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1 A Facility Location Game(A.Vetta 2002)

1.1 Motivation

The facility location game is related to the facility location problem. The facility location problem
is a topology problem. Given a topology one wishes to place facilities. Each facility exists to
serve clients, and the problem ask how to minimise both client distance and facility creation. This
problem has many applications to the real world. However it presumes that there is only one possible
entity that can place facilities. The facility location game simplifies the topology somewhat, but
allows multiple players to place facilities.

1.2 The Elements of the Game

The game consists of markets, suppliers and locations. There are m markets, each denoted mi.
There are k suppliers, and each supplier k has an associated set of locations Lk ⊆ L, where L is
the set of all locations and Lj is a particular location.

Each market mi has a value Πi associated with it. This is the value it receives when served.
Alternately one can think of it as the highest value that it is willing to pay the suppliers for there
supplies. Between each market mi and each location Lj there is an edge with weight λij . This
represents the cost of serving supplies to mi from Lj . Each supplier k may build a single facility at
a location Li contained within Lk. Because only the suppliers have a direct influence on their choice
of facility, it is the suppliers who play the game. A solution is then just a mapping of suppliers to
locations. Having picked a location, a supplier then tries to maximise his profit from that location.

Figure 1: The Facility Location Game

We note that a supplier will only supply a market if he can profit from it. So, anywhere where



λij ≥ Πi the supplier will not attempt to serve the market. This means that ∀ λij ≥ Πi we can set
λij = Πi. We will do so. Thus, λij must satisfy: 0 ≤ λij ≤ Πi.

1.3 Characterising the Solution to this Game

Given a solution we would like some way to characterise the quality of this solution. We note that
once we have a solution, we can determine what the suppliers will do. To do this we look at a
market mi. In the solution there are Li ⊆ L open facilities that can serve mi. Clearly the supplier
that will end up serving mi is the supplier that can serve mi at cheapest cost, as he can undercut
all of his competitor. So we say that mi is served by σ(i), where we define σ(i):

σ(i) = arg(min
j∈Li

λij)

The price that this supplier can charge should be equal to the cost that his closest competitor
incurs. If he sets it lower, then there is still profit to be made, by raising the price to that level.
However if he sets it higher, than his closest competitor can undercut him and he will get no
business. So, we say that mi pays a price pi where we define pi:

pi = min
j∈Li

j 6=σ(i)

λij

Note that σ(i) defines a location, while pi defines a cost.

1.4 Quality of the Solution to this Game

To measure the quality of a solution we try and see who benefits when mi is served at a price
pi. Now, mi is willing to pay up to Πi, but it benefits more by paying less. So, a natural benefit
function for mi is Πi − pi. At the same time, the supplier at σ(i) is getting pi but paying λiσ(i) so
the natural benefit function for σ(i) is pi − λiσ(i). The total benefit is just the sum of the benefits
of the markets, and the benefits of the suppliers. But we note that at most one supplier is getting
any benefit from a given market, which enables us to write.

TotalBenefit =
∑

i | mi served
(Πi − pi) +

∑

i | mi served
(pi − λiσ(i))

TotalBenefit =
∑

i | mi served
(Πi − λiσ(i))

To make this slightly cleaner we will assume that if mi is not served by any supplier, it is in fact
served by some supplier at cost. That is, Πi = λiσ(i). This does not change the value of the total
benefit, but it gives us the slightly cleaner form:

TotalBenefit =
∑

all i
(Πi − λiσ(i))



2 Nash Equilibria in the Facility Location Game

2.1 Pertinent Questions

There are three questions we typically ask about Nash Equilibria:

• Does a Nash equilibrium exist?

• If it does exist, is it unique?

• If it does exist, how does it compare to the optimal solution?

The answers to these questions follow.

2.2 The Existence of a Nash Equilibrium

Theorem 1 The Facility Location game is a Potential Game with Potential function Φ where

Φ =
∑

all i
λiσ(i)

Proof. We need to show that Φ tracks a player’s benefit change when he switches. So, let us
consider user k. Let us take him out of the game. That is, let him spontaneously decide to leave.
Now we consider all of the λiσ(i) where σ(i) = k. We note that by the definition of pi we get
λiσnew(i) = pi. So

∆Φ =
∑

i|σ(i)=k

(pi − λiσold(i))

This is exactly the loss of profits that user k cost himself when he left the graph. So Φ tracks the
losses properly.

Now we consider what happens when k jumps back into the game. At each market he’ll either
get nothing in which case λiσ(i) won’t change, or (if k = σnew(i)) he’ll get pnew

i − λiσnew(i) where
pnew

i is trivially λiσold(i). But this is exactly the difference in Φ for that market. When we consider
all of the markets that the user touches, we note that the benefit to the user is exactly the increase
in Φ. So Φ accurately tracks the change in each user’s benefit, so Φ is a potential function.

Corollary 1 A Nash equilibrium exists,

Proof. In a potential game, the minima of the potential function (Φ) are Nash equilibria, and we
can clearly get to these minima by forcing users to change if and only if doing so would lessen Φ
and forbidding them to do so when it wouldn’t.

Corollary 2 The global minimum of Φ is the optimal solution. So the best Nash equilibrium is
also the best solution.

Proof. Note that:
TotalBenefit =

∑

all i
(Πi − λiσ(i))

But
∑

all i Πi is a constant. So then to maximise the total benefit we have to minimise
∑

all i λiσ(i)

which is exactly what the global minimum of Φ does.



2.3 The Uniqueness of a Nash Equilbrium

The following example, where L1 = {1, 2} and L2 = {3, 4} and ∀i Πi = 1, shows that there is not
a unique Nash Equilibrium.
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Figure 2: A Facility Location Game with two Nash Equilibria. Edges not shown on the graph have
λij = 1, otherwise they have λij = 0.

We note that the red equilibrium has a total benefit of 4, while the green equilibrium has a total
benefit of 2, or half that of the optimal. This leads nicely to the next section of the notes, namely:

2.4 The Quality of a Nash Equilibrium

Theorem 2 The total benefit of any Nash Equilibrium is at least 1/2 of the total benefit of the
optimal solution.

Proof. We want to compare a Nash equilibrium to an optimal solution. To do this we will use
regular notation for the Nash equilibrium and primed notation for the optimal solution. As an
example σ(i) is the location mi gets assigned to in the Nash equilibrium, and σ′(i) is the location
mi gets assigned to in the optimal solution.
Now we introduce some more notation. Let val(k) be the total profit that supplier k gets in the
Nash equilibrium, and let val′(k) be the total profit that supplier k gets if everyone else keeps their
location in the Nash equilibrium, but supplier k uses his location in the optimal solution. Clearly
val(k) ≥ val′(k) as val(k) refers to a Nash equilibrium. Finally we define δ(i) as

δ(i) = λiσ(i) − λiσ′(i)

This gives use the following Lemma:

Lemma 3

val′(k) ≥
∑

all i | k supplies them in opt. soln.
δ(i)

Proof. Let us consider the portion of val′(k) that comes from a single mi that k serves in the
optimal solution, and compare it to δ(i). This portion is at least 0. If it is 0 then k is not serving



that mi, so λiσ(i) > λiσ′(i) in which case δ(i) < 0 which is what we want. Otherwise k is getting
some profit from mi. This profit is p′i − λiσ′(i), where p′i must be λiσ(i). So we get:

p′i − λiσ′(i) ≥ δ(i)
p′i − λiσ′(i) ≥ λiσ(i) − λiσ′(i)

p′i ≥ λiσ(i)

Thus, each individual element of val′(k) is less than or equal to δ(i). So the sum over all elements
must also have this property and the lemma is proven.

But this implies that
∑

i val(k) ≥ ∑
i δ(i). But note that

∑

all i
δ(i) =

∑

all i
(λiσ(i) − λiσ′(i))

∑

all i
δ(i) =

∑

all i
(λiσ(i) − λiσ′(i) + Πi −Πi)

∑

all i
δ(i) =

∑

all i
(Πi − λiσ′(i))−

∑

all i
(Πi − λiσ(i))

∑

all i
δ(i) = TotalBenefit(Opt.)− TotalBenefit(Nash)

But we know that TotalBenefit(Nash) ≥ ∑
i val(k) ≥ ∑

i δ(i) as the sum over val(k) only considers
the benefit to the suppliers. Then we have:

∑

all i
val(i) ≥ TotalBenefit(Opt.)− TotalBenefit(Nash)

TotalBenefit(Nash) ≥ TotalBenefit(Opt.)− TotalBenefit(Nash)
2 ∗ TotalBenefit(Nash) ≥ TotalBenefit(Opt.)
TotalBenefit(Nash) ≥ TotalBenefit(Opt.)/2


