
C o r e s  o f  C o n v e x  G a m e s  1) 

By LLOYD S. SHAPLEy2)  

Abstract: The core of an n-person game is the set of feasible outcomes that cannot be improved upon 
by any coalition of players. A convex game is defined as one that is based on a convex set function. 
In this paper it is shown that the core of a convex game is not empty and that it has an especially 
regular structure. It is further shown that  certain other cooperative solution concepts are related in a 
simple way to the core: The value of a convex game is the center of  gravity of  the extreme points of  the 
core, and the yon Neumann-Morgens te rn  stable set solution of a convex game is unique and coincides 
with the core. 

1. Introduction 

The core of an n-person game is the set of feasible outcomes that cannot be 
improved upon by any coalition of players 3). A convex game is one that is based 
on a convex set function (see below); intuitively this means that the incentives for 
joining a coalition increase as the coalition grows, so that one might expect a 
"snowballing" or "band-wagon" effect when the game is played cooperatively. 

In this paper we show that the core of a convex game is not empty - in fact, 
it is quite large - and that it has an especially regular structure. We further show 
that certain other cooperative solution concepts are related in a simple way to 
the core. Specifically (1) the value of a convex game is the center of gravity of the 
extreme points of the core, and (2) the VON NEUMANN-MORGENSTERN stable 
set solution of a convex game is unique and coincides with the core. In a subse- 
quent paper [MAsCIaLER, PELEC, and SnAPLEY] rather similar results will be 
presented for two other cooperative solutions: the kernel and the bargaining set. 

1) Presented at the Fifth Informal Conference on Game Theory, held at Princeton University in 
April 1965. This paper is based on a Rand Corporation research m e m o r a n d u m  [SnAPLEY, 1965], 
written under the sponsorship of Air Force Project Rand. The author  wishes to acknowledge the 
st imulus of a query from Jack Edmonds  concerning the properties of convex set functions. 

2) The Rand Corporation, Santa Monica, California. 
3) The core is sometimes incorrectly described as the set of outcomes "that cannot be blocked by 

any coalition". This unfortunately misleading description has arisen as a result of the counterintuitive 
use of the word "block" in the technical terminology of several early papers. (The present author  
must  bear part of the blame!) In fact, the core is concerned with what coalitions can do, not what 
they can prevent. The distinction is especially striking in economic game models, where the bar- 
gaining power that certain groups may acquire through their ability to obstruct trade or production 
is completely ignored in the essentially constructive conditions that define the core. 
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1.1. Notation 

We shall systematically use the letters n, s, t . . . .  to denote the number of elements 
in the finite sets N,S, T, ... The letter " 0 "  will denote the empty set, and "C ' ,  " 3 "  
will denote strict inclusion. "Payoff vectors" are elements of the n-dimensional 
linear space E N with coordinates indexed by the elements of N. If a ~ E N and 
S c_ N we shall often write a(S) for Zsa,, treating a as an additive function on 
the subsets of N. The hyperplane in E N defined by the equation a(S) = v(S), 
0 C S __ N, will be denoted by H s. 

2. Convex Games 

In this paper, a oame is a function v from a lower-case ring Y to the reals, 
satisfying 

It is superadditive if v(0) = O. (1) 

v ( S ) + v ( T ) < v ( S u T ) ,  all S , T ~ A / ' w i t h  S ~  T = O .  (2) 

It is convex 1) if 

v(S) + v(T) < v ( S u  T) + v ( S ~  T) ,  all S , T s ~ .  (3) 

It is strictly convex if inequality holds in (3) whenever neither S _c T nor T c S, 
i.e., wheneverS, T,S  • T, and S c~ T are all different. Note that (1) and (3) together 
imply (2). 

To appreciate the term "convex", define for each R e r/a differencing operator 

A R by: [ARv] (S  ) = v ( S ~ R )  - v(S - R),  all S e Y ,  

and let AORV denote AQ(ARv). Then (3) is equivalent to the assertion that these 
"second differences" are everywhere nonnegative, i.e., that 

[AeR v] (S) > 0,  all Q,R, S E.H.  (4) 

This is analogous to the nonnegative second derivatives associated with convex 
functions in real analysis. 

Two games are termed equivalent if their difference is an additive game, i.e., 
obeys the equality in (2) (or (3) or (4)). It is easily seen that any game equivalent 
to a convex game is convex; that  any positive scalar multiple of a convex game 
is convex; and that the sum of two or more convex games is convex. It follows that 
the ensemble of convex games (for fixed Jr forms a convex cone in a suitable linear 
space (say EW-{~ and that this cone contains the subspace of additive games. 

1) In potential theory, functions satisfying the reverse inequality to (3) (i.e., negatives of convex 
functions) are called strongly subadditive or, when certain other properties are adduced, capacities 
[CttoQUET ; MEYER]. In lattice theory and combinatorial mathematics, such functions, often restricted 
to be monotonic and integer valued, as in the rank function of a matroid, are called submodular or 
lower semi-modular, making our convex functions supermodular or upper semi-modular [WHITNZY; 
EDMONDS, ROTA; CRAPO, ROTA; EDMONDS]. 
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2.1. Interpretation 

Throughout  this paper ~ will be the lower-case ring of subsets of a f ini te  set N - 
thus, X = 2 N 1). In the standard application in game theory the elements of N are 
"players", the elements of JV are "coalitions", and v(S), called the "characteristic 
function", gives for each coalition the best payoff it can achieve without help from 
other players. 

Superadditivity (2) arises naturally in this interpretation, but convexity (3) is 
another matter. For  example, in a voting situation S and T, but not S n T, might 
be winning coalitions, causing (3) to fail. To see what convexity does entail, regard 
the function m: 

m(S,  T) = v(S u T) - v(S) - v (T)  (5) 

as defining the "incentive to merge" between disjoint coalitions S and T. Then 
it is a simple exercise to verify that (3) is equivalent to the assertion that re(S, T) 

is nondecreasing in each variable - whence the "snowballing" or "bandwagon" 
effect mentioned in the introduction. 

Another condition that is equivalent to (3) (provided Y is finite) is to require 

that2) v(S w {i}) - v(S) < v ( T  u {i}) - v (T ) ,  (6) 

for all individuals i ~ N and all S ___ T _c_ N - {i}. This expresses a sort of increasing 
marginal utility for coalition membership, and is analogous to the "increasing 
returns to scale" associated with convex production functions in economics. 

2.2. Convex Measure Games 

Let v be given by 
v(S) = f(/z(S)), all S e t/, (7) 

where # is a nonnegative additive function on r/, i.e., a measure, and f is a real 
function' with f(0) = 03). Then it is easy to verify that v is convex if f is convex, 
and strictly convex i f f  is strictly convex. A game that is a convex function of a 
measure is called a convex measure game4). 

Not all convex games are convex measure games. A simple counterexample 
is the two-person convex game with v({1}) = -v({2}) = 1, v({1,2)) = v(O) = O. 

But this game, being additive, is equivalent to the convex measure game 
v(S) =- O, so we might ask whether every convex game is at least equivalent to 

1) For  the infinite case see ROSENMI)LLER, 
2) Cf. WHITNEY. 
3) Actually, any game can be put into this form; we need merely choose ~ so that all the numbers 

#(S) are different and define faccordingly.  Thus, the general concept of "measure game", with f and/~ 
not further restricted, is of no interest in the finite case. [Cf. AUMANN and SHAPLEY]. 

In economic applications, p may represent the initial distribution of some resource, while f may 
represent a production function. 

~) Curiously, i f f  is a function of several variables and # a vector of measures, then convexity o f f  
does not imply convexity of v in (7), or even superadditivity. Indeed, in the case of a homogeneous 
function f (2  x) ~ 2f(x), it is concavity off,  not convexity, that implies superadditivity of v. 
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any n u m b e r  of  convex  measure  games;  indeed, the first twelve games  of Table  1 

have this proper ty .  

The  s i tuat ion can be viewed geometrically.  As a l ready remarked ,  the convex 

games  form a cone in E ~ which is invar iant  under  equivalence. The  subcone of 
convex measure  games,  however ,  is neither convex nor  invar iant  under  equi- 
valence (unless n is trivially small). The  convex hull o'f that  subcone, which is 
what  we obtain  when we take all sums of convex measure  games,  is invar iant  

under  equivalence but  still does not  include all convex games  if n > 3. 

The  thir ty-seven extremals  of  the cone of four-person convex games  were 

de te rmined  in 1965 by S. A. COOK 1) (Table 1). The  games in the first seven symmet ry  
classes listed are indecomposab le  (see below); the remainder  are obta ined  f rom 
smaller  games by adding d u m m y  players. Fo r  larger n, little is known  abou t  the 
set of all extremals  2). 

2.3. Decomposable Games 3) 

Let P = {N1 . . . . .  N,} be a part i t ion of N into p > 2 n o n e m p t y  subsets. The  
game  v on W" is said to be decomposable (with respect to P) if v is addit ive across 
the part i t ion,  i.e., for each S ~ JV, 

v(S) = v(S c~ N1) + v(S c~ Nz) + -.. + v(S c~ Np). (8) 

No te  that  v is comple te ly  de termined by its values on the subsets of  the N v The  p 

smaller  games,  ob ta ined  by restricting v to the subsets of  each Ni in turn, are the 

components of the decomposi t ion.  A decomposab le  game has a unique finest 
decomposi t ion ,  that  is, a decompos i t ion  in which none  of the componen t s  are 
themselves decomposab le  4). 

Theorem 1. 
(a) A decomposab le  game is convex if and only if each c o m p o n e n t  is convex. 
(b) A convex game  v is decomposab le  if and only if 

v(N) = v(N1) + v(N2) + ... + V(Np) (9) 

holds for some par t i t ion {N 1 . . . .  , Np} of N into p _>_ 2 n o n e m p t y  subsets. 

Proof 5). 
The first s ta tement  is immediate .  Fo r  the second, suppose  (9) holds and let 

S e Jff. By convexity,  

~) Private communication. 
2) For the infinite case, see ROSENMULLER. 
3) This section is based on MASCHLER, PELE~ and SHAPLEY [1967]. 
4) The notion of decomposition was introduced by YON NEUMANN and MORGENSTERN; see also 

GmLIES [1953, 1959] and PELEG [1965a, b]. 
5) Several proofs can be given; this one is due to Y. KANNAt. 
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v(S) -~ /)(N1) <- t~(S (h N1) + v(S ~ N1) 

v(S u N1) + v(N2) < v(S c~ N2) + v(S w N1 w N2) 

v(S ~ NI  ~ "'" ~ Np_I) + v(Nil  < v(S c~ Np) + v(S ~ N t  ~ "'" ~ N i l .  

Adding these inequalities to each other and to (9) yields 

v(S) < v(S n N,)  + v(S ~ N2) + "'" + v(S c~ Np). (10) 

But equality must  hold here, by superadditivity (2). This completes the proof. 

A coali t ion is said to be "inessential" if its characteristic-function value is no 

greater than required for superadditivity (2). Theorem I (b) expresses the fact 

that  in a convex game, decomposabi l i ty  is equivalent to inessentiality of  the all- 

player coalition. 

Corollary. 
A strictly convex game is indecomposable.  

3. Core Geometry 

A payoff  vector a ~  E N is said to be feasible (for v) if a(N) <= v(N)l). The core 

of v is defined as the set C of all feasible a ~ E N such that  

a(S) > v(S~, all S c N .  (11) 

The core is obviously a subset of  the hyperplane H N (see w 1.1), and since the ine- 

qualities ai > v({i}) are included in (11), the core is bounded.  Thus, C is a compac t  

convex polyhedron,  possibly empty, of dimension at most  n - 1. By a "full- 

dimensional" core we shall mean  one of dimension exactly n - 1; 

In order to discuss the facial structure of  C, we define Cs = C c~ H s for 

O C S _ N;  note that CN = C. It is convenient also to define Co = C. If  none  of  

the Cs are empty, we say that the configurat ion {Cs} is complete; if they all 

have the highest possible dimension we say that {Cs} is strictly complete. In the 
latter case, the core is full-dimensional and has exactly 2 ~ - 2 polyhedral  faces 

of  dimension n - 2. 
Figure 1 shows a core configurat ion for n = 3 that is comple te  but  no t  strictly 

complete, since C~2~ is only a point. Figure 2 depicts a strictly complete core 2) 

for n = 4, there being fourteen 2-dimensional faces. (The extra lines and points, 
included for perspective, indicate the intersections of  the Hs for s = 3 with the 

*) In application, there may be also a lower bound /3, such that only payoff vectors with 
< a(N) < v(N) are truly "feasible". Only the upper bound, however, will be of any significance in 

the present work. . 
z) Note that if we are given only the point set C, we cannot in general identify all of the sets Cs, 

or even tell whether any are empty. In fact, it is not difficult to show that C uniquely determines v, 
and hence {Cs}, only in the strictly complete case. Thus, it makes sense to speak of a "strictly complete 
core", but not a "complete core". 
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1 

t7 

ci 

Fig.  1 : Core configuration of a 3-person convex game 

simplex A in HN defined by the Hs for s = 1.) We see from the key that parallel 
faces on opposite sides of the core correspond to complementary coalitions 1). 

Note  that completeness implies a "large" core - one which touches all of the 
(n - 2)-dimensional faces of A. 

Key to vertices and faces: 

Front: 

2341. '-3431 

1~4vC5_ c23, ~ .... 

$124 3412 4312 4123 

2 C134 14 
. . . .  ~ 3 4 2  y . . . .  

1432 

2341 2431 

.... ~.?d' 2 4 ~  7 '  ~ 2 v / t  C 2 4231 
Back: -/A2314 - .  

12-- 34 - 
1 3 2 4 ~ 1 3 4 2 /  C1 1243 ~ 

1412 
ChoracterisHc function: 1 

Fig. 2: Core of a four-person convex game 

~) In SCHMEIDLER a game with a complete core configuration is called an e x a c t  game. 
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3.1. Regular Core Configurations 

Although the hyperplanes H s have the same slopes in every games v, their 
positions in E N relative to one another are not predetermined, and even in the 
case of a strictly complete core there are many ways (if n > 3) in which the faces 
Cs can fit together. But one "natural" arrangement stands out from the rest; it 
occurs, for example, when all faces Cs, S ~ - O , N ,  are equidistant from a 
common center - i.e., tangent to the inscribed (n - 2)-sphere 1). In this arrange- 
ment, it can be shown that two faces touch if and only if their corresponding 
coalitions are comparable, i.e., 

C s n C  T ~ - O  if and only if Sc_ T or T _ S .  (12) 

We shall call property [MEYER] strict regularity. It obviously implies completeness, 

(take S = T); we shall see presently that it implies strict completeness. The 
configuration of Fig. 2 is strictly regular, but not that of Fig. 1, since C12 and C23 
meet. 

We shall work primarily with a weaker form of (12). A core configuration 
{Cs} will be called regular if CN Jf O and 

C s n C  rc_Cs~  T n C s ~ r ,  all S , T _ c N .  (13) 

We see at once that strict regularity implies regularity, as the terminology would 
suggest. Condition (13) is equivalent to the statement that for each a e E N, the 
family of sets Sea = {.S: a e Cs} (14) 

is closed under union and intersectionl 
The formal similarity between (13) and (3) is not accidental; in due course 

we shall show that convexity of a game is equivalent to regularity of its core 
configuration. First we shall develop some geometrical consequences of (13). 

3.2. Faces 

Theorem 2. 
In a regular core configuration {Cs} we have 

Csl n Cs2 ~ "'" c~ Csm ~- 0 (15) 

for any increasing sequence $1 C $2 C .-. fi Sin. In particular (take m = 1), 
a regular core configuration is complete. 

The proof proceeds with the aid of two lemmas concerning regular cores. Let 
us wr i t e S f i  C T t o m e a n t h a t S C  T a n d t - s > 2 .  

Lemma 1. 

If S C C T and a e C s  c~ CT, then there exists Q and b such that S C Q c T 
and b s Cs n C o n C r. Moreover, we can require that b i = % all i e S, and that 
j e Q, k d~ Q for any two preassigned elements j ,k of r - S. 

1) Such a game is v(S) =-- s - x/~n - s)/(n - 1). 
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Proof 
F i x j , k ~ T - S .  Define b e C  by b j = a j - p ,  b k = a k + p ,  and b i = a  i for 

i + j , k ,  giving p the largest possible value compatible  with b eC;  this can be 

done because C is compac t  and contains a. Clearly, b(S) = a(S), b(T) = a(T);  

hence b E C s c~ CT. Since a larger p would have taken b out of  the core entirely, 

there must  be a set R, conta ining j and not containing k, such that b 6 CR. Let 

Q = (S u R) ~ T. Since 5~b (see (14)) is closed under  " u "  and " n " ,  we have b e C 0. 
But Q has all the required properties:  S C Q c T, j ~ Q, and k ~ Q; so the lemma 

is proved. 

Lemma 2. 
Let S C C N and a E Cs. Then, for any j ~ N - S there exists b ~ C s c~ C s ~  ~ 

such that  b~ = as, all i e S. 

Proof 
Set T = N and use L e m m a  1 to find Q, b such that  S w {j} _c Q c N and 

b ~ Cs c~ CQ, the latter agreeing with a on S. If  Q = S w {j} we are th rough;  if 

not, set T = Q and repeat the argument.  

Proof of Theorem 2. 
We may  assume that  the sequence {Sk} is of  max imum length, i.e., that  

m = n + 1. Then  we have Cs, = Co, which is nonempty  by definition. Take 

a(1)~Csl, and for k = 1 , . . . , n  - l, apply Lemma 2 to find a point  a(k+l)~ 

Cs~ ~ Cs~+ 1, agreeing with a(k) on S k. The point  a(,) will be in all of  the Cs~, 
1 < k _< n, and it will also be in Cs,+l = Cu = C. Hence (15) follows. 

3.3. Vertices 

Let co represent a simple ordering of the players. Specifically, let co be one of  

the n! functions that  m a p  N onto { 1,2 . . . .  , n}. Define 

So,k = { i~N:co( i ) - -  k}, k = 0,1 . . . . .  n ;  (16) 

these are the "initial segments" of  the ordering. Thus, S~,o = O and S~,, = N. 

Consider  the equat ions a(S~.g) = v(So~,g), k = 1,2 . . . .  , n. Linear independence is 

assured, and it is easy to solve the set of equations to find the coordinates of 

the intersection of  the hyperplanes Hs ... .  namely 

a~ -= v(So,,~,(i)) - v(S~,~(i)_l), all i ~ N .  (17) 

In this way, each ordering co defines a payoff  vector a~; there is, of  course, no 

assurance that  the n! points a ~~ are all distinct. 

Theorem 31). 
The vertices of  the core in a regular configurat ion are precisely the points a ~. 

t) Theorem 22 of EDMONDS gives a similar result for "potymatroids", which are similar in many 
respects to cores of convex games. Thus, Theorem 8 of EDMONDS may be compared with our (11), 
Theorem 42 of EDMONDS with our (13), etc. 
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Proof.  

We have, for any co, 

Cs,o,1 ~ "'" c~ Cso~," c_ Hso~, ' c~ ... c~ Hs~,, , .  

The left-hand side is not empty, by Theorem 2; it therefore consists of the single 
point a ~ Hence a ~ is in the core. If it were not a vertex (i. e., an extreme point), 
then for some nonzero vector d we would have both a ~ + d E C. But this is impos- 
sible, since at least one of the hyperplanes Hs~,k that meet at and determine a ~ 

must pass strictly between the two points a ~ + d, excluding one of them from 
possible membership the core. Hence a ~~ is a vertex of C, for each co. 

It remains to show that C has no other vertices. Let a be any vertex of C and let 

0 = S 1 Q S 2 C ... Q S m = N be a "longest" increasing sequence of members of 
SPa (see (14)), i.e., one that maximizes m. If there are no gaps in this sequence, i.e., 
ifm = n + 1, then a is of the form d ~ and we are through. Suppose therefore that a 

gap exists, so that Sk C C Sk+ 1 for some k, and let i, j s Sk+ 1 - Sk, i :~ j. Since a 
is a vertex, it is not only a solution of all the equations a(S) = v(S), S ~ 5P,, it is 

their unique solution. But in order to determine the coordinates as and as, and not 
just their sum a~ + as, there must be an equation that separates them, i.e., an 
R e 5~ that contains precisely one of i,j. Since 5% is closed under " u "  and "c~", 

we have Q ~ 5%, where Q = (Sk U R) c~ Sk+ 1. But Sk C Q C Sk+ 1, contradicting 
the maximality of m. This completes the proof, 

3.4. Strictly Regular Cores 

This section is mainly descriptive, and formal proofs are omitted. Strict regularity 
was defined by (12) above, but the one-sided condition 

C s ~ C  T '+-O implies S _ c T  or T ~ S ,  (18) 

together with C =~ O, would have sufficed. To see this, note that (18) with C =~ O 
implies regularity, which in turn implies the converse of (18) by way of Theorem 2 
with m = 2. 

Strict regularity implies strict completeness, and hence is a property of the 
point set C. A strictly regular core has n! distinct extreme points a'L The core 
in a regular configuration that is not strictly regular, on the other hand, always 
has fewer than n! extreme points, although it may still be strictly complete, i.e., 
have the maximum number of (n - 2)-dimensional faces. 

The facial arrangement of a strictly regular core is completely determined in 
all dimensions. For  example, an ( n -  2)-dimensional face C s is bounded by 
exactly 2 s+  2 " - s -  4 ( n -  3)-dimensional faces of the form Cs c~ CT with 
0 C T C S or S C T C N. The automorphism~ of this highly symmetric combi- 
natorial structure are generated by the permutations of N, together with comple- 
mentation, the latter automorphism mapping each vertex a ~' into its antipode a ~ 
where co' denotes the reversal of co. This is illustrated for n = 4 in Fig. 2. 
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We can now distinguish several classes of games, according to the kinds of 

cores they posses: 
Table 2 

nonempty cores full-dimensional cores 

complete core configurations strictly complete cores 

regular core configurations strictly regular cores 

Each class includes those listed below it and to the right. For  n > 3, the inclusions 
are all strict. I ra  game is regarded as a point in E "~-~~ (see w 2.2), then each of the 
six classes describes a convex cone; and those on the left [right] are the closures 
[interiors] of those on the right Elefl]. In particular, every regular core is a limit 
of strictly regular cores - indeed it can be approximated by both increasing and 
decreasing nested sequences of strictly regular cores. 

4. Solutions of Convex Games 

Many different "solution concepts" have been proposed for n-person games 
in characteristic-function form. We shall be concerned here with three of them: 
the core, already defined; the (SHAPLEY) value (w and the (YON NEUMANN- 
MOR~ENSTERN) solutions, which we call stable sets (w 4.3). We shall see that the 
three concepts are intimately related when the game is convex. 

4.1. The Core 

The core of a game, already defined at (11), may be interpreted as the set of 

"socially stable" outcomes, in that no coalition can improve upon any of them. In a 
game with an empty core, at least one set of players must fail to realize its full 
potential, no matter how the winnings are divided. 

First we require 

Theorem 4. 

The core of a convex game is not empty. 

Proo f  

It suffices to show that a '~ is in the core, for some co (see w 3.3). Let T C N and 
let j be the "o-earliest" element of N - T, so that all the co-predecessors o f j  are 
in T, but not j itself. Then we have at once 

T ~ S,o,,~(~) = T ~ {j}, 

T c~ Sr ) = S r 1 6 2  , 

using the notation of (16). Hence, by convexity of v, 

v(T) + v(S~,o,~j~) =< v(T ~ {j}) + v(S~,o,~j~_~) 
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or, by (17), 
aj ~ .= < v ( T  k) {j}) - v ( T )  

Hence,  
a~ - v(Y) >= d~  w {j}) - v(Y  u {j}). 

Repeat ing the a rgument  n - t - 1 times, we obtain  

a~~ - v(T) > a'~ - v(N) = 0 .  

Since T was arbi t rary,  a ~ is in the core. 

Theorem 5. 

A game is convex if and only if its core configurat ion is regular.  

Proof 

Suppose we have regulari ty (13). Let  S, T _c N. Since S u T ~_ S n T, we can 

find a e  Cs~r n Cs~T, by T h e o r e m  2. Then  we have 

v(S w T) + v(S n T) = a(S u T) + a(S n T) = a(S) + a(T) > v(S) + v(T) .  

Hence  v is convex. 

Conversely,  suppose that  v is convex. Then C + O by T h e o r e m  4 and it remains  
only to establish (13). Suppose  a is in Cs c~ CT. Then we have 

v(S u T) + v(S r T) > v(S) + v(T) = a(S) + a(Y) = a(S w T) + a(S n T) .  

But we also have a(S w T) > v(S u T) and a(S n T) > v(S n r) ,  because a is 

in the core. Hence  equali ty prevails everywhere,  and a e CS,~T n Cs~,r, as required. 

Corollary. 

A game is strictly convex if and only if its core is strictly regular. 

We omit  the simple proof.  

Theorem 61). 

(a) The  core of  an indecomposab le  convex game is full-dimensionaL 
(b) The  core of a decomposab le  convex game is the cartesian produc t  of  the 

cores of  the componen t s  of any decomposi t ion .  Its d imension is n - p, where p 
is the number  of componen t s  in the finest decomposi t ion.  

Proof 
(a) If  C is less than full-dimensional,  then C = Cs for some O C S C N. We 

have CN- s :~ 0, by completeness.  Let  a e CN - s - C = Cs. Then  

v(S) + v(N - S) = a(S) + a(N - S) = a(N) = v(N),  

and decomposabi l i ty  follows f rom (b) of T h e o r e m  1. 

1) Based on MASCHLER, PELEG, and SHAPLEY [1967]. Note that the "cartesian product" property 
does not depend on convexity, but is valid for any decomposable game. 
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(b) Let v be additive across the partition {N~}, and first let a be in the cartesian 

product of the component cores. Then for all i and S we have 

a ( N  i ~ S) > v (N  i ~ S) and a ( N  O = v(Ni) .  

Applying (8) we obtain a(S) > v(S) and a(N) = v(N), showing that a is in the core. 
Next let a be a payoff vector that is not in the cartesian product of the component 

cores. Then for some i, 

either a(S) < v(S) for some S c N i ,  or a(Nz) > v(Ni) .  

In the first case, a ~ C. In the second case, we have 

a(N) - a ( N  - Ni) = a(Ni) > v(Ni) = v(N)  - v ( N  - Ni ) ,  

using (9). Hence either a(N) > v(N) or a ( N  - Ni) < v (N  - Ni), so again a ~ C. 

Finally, to determine the dimension of C let {N1, ... ,Nv}  yield the finest de- 
composition. Then the components are all indecomposable and have full-dimen- 
sional cores, by part (a), so that their cartesian product has dimension 

p 
(n~ - I )  = n - p .  

1 

This completes the proof. 

4.2. The Value 

The value of a game v is the payoff vector q~ ~ E u defined by 

qo, = ~ (s - 1)!(n - s)! [v(S) - v(S - {i})], all i e N .  (19) 
scu n! 

We have ~o(N) = v(N)  and, for superadditive games, ~o i _-> v({i}) for all i t  N1). 
The quantity ~o i may be interpreted as the "equity value" associated with the 

position of the i-th player in the game. 

Theorem 7. 
The value of a convex game is an element of the core. 

Proof  
It is well known (see SHAPLEY [1953b]) t h a t  

1 
q~ = -~ .  ~,~aa , (20) 

where g2 is the set of all orderings of N. Hence, by Theorems 3 and 5, the value 
belongs to the core - indeed, it is in the relative interior since it is a center of 
gravity of the vertices. 

1) See SHAPLEY [1953b]. It is also shown in SHAPLEY [1953b] that the value of a decomposable 
game is the cartesian product of the values of its components. 
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For completeness, we sketch a proof of (20). Fix i. Given S ~ i, we ask: for how 
many orderings co do we have So~,,o~o = S? It is clearly both necessary and sufficient 
that co be such that co(j) < co(i) for all j  s S - {i} and co(]) > co(i) for allj  E N - S. 
Thus the number of orderings is (s - 1)!(n - s)!. The result now follows easily 
from (19) and (17). 

4.3. Stable Sets 

A payoff vector b is said to be dominated by a payoff vector a if there is a non- 
empty S s Y such that 

a(S)<_v(S), and a i > b l  all i t S .  (21) 

A set V of feasible 1) payoff vectors is said to be stable if every feasible 1) payoff 
vector is either a member of V or dominated by a member of V, but not both. 
A stable set may be interpreted as a "standard of behavior", i.e., a set of "con- 

ventional" outcomes which are always given a chance to dominate any proposal  
that might be put forward during pre-play negotiations. 

It is easily verified that every stable set contains the core. Since no stable set 
can properly include another, it follows that if the core is stable then it is the only 
stable set2). 

Theorem 8. 
The core of a convex game is stable (i.e., is the unique YON NEUMANN-MORGEN- 

STERN solution). 

Proof. 
Let {Cs} be regular, and take any feasible b not in C. We shall show that b is 

dominated by an element of C. Define 9(0) = 0 and 

9 ( S ) =  v ( S ) - b ( S )  all O C S c N  
s 

and let g attain its maximum, g*, at S = S*. Since b + C but is feasible we see that 

9* > 0 and hence S* + O. By completeness, Cs, ~- O. Let c ~ Cs,, and define 
a ~ E N by: 

~ b i + g* i s S* 
ai = ( c i ,  i s N - S * .  

1) The classical definition [,ION NEUMANN and MORGENSTERN] replaces "feasible" in these two 
places by "feasible and individually rational", where a e E s is individually rational if and only if 
a~ > v({i}), all i~ N. This distinction (discussed at length in SI-IAPLEY [1951] -- see also LUCE and 
RAIFFA [p. 215ff.]) is not important here, since it can be shown that the core is stable in the one sense 
if and only if it is stable in the other. (See e.g., Theorems 12 and 13 of GILLIES [1959].) 

2) The early conjectures [VON NEUMANN and MORGENSTERN; SHAPLEY, 1953] that stable sets exist 
for all superadditive games and that the core is the intersection of all stable sets have been disproved; 
see LUCAS [1967, 19681. 
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Since a(S*) = b(S*) + s ' g *  = v(S*), condi t ion (21) is satisfied, and we see that  

a dominates  b. Moreover ,  since a(N) = v(S*) + c ( N  - S*) = c(N)  = v(N), we 

see that  a is feasible. It  remains to show that  a satisfies the core inequalities (11). 

Let T _c N be arbitrary,  and break up T into Q = T ~ S* and R = T - S*. 

Then we have, in easy steps, 

a ( r )  = a(Q.) + a(R) 

= b(Q) + qg* + c(R) 

> b(Q) + qg(Q) + c ( r  • S*) - c(S*) 

>= v(9_) + v ( r  ~ S*) - v(s*) 
> v ( r ) .  

Hence a is in the core. 

4.4. Remarks 

1. An example of  a stable core that does not  come from a regular, or even 

complete,  configurat ion is shown in Fig. 3. The core is a perfect cube, with faces 

s v ( S )  

0 0 
7 0 
2 I 
3 ! 
4 3 234 

2 

Fig. 3 : Example  of a stable, nonregu la r  core 

{Cs s = 2} and vertices at (1,1, 1,0), ,1 1 J a, �9 t~,x,~,~-), etc. The sets Cs, s = 3, are empty. 
2. We have obtained a complete theory o f  core stability in symmetric games, 

i.e., games of  the form 

v(S) = f ( s ) ;  
this will be presented elsewhere. 



26 L.S. SHAPLEY 

3. T h e o r e m  8 impl i e s  tha t  a " p o s i t i v e  f r ac t ion"  of  all g a m e s  are  so lvab le  - m o r e  

precisely ,  t ha t  the  set of  so lvab le  games  on  Y inc ludes  a fu l l -d imens iona l  (i.e., 

(2" - 1 ) -d imens iona l )  c o n e  in E ~-I~ This  was first p o i n t e d  ou t  by  GILLn~SZ), 

us ing  the  c o n e  g e n e r a t e d  by  the  g a m e s  in 0 , 1 - n o r m a l i z a t i o n  tha t  satisfy v(S) < 1/n 
for 2 < s < n. Th i s  c o n e  inc ludes  s o m e  bu t  n o t  all c o n v e x  games ,  as wel l  as s o m e  

tha t  a re  n o t  convex .  
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