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Abstract—In 802.11 wireless networks, users associate with access
points that can provide the best service quality. In this paper, we model
a practically good performing load-based user association scheme as
an atomic congestion game. We prove bounds on price of anarchy for
this game under different system costs.

1 INTRODUCTION

IEEE 802.11 wireless local area networks (WLANs) have
widespread deployment in enterprises, public areas and
homes. In current implementations of WLANs, each
station (STA) scans the wireless channel to detect the
access points (APs) nearby, and associate itself with
the AP that has the strongest received signal strength
indicator (RSSI). Thus, it is expected that a STA associates
itself with the closest/strongest AP. It is known that
this association policy can lead to inefficient use of
the network resources [1], [2], [3]. The most important
disadvantage of RSSI-based user association is that RSSI
does not provide any information about the current load
of the AP in terms of number of users associated with it.
It has been well established that when there are multiple
STAs connected to the same AP with different physical
transmission rates, then the saturation throughput of all
users is bounded by the slowest transmission rate [21].
Therefore, even though there are other less loaded APs
in the region, most STAs may associate with the same
AP, and experience congestion.

In [4], a new association scheme is proposed to resolve
this problem. In this scheme, each STA collects usage
statistics from the APs, calculates airtime cost for each AP,
and associates with the AP that has the minimum cost.
The airtime cost is first proposed as a default metric for
routing in wireless mesh networks according to the draft
802.11s standard [24], and it reflects the average latency
a packet experiences during a transmission. If all APs
operate at separate orthogonal channels, the airtime cost
metric depends only on the individual physical trans-
mission rates and the number of users associated with
the AP. In [4], it has been shown by extensive simulation
that the airtime cost based user association scheme can
significantly improve average user throughput and end-
to-end delay compared to RSSI based user association.
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The airtime cost based association scheme proposed
in [4], is a greedy scheme, where each STA chooses to
associate with the AP from which it expects to receive
the best performance. In this setting, the users are non-
cooperative and behave selfishly to optimize their own
performance. The non-cooperative and selfish behavior
may have negative consequences for the whole system.
Foremost, when a new STA associates with an arbitrary
AP S, those users already connected to the same AP may
experience performance degradation. Thus, this new
association may trigger re-associations in the network,
since those STAs associated with AP S may now find
some other AP with lower airtime cost than AP S.
It is important to understand whether such a system
ever achieves an equilibrium within a finite time, and
if such an equilibrium is achieved, then the efficiency of
the equilibrium should be compared to the centralized
optimum solution.

We have two main contributions in this paper. First, in
order to understand the interactions between the users,
we provide a novel game theoretical model for the user
association problem in 802.11 WLANs. In so called “user
association game,” the user’s utility obtained from an
AP depends on the number and transmission rates of
other associated users. We prove that this game has a
Nash equilibrium solution, where no user attempts to
change its association given the decisions of other users,
and the equilibrium is reached within finite number
of steps. Second, in order to understand the efficiency
of the Nash equilibrium solution, we consider different
system (social) costs, and determine prices of anarchy
for these costs. We also show that the lexicographical
optimum solution of the airtime costs of the users is a
Nash equilibrium solution.

The rest of the paper is organized as follows: In
Section 2, we summarize the previous work on user
association schemes in 802.11 wireless networks, and
game theoretical analysis of wireless resource sharing.
In Section 3, we discuss the model of the system con-
sidered in the paper. In the following section, we show
that the airtime metric is an approximation of uplink
average packet delay, and argue that it is a measure
of congestion of an AP. In Section 5, we discuss the
airtime metric based user association algorithm, and
model the association algorithm as a form of atomic
congestion game. Unlike the original atomic congestion
games previously discussed in the literature, the resource
is not shared equally among the users. The share of
resource consumed by a user varies according to the
identity of the resource. We extend the results on the
worst case efficiency of atomic congestion games for this
more general model under different social objectives in
Section 6. Finally, we summarize our contributions and
discuss our conclusions in Section 7.

2 RELATED WORK
With the proliferation of 802.11 wireless networks, the
number of APs has increased exponentially, and it is
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often the case that a user has the option to associate
with any of the several APs in the region. Due to the
observed inefficiency of RSSI based association scheme,
there has been recent interest to enhance the default
association mechanism and improve the user experience
by balancing the loads of the APs [3], [4], [5], [6]. In
[3], the authors study a new STA association policy
that ensures network-wide max-min fair bandwidth al-
location to the users. The work assumes that all users
are cooperative; however, in reality users usually have
no particular incentive to cooperate with each other
and would be interested in maximizing their individ-
ual payoffs. In [5], the users are again assumed to be
cooperative and the problem of optimal user association
to the available APs is formulated as a utility maximiza-
tion problem. The work in [6] presents self-configuring
algorithms that provide improved client association and
fair resource sharing in the wireless network. Athanasiou
et al., present a new association scheme that estimates
the load of APs in terms of average packet delay and
associate each user with the AP that has the minimum
load [4]. The authors demonstrate by simulations that
the association mechanism can significantly improve the
performance of the network in terms of throughput and
average packet delay.

In real networks, users are usually non-cooperative
and selfish entities that make decisions to maximize their
individual utilities. When interactions between the users
are taken into account, game theory emerges as a natural
modeling framework. In computer networks, game the-
ory is mainly considered to determine if the multi-user
non-cooperative system achieves an equilibrium. There
has been recent interest in understanding the behavior
of wireless networks using game theoretical models. For
example, game theory is used to determine efficient
power allocation ([7],[8], [9]), to determine pricing and
incentive mechanisms for enabling cooperation and re-
laying packets ([10], [11], [12]) and for access control on
common shared channel ([13], [14]).

In the context of user association problem in wireless
networks, [15] is the first work to model the users as
non-cooperative players. In [15], the user association
problem is modeled as a population game by assuming
that the user may associate with more than one AP, and
the traffic can be split among these APs. The APs are
assumed to operate at orthogonal channels, and users
are charged according to the duration they occupy the
channel. The asymptotic throughput of the network is
maximized under the assumption that there are infinitely
many users with each having negligible effect on the
throughput. However, in reality, there may be only a few
nodes associated with each AP, and thus, the individual
effects of the users may not be negligible.

Another important limitation of the work in [15] is
that flow bifurcation is permitted, i.e., each user may
split its traffic among several APs. However, according
to 802.11 standard, each station may associate with only
one AP at any given time, and thus, it is often imprac-

tical to implement flow bifurcation. In such cases, we
say that resource sharing is atomic, in the sense that a
demand cannot be split among two or more resources.
Noncooperative networks with atomic resource sharing
were the subject of several recent works, e.g., [16], [17],
[18]. The main objective of these works is to calculate the
worst case efficiency of having noncooperative selfish
behavior in the system. A special case is when the cost
of using a machine or an edge depends on its load. Such
games are called congestion games and were introduced
by Rosenthal [19] as a broad class of games possessing
pure equilibria. The main results on congestion games
depend on the assumption that the utility/payoff of
player i from each of the resource depends only on the
number of players sharing the resource. However, in
802.11 wireless networks this assumption is not satisfied,
since the physical transmission rate and the contention
observed by a user depend on the relative locations of
other users and APs. Those users with better channel
quality and closer relative location can transmit with
higher physical transmission rates, and thus, occupy
the channel for a shorter period of time. Therefore,
in the user association game, the utility/payoff of a
user obtained by associating with an AP is defined as
a function of the average throughput of that AP. As
shown in Section 4, the utility depends not only on
the number of users associated with the same AP, but
also on the physical transmission rates of those users. In
our work, we extend the results on atomic congestion
games for this more general payoff function where the
load of the resource depends on the number and types
of users sharing the resource. We assume that there are
finite number of types of users, with each type of user
inflicting a particular given load on the AP.

3 SYSTEM MODEL

Assume that a geographical area is covered by S APs,
and there are N STAs distributed randomly in this area.
APs periodically broadcast beacon frames containing
relevant information necessary for association. APs op-
erate at non-overlapping frequencies, so that there is no
interference from STAs in the adjacent cells. Every STA
scans wireless channels and collects beacon frames from
APs. As shown in Figure 1, there may be more than
one AP from which a STA receives beacon frames, and
the STA may associate with any of those APs. The STAs
transmit at some predefined rates R = {R1, R2, . . . , RI}
(e.g., according to 802.11g standard with data rates of
6, 9, 12, 18, 24, 36, 48, and 54 Mbps). The physical
transmission rate of STA n when associated with AP s
is determined by one of the rate adaptation algorithms
available in the literature, e.g., [20]. Let Rs

n denote the
rate of connection between STA n and AP s. Also, if
STA s has no connection to AP s, i.e., if it does not
receive a beacon frame, then Rs

n = 0. According to 802.11
standard, a STA can associate with only one AP at any
particular instant. Let xs

n be a binary variable which
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Fig. 1. Division of a geographical area into non-interfering cells
using three independent non-overlapping channels. STAs can
be in a position to associate with any of several access points.

takes value 1, when STA n is associated with AP s, and
0 otherwise.

In this paper, we consider user association games,
Γ(P, S, C), where the players of the game, P , are the
STAs in the network, the strategy set Sn for STA n is the
set of APs that STA n can associate with, and the payoff
function Cs for STA n is the airtime cost of associating
with AP s, which is defined formally in the next section.

4 AIRTIME METRIC AS A MEASURE OF
CONGESTION

In this section, we argue that airtime cost is an approx-
imation of per packet latency on the uplink from STA
to AP in 802.11 wireless networks. Thus, airtime cost
reflects the level of congestion experienced at an AP. Let
As be the set of STAs associated with AP s. The airtime
metric of STA n ∈ As is defined as [4]:

cn
s =

[
Oca + Op +

Bt

Rs
n

]
1

1− ept
, (1)

where Oca is the channel access overhead, Op is the
protocol overhead and Bt is the number of bits in the test
frame. Some representative values for these constants
(for 802.11b networks) are: Oca + Op = 1.25 ms and
Bt = 8224 bits. The parameter ept represents the frame
error rate for the test frame size Bt, but it is omitted from
discussion in the remainder of this work to simplify the
analysis. Let Cs(As) denote the total airtime cost of AP
s, and is defined as the sum of individual airtime costs
of the STAs associated with s:

Cs(As) =
∑

n∈As

cn
s ,

=
∑

n∈As

[
Oca + Op +

Bt

Rs
n

]
. (2)

In the crudest sense, the proposed association scheme
in [4] requires that STAs collect information about the
candidate APs by listening to their beacon frames, and
calculate airtime metric for each AP according to (2).
Then, a STA associates with the AP that has the min-
imum total airtime cost. We refer the reader to [4] for
more detailed description of the association protocol.

Next, we demonstrate that the total airtime cost of AP
s, i.e., Cs(As) is equal to the average uplink per packet
delay for that AP. The average uplink throughput in
a single cell environment is the topic of many recent
works, e.g., [21], [23]. In order to calculate the average
uplink throughput, two important approximations, i.e.,
saturation and decoupling approximations are made.
The saturation approximation states that STAs always
have packets backlogged in their buffers. Note that the
total throughput of the AP is maximized under this
assumption. Meanwhile, the decoupling approximation
states that when there are N STAs associated with an
AP, the aggregate attempt process of (N − 1) STAs is
independent of the backoff process of any given STA.
Let θ(n, s) be the average uplink saturation throughput
of STA n when each STA is the transmitter of a single
flow. θ(n, s) is determined as, [21]:

1
θ(n, s)

=
1

µ(1− µ)Ns−1Ls
nxs

n

×
[
1 + Nsµ(1− µ)Ns−1

(
T0 − Tc + 1/Ns

N∑
q=1

Ls
q/Rs

qx
s
q

)

+(1− (1− µ)Ns−1)Tc

]
, (3)

where Ls
n is the size of the packets of STA n when

transmitting to AP s, Ns =
∑N

n=1 xs
n is the number of

STAs associated with AP s, Tc is the fixed overhead for
an RTS collision, T0 is the fixed overhead associated with
packet transmission and µ is the transmission attempt
probability in the equilibrium. The value of µ at equilib-
rium is determined by observing the exponential backoff
behavior of the STAs, and solving a fixed point equation
governing the attempt probability. It can be shown that
the transmission attempt probability, G(·), is a function
of the transmission collision probability γ and is given
as

G(γ) =
∑K

k=0 γk

∑K
k=0 γkbk

, (4)

where K is the maximum number of attempts allowed
under the protocol, and bk is the mean back-off at the kth

attempt. Meanwhile, under decoupling approximation,
the probability of collision of an attempt by a node
is given by Γ(µ) = 1 − (1 − µ)n−1. The equilibrium
behavior of the system is governed by the solution of
the fixed point equation γ = Γ(G(γ)). The solution of this
equation yields the collision probability from which the
attempt rate in the equilibrium, i.e., µ can be determined
from (4).

Note that the product of the mean packet length with
the reciprocal of the average saturation throughput, i.e.,
(3) gives the average delay per packet at equilibrium.
Comparing this product when Ls

n = Bt with (2), one can
easily see that the airtime metric is an approximation of
average latency per packet transmission in a saturated
802.11 wireless network. In (2), Oca + Op represents the
delay due to channel contention and protocol overheads,
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and the last term in brackets represents the average
transmission time of a Bt length packet from each user.

Therefore, in the proposed user association scheme,
the users’ objective is to determine the best AP that has
the minimum average uplink latency. The operation of
this system can be analyzed as a congestion game, which
is explained in Section 5.

5 USER ASSOCIATION GAME

The average latency in the network depends on the loads
of the APs, and it is minimized if the loads are balanced.
However, unlike traditional load balancing, in the user
association game users are not interested in optimiz-
ing the social welfare (i.e., total system-wide latency).
Instead, each STA selfishly tries to minimize its own
latency. This setting gives rise to a noncooperative game,
and the stable outcomes of this setting are called Nash
Equilibria. Let a specific realization of STA associations,
say A = {As : s = 1, . . . , S}, be defined as the set of STAs
associated with each AP s in the network. Also note that
As = {n : xs

n = 1}. It is said that a realization is a Nash
Equilibrium Solution, if each STA considers its chosen AP
to be the best under the given choices of other STAs.
Formally, STA n that is currently associated with AP S
may decide to switch to AP T if and only if

CS(AS) > CT (AT ∪ {n}), (5)

under current realization A.
The aforementioned user association game belongs

to the general class of congestion games [19], and more
specifically to the class of atomic congestion games [18].
In these games, a set of players compete for a set of
resources, and the cost of each resource depends only on
the number of players using it. In atomic games, one user
is completely assigned to a single server. In computer
science, perhaps the best known example on congestion
games is network routing, studied first by Koutsoupias
and Papadimitriou [17].

Unfortunately, there are no algorithms for computing
an equilibrium, and thus, computing Nash equilibria
remains a topic of current research. It is shown that many
types of the congestion games can be defined as potential
games, for which there is always an equilibrium solution.
However, the user association game considered in this
paper differs from those congestion games discussed in
the literature. In user association game, the congestion
observed by a user not only depends on the number
of users but also on the types of users sharing the
resource. Therefore, we first present a result that shows
that user association game played among STAs in a
802.11 wireless network has a Nash equilibrium, and this
equilibrium point is achieved in a finite time.

Theorem 1: The airtime metric based user association
scheme converges to a Nash equilibrium solution after
a finite number of steps.
Proof The proof of the theorem follows from a similar
result given for unsplittable routing problem in [16].

Consider a move that a STA makes from AP l to m, and
denote by Cl the airtime cost of AP l before the move.
For the STA to have made the move, the airtime cost of m
after the move should be less than Cl. Since the airtime
cost of AP is an increasing function of the total number of
STAs associated, the airtime cost of AP l after the move
and the airtime cost of AP m before the move are also
less than Cl. Let us observe the STA association realiza-
tion after step t. Denote by M(t) the set of APs with the
maximum airtime cost, M(t) = arg minl Cl, and U(t) the
set of STAs associated with those APs in M(t). Suppose
that a certain number of moves later, a STA from one
of the APs in M(t) makes a move. Due to our previous
discussion, the move is made to an AP not in M(t), and
after that move one less AP remains in M(t) with the
original cost. Obviously, the airtime costs of other APs
that are not involved in the move do not change. Hence,
after M(t) such moves the highest airtime cost in the
network strictly decreases. The number of possible STA
association realizations in the network is finite; therefore,
if the network does not converge, STA eventually begin
repeating previous realizations. However, we have just
established that the highest airtime cost attained by a AP
continues to decrease for as long as STAs make moves.
Therefore, to avoid a contradiction, the network must
come to a stable point after a finite time.

6 PRICE OF ANARCHY OF USER
ASSOCIATION GAME

Given that user association game has an equilibrium, we
are now interested in the efficiency of the equilibrium.
A vast majority of literature on computer networks
considers centralized optimal solutions; however, these
solutions are not usually stable, since they do not take
into account users’ preferences. On the other hand,
the cost of Nash equilibrium solutions achieved under
selfish optimization of individual user’s utility, can be
much worse than that of centralized outcomes. For this
case, a relevant measure to understand the performance
of the outcome of the game is to consider the worst-case
ratio between the Nash outcome and the social optimum,
which is termed price of anarchy in [17]. In this section,
we analyze the performance of the Nash equilibrium
solutions by determining the price of anarchy of the user
association game. The price of anarchy depends not only
on the game itself, but also on the definition of the
social (system) cost. Different system objectives can be
selected depending on what is expected the operation
of the system. For example, the system administrator
may either aim to balance load of APs in the network, to
maximize the user performance or to provide fair service
among users. In this paper, we consider four different
system cost functions:

1) Minimum Network Airtime Cost minimizes the total
average per packet delay of the APs in the network,
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which is given by

S∑
s=1

Cs(As).

2) Minimum User Airtime Cost minimizes the total av-
erage per packet delay of the STAs in the network,
which is given by

S∑
s=1

nsCs(As).

3) MinMax Airtime Cost minimizes the maximum av-
erage delay observed by a user in the network,
which is given by

max
s

Cs(As).

4) Lexicographical Minimum of Airtime Costs aims to
provide a fair service to all users in the network
by minimizing the maximum airtime cost of a
user, then subject to this minimization, the second
highest airtime cost is minimized, and so on.

For the first three types of system objectives, we de-
termine price of anarchy, by deriving a worst case bound
for the Nash equilibrium solution. For lexicographical
minimization of airtime costs as the system objective,
we prove that the optimal solution is a Nash equilibrium
solution.

6.1 Minimum Network Airtime Cost

We first consider an objective, where we minimize the
total airtime cost of the APs in the network. We aim to
determine the price of anarchy for this objective.

When the airtime cost of AP j as observed by STA i
is considered as the congestion cost, it can be re-written
in the following more general form:

fi(Aj) = αjnj + βj lj , (6)

where nj = |Aj | represents the number of users associ-
ated with AP j, lj =

∑
i∈Aj

ρij is the total load of AP
j and ρij = 1/Rj

i is the load of user i inflicted on AP j
due to STA i’s physical transmission rate Rj

i . Also note
that αj = Oca + Op, and βj = Bt. Therefore, for a given
realization of user associations, (A1, A2, . . . , AS), the total
airtime cost of the APs in the network, τ , is

τ =
S∑

j=1

αjnj + βj lj .

Theorem 2: The price of anarchy of user association
game when the social cost is the minimum network
airtime cost is O(N). Formally, the ratio of the worst
cost of Nash solution and optimal solution is

∑N
i=1 maxj{1/Rj

i}
mini,j{1/Rj

i}
+ 1.

Proof Under a Nash equilibrium solution, A, assume
that i ∈ Aj , and thus,

fi(Aj) < fi(Ak ∪ {i}), (7)
αjnj + βj lj < αk(nk + 1) + βk(lk + ρik). (8)

Let Ji and J ∗i be the APs that user i associates with
under Nash and optimal solutions, respectively. Then,

αJi
nJi

+ βJi
lJi

<αJ ∗i (nJ ∗i + 1)
+ βJ ∗i (lJ ∗i + ρiJ ∗i ). (9)

Now, observe that αj = α and βj = β for all j = 1, . . . , S,
which is true if ept is the same for all APs. Multiply both
sides of (9) by ρiJ ∗i and sum it over i. In the following, let
i correspond to the user index whereas j represents the
index for the APs. For clarity, we only give the index of
the summations omitting the lower and upper bounds.

∑

i

αnJi
ρiJ ∗i + βlJiρiJ ∗i <

∑

i

α((nJ ∗i + 1)ρiJ ∗i ) + β(lJ ∗i ρiJ ∗i + ρ2
iJ ∗i ). (10)

We can re-write the summation terms in (10) with respect
to index j, i.e., with respect to APs, by observing the
following equalities.

∑

i

nJiρiJ ∗i =
∑

j

∑

i∈A∗j

njρij =
∑

j

nj l
∗
j ,

∑

i

lJiρiJ ∗i =
∑

j

lj l
∗
j ,

∑

i

nJ ∗i ρiJ ∗i =
∑

j

n∗j l
∗
j ,

∑

i

lJ ∗i ρiJ ∗i =
∑

j

(l∗j )2,

where n∗j and l∗j are the number of users associated with
AP j, and the load of AP j at the optimal solution.
Therefore, it can be shown that the following holds,

∑

j

(αnj + βlj)l∗j <
∑

j

(αn∗j + βl∗j )l∗j

+


α + β

∑

j

l∗j


∑

j

l∗j , (11)

by also observing that
∑

i ρ2
iJ ∗(i) ≤

(∑
i ρiJ ∗(i)

)2. Let us
move the first term on the right hand side (RHS) to the
left hand side (LHS) of (11),

∑

j

[
(αnj + βlj)− (αn∗j + βl∗j )

]
l∗j <


α + β

∑

j

l∗j


 ∑

j

l∗j .

Note that the LHS can be lower bounded by
minj{l∗j}

∑
j(αnj +βlj)−(αn∗j +βl∗j ), but

∑
j(αnj +βlj)−

(αn∗j +βl∗j ) = τnash−τopt, i.e., it is the difference between
the total airtime cost with Nash and optimal solutions.
Also, minj{l∗j} > mini,j{ρij}. Meanwhile, on the RHS,
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∑
j l∗j <

∑
i maxj{ρij}, and α+β

∑
j l∗j < αn∗j +β

∑
j l∗j =

τopt. Combining all these, we have

[τnash − τopt]min
i,j
{ρij} < τopt

∑

i

max
j
{ρij},

τnash

τopt
<

∑
i maxj{ρij}

mini,j{ρij} + 1. (12)

For 802.11g networks, the price of anarchy is bounded
as 9N + 1, since the minimum and maximum transmis-
sion rates are 6Mbps and 54Mbps, respectively.

6.2 Minimum User Airtime Cost

Now, we consider the minimization of user airtime
cost as the relevant social objective. For a given user
association realization, (A1, A2, . . . , AS), the total airtime
cost of the users in the network, τ ′, is

τ ′ =
S∑

j=1

nj(αjnj + βj lj).

The following is a simple fact that will be used in the
proof of next theorem.

Lemma 1: For every pair of nonnegative integers a, b,
it holds

a(b + 1) ≤ 1
3
a2 +

5
3
b2.

Theorem 3: With minimum user airtime cost defined
as the social cost, the price of anarchy is O(S). Formally,
the ratio of the worst cost of Nash solution and optimal
solution is

5
2

+
3
2
β

ρ̂− 1/3ρ̌

α + βρ̌
S,

where ρ̌ = mini,k{ρik}, and ρ̂ = maxi,k{ρik}.
Proof Let Ji be the strategy of STA i under Nash policy,
whereas J ∗i be the strategy of the same STA under
optimal policy. Recall that the airtime cost of user i
associating with AP j is fi(Aj) = αnj + βlj . Since Ji

is Nash, the following holds

αnJi + βlJi < α(nJ ∗i + 1) + β(lJi + ρiJ ∗i ). (13)

Observe that the following statements also hold,
∑

i

nJi =
∑

j

n2
j ,

∑

i

nJ ∗i =
∑

j

∑

i∈A∗j

nj =
∑

j

njn
∗
j ,

∑

i

lJi =
∑

j

∑

i∈Aj

lj =
∑

j

nj lj ,

∑

i

lJ ∗i =
∑

j

∑

i∈A∗j

lj =
∑

j

n∗j lj ,

∑

i

ρiJ ∗i =
∑

j

∑

i∈A∗j

ρij =
∑

j

l∗j .

Taking the summation of both sides of (13) with respect
to i, and using the statements given above we obtain

α
∑

j

n2
j+β

∑

j

nj lj < α
∑

j

njn
∗
j+αN+β

∑

j

n∗j lj+β
∑

j

l∗j .

(14)
Also observe that since a STA can associate with only
a single AP,

∑
j nj =

∑
j n∗j = N . Thus, we can rewrite

(14) as

α
∑

j

n2
j + β

∑

j

nj lj <

α
∑

j

(n∗j + 1)nj + β
∑

j

(n∗j lj + l∗j ). (15)

By using Lemma 1,

α
∑

j

n2
j + β

∑

j

nj lj <

5
3


α

∑

j

(n∗j )
2 + β

∑

j

n∗j l
∗
j


 +

α

3

∑

j

n2
j + β

∑

j

n∗j lj .

(16)

The total cost of Nash policy is τnash =
∑

j nj(αnj +
βlj), whereas the total cost of the optimal policy is τopt =∑

j n∗j (αn∗j + βl∗j ). Therefore, the price of anarchy is

τnash

τopt
<

5
3

+
α
3

∑
j n2

j + β
∑

j n∗j lj
τopt

,

<
5
3

+
1
3

τnash

τopt
+

β
∑

j n∗j lj − β/3
∑

j nj lj

τopt
,

<
5
2

+
3
2

β
∑

j n∗j lj − β/3
∑

j nj lj

τopt
. (17)

Note that lj satisfies nj ρ̌ ≤ lj ≤ nj ρ̂, where ρ̌ =
mini,k{ρik}, and ρ̂ = maxi,k{ρik}. Thus,

β
∑

j

n∗j lj − β/3
∑

j

nj lj ≤ β
∑

j

nj(n∗j ρ̂− 1/3nj ρ̌).

Assume that n∗j ρ̂ − 1/3nj ρ̌ ≥ 0, which is true for most
relevant cases. Then,

β
∑

j

n∗j lj − β/3
∑

j

nj lj ≤ β
∑

j

nj


∑

j

n∗j ρ̂− 1/3
∑

j

nj ρ̌




= βN2(ρ̂− 1/3ρ̌). (18)

Similarly, a lower bound for optimal cost can be deter-
mined as

τopt ≥ N2

S
(α + βρ̌), (19)

by observing that τopt ≥
(∑

j n2
j

)
(α + βρ̌), and

∑
j n2

j ≥
(∑

j n∗j )
2

S holds.
Combining (17)-(19), we obtain the desired result

τnash

τopt
<

5
2

+
3
2
β

ρ̂− 1/3ρ̌

α + βρ̌
S. (20)
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The bound for price of anarchy for minimum user air-
time cost is much tighter than that of minimum network
airtime cost, since the number of APs is much lower than
the number of STAs in the network. For example, for
typical values of α and β, the price of anarchy when
there are only two APs in a 802.11g network can be
calculated as 5.32.

6.3 Minmax Airtime Cost

We now turn our attention to the case where the social
cost is the maximum airtime cost of the users in the
network.

Theorem 4: The price of anarchy when the social ob-
jective is to minimize the maximum airtime cost is
O(
√

NS).
Proof In the proof, we will use Theorem 3, which bounds
the average user cost. Let A be a Nash equilibrium,
and P be the optimal policies, respectively. Without loss
of generality, the first STA has the maximum cost, i.e.,
maxj(A) = CJ1(A). It suffices to bound CJ1(A) with
respect to maxj(P) = maxj Cj(P ).

Since A is Nash equilibrium, we have

CJ1(A) < α(nJ ∗1 + 1) + β(lJ ∗1 + ρ1J ∗1 ),
≤ α(nJ ∗1 + 1) + β(nJ ∗1 ρ̂ + ρ̂),
= (α + βρ̂)(nJ ∗1 + 1). (21)

Let I ⊂ N be the subset of STAs under policy A using
AP J ∗1 . The sum of their costs is

∑

i∈I

CJ1(A) ≥ nJ ∗1 (αnJ ∗1 + βlJ ∗1 ),

≥ nJ ∗1 (αnJ ∗1 + βnJ ∗1 ρ̌),

= n2
J ∗1 (α + β)ρ̌. (22)

On the other hand, by Theorem 3,

∑

i∈N

CJ1(A) ≤
(

5
2

+
3
2
β

ρ̂− 1/3ρ̌

α + βρ̌
S

) ∑

i∈N

CJ ∗1 (P ),

= B
∑

i∈N

CJ ∗1 (P ), (23)

where B =
(

5
2 + 3

2β ρ̂−1/3ρ̌
α+βρ̌ S

)
. Combining (22) and (23),

we have

(α+βρ̌)n2
J ∗1 ≤

∑

i∈I

CJ1(A) ≤
∑

i∈N

CJ1(A) ≤ B
∑

i∈N

CJ ∗1 (P )

Together with (21), we get

CJ1(A) < (α + βρ̂)

[√
B

α + βρ̌
N

√
max(P ) + 1

]
.

Inserting the value of B, we get the desired result.

6.4 Lexicographical Optimum is a Nash
Equilibrium
Consider the following minmax system optimization
problem.

min
{As}S

s=1

max
s

Cs (24)

∃s, s.t. n ∈ As, while n 3 As′ , for s′ 6= s, ∀n. (25)

A lexicographically optimal association configuration is
the one which minimizes the airtime cost of the AP with
the maximum airtime cost, subject to this minimization,
it minimizes the second maximum, etc. Thus, we repeat-
edly solve the minmax optimization problem in (24) over
the remaining APs and STAs by removing the AP and
its associated STAs determined by the optimum solution
at each stage.

Theorem 5: The solution of the lexicographical opti-
mization problem is a Nash Equilibrium solution for the
user association game.
Proof Let us assume without loss of generality that at the
optimal solution the airtime costs of the APs are ordered
as C∗1 > C∗2 > . . . > C∗S for user association configuration
A∗s .

If STA i ∈ A∗s is not at Nash equilibrium, then i may
move from s to s′ > s such that

Cs(A∗s − {i}) < Cs′(A∗s′ ∪ {i}). (26)

Note that Cs(A∗s−{i}) < Cs(A∗s) since the airtime cost
increases with the number of users associated. Also note
that Cs(A∗s) > Cs′(A∗s′) at the optimum solution.

However, this contradicts with the fact that A∗s is
lexicographically optimum.

7 CONCLUSIONS

In this paper, we started from a practical problem ob-
served in wireless networks, and analyzed it using novel
game theoretical models. Efficient association of users
with the available access points is required to balance
the loads of the access points in the network, and thus,
to prevent congestion. A new promising greedy user
association scheme is considered for this purpose, where
each user is associated with the AP that can provide
the lowest per packet latency. The algorithm is analyzed
theoretically by modeling it as a form of an atomic
congestion game. The results available in the literature
on congestion games are not sufficient for analyzing
this specific form of user association game, since in
our case, the congestion of a resource depends on the
number and types of users associated. Therefore, we
first showed that the user association game achieves
equilibrium in finite time, and then, we derived new
results on price of anarchy for this more general version
of atomic congestion games. Our results indicate that
the price of anarchy of load-based user association is
high, and in many cases depend on the number of users
or the number of resources in the network. However,
an encouraging result is that a fair solution for all



8

users (lexicographic optimum) is also an equilibrium
solution. Further studies are needed both to improve the
given bounds, and to design mechanisms that can drive
the system to more favorable equilibriums. The design
of such mechanisms is a difficult problem to solve in
congestion games, but a first initial attempt is made for
unsplittable selfish routing problem in [25]. This work
can be taken as a starting point for further research on
this topic.

REFERENCES
[1] W. Arbaugh, A. Mishra and M. Shin, “An empirical analysis of

the IEEE 802.11 MAC layer handoff process”, ACM SIGCOMM
Computer Communication Review, 33, 2003.

[2] Y. Bejerano and R. Bhatia, “Mifi: A framework for fairness and
QoS assurance in current IEEE 802.11 networks with multiple
access points”, In IEEE Infocom, 2004.

[3] Y. Bejerano, S. Han and L. Li, “Fairness and load balancing in
wireless lans using association control”, In MobiCom, 2004.

[4] G. Athanasiou, T. Korakis, O. Ercetin, and L. Tassiulas, “Dynamic
Cross-Layer Association in 802.11-based Mesh Networks, Proceed-
ings of IEEE Infocom, May 2007, Anchorage, AK, USA.

[5] A. Kumar and V. Kumar, “Optimal Association of Stations and
APs in an IEEE 802.11 WLAN”, in Proceedings of the National
Conference on Communications (NCC), IIT Kharagpur, January
2005.

[6] B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki and C.
Diot, “Measurement-Based Self Organization of Interfering 802.11
Wireless Access Networks”, In IEEE Infocom 2007, Anchorage,
Alaska, USA.

[7] T. Alpcan, T. Basar, R. Srikant, and E. Altman. CDMA uplink
power control as a noncooperative game. Wireless Networks,
8:659-670, 2002.

[8] D. Falomari, N. Mandayam, and D. Goodman. A new framework
for power control in wireless data networks: games utility and
pricing. In Proceedings of the Allerton Conference on Commu-
nication, Control and Computing, pages 546-555, Champaign,
Illinois, USA, Sept 1998.

[9] C. U. Saraydar, N. B. Mandayam, and D. Goodman. Efficient
power control via pricing in wireless data networks. IEEE Trans.
on Communications, 50(2):291-303, February 2002.

[10] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring. Modelling incen-
tives for collaboration in mobile ad hoc networks. In Proceedings
of WiOpt’03, Sophia-Antipolis, France, March 2003.

[11] L. Buttyan, J.-P. Hubaux, “Stimulating Cooperation in Self-
Organizing Mobile Ad Hoc Networks,” MONET 8(5): 579-592
(2003).

[12] Y. E. Sagduyu and A. Ephremides. “A game-theoretic look at
simple relay channel”. In Proc. WiOpt’04 (Optimization and Mod-
eling in Mobile, Ad-Hoc and Wireless Networks), Cambridge,UK,
March, 2004.

[13] V. S. Borkar and A. A. Kherani. Random access in wireless ad hoc
networks as a distributed game. In Proc. WiOpt’04 (Optimization
and Modeling in Mobile, Ad-Hoc and Wireless Networks), Cam-
bridge,UK, March, 2004.

[14] H. Inaltekin and S. B. Wicker, ”The Analysis of a Game Theoretic
MAC Protocol for Wireless Networks”, Third Annual IEEE Com-
munications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON 2006), September 25 28,
Reston, VA.

[15] S. Shakkottai, E. Altman and A. Kumar, “The Case for Non-
cooperative Multihoming of Users to Access Points in IEEE 802.11
WLANs”, in INFOCOM 2006, Barcelona, Spain, April 2006

[16] L. Libman, A. Orda, “The Designer’s Perspective to Atomic Non-
cooperative Networks,” IEEE/ACM Transactions on Networking,
7(6), pp. 875-884, Dec 1999.

[17] C. Papadimitriou, “Algorithms, games, and the internet,” Proc.
33rd ACM Symposium on Theory of Computing, ACM Press, 2001,
pp. 749-753.

[18] S. Suri, C. D. Toth and Y. Zhou, “Selfish Load Balancing and
Atomic Congestion Games,” Algorithmica, 47(1), pp. 79-96, Jan-
uary, 2007

[19] R. W. Rosenthal, “A class of games possessing pure-strategy Nash
equilibria,” International Journal of Game Theory, 2, 1973, 6567.

[20] A. Kamerman, L. Monteban, “WaveLAN-II: a high-performance
wireless LAN for the unlicensed band, Bell Labs Technical Journal,
vol.2, no.3, pp.118-133, Aug. 1997.

[21] G. Bianchi, “Performance analysis of the 802.11 DCF”, IEEE JSAC,
vol.18, pp.535-547, Mar 2000.

[22] N. Gupta, P.R. Kumar, “A Performance analysis of the 802.11
wireless LAN medium access control”, Communications in In-
formation and Systems, vol.3, no.4, pp. 279-304, Sept 2004.

[23] A. Kumar, E. Altman, D. Miorandi, M. Goyal, “New Insights from
a Fixed Point Analysis of Single Cell IEEE 802.11 WLANs”, Proc.
Infocom 2005.

[24] IEEE 802.11s: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: Simple Efficient Extensible
Mesh (SEE-Mesh) Proposal

[25] Auletta, V., de Prisco, R., Penna, P., and Persiano, G. “Routing
selfish unsplittable traffic,” ACM Trans. Algor., 3(4),November
2007.


