f(P(k)), where β is the (say)

constant step size.

Note that since we want to maximize f(P), we have a gradient

ascent method, with f(P(k+1)) > f(P(k)) and we move

49

towards the direction of maximum increase of f(·), (i.e towards

the direction of the gradient).

Each transmitter l updates its power according to rule:

P
(t+1)
l = P

(t)
l + β

ϑfP

ϑPl

=⇒

=⇒ P
(t+1)
l = P

(t)
l +β

(

ql

P
(t)
l

−
∑

j 6=l

qjGil
∑

k 6=j GjkP
(t)
k +Nj

︸ ︷︷ ︸

m
(t)
j

)

Let m
(t)
j given as noted above. By multiplying numerator and

denominator by Gjj and P
(t)
j we have:

m
(t)
j =

qjSINR
(t)
j

GjjP
(t)
j

Consequently, at the (t+1)-th step of the iteration we have

at the ℓ-th transmitter:

P
(t+1)
l = P

(t)
l + β

(

ql

P
(t)
l

−
∑

j 6=l

Gjl m
(t)
j

)

Thusm
(t)
j can be considered as a message pertaining to trans-

mitter j, for j = 1, . . . , N . Each transmitter knows its queue

50

qj , its gain to its receiver Gjj and its transmission power P
(t)
j .

It also receives channel state information (CSI) from the re-

ceiver in the form of SINRj .

Each node j broadcasts this message to every other node,

l 6= j which then updates its power according to the rule

above.

It turns out that the gradient ascent method P(t+1) =
P(t) + β∇f(P(t)) above (for any initial power vector P(0)

and any sequence in which the iteration is executed by users)

converges to the optimal vector P∗. This is the vector that

maximizes f(P).
The algorithm is fully distributed, since each transmitter au-

tonomously uses quantities that he knows and needs to know

only messages mj(t). Each transmitter knows qi, Pi, while it

can get the SINR at its corresponding receiver (the receiver

measures it and sends it back to transmitter). Each transmitter

also obtains quantities (messages) mj(t) from other nodes

j 6= i.

51

i

i

j
j

k

k

Pi
j broadcasts
its message
mj in the
network

Figure 6: Explanation of message broadcasting in the network

for distributed algorithm operation.

10 Other remarks on gradient descent

method

10.1 Distributed implementation

In general, if the objective function is separable in its variables,

namely if

f(x) = f(x1, x2, . . . , xn)

52

can be written as sum of functions, where each function de-

pends only on one variable, i.e if

f(x) =

∞∑

i=1

fi(xi)
︸ ︷︷ ︸

concave

then the iteration of gradient ascent method

x(t+1) = x(t) + β∇f(x(t))

becomes:

x
(t+1)
i = x

(t)
i + β

ϑfi(xi)

ϑxi

and thus there is no message passing needed among nodes.

Simply, each node computes
ϑfi(xi)
ϑxi

(since it knows fi(xi),
but not fj(xj)) and does the updates of its variables indepen-

dently from others.

The independent iterations for each node will again lead to

the optimal vector x∗, namely the vector that maximizes f(x).

10.2 Gauss-Seidel method and Jacobi methods

When, in every step, the update of each variable is done serially

then we have the Gauss-Seidel method:

x
(t+1)
i =

argminxi
f
(

x
(t+1)
1 , . . . , x

(t+1)
i−1 , xi, x

(t)
i+1, . . . , x

(t)
n

)

53

When in each step the update of variables is computed

simultaneously, and then the updates are combined in order to

find the optimal solution, then we have the Jacobi method:

x
(t+1)
i =

argminxi
f
(

x
(t)
1 , . . . , x

(t)
i−1, xi, x

(t)
i+1, . . . , x

(t)
n

)

At each time iteration t, a vector corresponding to the new

point is found, in the direction of a certain partial derivative, and

then all these vectors are combined to find the point x(t).

References

[1] Boyd and Vandenberghe, ”Convex Optimization”

[2] Bertsekas, ”Non Linear Programming”

54

	Example: Optimization problem formulation
	Descent Methods
	Properties

	Gradient Descent Method
	Properties of Gradient Descent
	General descent method algorithm
	Gradient method with Constrains on x

	Upper and lower bounds on Hessian matrix of f
	Condition Number

	Convergence of Gradient Method
	Newton descent method
	Selection of step size
	Steepest descent method
	Examples

	The Armijo rule
	Diminishing step size

	Convergence Order
	Further issues with Convergence
	Example

	The use of gradient method in communication networks
	Localization of jammers in wireless networks
	Content distribution and caching
	Throughput maximization with power control in wireless communications

	Other remarks on gradient descent method
	Distributed implementation
	Gauss-Seidel method and Jacobi methods

	References

