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A Unified Mechanism Design Framework for Networked Systems
Tansu Alpcan, Holger Boche, and Siddharth Naik

Abstract—Mechanisms such as auctions and pricing schemes
are utilized to design strategic (noncooperative) games for net-
worked systems. Although the participating players are selfish,
these mechanisms ensure that the game outcome is optimal
with respect to a global criterion (e.g. maximizing a social
welfare function), preference-compatible, and strategy-proof, i.e.
players have no reason to deceive the designer. The mechanism
designer achieves these objectives by introducing specificrules
and incentives to the players; in this case by adding resource
prices to their utilities. In auction-based mechanisms, the mech-
anism designer explicitly allocates the resources based onbids
of the participants in addition to setting prices. Alternatively,
pricing mechanisms enforce global objectives only by charging
the players for the resources they have utilized. In either setting,
the player preferences represented by utility functions may
be coupled or decoupled, i.e. they depend on other player’s
actions or only on player’s own actions, respectively. The unified
framework and its information structures are illustrated t hrough
multiple example resource allocation problems from wireless and
wired networks.

Index Terms—Game theory, mechanism design, auctions, pric-
ing, interference coupling

I. I NTRODUCTION

Game theoryhas been enjoying widespread adoption by the
engineering community as a distributed optimization and con-
trol framework for networked systems, partly for taking into
account preferences of individual users, who share and com-
pete for system resources. Resting upon a rich mathematical
foundation, game theoretical approaches, especially strategic
(noncooperative) games, have been valuable for analysis and
design of various resource allocation protocols in wireless and
wired networks. Problems such as rate control, interference
management, and power control (e.g. in wireless and optical
networks) have been investigated extensively by the research
community using game theoretical methods [1]–[4].

Game theory models nodes of networked systems as inde-
pendent and autonomous decision makers with limited global
information, and studies incentives of individual playersand
effects of their preferences on the overall outcome. The Nash
equilibrium (NE), where no player has an incentive to deviate
from the NE while others adopt it, is known to be useful
solution concept for such games. It is widely adopted for
development of distributed and dynamic algorithms assuming
some mild existence and uniqueness conditions [5], [6].
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Given the broad applicability of game theoretic frame-
works, it is not surprising to observe an increasing interest
in mechanism design, which studies rules and structure of
games such that their outcome achieve certain objectives [7]–
[12]. This is especially relevant in development of distributed
control schemes for networks where satisfying certain global
properties such asefficiencyare as important as the solution’s
compatibility with user incentives.

A game designer can impose rules and incentives, e.g. in
the form of prices, to players of such that the outcome of
a strategic game, for example, the unique Nash equilibrium
solution is preference-compatible and at the same time
maximizes a certain global objective function such as the
sum of player utilities or quality-of-service (QoS) constraints.
However, this interaction between the designer and players
of the game may create now a separate incentive for the
players to misrepresent their utilities to the designer with
the purpose of selfishly benefiting from it. Therefore, the
mechanism designer has a third objective calledstrategy-
proofness (or truth dominance), in addition to the goals of
efficiency and preference-compatibility.

This paper builds upon earlier work [13], [14], which has
presented a decision and control theoretic approach to game
design taking into account only efficiency and preference-
compatibility objectives while assuming that players are honest
toward the game designer in terms of their preferences. Here,
we present an optimization framework for mechanism design
that satisfies all three objectives, adding strategy-proofness to
the previous two.

The difficulty facing a mechanism designer trying to achieve
all three objectives can be best appreciated with a specific ex-
ample. Consider maximization of the sum of player utilitiesas
the efficiency criterion of a specific problem. Assume that the
designer can impose a pricing scheme on users for their actions
as an enforcement method. However, individual player utilities
are not directly revealed to anyone. Assume in addition that
the underlying strategic game admits a unique NE solution.
The task of the designer is then to find such a mechanism that
it moves the NE of the game to a point, which maximizes
the sum of these unknown player utilities (Figure 1), while
the players try to mislead the designer by misrepresenting
their actual utility functions. In addition, the designer may
not observeplayers actions completely bringing additional
restrictions to the information flow within the system.

Due to the difficulty of the above described task, there are
naturally many impossibility results in the mechanism design
literature [15]–[18]. In contrast, this paper adopts a more
constructive engineering approach and focuses on schemes
that achieve all three objectives, albeit in some cases only
approximately. The algorithms presented and analyzed hereare
examples of market clearance schemes, where all participants
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have an incentive to reveal their true preferences, and leading
to solutions satisfactory to both designer and players from
global and local points of view, respectively. Most of these
mechanisms can be intuitively explained by the old adages of
“actions speak louder than words” (designer deducing players’
true preferences by observing their actions) and “you get what
you paid for” (designer charging players for their actions).

However, we also note that the presented results are ob-
tained only in very specific settings with various assumptions
on player preferences (smooth and convex utility functions), on
the underlying game (existence and uniqueness of the NE), and
on a certain degree of observability of player actions by the
designer. While these restrictions may decrease applicability
of the results to certain areas of economics, the presented
optimization framework is of value in engineering settings,
especially for the purpose of analyzing and developing dis-
tributed optimization and control schemes for networks.

The main contributions of this paper include:
• Development of an unifying optimization framework for

mechanism design, which encompasses both auction-
based and pricing mechanisms.

• Extension of earlier results on game design [13], [14] to
mechanism design by taking into account the strategy-
proofness criterion.

• Application of the mechanism design framework to re-
source allocation problems in networks such as rate
control and interference management (power control).

The rest of the paper is organized as follows. The next
section presents the underlying model and assumptions of the
unified framework developed. Section III studies auction-based
mechanisms. Subsequently, Section IV investigates pricing
mechanisms. Section V provides an overview of relevant
literature on mechanism design. The paper concludes with
remarks of Section VI.

II. U NIFIED FRAMEWORK

This section discusses the underlying model and assump-
tions of the unified framework for mechanism design.

A. Model

At the center of the game and mechanism design model
is the designerD who influencesN players, denoted by
the setA, and participating in astrategic (noncooperative)
game. These players are autonomous and independent decision
makers, who share and compete for limited resources under
the given constraints of the environment. Concurrently, the
designer tries to ensure that the outcome of the game satisfies
the desirable properties of efficiency, preference-compatibility,
and strategy-proofness. This setup is applicable to a variety
of problems in networking (wireless spectrum and bandwidth
management) and economics (auctions).

Let us define anN -player strategic game,G, where each
player i ∈ A has a respectivedecision variablexi such that

x = [x1, . . . , xN ] ∈ X ⊂ R
N ,

whereX is the decision space of all players. As a starting
point, this paper assumes scalar decision variables and a

compact and convex decision space. The decision variables
may represent, depending on the specific problem formulation,
player flow rate, power level, investment, or bidding in an
auction. Due to the inherent coupling between the players, the
decisions of players directly affect each other’s performance
as well as the aggregate allocation of limited resources.

The preferences of the players are captured by utility
functions

Ui(x) : X → R, ∀i ∈ A,

which are chosen to be continuous and differentiable for
analytical tractability. In many cases, the utility functions have
special properties such as concavity or monotonicity due tothe
underlying problem formulation, or these can be assumed to
simplify the analysis.

The designerD devises amechanismM , which can be
represented by the mappingM : X → R

N , implemented
by introducing incentives in the form ofrules and pricesto
players. The latter can be formulated by adding it as a cost
term such that the playeri has the cost function

Ji(x) = ci(x) − Ui(x). (1)

Thus, theplayer objective is to solve the following individual
optimization problem in the strategic game

min
xi

Ji(x), (2)

under the given constraints of the strategic game, and rules
and prices imposed by the designer. Specific properties and
variants of these rules and prices will be discussed in the
subsequent sections.

TheNash equilibrium (NE) is a widely-accepted and useful
solution concept in strategic games, where no player has an
incentive to deviate from it while others play according to
their NE strategies. It plays an important role here since if
it is unique, then the NE outcome automatically satisfies the
preference-compatibility criterion, which basically states that
the mechanism outcome must coincide with the solution of the
players’ individual optimization problems (2).

The NEx∗ of the gameG is formally defined as

x∗
i := argmin

xi

Ji(xi, x
∗
−i), ∀i ∈ A,

wherex∗
−i = [x∗

1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
N ]. The NE is at the

same time the intersection point of players’ best responses
obtained by solving (2) individually. If some special convexity
and compactness conditions are imposed to the gameG, then
it admits a unique NE solution, which simplifies mechanism
and algorithm design significantly. For a detailed discussion
on these conditions and properties of NE, we refer to [5], [6].

Similar to player preferences, thedesigner objective, e.g.
maximization of aggregate user utilities or social welfare, can
be formulated using a smooth objective functionV for the
designer:

V (x, Ui(x), ci(x)) : X → R,

where ci(x) and Ui(x), i = 1, . . . , N are user-specific
pricing terms and player utilities, respectively. Hence, the
global optimization problem of the designer is simply
maxx V (x, Ui(x), ci(x)), which it solvesindirectly by setting
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rules and prices. In some cases, the objective functionV char-
acterizes the desirability of an outcomex from the designers
perspective. In other cases when the designer objective is to
satisfy certain minimum performance constraints such as play-
ers achieving certain quality-of-service levels, the objective
can be characterized by a region (a subset of the game domain
X ). Thus, the designer objective represents and corresponds
to theefficiency criterion of the mechanism.

It is important to note that the designer can only influence
the outcome of the game indirectly and cannot dictate actions
of players (which would have immediately negated preference-
compatibility). It has been shown in [14] that a function linear
in xi, such asci(x) = αixi, is sufficient for the designer to
(indirectly) manipulate the unique NE outcome in the ideal
full information case where the players are honest and open
about their preferences. Figure 1 visualizes this process.

Fig. 1. The manipulation of the unique Nash equilibrium,x∗ of the game by
the mechanism designerD to a desirable region or point,̂x = argmax V .

The third and an important criterion of mechanism design
is strategy-proofness, which is also referred to asincentive-
compatibility or truth dominance. If a mechanism does not
possess this property, then the players have an incentive to
misrepresent their utilities to the designer and “cheat” in order
to possibly obtain a larger share of the resources. Within the
context of the presented model, this criterion can be formally
expressed as:

Ji(x
∗) < Ji(x̃) ⇔ c(x∗)− Ui(x

∗) < c(x̃)− Ũi(x̃) ∀i ∈ A,

whereŨi is the misrepresented utility,x∗ is the original NE
solution, andx̃ is the distorted NE under̃Ui. The interaction
between the players of the underlying strategic game,A, and
the mechanism designer,D is depicted in Figure 2.

B. Assumptions

Taking into account the breadth of the field mechanism
design, it is useful to clarify the underlying assumptions of
the model studied in this paper. Theenvironment where the
players and designer interact is characterized by the following
properties:

• The available resources, which the players share and
compete for, are limited.

• The environment imposes restrictions on available in-
formation to players and communication between them.
Hence, it imposes a certain information structure to

Mechanism

Designer

Player

Player

Player

Player

Player

Strategic Game

Fig. 2. The interaction between the players of the underlying strategic game
and the mechanism designer, who observes players actionsx and utilitiesU ,
while imposing pricesP and in auctions an allocation ruleQ.

distributed mechanisms and sometimes makes it difficult
to deploy centralized ones.

• The designer may not fully observe the player actions and
has often limited information about their preferences.

The players share and compete for limited resources in the
given environment under its information and communication
constraints. Three basic types of resource sharing and coupling
are often encountered in a variety of problems in networking:

1) Additive resource sharing:the players share a finite
resourceC such that

N
∑

i=1

xi = C.

This type of coupling is encountered in bandwidth
sharing and rate control in networks.

2) Interference coupling(linear interference): the resource
allocated to playeri, γi, is inversely proportional to
interference generated others such that

γi(x) =
hixi

∑

j 6=i hjxj + σ
,

where hi ∀i and σ denote some system parameters.
Interference coupling occurs in wireless networks where
γ represents signal-to-interference ratio.

3) Multiplicative coupling: the resourceyi of player i is
affected multiplicatively by the decisions of others such
that

yi = xi

∏

j 6=i

(1 − xj).

This type of coupling is seen in random multiple access
schemes, e.g. slotted Aloha scheme in wireless networks
[19].

It is possible to extend these definitions, for example, by
making the finite resourceC time varying or changing the
interference function. Couple of axiomatic frameworks forthe
second case exist in the literature [20], [21]. The examplesin
this paper are of types 1 and 2.

The following assumptions are made on the designer and
players:

• The designer is honest, i.e. does not try to deceive the
players.
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• Each player acts independently and rationally according
to its own self interests.

• The players may try to deceive the designer by hiding or
misrepresenting their individual preferences.

• Both players and designer follow the rules of the mech-
anism.

Within the scope of the model discussed in the previous
subsection, specific formulations of the three criteria of mech-
anism design are summarized as:

TABLE I
THREE CRITERIA OF MECHANISM DESIGN

Criterion Formulation in the Model

Efficiency Designer objective
Preference Compatibility Player minimizing own cost

or existence of a unique NE
Strategy-Proofness No player gains from cheating

III. A UCTION-BASED MECHANISMS

In auction-based mechanisms, the designer uses an alloca-
tion rule in addition to pricing. Hence, the designerexplicitly
allocatesthe players their share of resources based on their
bids. The players decide on their bids or actions by minimizing
their cost which is a combination of their own utilities and
prices imposed by the designer. Specifically, the designerD

imposes on a playeri ∈ A a user-specific

• resource allocation rule,Qi(x),
• resource pricing,Pi(x),

where x denotes the vector of player actions or bids. The
specific properties of these functions will be discussed later
as part of individual mechanisms.

As presented in Section II-A, each playeri aims to minimize
its own costJi(Qi(x), Pi(x)), as in (1), while the designer
tries to achieve the objectives summarized in Table I. In some
cases, the designer may only observe the bids imperfectly as
a function of the actual bids,y = f(x). However, in this
paper, we assume that all bids are perfectly observable and
y = x for simplicity. Figure 3 visually depicts the auction-
based mechanisms described.

Fig. 3. An auction-based mechanism, where the designerD imposes a resource
allocation rule as well as pricing on playersA of the underlying strategic
game, whose bidsx may be observed imperfectly asy, with the purpose of
satisfying a global objectiveV .

A. Auctions for Separable Utilities

Consider, as a starting point, an additive resource sharing
scenario where the players bid for a fixed divisible resource
C and are allocated their share captured by the vectorQ =
[Q1, . . . , QN ] such that at full utilization

∑

iQi = C.
The ith player’s individual cost functionJi(x) in terms of

player bidsx is defined as

Ji(x) = ci(x) − Ui(Qi(x)).

The pricing term has the general form of

ci(x) =

∫ Qi(x)

0

Pi(ξ)dξ, (3)

where Pi denotes the unit price. In accordance with the
earlier results [13], [14] and due to the nature of the auction-
based mechanism, it is sufficient for the purposes of the
designer to choose a pricing function linear inQi, i.e. ci(x) =
Pi(x)Qi(x). The player utility functionUi is separable, i.e. it
depends only on the individual allocation of the player. It is
also assumed to be continuous, strictly concave, and twice
differentiable in terms of its argumentQi. Thus, the cost
function of playeri can be written as

Ji(x) = Pi(x)Qi(x)− Ui(Qi(x)), (4)

which is strictly convex with respect toQi under the assump-
tions made.

From a player’s perspective, who tries to minimize its cost
in terms of the actual resources obtained, the condition

∂Ji
∂Qi

=
∂ci
∂Qi

−
∂Ui

∂Qi

= c′i − U ′
i

is necessary and sufficient for optimality. Thus suppressing
the dependence of user cost on bidsx, in order for the
auction-based mechanism to bepreference-compatible, it has
to satisfy

Pi(Q) = U ′
i(Qi) ∀i ∈ A. (5)

Furthermore, if additional assumptions are made onJi(x), it
can be shown that the game admits a unique NE,Q∗ (or x∗)
[6].

Different from players, the designerD has two objectives:
maximizing the sum of utilities of players and allocating all
of the existing resourceC, i.e. its full utilization. Hence, the
designerD solves the constrained optimization problem

max
Q

V (Q) ⇔ max
Q

∑

i

Ui(Qi) such that
∑

i

Qi = C, (6)

in order to find a globally optimal allocationQ that satisfies
this efficiency criterion. The associated Lagrangian function
is then

L(Q) =
∑

i

Ui(Qi) + λ

(

C −
∑

i

Qi

)

,

where λ > 0 is a scalar Lagrange multiplier. Under the
convexity assumptions made, this leads to

∂L

∂Qi

⇒ U ′
i(Qi) = λ, ∀i ∈ A, (7)
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and the efficiency constraint

∂L

∂λ
⇒
∑

i

Qi = C. (8)

Remark III.1 . It is important to note that sum of utility
maximization as designer objective, i.e.V =

∑

i Ui is only
one possible global objective among many others such as
ensuring a certain QoS to players (see [13], [14] for a more
detailed discussion).

The interaction between the designer and players (see Fig-
ure 2) is through abidding/allocation processin auction-based
mechanisms. Since the players cannot obtain the resourceQ
directly, they make a bid for their own total cost, which is
denoted by the vectorx. The pricingP (x) and allocation
Q(x) rules of the auction-based mechanism should satisfy
the efficiency and preference-compatibility criteria discussed
above.

A player’s bid (or action),xi, is an indicator of the player’s
willingness to pay and plays a crucial role in devising a
mechanism that isstrategy-proof. Formally, a mechanism is
strategy-proof, if no player has an incentive to deviate from
its truthful bid

Ji(x
∗
i + δ) ≥ Ji(x

∗
i ) ∀i ∈ A, δ,

whereδ ∈ R is a scalar andx∗ is the outcome (NE) of the
underlying strategic game.

Example 1:

In the specific resource sharing setting defined, an auction-
based mechanism,Ma, can be defined based on the bid of
player i,

xi := Pi(x)Qi(x), (9)

the pricing function

Pi :=

∑

j 6=i xj + ω

C
, (10)

for a scalarω > 0 sufficiently large such that
∑

i Qi ≤ C,
and the resource allocation rule

Qi :=
xi

∑

j 6=i xj + ω
C. (11)

It is also possible to interpret the scalerω as a reserve
bid [22]. The next theorem establishes that this mechanism
is preference-compatible, strategy-proof, and asymptotically
efficient.

Theorem III.2. The auction-based mechanismMa defined by
(9), (10), and (11) allocates the fixed divisible resourceC to a
set of selfish rational playersA with respective cost functions
(4) in such a way that the mechanism is preference-compatible,
strategy-proof, and asymptotically efficient, if

Ui(x
∗
i + δ)− Ui(x

∗
i ) ≤ δ, ∀i, ∀δ ∈ R,

where x∗ denotes the truthful bid of playeri at the NE
outcome. In other words, the outcome of the mechanism
ensures that

• optimal allocation obtained,Q∗, satisfies
Q∗

i = argminQi
Ji(Q) ⇒ Pi(Q

∗) = U ′
i(Q

∗
i ) ∀i,

• no player has an incentive to deviate from its truthful bid,
Ji(x

∗
i + δ) ≥ Ji(x

∗
i ), ∀i, δ

• Q∗ solves the constrained optimization problem in (6)
asymptotically, i.e. aslimN → ∞.

Proof:

The mechanismMa is defined by the bidding process (9),
unit prices (10), and allocation rule (11) for each playeri ∈ A.
Substituting these into the player cost function (4) results in

Ji(x) = xi − Ui

(

xi
∑

j 6=i xj + ω
C

)

.

Due to the convexity ofJi in xi, the first order necessary
condition for optimality is also sufficient:

∂Ji(x)

∂xi

= 1−
∂Ui(Qi)

∂Qi

(

C
∑

j 6=i xj + ω

)

= 0.

From definition ofPi in (10) followsPi(Q) = U ′
i(Qi) for each

playeri. Hence, the mechanismMa is preference-compatible.
Furthermore, it is straightforward to show that this game
admits a unique NE,x∗ [6].

Assume a playeri deviates from its truthful bidxi by an
amountδ ∈ R such thatx̃i = xi + δ. Then, the player cost
underMa becomes

J̃i = x̃i − Ui

(

x̃i
∑

j 6=i xj + ω
C

)

.

In orderMa to bestrategy-proof,

J̃i − Ji = δ − (Ui(Qi(xi + δ))− Ui(Qi(xi))) > 0,

which immediately holds under the assumption in the theorem.

Although it is preference-compatible and strategy-proof,the
mechanismMa is not fully efficient as it does not exactly
solve the designer optimization problem (6). To see this, let
us solve (7) and (8) usingxi = PiQi to obtain

Pi =

∑

i xi

C
andQi =

xi
∑

i xi

C.

These optimal solutions (with respect to designer objective)
are only approximated by the pricing (10) and allocation (11)
rules. Hence,

Pi =

∑

j 6=i αj + ω

C
6=

∑

i αi

C

and
∑

i

Qi =
∑

i

αi
∑

j 6=i αj + ε
C ≈ C.

The choice of suboptimal (in the sense of efficiency) rules
is due to the fact thatMa has to achieve strategy-proofness
at the same time as efficiency and preference-compatibility.
However, as the number of players increases,N → ∞, and
by choosingω accordingly small, the approximation becomes
more precise. Thus, the mechanismMa is asymptotically
efficient.
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Example 2:

As a special case of the auction-based mechanismMa, con-
sider a setup where, the player utility functions are logarithmic
and respectively weighted by a positive scalar parameterα
such that

Ui = αi logQi ∀i ∈ A.

Then, the following result holds as a special case of Theo-
rem III.2.

Corollary III.3. The auction-based mechanismMa defined
by (9), (10), and (11) allocates the fixed divisible resource
C to a set of selfish rational playersA with respective cost
functions (4) and utilitiesUi = αi logQi ∀i ∈ A in such
a way that the mechanism is preference-compatible, strategy-
proof, and asymptotically efficient.

Proof: The proofs of preference-compatibility and asymp-
totic efficiency follow directly from the ones of Theorem III.2.
Furthermore, the mechanism is strategy-proof under logarith-
mic player utilities since they satisfy the sufficient condition
in Theorem III.2. The condition in this case is

αi log(Qi(xi + δ))− αi log(Qi(xi)) ≤ δ,

leading to

log

(

1 +
δ

xi

)

≤
δ

αi

.

The player’s truthful bid isxi = αi from its cost function (4).
Thus, we obtain

exp

(

δ

αi

)

> 1 +
δ

αi

,

which holds by definition, and completes the proof.

B. Auctions for Non-separable Utilities

In many problem formulations, the player utilities are non-
separable, i.e. they depend also on other player’s actions.This
is the case, for example, in interference coupled systems such
as a cellular wireless system with a base station (acting as the
designer) and mobile devices or users as players who bid to
achieve a certain QoS level. Letxi denote the bid of a mobile
device and theqi(x) the transmission power assigned to it by
the base station. Then, the signal-to-interference ratio (SIR) of
the received signal by the mobile is

γi =
qi(x)

∑

j 6=i qj(x) + σ
, (12)

where σ > 0 is an independent noise term. Notice that
this is essentially a centralized scheme similar to the ones
currently deployed. A decentralized version will be discussed
in Section IV.

This interference management and power control formula-
tion has been discussed extensively in the literature, e.g.[20],
[21], [23]. However, such mechanisms do not necessarily need
to be limited to wireless networks and apply to any system
with linear interference coupling [24] under the assumption
that the player utilities areUi(γi) continuous, strictly concave,
and twice differentiable in their argumentsγi (12).

Example 3

Consider an auction-based mechanism for an interference-
coupled system where players have non-separable and log-
arithmic utilities and a linear pricing scheme, which make
the problem more tractable. Then, each playeri minimizes
its respective cost

Ji(x) = Pi(x)qi(x)− αi log(γi(q(x))), (13)

which is strictly convex in player power levelqi. Consequently,
the general condition for player preference-compatibility is
Pi = αi/qi, ∀i ∈ A, as in Examples 1 and 2.

The global objective of the designer is to maximize sum of
utilities of players while trying to limit the total interference
effect to an upper-boundC. This approximate formulation
is motivated by, for example, limiting the aggregate inter-
cell interference created by the mobile devices in a wireless
network, where base stations have no means of communi-
cation among themselves. Hence, the designerD solves the
constrained convex optimization problem

max
q

V (q) ⇔ max
q

∑

i

αi log(γi(q)) such that
∑

i

qi ≤ C.

The resulting necessary and sufficient conditions for opti-
mality are

αi

qi
−
∑

j 6=i

αj

C̄ − qj
= λ and

∑

i

qi = C,

whereC̄ = C + σ.
In the specific resource sharing setting defined, an auction-

based mechanism,Mb, is defined based on the bid of player
i,

xi := Pi(x)Qi(x). (14)

and the allocation rule

Qi :=
xi

Pi(x)
= qi(x), (15)

which assigns users power levels based on their bids and
computed prices.

Under the preference-compatibility condition, the bids have
to match the utility parameter,xi = αi. Then, the optimality
conditions for the global problem become

xi

qi
−
∑

j 6=i

xj

C̄ − qj
= λ and

∑

i

qi = C. (16)

which are solved to obtain(q∗, λ∗). Accordingly, the pricing
function is

Pi(x) := λ∗ +
∑

j 6=i

xj

C̄ − q∗j
. (17)

As a result of this design, the auction-based mechanismMb

is clearly efficient and preference-compatible.
We next show that mechanismMb is asymptotically

strategy-proof. Assume that a playeri deviates from its truthful
bid xi by an amountδ ∈ R such that̃xi = xi+δ. The strategy-
proofness is then equivalent to

J̃ − J = δ − αi log

(

γi(xi + δ)

γi(xi)

)

> 0.
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As in the previous example, this leads to

γi(xi + δ)

γi(xi)
< exp(

δ

αi

),

or
q̃i
qi

C̄ − qi

C̄ − q̃i

λ

λ̃
< exp(

δ

αi

),

where λ̃ is the solution of (16) under̃xi. Note that, as the
number of players goes to infinity,1 we have

lim
N→∞

C̄ − qi
C̄ − q̃i

λ

λ̃
= 1.

Thus, it asymptotically holds that

1 +
δ

αi

< exp(
δ

αi

),

which establishes the result summarized in the following
theorem.

Theorem III.4. Consider a set selfish rational playersA
with respective cost functions (13) and non-separable utilities
Ui = αi log(γ(q(x))) ∀i ∈ A in an interference-coupled
system (12). The auction-based mechanismMb defined by
(14), (15), and (17) maximizes the sum of utilities of players
while limiting the total interference effect to an upper-bound
C in such a way that the mechanism is preference-compatible,
efficient, and asymptotically strategy-proof.

IV. PRICING MECHANISMS

Pricing mechanisms differ from auction-based ones by the
property that the designer does not allocate the resources
explicitly, i.e. there is no allocation ruleQ. The players obtain
resources directly as a result of their actionsbut are charged
for them by the designer observing these actions (Figure 4).
Hence, the designer has relatively less leverage in this case
compared to auctions.

Pricing mechanisms are applicable to many networked
systems where an explicit allocation of resources brings a
prohibitively expensive overhead or simply not feasible, e.g.
due to participating players being selfish or located in a
distributed manner. Example problems include rate control
in wired networks, interference management in wireless net-
works, and power control in optical networks [1]–[4].

A. Pricing Mechanisms for Separable Utilities

We study an additive resource sharing scenario, where
the players compete for a fixed divisible resourceC as in
Section III. The players’ individual cost functions, whichthey
minimize, have the general form

Ji(x) = Pi(x)xi − Ui(xi). (18)

Here,xi denotes the player’s action of obtaining that specific
amount of the resource directly, in contrast to bidding for it
and receiving an allocation from the designer. It is sufficient

1We remind here the underlying assumption that each player acts individu-
ally and there is no coordination among players. This assumption is applicable
to many networked systems with information flow constraints.

Fig. 4. The block diagram of a generic pricing mechanism. Thedesigner sets
the pricesP to achieve a global objectiveV based on the observationsy of
player actionsx. The players choose their actionsx independently according
to their utilities U (preferences) and pricesP . The overall mechanism aims
to ensure efficiency, preference-compatibility, and strategy-proofness.

for the purposes of the designer to choose a pricing function
linear in xi. A more general form of pricing is provided in
(3). The player utility functionUi is assumed to be continuous,
strictly concave, and twice differentiable. At the same time it
only takes the player’s own action as its argument, i.e. the
player utilities are separablein this formulation.

In order for a pricing mechanism to bepreference-
compatible, it has to satisfy

Pi(x
∗) = U ′

i(x
∗
i ), ∀i ∈ A,

which directly follows from (18). The pointx∗ is, by defini-
tion, the Nash equilibrium solution of of the strategic game,
where no player has an incentive to deviate from it. Under
the assumptions made for player utilities, the game admits a
unique Nash equilibrium solution [6]. It is important to note
that, if there was no pricing term in (18), each player would
try to get a large proportion of the resource resulting in a
suboptimal result for everyone; a situation sometime termed
as tragedy of commons. The designer can prevent this by a
carefully selected pricing scheme [13], [14].

The global objective of the designer can be maximization of
the sum of player utilities while ensuring full resource usage,
i.e.
∑

i xi = C. Hence, the designerD solves the counterpart
of the constrained optimization problem in (6) along with (7)
and (8).

When the two criteria of preference-compatibility and effi-
ciency (designer objectives) are combined, the pricing function
Pi of a playeri has to satisfy

Pi(x
∗) = U ′

i(x
∗
i ) = λ, ∀i ∈ A,

where λ > 0 is the unique Lagrange multiplier. From the
criterion of full resource usage, it follows that

∑

i

x∗
i =

∑

i

(U ′
i)

−1
(λ) = C. (19)

Defineλ∗ as the optimal solution to (19) given player utilities
Ui and capacityC. Then, the optimal pricing function is:Pi =
λ∗ ∀i.

If the designer wants to compute the unit pricesP directly
by solving (19), it needs to ask the individual players for their
utilities. However, the players have an incentive to misrepre-
sent their utilities to gain a larger share of resources, if they
are asked directly by the designer. Such a direct mechanism
has two significant disadvantages. First, the designer has to
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have additional schemes in place to detect potential player
misbehavior (for which players have an incentive). Second,
it brings another layer of communication overhead to the
system. The disadvantages of such direct mechanism will be
illustrated more concretely in the scope of an example in the
next subsection.

Alternatively, one can design aniterative pricing mecha-
nism that is based on observation of player actionsx instead of
asking for their word (utilities). Then, the designer deploys this
iterative mechanism to compute the optimal pricesPi = λ∗

as a solution to (19).
For example, consider the following iterative pricing mech-

anism

λ(n+ 1) = λ(n) + κ

(

∑

i

xi − C

)

, (20)

whereκ > 0 is a small step size,λ > 0, and

xi(n+1) = φxi(n)+(1−φ)

(

∂Ui

∂xi

)−1

(λ), ∀i ∈ A, (21)

where 0 < φ < 1. Here,n ≥ 1 denotes the time (update)
step. Note that, the players adopt a relaxed or gradient update
scheme instead of best response taking into account variability
of the system. The gradient update also helps with conver-
gence.

Example 4:

As a special case, let the utility function of players be
logarithmic and weighted by parameterα such that

Ui(xi) = αi log xi

for player i. Such utility functions have been utilized in
the literature, for example, to model user demand in rate
or congestion control on networks. The solution aligning the
player and designer objectives, in other words the efficient
Nash equilibrium, has the following properties:

P ∗
i =

αi

xi

= λ; xi =
αi

λ
∀i ∈ A

⇒
∑

i

xi =

∑

i αi

λ
= C; λ =

∑

i αi

C
.

Hence, the resulting optimal pricing mechanism for all players
is

P =

∑

i αi

C
. (22)

Although this solution is preference-compatible from the
players’ perspective and solves the global optimization prob-
lem of the designer, it is not strategy proof if the designer
explicitly asks the players for their utility parameterα. To see
this, assume that playeri has a true utility parameterαi but
misrepresents it to the designer asα̃i = αi+δ for someδ ∈ R.
Then, the new price is̃P = (

∑

i αi + δ)/C and playeri real
cost becomes

J̃i(x̃i, x−i) = P̃ x̃i − αi log(x̃i)

instead of
Ji(x) = Pxi − αi log(xi).

SubstitutingP̃ and computing̃xi yields

J̃i(x̃i, x−i) = αi − αi log

(

αi
∑

i αi + δ
C

)

,

and similarly we have

Ji(x) = αi − αi log

(

αi
∑

i αi

C

)

.

Clearly, the playeri can decrease its cost (J̃i < Ji) by
choosing aδ < 0 despite being charged the same total price.
Thus, the mechanism is not strategy-proof.

This issue is remedied by adopting the proposed iterative
pricing mechanism:

λ(n+ 1) = λ(n) + κ

(

∑

i

xi − C

)

, (23)

xi(n+ 1) = φxi(n) + (1− φ)
αi

λ
∀i ∈ A. (24)

The unique (Nash) equilibrium solution of this iterative algo-
rithm, (x∗, λ∗) solves the designer problem (6). Furthermore,
since the players adopt here a relaxed (gradient) best response
at each step and there is no explicit communication between
the players and the designer, the scheme is strategy-proof.To
see this, assume otherwise and let playeri “misrepresent” its
actions x̃i = xi + δ for some δ ∈ R. Then, the player’s
instantaneous cost is̃Ji > Ji at each step of the iteration.
Hence, the players have no incentive to “cheat”.

The communication requirements of the algorithm (23)-(24)
are minimal and suitable for a distributed implementation in a
networking environment. The designer only needs to observe
the total amounty =

∑

i xi and communicate the common
priceP back to the players (see Figure 4 for a visualization).

Now, a basic stability analysis is provided for the following
continuous-time approximation of the iterative pricing mech-
anism

λ̇ =
dλ

dt
= κ

(

∑

i

xi − C

)

,

ẋi = −
∂Ji
∂xi

= κ̄i

(

αi

xi

− λ

)

,

wheret denotes time and̄κi > 0 is a user-specific step size. As
in the discrete-time version, the players adopt here a gradient
best response algorithm. Define the Lyapunov function

VL :=
1

2

(

∑

i

xi − C

)2

+
1

2

∑

i

(

αi

xi

− λ

)2

,

which is nonnegative and satisfiesVL(x
∗, λ∗) = 0. It is

straightforward to show through algebraic manipulations that
V̇L(x, λ) < 0 for all (x, λ) 6= (x∗, λ∗). Hence, the continuous-
time algorithm is globally asymptotically stable [25]. This
result is a strong indicator of convergence [26] of the discrete-
time iterative pricing mechanism (23)-(24).

B. Pricing Mechanisms for Non-separable Utilities

In some problem formulations, such as interference coupled
systems consisting of a base station (acting as the designer)
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and mobile devices as players, the players’ actions are beyond
the control of the base station. Let, specifically,xi = hipi
denote the received power level as a product of uplink trans-
mission powerpi and channel loss0 < hi < 1 of player i. If
linear interference is assumed, then the signal-to-interference
ratio (SIR) of the received signal is

γi =
xi

∑

j 6=i xj + σ
, (25)

as in (12).
In pricing mechanism, similar to the auction in Sec-

tion III-B, each playeri minimizes its respective cost

Ji(x) = Pi(x)xi − αi log(γi(x)), (26)

which is strictly convex inxi. Consequently, the general con-
dition for player preference-compatibility isPi = αi/xi, ∀i ∈
A.

The global objective of the designer aims to maximize sum
of utilities of players while trying to limit the total interference
effect toC, motivated by e.g. limiting the aggregate interfer-
ence created by the mobile devices in a wireless network.
Hence, the designerD solves

max
x

V (x) ⇔ max
x

∑

i

αi log(γi(x)) such that
∑

i

xi ≤ C.

This problem differs from the one in Section III-B as it is non-
convex. However, it can be convexified using the nonlinear
transformxi = esi , and then admits a unique solution [20].

The resulting necessary and sufficient conditions for opti-
mality are

αi

xi

−
∑

j 6=i

αj

Ij
= λ and

∑

i

xi = C,

whereIi :=
∑

j 6=i xj+σ is the interference affecting playeri.
Hence, aligning the player and designer optimization problems
leads to

Pi = λ+
∑

j 6=i

αj

Ij
.

Using the definition ofγ, this can be rewritten as

Pi = λ+
∑

j 6=i

Pjγj

or in matrix form
A · P = 1λ,

where

A :=











1 −γ2 · · · −γN
−γ1 1 · · · −γN

...
. . .

...
−γ1 −γ2 · · · 1











, (27)

and 1 = [1, . . . , 1]T . Note that the matrixA is clearly full
rank, and hence invertible.

As in Example 4, we define now an iterative pricing
mechanismMp such that

λ(n+ 1) = λ(n) + κD

(

∑

i

xi − C
)

, (28)

P (n+ 1) = (A)−1
1λ(n), (29)

and

xi(n+ 1) = xi(n)− κi

∂Ji
∂xi

= U ′
i(γi(n))− Pi(n) ∀i ∈ A,

(30)
where the players adopt a gradient best response for conver-
gence purposes. Here,κD and κi denote the step sizes of
the designer and playeri, respectively. Based on the analysis
above, the mechanism is preference-compatible and efficient.
Since the players have no incentive to deviate from their
(gradient) best responses, it is also inherently strategy-proof
as discussed in Example 4. This result is summarized in the
following theorem.

Theorem IV.1. The unique equilibrium outcome of the pricing
mechanismMp defined by (28)-(30) is preference-compatible,
strategy-proof, and efficient.

The implementation of mechanismMp requires minimum
information overhead. The designer only needs to observe the
aggregate received power level

∑

i xi and the individual SIRs,
γ, of players both of which are already available. The playeri,
in return only needs to know the current pricePi and SIRγi to
be able to compute the (gradient) best response (see Figure 4
for visualization). Finally, the computation of actual uplink
power levelsp can be computed fromx using the measured
channel gains.

Example 5:

The iterative pricing mechanismMp is illustrated with a
numerical example.10 players with the utility parameters

α = [0.23 1.33 0.73 0.28 1.13 1.65 1.35 2.00 1.92 0.12],

update their power levels according to (30) at each time step
n ≥ 1 with a stepsize ofκi = 0.05 ∀i. The designer, on the
other hand, updates the Lagrangian multiplerλ and pricesP
based on (28), whereC = 5 andκD = 0.01. The background
noise parameter in (25) isσ = 0.5. The convergence of the
mechanismMp summarized in Algorithm 1 is depicted in
Figures 5 and 6.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Player Received Power Levels, x(n)

Time Step, n

x

Fig. 5. The evolution of user power levels,x, which are updated by players
(30) under mechanismMp.
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0.25

0.3

0.35

0.4

0.45

0.5
Lagrange Multiplier in Designer Optimization, λ(n)

Time Step, n

λ

Fig. 6. The evolution of Lagrange multipler,λ, used in computing player
prices in (28).

Algorithm 1: Iterative Pricing MechanismMp

Input : Designer (base station): Interference targetC and
objective

∑

i Ui

Input : Players (users): Utilities Ui = αi log(γi(x)), ∀i
Result: Power levelsx and SIRsγ(x)

1 Initial power levelsx(0) and pricesPi(0) ;
2 repeat
3 begin Designer:
4 Observe player power levelsx ;
5 Compute the matrix matrixA in (27) ;
6 Updateλ and pricesP according to (30) ;
7 end
8 begin Players:
9 foreach player i do

10 Estimate marginal utility∂Ui(x)/∂xi ;
11 Compute power levelxi from (28) ;
12 end
13 end
14 until end of iteration;

V. D ISCUSSION ANDL ITERATURE REVIEW

There is a rich literature on Mechanism design both in
the field of economics [7] and recently in engineering [8],
[9], [12], [22], [27], [28]. The auction-based mechanism
framework presented in Section III is based in principle on
progressive second price (PSP) auctions [8], [10], [22]. The
framework, one the one hand, simplifies PSP auctions by
considering the users demanding as much of the resources as
possible, which is a reasonable assumption in many cases since
players often cannot estimate their demand accurately. On
the other hand, it presents a unifying optimization framework
which also allows analysis and design of games with non-
separable player utilities.

The literature on pricing schemes is even richer than mecha-
nism design one, especially in the networking community (see
e.g. [4], [5] and references therein). The pricing mechanism
framework in Section IV extends those results by building
on [13], [14], and taking into account all of the criteria
in Table I. Among other things, the presented framework

captures different types of global objectives, e.g. quality-of-
service regions, information limitations, and system dynamics.
The fact that an iterative pricing scheme similar to the one
in [29] is required to satisfy all three criteria in Table I is
an interesting result. This can be attributed to the designer
having less leverage (no explicit resource allocation) in pricing
mechanisms compared to auction-based ones.

There are many impossibility results in the mechanism
design literature [15]–[18]. The framework presented in this
paper does not actually contradict these results for in many
cases analyzed one of the criteria in Table I is achieved only
approximately. Similar approximations are quite common in
game theory literature, e.g.ε-NE. Hence, such relaxations are
part of the constructive approach adopted here, and show its
value.

We present next a brief survey of the literature on auctions,
pricing, and mechanism design in general.

Literature Review

Auctions and Pricing in Games:The book [30] provides a
good overview of a variety of topics ranging from mechanism
design, inefficiency of the equilibria, preference-compatibility
issues and certain types of auctions. Lazar and Semret [8] have
shown that a certain form of the Nash equilibrium holds when
the progressive second price auction is applied by independent
sellers on each link of a network with arbitrary topology.

Wu et al. [28] have proposed a repeated spectrum sharing
game with cheat-proof strategies. By using the punishment-
based repeated game, users get the incentive to share the
spectrum in a cooperative way; and through mechanism-
design-based and statistics-based approaches, user honesty is
further enforced. Sengupta and Chaterjee [31] have presented
an economic framework that can be used to guide the dynamic
spectrum allocation process and the service pricing mecha-
nisms that the providers can use. They have demonstrated
how pricing can be used as an effective tool for providing
incentives to the providers to upgrade their network resources
and offer better services. Keon and Anandalingam [32] have
formulated the optimal pricing problem as a nonlinear integer
expected revenue optimization problem. They simultaneously
solve for prices and the resource allocations necessary to
provide connections with guaranteed QoS. Maille and Tuffin
[33] have analyzed a multi-bid auction scheme where users
compete for bandwidth at a link by submitting e.g. amount
of bandwidth asked, associated unit price so that the link
allocates the bandwidth and computes the charge according
to the second price principle. In this case, the backbone
network is overprovisioned and the access networks have a tree
structure. The works [34]–[36] have discussed other interesting
approaches in relation to auctions and bidding algorithms.

Strategy Proofness and Efficiency:The property ofstrategy-
proofnessis a fairly restrictive property. When it is combined
with the property ofefficiency, this often leads to special
solutions. Hurwicz [16] has shown that there is nostrategy-
proof, efficientand individually rational mechanism in2 user
2 resource pure exchange economy. Dasgupta et al. [17] have
attempted to replaceindividual rationality in Hurwicz’s result
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with a weaker axiom ofnon–dictatorship. Ameliorating upon
both results, Zhou [18] has established an impossibility result
that there is nostrategy-proof, efficient and non–dictatorial
mechanism in2 user m resource (m ≥ 2) pure exchange
economies. He conjectures that there are nostrategy-proof,
efficientandnon–inversely dictatorialmechanisms in the case
of 3 or more users. In [37], Zhou’s conjecture has been
examined and a new class ofstrategy-proof and efficient
mechanisms in the case of four or more users (operators) are
discovered.

Mechanism Design in Wireless Networks:Huiping and
Junde [38] have proposed astrategy-prooftrust management
system in the context of wireless ad-hoc networks. This system
is preference-compatible in which nodes can honestly report
trust evidence and truthfully compute and broadcast trust value
of themselves and other nodes. Pal and Tardos [39] have devel-
oped a general method for turning a primal-dual algorithm into
a groupstrategy-proofcost-sharing mechanism. The method
was used to design approximately budget-balanced cost shar-
ing mechanisms for two NP-complete problems: metric facility
location, and single source rent-or-buy network design. Both
mechanisms are competitive, groupstrategy-proofand recover
a constant fraction of the cost. The works [40], [41] have
presented a game theoretic framework for truthful broadcast
protocol andstrategy-proofpricing mechanism. Guanxiang et
al. [42] have proposed an auction-based admission control and
pricing mechanism for priority services, where higher priority
services are allocated to the users who are more sensitive to
delay, and each user pays a congestion fee for the external
effect caused by their participation. The mechanism is proved
to be strategy-proof and efficient. Wang and Li [43] have
addressed the issue of user cooperation in selfish and rational
wireless networks using an incentive approach. They have
presented astrategy-proofpricing mechanism for the unicast
problem and given a time optimal method to compute the pay-
ment in a centralized manner and discussed implementation of
the algorithm in a distributed manner. In addition, they have
presented a truthful mechanism when a node only colludes
with its neighbors. Garg et al. [44], [45] have provided a
tutorial on mechanism design and attempted to apply it to
various concepts in engineering. Huang et al. [22], [46] have
utilized SIR and power auctions to allocate resources in a
wireless scenario and presented an asynchronous distributed
algorithm for updating power levels and prices to characterize
convergence using supermodular game theory. Wu et al. [28]
have proposed a repeated spectrum sharing game with cheat-
proof strategies. They have proposed specific cooperation
rules based on maximum total throughout and proportional
fairness criteria. Sharma and Teneketzis [47] have presented a
decentralized algorithm to allocated transmission powers, such
that the algorithm takes into account the externality generated
to the other users, satisfies the informational constraintsof the
system, and overcomes the inefficiency of pricing mechanisms.

Interference Coupling:An axiomatic approach to inter-
ference functions has been proposed by Yates in [21] with
extensions in [48], [49]. The Yates framework ofstandard
interference functionsis general enough to incorporate cross-
layer effects and it serves as a theoretical basis for a variety

of algorithms. Certain examples include: beamforming [50],
CDMA [51], base station assignment, robust design and net-
working [20]. The framework can be used to combine power
control and adaptive receiver strategies. Certain examples,
where this has been successfully achieved are as follows. In
[52] it has been proposed to incorporate admission control
to avoid unfavorable interference scenarios. In [53] the QoS
requirements have been adapted to certain network conditions.
In [54] a power control algorithm using fixed-point iterations
has been proposed for a modified cost function, which permits
control of convergence behavior by adjusting fixed weighting
parameters.

VI. CONCLUSIONS

An unified framework is presented for developing mecha-
nisms such as auctions and pricing schemes, which is appli-
cable to a fairly general class of strategic (noncooperative)
games on networked systems. It has been shown that although
the participating players of these mechanisms are selfish, the
outcome is optimal with respect to a global criterion (e.g.
maximizing a social welfare function), preference-compatible,
and strategy-proof. The mechanism designer achieves these
objectives by imposing rules and prices to the players. In
auction-based mechanisms the designer explicitly allocates the
resources based on bids of the participants in addition to set-
ting prices. In pricing mechanism, however, global objectives
are enforced by only charging the players for the resources
they used. The unified framework as well as its information
structures are illustrated through specific example resource
allocation problems from wireless and wired networks.

The presented mechanism design framework can be ex-
tended in multiple directions. One immediate extension is
multiple decision variables. A related but more challenging
extension is multi-criteria decision making, where preferences
are not simply expressed through scalar-valued utility or
objective functions. Some of the other open research directions
follow directly from relaxing the assumptions in Section II-A.
Improving the robustness of the incentive mechanisms against
malicious units who do not follow the rules and detection of
such misbehavior is of both practical and theoretical interest.
In parallel, the relaxation of the assumption on designer’s
honesty leads to similarly interesting questions such as how
can a unit detect and respond to misbehavior (e.g. unfairness)
of the designer. Additional future research directions include
a more precise quantification of asymptotic approximationsin
the paper and analysis of networking effects between players.
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