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A Unified Mechanism Design Framework for Networked Systems
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Abstract—Mechanisms such as auctions and pricing schemes Given the broad applicability of game theoretic frame-
are utilized to design strategic (noncooperative) games fanet-  works, it is not surprising to observe an increasing interes
worked systems. Although the participating players are séish, i, mechanism design which studies rules and structure of

these mechanisms ensure that the game outcome is optimal . - . -
with respect to a global criterion (e.g. maximizing a social 9&MeS such that their outcome achieve certain objectijes [7

welfare function), preference-compatible, and strategyproof, i.e.  [12]. This is especially relevant in development of disitéx
players have no reason to deceive the designer. The mechanis control schemes for networks where satisfying certain glob

designer achieves these objectives by introducing specifiales  properties such asfficiency are as important as the solution’s
and incentives to the players; in this case by adding resouec compatibility with user incentives

prices to their utilities. In auction-based mechanisms, te mech- A desi . | di ti .
anism designer explicitly allocates the resources based dids game designer can impose rules and Iincentives, e.g. In

of the participants in addition to setting prices. Alternatively, the form of prices, to players of such that the outcome of
pricing mechanisms enforce global objectives only by chaigg a strategic game, for example, the unique Nash equilibrium
the players for the resources they have utilized. In eitheratting, solution is preference-compatible and at the same time

the player preferences represented by utility functions M \ayimizes a certain global objective function such as the

be coupled or decoupled, i.e. they depend on other player's . . .
actions or only on player's own actions, respectively. The nified sum of player utilities or quality-of-service (QoS) corstts.

framework and its information structures are illustrated t hrough ~However, this interaction between the designer and players
multiple example resource allocation problems from wirelss and of the game may create now a separate incentive for the

wired networks. players to misrepresent their utilities to the designerhwit
Index Terms—Game theory, mechanism design, auctions, pric- the purpose of selfishly benefiting from it. Therefore, the
ing, interference coupling mechanism designer has a third objective calétchtegy-

proofness (or truth dominancg in addition to the goals of
efficiency and preference-compatibility.
This paper builds upon earlier work [13], [14], which has

Game theoryhas been enjoying widespread adoption by tHeresented a decision and control theoretic approach to game
engineering community as a distributed optimization ana-codesign taking into account only efficiency and preference-
trol framework for networked systems, partly for takingoint Compatibility objectives while assuming that players asaédst
account preferences of individual users, who share and coi@ward the game designer in terms of their preferences.,Here
pete for system resources. Resting upon a rich mathematiégl present an optimization framework for mechanism design
foundation, game theoretical approaches, especiallyegica that satisfies all three objectives, adding strategy-press to
(noncooperative) games, have been valuable for analysis &€ previous two.
design of various resource allocation protocols in wirelesd ~ The difficulty facing a mechanism designer trying to achieve
wired networks. Problems such as rate control, interfexeng!l three objectives can be best appreciated with a speaific e
management, and power control (e.g. in wireless and opti@nple. Consider maximization of the sum of player utilites
networks) have been investigated extensively by the rekeathe efficiency criterion of a specific problem. Assume that th
community using game theoretical methods [1]-[4]. designer can impose a pricing scheme on users for theimactio

Game theory models nodes of networked systems as in@&-an enforcement method. However, individual playertietsi
pendent and autonomous decision makers with limited glod€ not directly revealed to anyone. Assume in addition that
information, and studies incentives of individual playersd the underlying strategic game admits a unique NE solution.
effects of their preferences on the overall outcome. ThehNakhe task of the designer is then to find such a mechanism that
equilibrium (NE), where no player has an incentive to deviatt moves the NE of the game to a point, which maximizes
from the NE while others adopt it, is known to be usefdie sum of these unknown player utilities (Figlide 1), while
solution concept for such games. It is widely adopted fdhe players try to mislead the designer by misrepresenting
development of distributed and dynamic algorithms assgmitheir actual utility functions. In addition, the designerayn

some mild existence and uniqueness conditiohs [5], [6]. not observeplayers actions completely bringing additional
restrictions to the information flow within the system.
This work has been supported in part by Deutsche Telekom ratdries. Due to the difficulty of the above described task, there are
Tansu  Alpcan is  with ~ Technical ~University —of  Berlin, natyrally many impossibility results in the mechanism desi
Deutsche Telekom Laboratories, in Berlin, Germany,. - 1 .
al pcan@ec. t- | abs. tu-berl i n. de literature [15]-[18]. In contrast, this paper adopts a more
Holger Boche and Siddharth Naik are with Technicaconstructive engineering approach and focuses on schemes
University of ~Berlin, Heinrich Hertz Institute and Heinhic that achieve all three objectives, albeit in some cases only
Hertz Chair for Mobile Communication, respectively, in r . .
Germany. hol ger . boche@rk. t u- ber | i n. de and approximately. The algorithms presented and analyzeddrere

nai k@hi . f raunhof er. de examples of market clearance schemes, where all partisipan
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have an incentive to reveal their true preferences, andrigadcompact and convex decision space. The decision variables
to solutions satisfactory to both designer and players fromay represent, depending on the specific problem formulatio
global and local points of view, respectively. Most of thesplayer flow rate, power level, investment, or bidding in an
mechanisms can be intuitively explained by the old adagesafction. Due to the inherent coupling between the playbes, t
“actions speak louder than wordglesigner deducing players’ decisions of players directly affect each other’s perfarosa
true preferences by observing their actions) ayal‘get what as well as the aggregate allocation of limited resources.
you paid fot' (designer charging players for their actions). = The preferences of the players are captured by utility
However, we also note that the presented results are dbActions
tained only in very specific settings with various assumpaio Ui(z) : X - R, Vie A,
on player preferences (smooth and convex utility funclioois
the underlying game (existence and uniqueness of the NH),
on a certain degree of observability of player actions by t
designer. While these restrictions may decrease applitgabi
of the results to certain areas of economics, the presen . .
optimization framework is of value in engineering setting implify the analysis.

especially for the purpose of analyzing and developing dis-The detsljglgnberDthdewses _ame?himsm %l]\', Wh'cr can tbs
tributed optimization and control schemes for networks. represented by the mappiny/’ : N » Implemente

The main contributions of this paper include: by introducing incentives in the form ofiles and pricesto

Devel t of iy timization f K Iplayers. The latter can be formulated by adding it as a cost
+ Development of an unitying optimization framework 10hq .y g,y that the playérhas the cost function

mechanism design, which encompasses both auction-
based and pricing mechanisms. Ji(z) = ¢i(z) — Us(x). (1)
« Extension of earlier results on game design [13]] [14]
mechanism design by taking into account the strate
proofness criterion.
« Application of the mechanism design framework to re- min J;(z), (2)
source allocation problems in networks such as rate i
control and interference management (power control). under the given constraints of the strategic game, and rules
The rest of the paper is organized as follows. The ne&fd prices imposed by the designer. Specific properties and
section presents the underlying model and assumptionseof ¥&riants of these rules and prices will be discussed in the
unified framework developed. Section 11l studies auctiasdri SubSequent sections.
mechanisms. Subsequently, Sectfod IV investigates mricin TheNash equilibrium (NE) is a widely-accepted and useful
mechanisms. Sectioh]V provides an overview of relevap@lution concept in strategic games, where no player has an
literature on mechanism design. The paper concludes wili¢entive to deviate from it while others play according to

émhich are chosen to be continuous and differentiable for
alytical tractability. In many cases, the utility furtets have

special properties such as concavity or monotonicity dubkdo

H%jerlying problem formulation, or these can be assumed to

gt?hus, theplayer objectiveis to solve the following individual
Xptimization problem in the strategic game

remarks of Sectiof VI. their NE strategies. It plays an important role here since if
it is unique, then the NE outcome automatically satisfies the
I1. UNIEIED FRAMEWORK preference-compatibility criterion, which basically states that

This section discusses the underlying model and assurrtili;)@ mechanism outcome must coincide with the solution of the

: . : : players’ individual optimization problemE](2).
tions of the unified framework for mechanism design. The NEz* of the gameg is formally defined as

A. Model x} = argmin J;(z;,2%,), Vi€ A,
At the center of the game and mechanism design mod '

I * * * * * 1
is the designerD who influencesN players denoted by wherea®, = [z, .. » %1, %741, - - Tx]- The NE is at the

the setA, and participating in atrategic (noncooperative) same time the i_ntersec_:tion_point of players’ b?St responses
game These players are autonomous and independent decis%) gined by folvmg[]2)d|_rt1_d|wdually. I somdetsptimal Cﬁnﬁ?
makers, who share and compete for limited resources un compaciness conditions are Imposed to the g3 n

t admits a uniqgue NE solution, which simplifies mechanism

the given constraints of the environment. Concurrentlg th d alaorithm desi ianificantly. F detailed di .
designer tries to ensure that the outcome of the game satisflg? a1gorithm design significantly. For a detalled disass!

the desirable properties of efficiency, preference-coibiiay, on t_he_se conditions and properties of .NE' we r_efe|_' to [3], [6]
and strategy-proofness. This setup is applicable to atyarie Sl_rm!ar FO player preferences, th#a_agner ob_ject|ve €.g.

of problems in networking (wireless spectrum and bandwid aximization of aggregate user ut|I_|t|e§ or SOC"’?‘I welfaran
management) and economics (auctions). e formtflated using a smooth objective functitnfor the

Let us define anV-player strategic gamej, where each designer.

playeri € A has a respectivdecision variable z; such that V(z,Ui(z),¢i()) : ¥ 2 R,
where ¢;(z) and U;(z), ¢ = 1,...,N are user-specific
pricing terms and player utilities, respectively. Hencke t
where X is the decision space of all players. As a startinglobal optimization problem of the designer is simply
point, this paper assumes scalar decision variables andnax, V(z,U;(x), ¢;(z)), which it solvesindirectly by setting

z=[ry,...,zx] € X CRY,



rules and prices. In some cases, the objective fundtiahar-
acterizes the desirability of an outcomerom the designers
perspective. In other cases when the designer objective is t
satisfy certain minimum performance constraints such ag-pl

ers achieving certain quality-of-service levels, the otie

can be characterized by a region (a subset of the game domain
X). Thus, the designer objective represents and corresponds
to the efficiency criterion of the mechanism.

It is important to note that the designer can only influence
the outcome of the game indirectly and cannot dictate astion
of playe_rs_ .(WhiCh would have imm.ediately negated p.refe?enCFig 2. The interaction between the players of the undeglatrategic game
compatibility). It has been shown in [14] that a functiorelar and the mechanism designer, who observes players actiang! utilitiesU,
in x;, such asc;(z) = a;z;, is sufficient for the designer to while imposing pricesP and in auctions an allocation rufg.

(indirectly) manipulate the unique NE outcome in the ideal
full information case where the players are honest and open
about their preferences. Figure 1 visualizes this process.

Mechanism
Designer

Strategic Game

distributed mechanisms and sometimes makes it difficult
to deploy centralized ones.

/ \ « The designer may not fully observe the player actions and

has often limited information about their preferences.

The players share and compete for limited resources in the
given environment under its information and communication
" constraints. Three basic types of resource sharing andingup

O are often encountered in a variety of problems in networking
1) Additive resource sharingthe players share a finite

\ / resourceC' such that
N
X Z T; = C.
=1

Fig. 1. The manipulation of the unique Nash equilibriuat, of the game by
the mechanism design&? to a desirable region or poin; = arg max V.

This type of coupling is encountered in bandwidth
sharing and rate control in networks.

The third and an important criterion of mechanism design 2) Interference couplinglinear interference): the resource
is strategy-proofness which is also referred to ascentive- allocated to playeri, ~;, is inversely proportional to
compatibility or truth dominance If a mechanism does not interference generated others such that
possess this property, then the players have an incentive to
misrepresent their utilities to the designer actéat in order
to possibly obtain a larger share of the resources. Withén th
context of the presented model, this criterion can be fdgmal
expressed as:

( ) hiz;

Yilr) = ==

’ Zj;éi hjzj +o

where h; Vi and o denote some system parameters.

Interference coupling occurs in wireless networks where
ok - . ok - S ~ represents signal-to-interference ratio.

Ji(2") < Ji@) & ca”) — Us(a") < () - Ui(@) Vi€ A, 3) Multiplicative coupling:the resourcey; of playeri is

whereU; is the misrepresented utility;* is the original NE
solution, andz is the distorted NE unddy;. The interaction
between the players of the underlying strategic garheand

affected multiplicatively by the decisions of others such

that
Yi = X4 H(l — :vj).

the mechanism designeb, is depicted in Figurgl2. J#i

This type of coupling is seen in random multiple access
B. Assumptions schemes, e.g. slotted Aloha scheme in wireless networks

Taking into account the breadth of the field mechanism [19]'. o
design, it is useful to clarify the underlying assumptioris dt iS possible to extend these definitions, for example, by
the model studied in this paper. Tleavironment where the Making the finite resource’ time varying or changing the

p|ayers and designer interact is characterized by thewm@ interference function. COUple of axiomatic frameworks tfoe
properties: second case exist in the literature[20],/[21]. The examiples

o The available resources, which the players share amJjS paper arg of types 1.and 2. )
compete for, are limited. The following assumptions are made on the designer and
« The environment imposes restrictions on available if/ayers:
formation to players and communication between them.. The designer is honest, i.e. does not try to deceive the
Hence, it imposes a certain information structure to players.



« Each player acts independently and rationally accordidg Auctions for Separable Utilities

to its own self interests.

« The players may try to deceive the designer by hiding or Consider, as a starting point, an additive resource sharing
misrepresenting their individual preferences. scenario where the players bid for a fixed divisible resource

« Both players and designer follow the rules of the meck< @nd are allocated their share captured by the veQter
anism. [Q1,...,Qn] such that at full utilizatior)_, Q; = C.

-th gt . . ) .
Within the scope of the model discussed in the previou?TheZb_dplaye:jsf'_nd'(\j”dual cost functiow;(z) in terms of
subsection, specific formulations of the three criteria et player bidsz 1S defined as

anism design are summarized as: Ji(z) = ci(x) — Us(Qq(x)).
TABLE | The pricing term has the general form of
THREECRITERIA OF MECHANISM DESIGN Q?(:E)
ala) = [ P ©)
| Criterion | Formulation in the Model | 0
Efficiency Designer objective where P; denotes the unit price. In accordance with the

earlier results[[13],[[14] and due to the nature of the ametio
based mechanism, it is sufficient for the purposes of the
designer to choose a pricing function linea@y, i.e. ¢;(z) =

Preference Compatibility Player minimizing own cost
or existence of a unique NE

Strategy-Proofness No player gains from cheating . ; - )~
Pi(2)Q;(x). The player utility functionlJ; is separable, i.e. it
depends only on the individual allocation of the player.slt i
also assumed to be continuous, strictly concave, and twice
differentiable in terms of its argumen®;. Thus, the cost
[1l. AUCTION-BASED MECHANISMS function of player; can be written as
In auction-based mechanisms, the designer uses an alloca- Ji(z) = Py(z) Qi(x) — Ui (Qi(x)), (4)

tion rule in addition to pricing. Hence, the desigreplicitly

allocatesthe players their share of resources based on th\{el\?r';hngzg'(:tly convex with respect iQ; under the assump-

bids. The players decide on their bids or actions by miningzi , . . L
their cost which is a combination of their own utilities and F"0M & player's perspective, who tries to minimize its cost
prices imposed by the designer. Specifically, the desigher'n terms of the actual resources obtained, the condition

imposes on a playere A a user-specific 0J; dc;  0U; , ,
A =0 a0, — ¢~ Ui
« resource allocation rule;(z), 0Q; 0Q; 0Q;
« resource pricingp;(z), is necessary and sufficient for optimality. Thus suppregsin

where 2 denotes the vector of player actions or bids. TH&€ dependence of user cost on bidsin order for the
specific properties of these functions will be discussedrla2Uction-based mechanism to preference-compatible it has
as part of individual mechanisms. to satisfy ) ,

As presented in SectiGn 1A, each playetims to minimize F(Q) = Ui(@i) Vie A ®)
its own costJ;(Qi(x), Pi(x)), as in [1), while the designer pyrthermore, if additional assumptions are madeJg@), it
tries to achieve the objectives summarized in Table I. In&soraan be shown that the game admits a unique §E (or z*)
cases, the designer may only observe the bids imperfectly[gﬁ
a function of the actual bidsy = f(xz). However, in this  pigerent from players, the design@ has two objectives:

paper, we assume that all bids are perfectly observable 3qdyimizing the sum of utilities of players and allocating al
y = x for simplicity. Figure[B visually depicts the auction-y¢ i existing resourc€, i.e. its full utilization. Hence, the

based mechanisms described. designerD solves the constrained optimization problem

max V(Q) e mgxzi: U:(Q;) such thatzi: Q;=C, (6)

Objective, V' ; Allocation (Q
I Designer — | Game Players
(Controller)

D |Preng P|A={a,.ox)

M

in order to find a globally optimal allocatio that satisfies
this efficiency criterion. The associated Lagrangian function
is then

Observation |« L(Q) = Z U (Qi) + A (C’ — Z Qi) )

Fig. 3. An auction-based mechanism, where the desifjnierposes a resource \yhare )\ > 0 is a scalar Lagrange multiplier. Under the
allocation rule as well as pricing on playes of the underlying strategic '

game, whose bids may be observed imperfectly as with the purpose of CONVEXity assumptions made, this leads to
satisfying a global objectivé’. oL
1




and the efficiency constraint « ho player has an incentive to deviate from its truthful bid,
T ZQi =C. (8) « Q* solves the constrained optimization problem [ (6)
i asymptotically, i.e. adim N — oo.

Remark ll.1. It is important to note that sum of utility

maximization as designer objective, i.= > U; is only

one possible global objective among many others such as

ensuring a certain QoS to players (seel [13]. [14] for a moreThe mechanisri\1® is defined by the bidding process (9),

detailed discussion). unit prices[(ID), and allocation rule_{11) for each player A.
The interaction between the designer and players (see FRybstituting these into the player cost functibh (4) resint

ure[2) is through &idding/allocation procesi auction-based

mechanisms. Since the players cannot obtain the resd@urce Ji(x) =z — U; <% C) .

Proof:

directly, they make a bid for their own total cost, which is j#i Tt w
denotedl by tpthECtOE-_ Thbe pr:;:mg Prgx) ‘and ";‘]”0?3“0”_ Egje to the convexity ofJ; in z;, the first order necessary
Q(x) rules of the auction-based mechanism should satisty gition for optimality is also sufficient:

the efficiency and preference-compatibility criteria dissed

above. dJi(x) oUi(Qi) c
A player’s bid (or action)y;, is an indicator of the player's dr; 1- 9Q; (Z- o+ w) =0.
willingness to pay and plays a crucial role in devising a i
mechanism that istrategy-proof. Formally, a mechanism is From definition ofP; in (10) follows P;(Q) = U;(Q;) for each
strategy-proof, if no player has an incentive to deviaterfroplayeri. Hence, the mechanisi is preference-compatible
its truthful bid Furthermore, it is straightforward to show that this game
admits a unique NEz* [6].

Ji(xf +6) > Ji(x}) Vi€ A, S,
Assume a playef deviates from its truthful bids; by an

amountd € R such thatz; = x; + 6. Then, the player cost
under M becomes

whered € R is a scalar and:* is the outcome (NE) of the
underlying strategic game.

Example 1: _ P
In the specific resource sharing setting defined, an auction- Ji=2; = Ui S Titw ¢l
. . . VEad]
based mechanism\1*, can be defined based on the bid of
playeri, In order M® to be strategy-proof
z; = Pi(2)Qi(x), ©) Ji = Ji = 6 = (Ui(Qi(w; + ) = Ui(Qi(w:))) > 0,

the pricing function which immediately holds under the assumption in the theorem

2 g%t w . .

- o (10) Although it is preference-compatible and strategy-pra,
mechanismM® is not fully efficient as it does not exactly
solve the designer optimization problefi (6). To see this, le
us solve [[¥) and(8) using; = P;Q; to obtain

Pi =

for a scalarw > 0 sufficiently large such tha}", Q; < C,
and the resource allocation rule
L
Qi==—"—0C. (11) o ,
' Dzt w P = Zéxz andQ; = sz C.
o
It is also possible to interpret the scaler as areserve o

bid [22]. The next theorem establishes that this mechanisti€Se optimal solutions (with respect to designer objegtiv
is preference-compatible, strategy-proof, and asyngatyi are only approximated by the pricing {10) and allocatior) (11

efficient. rules. Hence,
Theorem Ill.2. The auction-based mechanist® defined by jo Z#i o +w 4 2 Qi
@), (10), and[(1lL) allocates the fixed divisible resouftéo a C C
set of selfish rational playerd with respective cost functionsand o
(@) in such a way that the mechanism is preference-comgatibl Z Qi = Z —_—(C=C
strategy-proof, and asymptotically efficient, if ; T i te
Ui(a? +6) — Ui(a?) <6, Vi, V5 €R, The choice of suboptimal (in the sense of efficiency) rules

is due to the fact that\1® has to achieve strategy-proofness

where z* denotes the truthful bid of playei at the NE at the same time as efficiency and preference-compatibility
outcome. In other words, the outcome of the mechanis#owever, as the number of players increas¥s,—+ oo, and

ensures that by choosingw accordingly small, the approximation becomes
« optimal allocation obtained@*, satisfies more precise. Thus, the mechanist® is asymptotically
QF = argming, J;(Q) = Pi(Q*) = U/(QF) Vi, efficient [ |



Example 2: Example 3

As a special case of the auction-based mechaistncon-  consider an auction-based mechanism for an interference-

sider asetup Whel’e, the player ut|||ty fl.!nctions are |CIQHI‘IIC Coup|ed System where players have non_separab'e and |Og_
and respectively weighted by a positive scalar parameteryrithmic utilities and a linear pricing scheme, which make

such that _ the problem more tractable. Then, each playeninimizes
Ui = a;logQ; Vi € A its respective cost

Then, the following result holds as a special case of Theo- Ji(z) = Pi(z)qi(x) — a; log(i(q(x))), (13)

rem[IIL.2.

) o _ which is strictly convex in player power levg]. Consequently,
Corollary 111.3. The auction-based m_echanl_sm_ defined ne general condition for player preference-compatipili
by (@), [10), and[(T1) allocates the fixed divisible reSOUrCR, — v, /q:, Vi € A, as in Examples 1 and 2.

C to a set of selfish rational playerd with respective cost The global objective of the designer is to maximize sum of

functions [(#) and utilities); = a;log Qi Vi € A in SUCh  ijiies™of players while trying to limit the total interfence
a way that the mechanism is preference-compatible, syate@tact to an upper-bound’. This approximate formulation

proof, and asymptotically efficient. is motivated by, for example, limiting the aggregate inter-

Proof: The proofs of preference-compa’[ibi”ty and asymmeu interference created by the mobile devices in a wigles
totic efficiency follow directly from the ones of Theor¢gm.#I network, where base stations have no means of communi-
Furthermore, the mechanism is strategy-proof under ldgarication among themselves. Hence, the desighesolves the
mic player utilities since they satisfy the sufficient cdimhi  constrained convex optimization problem

in Theoren{II[.2. The condition in this case is max V(g) < maxZai log(~i(g)) such thathi <c
q q X )

; log(Qi(z; 4 0)) — a; log(Qi(zi)) < 6,
The resulting necessary and sufficient conditions for opti-

leading to .
5 5 mality are
1og<1+—> < —. o s
Ti) — - 03 =Xxand» ¢ =C,
The player’s truthful bid isc; = a; from its cost function[{}4). G GEY TG i
Thus, we obtain whereC = C + o.
exp 0 - 14 o In the specific resource sharing setting defined, an auction-
«; a;’ based mechanism\1?, is defined based on the bid of player
which holds by definition, and completes the proof. = 2
z; = Pi(z)Qi(). (14)
B. Auctions for Non-separable Utilities and the allocation rule
In many problem formulations, the player utilities are non- Q; = Px(i ] = ¢;(z), (15)
i\L

separable, i.e. they depend also on other player’s acfidis.
is the case, for example, in interference coupled systemts swhich assigns users power levels based on their bids and
as a cellular wireless system with a base station (actinpexs ¢omputed prices.

designer) and mobile devices or users as players who bid tdJnder the preference-compatibility condition, the bidseha
achieve a certain QoS level. Let denote the bid of a mobile to match the utility parameter; = «;. Then, the optimality
device and the;(x) the transmission power assigned to it byonditions for the global problem become

the base station. Then, the signal-to-interference r&iR) of

€T; X,
the received signal by the mobile is 4 g c _qu =\ and ZQi =C. (16)
JF1 - K3
Vi = L@, (12) which are solved to obtaify*, \*). Accordingly, the pricing
251 G(@) + 0 function is _
where ¢ > 0 is an independent noise term. Notice that Pi(z) = X" +Z 5 - (17)
this is essentially a centralized scheme similar to the ones j#i C—q
currently deployed. A decentralized version will be disad

. . As a result of this design, the auction-based mechanigm
in Section1V. ; - .
T is clearly efficient and preference-compatible.
This interference management and power control formula- . b .
We next show that mechanismM® is asymptotically

tion has been discussed extensively in the literature [20, ) . .
[21], [23]. However, such mechanisms do not necessarilg ne%trategy-proof. Assume that a playeteviates from its truthful
' ! M'd x; by an amoun® <€ R such thati; = x;+6. The strategy-

to be limited to wireless networks and apply to any syste . .

with linear interference coupling [24] under the assurrrptioorOOfness is then equivalent to

that the player utilities ar&;(v;) continuous, strictly concave, T 5 —anlos [ (s +9) 50
and twice differentiable in their argumenys (12). - 108 vi(2i) ‘



As in the previous example, this leads to ObjeCtive'V, Designer
(Controller)
(2 +6 ) Yy
nilai +9) < exp(—), — >
i(@i) o
o i 0 — i ) 5
L —q
i Z - | | Hh
¢ C—q \ < exp(ai ) Y Observation |«
where X is the solution of [I6) undef;. Note that, as the
number of players goes to infin[ﬂywe have Fig. 4._ The block d‘iagram ofa gengric‘ pricing mechanism. d‘demigr_]er sets
the pricesP to achieve a global objective” based on the observationsof
. C — qi A player actionse. The players choose their actiomsndependently according
lim — — = =1. to their utilities U (preferences) and priceB. The overall mechanism aims
N—oo C'—q; \ to ensure efficiency, preference-compatibility, and sggtproofness.
Thus, it asymptotically holds that
1) 1) : - .
1+ — <exp(—), for the purposes of the designer to choose a pricing function
_ _ i Qi _ _ _linear in ;. A more general form of pricing is provided in
which establishes the result summarized in the followingg). The player utility functior; is assumed to be continuous,
theorem. strictly concave, and twice differentiable. At the sameetiin

Theorem 1Il.4. Consider a set selfish rational playetd ONlY takes the players own action as its argument, i.e. the

with respective cost functions (13) and non-separabléiesl player utilities are sep.afablm this formulatlon.

U = a;log((q(x))) Vi € A in an interference-coupled In or.der. for a pricing mechanism to bereference-

system [[12). The auction-based mechanisth defined by compatible it has to satisfy

(@4), (I%), and[(1l7) maximizes the sum of utilities of player Pi(x*) = Ul(z}), Vi€ A,

while limiting the total interference effect to an uppeninad

C in such a way that the mechanism is preference-compatipfélich directly follows from [I8). The point* is, by defini-

efficient, and asymptotically strategy-proof. tion, the Nash equilibrium solution of of the strategic game

where no player has an incentive to deviate from it. Under

the assumptions made for player utilities, the game admits a

unique Nash equilibrium solution|[6]. It is important to eot
Pricing mechanisms differ from auction-based ones by thigat, if there was no pricing term ifi (118), each player would

property that the designer does not allocate the resouregsto get a large proportion of the resource resulting in a

explicitly, i.e. there is no allocation rulg. The players obtain suboptimal result for everyone; a situation sometime terme

resources directly as a result of their actiobat are charged as tragedy of commonsThe designer can prevent this by a

for them by the designer observing these actions (Figlire #arefully selected pricing schenie [13], [14].

Hence, the designer has relatively less leverage in this casThe global objective of the designer can be maximization of

compared to auctions. the sum of player utilities while ensuring full resource gesa
Pricing mechanisms are applicable to many networke@. S~ :; = C. Hence, the designéP solves the counterpart

systems where an explicit allocation of resources bringsofithe constrained optimization problem [d (6) along wih (7

prohibitively expensive overhead or simply not feasiblg. e and [8).

due to participating players being selfish or located in ahen the two criteria of preference-compatibility and effi-

distributed manner. Example problems include rate contrgkncy (designer objectives) are combined, the pricingtion
in wired networks, interference management in wireless ngt, of a playeri has to satisfy

works, and power control in optical networks [1}-[4].

IV. PRICING MECHANISMS

Pi(z*) = Ul(al) = A, Vi € A,

K2

A. Pricing Mechanisms for Separable Utilities where A > 0 is the unique Lagrange multiplier. From the

. . . criterion of full resource usage, it follows that
We study an additive resource sharing scenario, whefe

the players compete for a fixed divisible resourceas in ij = Z (Ul.’)*1 (\) =C. (19)
SectiorIll. The players’ individual cost functions, whittiey P
minimize, have the general form

A
Define \* as the optimal solution t¢_(19) given player utilities
Ji(x) = Py(x)z; — Ui(z;). (18) Ui and capacityC. Then, the optimal pricing function ig2; =
A* Vi,

Here,z; denotes the pIaye_r's actu_)n of obtaining t.haF specm_c If the designer wants to compute the unit prideslirectly
amount of the resource directly, in contrast to bidding for |,y solving [19), it needs to ask the individual players fagith
and receiving an allocation from the designer. It is suffitie jjities. However, the players have an incentive to miggep

1 _ _ _ o sent their utilities to gain a larger share of resourceshéfyt

We remind here the underlying assumption that each playsrirdividu- . . . .
ally and there is no coordination among players. This astomjs applicable are aSked. d"'_e.Ctly by_ the deS|gner. S_UCh a d|reCt. mechanism
to many networked systems with information flow constraints has two significant disadvantages. First, the designer dvas t



have additional schemes in place to detect potential play@ubstitutingP and computingz; yields

misbehavior (for which players have an incentive). Second, ~ .

it brings another layer of communication overhead to the Ji(Zi,x—;) = a; — o log <7ZC),

system. The disadvantages of such direct mechanism will be 2o td

illustrated more concretely in the scope of an example in tia@d similarly we have

next subsection. a
Alternatively, one can design dterative pricing mecha- Ji(z) = a; — ajlog (Z C’> .

nism that is based on observation of player actisnsstead of g

asking for their word (utilities). Then, the designer degithis Clearly, the playeri can decrease its cost/;( < J;) by

iterative mechanism to compute the optimal pridgs= A\* choosing & < 0 despite being charged the same total price.

i
Qg

as a solution to[{19). Thus, the mechanism is not strategy-proof.
For example, consider the following iterative pricing mech This issue is remedied by adopting the proposed iterative
anism pricing mechanism:

(n+1)=An) +r (Zx ) (20) An+1) = An) + & (Z zi — c) , (23)
wherex > 0 is a small step size) > 0, and ‘

ou ziln+1) = ¢zi(n) + (1 — ¢>)% Vie A (24)

i(n+1) =oxi(n)+(1— — . _ . L .
ziln+1) = gzi(n) +(1-9) <8$i The unique (Nash) equilibrium solution of this iterativega
where0 < ¢ < 1. Here,n > 1 denotes the time (update)”_thmv (z*, \*) solves the designer problefd (_6). Furthermore,
step. Note that, the players adopt a relaxed or gradienttepd@ince the players adopt here a relaxed (gradient) bestmespo

scheme instead of best response taking into account vla'a:;iabiat each step and there is no explicit communication between

of the system. The gradient update also helps with conv&i€ players and the designer, the scheme is strategy-proof.
gence. see this, assume otherwise and let play&mnisrepresent” its

actions#; = x; + ¢ for somed € R. Then, the player’s
instantaneous cost ig; > J; at each step of the iteration.

-1
> (\), Vie A, (21)

Example 4: Hence, the players have no incentive to “cheat”.
As a special case, let the utility function of players be The communication requirements of the algorithm (23}-(24)
logarithmic and weighted by parametersuch that are minimal and suitable for a distributed implementatio®@ i

networking environment. The designer only needs to observe
the total amouny = ). z; and communicate the common
for player i. Such utility functions have been utilized inprice P back to the players (see Figurk 4 for a visualization).
the literature, for example, to model user demand in rateNow, a basic stability analysis is provided for the follogin
or congestion control on networks. The solution aligning thecontinuous-time approximation of the iterative pricingahe

Ul(SCZ) = Oy log xX;

player and designer objectives, in other words the efficieAism
Nash equilibrium, has the following properties: N = % — <Z 2 — C’) ’
Pi*:%:/\; zi= 2 e A ’
Ty A i.‘__aJl_K;‘(%_A)
:inz—Ziai = C; )\:—Ziai. Oz Ti
, A C ; _ ; o ;
i wheret denotes time and; > 0 is a user-specific step size. As
Hence, the resulting optimal pricing mechanism for all pimy in the discrete-time version, the players adopt here a gnadi
is best response algorithm. Define the Lyapunov function
>0 2
pP==— (22) 1 1 _ 2
o G . g (Seee) w32 (5 )
Although this solution is preference-compatible from the 2\45 2 4=\

players’ perspective and solves the global optimizaticwbpr _ ., . . e N .
lem of the designer, it is not strategy proof if the designé’\rlhICh s nonnegative and satisfiés, (z*, ") = 0. It is

o L Straightforward to show through algebraic manipulatidmest t
explicitly asks the players for their utility parameter To see V(2 \) < 0forall (z, \) # (2, \*). Hence, the continuous-
this, assume that playeérhas a true utility parameter; but .=\ ’ o '

: ) i - time algorithm is globally asymptotically stable [25]. hi
misrepresents it to the designer@s= «;+¢ for somes € R. . e e
Then, the new price i — (3. a, +)/C and player real result is a strong indicator of convergenicel[26] of the ditesr

cost becomes time iterative pricing mechanisri_(23)-(24).

Ji(@i, x—i) = P — o log(%;) B. Pricing Mechanisms for Non-separable Utilities

instead of In some problem formulations, such as interference coupled
Ji(z) = Px; — a; log(z;). systems consisting of a base station (acting as the de¥igner



and mobile devices as players, the players’ actions arerfieyand

the control of the base station. Let, specifically, = h;p;

denote the received power level as a product of uplink trangti (n +1) = i(n) — Kim— e

mission powerp; and channel los8 < h; < 1 of playeri. If

0J;

= U](vi(n)) — Pi(n) Vi€ A,

(30)

linear interference is assumed, then the signal-to-ieterfce where the players adopt a gradient best response for conver-

ratio (SIR) of the received signal is
Zq

- (25)
Zj;éi Tj+o

Vi =

as in [12).

gence purposes. Here,p and x; denote the step sizes of
the designer and playeér respectively. Based on the analysis
above, the mechanism is preference-compatible and efficien
Since the players have no incentive to deviate from their
(gradient) best responses, it is also inherently strapggpf

In pricing mechanism, similar to the auction in Secag giscussed in Example 4. This result is summarized in the

tion [I=B] each playeri minimizes its respective cost

Ji(z) = Pi(z)z; — a;log(vi(w)), (26)

which is strictly convex inz;. Consequently, the general con-

dition for player preference-compatibility & = «; /x;, Vi €
A.

following theorem.

Theorem IV.1. The unique equilibrium outcome of the pricing
mechanism\1? defined by[(28)E(30) is preference-compatible,
strategy-proof, and efficient.

The implementation of mechanis? requires minimum

The global objective of the designer aims to maximize sufAformation overhead. The designer only needs to obserse th
of utilities of players while trying to limit the total intéerence aggregate received power leve], z; and the individual SIRs,
effect toC', motivated by e.g. limiting the aggregate interfer-, of players both of which are already available. The player
ence created by the mobile devices in a wireless netwofk.return only needs to know the current prieeand SIRy; to

Hence, the designeP solves

max V(z) & maXZai log(vy:(x)) such thatz xz; < C.

This problem differs from the one in Sectibn ll-B as it is Ron

be able to compute the (gradient) best response (see [Figure 4
for visualization). Finally, the computation of actual ini
power levelsp can be computed from using the measured
channel gains.

convex. However, it can be convexified using the nonlinear

transformz; = e%, and then admits a unique solutian [20].

Example 5:

The resulting necessary and sufficient conditions for opti- The iterative pricing mechanism? is illustrated with a

mality are

Q; «

- - J_)\andZ:cZ_ ;
i s

wherel; := Z#i x; +o is the interference affecting player
Hence, aligning the player and designer optimization protsl

leads to
P= A+ Z 2,
J#i
Using the definition ofy, this can be rewritten as

R':/\Jrzpﬂj

J#i
or in matrix form
A-P=1),
where
L = —IN
-1 —IN
A= . . , (27)
-y —y2 - 1

and1 = [1,...,1]T. Note that the matrixA is clearly full
rank, and hence invertible.

As in Example 4, we define now an iterative pricing

mechanismMP such that
A(n+1) = A(n) —|—/~@D(in -0),

(;1)_11 An),

(28)

Pin+1)= (29)

numerical examplel0 players with the utility parameters
a =1{0.231.330.730.281.131.65 1.352.00 1.920.12],

update their power levels according fo](30) at each time step
n > 1 with a stepsize ofk; = 0.05 Vi. The designer, on the
other hand, updates the Lagrangian multipleand pricesP
based on[(28), wher€ = 5 andxp = 0.01. The background
noise parameter ir_(25) is = 0.5. The convergence of the
mechanismM? summarized in Algorithni]1l is depicted in
Figuredb andl6.

Player Received Power Levels, x(n)

150

100
Time Step, n

200

Fig. 5. The evolution of user power levels, which are updated by players
(30) under mechanismP.
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Lagrange Multiplier in Designer Optimization, A(n)

captures different types of global objectives, e.g. qualit
service regions, information limitations, and system dyits.
The fact that an iterative pricing scheme similar to the one
o4l | in [29] is required to satisfy all three criteria in Tabile | is
an interesting result. This can be attributed to the designe
having less leverage (no explicit resource allocation)rigipg
03k | mechanisms compared to auction-based ones.

There are many impossibility results in the mechanism
design literature[[15]+[18]. The framework presented iis th

0.5

0.45F

0.35r

0.25F

02t | paper does not actually contradict these results for in many
cases analyzed one of the criteria in Tdble | is achieved only
0 50 100 150 200 approximately. Similar approximations are quite common in
Time Step, n game theory literature, e.g-NE. Hence, such relaxations are

Fig. 6. The evolution of Lagrange multiplep, used in computing player part of the constructive approach adopted here, and show its
prices in [28). value.

We present next a brief survey of the literature on auctions,
pricing, and mechanism design in general.

Algorithm 1: lIterative Pricing Mechanisn?
Input: Designer (base station)nterference targef’ and

objective", U; Literature Review

Input: Players (users)Utilities U; = «; log(v;()), Vi Auctions and Pricing in GamesThe book [30] provides a

Result Power levelsz and SIRsy(z) good overview of a variety of topics ranging from mechanism
1 Initial power levelsz(0) and pricesP;(0) ; design, inefficiency of the equilibria, preference-conitytity
2 repeat _ issues and certain types of auctions. Lazar and Semrety@] ha
3 begin Designer: shown that a certain form of the Nash equilibrium holds when
4 Observe player power levels; the progressive second price auction is applied by indegrend
5 Compute the matrix matrixi in (27) ; sellers on each link of a network with arbitrary topology.
6 UpdateA and pricesP according to[(30) ; Wu et al. [28] have proposed a repeated spectrum sharing
7 end_ game with cheat-proof strategies. By using the punishment-
8 | beginPlayers: based repeated game, users get the incentive to share the
o foreach player: do . spectrum in a cooperative way; and through mechanism-
10 Estimate marginal utiliyoU;(z)/0x; ; design-based and statistics-based approaches, usemhianes
1 Compute power levet; from (28) ; further enforced. Sengupta and Chaterjee [31] have present
12 end an economic framework that can be used to guide the dynamic
13 end spectrum allocation process and the service pricing mecha-

14 until end of iteration nisms that the providers can use. They have demonstrated

how pricing can be used as an effective tool for providing
incentives to the providers to upgrade their network resesir
and offer better services. Keon and Anandalingam [32] have
formulated the optimal pricing problem as a nonlinear ieteg

There is a rich literature on Mechanism design both iexpected revenue optimization problem. They simultangous
the field of economics [7] and recently in engineering [8kolve for prices and the resource allocations necessary to
[Q], 2], [22], [27], [28]. The auction-based mechanisnprovide connections with guaranteed QoS. Maille and Tuffin
framework presented in Sectignllll is based in principle of83] have analyzed a multi-bid auction scheme where users
progressive second price (PSP) auctians [8]] [10]] [22]e Tlrompete for bandwidth at a link by submitting e.g. amount
framework, one the one hand, simplifies PSP auctions by bandwidth asked, associated unit price so that the link
considering the users demanding as much of the resourcegléscates the bandwidth and computes the charge according
possible, which is a reasonable assumption in many cases siio the second price principle. In this case, the backbone
players often cannot estimate their demand accurately. @stwork is overprovisioned and the access networks hawa tr
the other hand, it presents a unifying optimization framewo structure. The works [34]=[36] have discussed other isterg
which also allows analysis and design of games with noapproaches in relation to auctions and bidding algorithms.
separable player utilities. Strategy Proofness and Efficienclhe property oktrategy-

The literature on pricing schemes is even richer than mechmeofnesss a fairly restrictive property. When it is combined
nism design one, especially in the networking communite (s&vith the property ofefficiency this often leads to special
e.g. [4], [5] and references therein). The pricing mechanissolutions. Hurwicz[[16] has shown that there is stoategy-
framework in Sectiori IV extends those results by buildingroof, efficientandindividually rational mechanism ir2 user
on [13], [14], and taking into account all of the criterig2 resource pure exchange economy. Dasgupta €t al. [17] have
in Tabled. Among other things, the presented frameworkitempted to replacedividual rationalityin Hurwicz'’s result

V. DISCUSSION ANDLITERATURE REVIEW
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with a weaker axiom ohon-dictatorship Ameliorating upon of algorithms. Certain examples include: beamforming [50]
both results, Zhou_[18] has established an impossibilisuite CDMA [51], base station assignment, robust design and net-
that there is nostrategy-proof efficient and non—dictatorial working [20]. The framework can be used to combine power
mechanism in2 user m resource {n > 2) pure exchange control and adaptive receiver strategies. Certain exanple
economies. He conjectures that there arestrategy-proof where this has been successfully achieved are as follows. In
efficientandnon—inversely dictatorianechanisms in the case[52] it has been proposed to incorporate admission control
of 3 or more users. In[[37], Zhou’s conjecture has bedn avoid unfavorable interference scenarios.[In [53] the&sQo
examined and a new class etrategy-proof and efficient requirements have been adapted to certain network conslitio
mechanisms in the case of four or more users (operators) brdgs4] a power control algorithm using fixed-point iterat®
discovered. has been proposed for a modified cost function, which permits

Mechanism Design in Wireless Networksiuiping and control of convergence behavior by adjusting fixed weigitin
Junde [[38] have proposedstrategy-prooftrust management parameters.
system in the context of wireless ad-hoc networks. Thissgst
is preference-compatible in which nodes can honestly tepor
trust evidence and truthfully compute and broadcast traisitev
of themselves and other nodes. Pal and Tardds [39] have-deveAn unified framework is presented for developing mecha-
oped a general method for turning a primal-dual algorithtm innisms such as auctions and pricing schemes, which is appli-
a groupstrategy-proofcost-sharing mechanism. The methogable to a fairly general class of strategic (noncoopesativ
was used to design approximate|y budget-ba|anced cost sigimes on networked systems. It has been shown that although
ing mechanisms for two NP-complete problems: metric facili the participating players of these mechanisms are selfigh, t
location, and single source rent-or-buy network desigrthBooutcome is optimal with respect to a global criterion (e.g.
mechanisms are competitive, grostpategy-proofand recover maximizing a social welfare function), preference-corigat
a constant fraction of the cost. The works[40],1[41] havand strategy-proof. The mechanism designer achieves these
presented a game theoretic framework for truthful broadc#¥jectives by imposing rules and prices to the players. In
protocol andstrategy-proofpricing mechanism. Guanxiang etauction-based mechanisms the designer explicitly aksctite
al. [42] have proposed an auction-based admission contrbl d4esources based on bids of the participants in additiontto se
pricing mechanism for priority services, where higher ptjo ting prices. In pricing mechanism, however, global objesdi
services are allocated to the users who are more sensitivett® enforced by only charging the players for the resources
de|ay, and each user pays a Congestion fee for the exterﬁl’ﬂﬁy used. The unified framework as well as its information
effect caused by their participation. The mechanism is @dovstructures are illustrated through specific example resour
to be strategy-proof and efficient Wang and Li [48] have allocation problems from wireless and wired networks.
addressed the issue of user cooperation in selfish and ahtion The presented mechanism design framework can be ex-
wireless networks using an incentive approach. They hatended in multiple directions. One immediate extension is
presented atrategy-proofpricing mechanism for the unicastmultiple decision variables. A related but more challeggin
problem and given a time optimal method to compute the pagxtension is multi-criteria decision making, where preferes
ment in a centralized manner and discussed implementatiorfée not simply expressed through scalar-valued utility or
the algorithm in a distributed manner. In addition, they énabjective functions. Some of the other open research drext
presented a truthful mechanism when a node only collud@low directly from relaxing the assumptions in SectiopAll
with its neighbors. Garg et al[_[44]l_[45] have provided #mproving the robustness of the incentive mechanisms again
tutorial on mechanism design and attempted to apply it falicious units who do not follow the rules and detection of
various concepts in engineering. Huang et[al] [22]] [46]ehawuch misbehavior is of both practical and theoretical gger
utilized SIR and power auctions to allocate resources inl@a parallel, the relaxation of the assumption on designer’s
wireless scenario and presented an asynchronous distlibdtonesty leads to similarly interesting questions such ag ho
algorithm for updating power levels and prices to charamger can a unit detect and respond to misbehavior (e.g. unfajnes
convergence using supermodular game theory. Wu ef al. [gg]the designer. Additional future research directiondude
have proposed a repeated spectrum sharing game with chadpore precise quantification of asymptotic approximations
proof strategies. They have proposed specific cooperatity paper and analysis of networking effects between payer
rules based on maximum total throughout and proportional
fairness criteria. Sharma and Teneketzis [47] have predemt ACKNOWLEDGEMENTS
decentralized algorithm to allocated transmission powsersh i ) )
that the algorithm takes into account the externality geteer | NiS Work is supported in part by Deutsche Telekom Labora-
to the other users, satisfies the informational constraintse tories. The authors wish to thank Lacra Pavel as a collaborat
system, and overcomes the inefficiency of pricing mechamisr?f the ongoing research project.
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