
Chapter 5
Distributed Optimization and Games:
a Tutorial Overview

Bo Yang and Mikael Johansson

Abstract This chapter provides a tutorial overview of distributed optimization and
game theory for decision-making in networked systems. We discuss properties of
first-order methods for smooth and non-smooth convex optimization, and review
mathematical decomposition techniques. A model of networked decision-making is
introduced in which a communication structure is enforced that determines which
nodes are allowed to coordinate with each other, and several recent techniques for
solving such problems are reviewed. We then continue to study the impact of non-
cooperative games, in which no communication and coordination are enforced. Spe-
cial attention is given to existence and uniqueness of Nash equilibria, as well as the
efficiency loss in not coordinating nodes. Finally, we discuss methods for studying
the dynamics of distributed optimization algorithms in continuous time.

5.1 Introduction

We are interested in optimization algorithms that can be distributed across many
decision-makers. The classical approach to distributed optimization has been de-
composition: based on the specific structure of the objective function and con-
straints, the problem is decomposed into a number of subproblems. These sub-
problems can be solved independently, but typically require a coordinator to ensure
that the local decisions converge to the global optimum; see Figure 5.1. Note how
the problem structure imposes a certain computation and communication structure
among the individual decision-makers.

Bo Yang
Department of Automation, Shanghai Jiao Tong University, China, e-mail: bo.yang@sjtu.
edu.cn

Mikael Johansson
School of Electrical Engineering and ACCESS Linnaeus Center e-mail: mikaelj@ee.kth.se

159

160 Bo Yang and Mikael Johansson

Coordinator

Centralized Decomposition Networked optimization Non-cooperative game

Fig. 5.1 Schematic illustration of centralized optimization, decomposition, networked optimiza-
tion and non-cooperative optimization

In many emerging applications of distributed optimization, however, the situa-
tion is the reverse: the communication and computation structure is given and the
implementation of a centralized coordinator is undesirable or infeasible. One exam-
ple is systems where nodes can only coordinate their decisions with their immediate
neighbors. In this case, we are restricted to use optimization algorithms that re-
spect the communication structure; see Figure 5.1. In some applications, it is desir-
able to avoid coordination altogether, either because it is unlikely that nodes would
actually cooperate, or as a way to eliminate complex coordination protocols and
associated traffic overhead, see Figure 5.1. We will consider all the three classes
of distributed optimization techniques in this chapter: decomposition, networked-
optimization, and non-cooperative games. Although we do not make any restrictions
on the computational model, it is good to note that often we will not have access to
a closed-form mathematical expression for the per-node objective functions. Rather,
these can only be evaluated by applying our best current decision to an underlying
engineering system and observe its performance. We will hence also investigate the
consequences of having a real system acting as oracle for our optimization algo-
rithm.

This chapter is organized as follows: we first discuss gradient and subgradient
method for convex optimization. Although these algorithms do not have the best
theoretical properties, they are easy to implement and surprisingly robust to noise
and errors. We then proceed to study mathematical decomposition techniques, fo-
cusing primarily on dual and primal decomposition. Next, we focus on networked
optimization problems where an underlying communication graph dictates which
nodes can coordinate with each other. Our final methodological discussion concerns
game theory. Finally, the chapter is concluded by methods for studying the dynamics
of optimization algorithms.

5.2 Convex Optimization Using First-order Methods

We consider optimization problem on the form

5 Distributed Optimization and Games: a Tutorial Overview 161

minimize f0(x)

subject to x ∈ X
(5.1)

Here x ∈ Rn is the vector of decision variables that must belong to the feasible set
X and f0 is the convex objective function that we would like to minimize. We will
assume that X is closed, convex and non-empty and that dom f ⊆ X . It is sometimes
useful to characterize the constraint set explicitly. We then use the notation

minimize f0(x)

subject to fi(x)≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

(5.2)

Hence, the feasible set is the set of x that satisfies the constraint equations, X =
{x | fi(x) ≤ 0, hi(x) = 0}. Note that for X to be convex, fi(x) have to be convex
and hi(x) must be affine functions of x. There is a vast literature on methods for
solving convex optimization problem; some good starting points include the text
books [10, 5, 49, 53] and slightly more advanced text are [57, 24]. In recent years,
interior-point methods have become the method of choice for solving large-scale
convex programming, due to their attractive theoretical properties and strong prac-
tical performance. However, our focus is different: we look for methods that can be
distributed across many nodes. In this case, first order (gradient) methods are easier
to apply and will be the central workhorse throughout this chapter.

5.2.1 Gradient Methods for Smooth Problems

Let us start with the most basic problem of minimizing a smooth convex function
without constraints, i.e.

minimize f0(x)

The gradient method then takes the form

x(t+1) = x(t)−α
(t)

∇ f0(x(t)) (5.3)

i.e. new iterates are computed by adjusting the current iterate in the direction of the
negative gradient. In its most basic form the step size is constant, i.e. α(t) = α , and
convergence is guaranteed using the following typical result.

Proposition 5.1. Assume that f0(x) is a convex function with dom f0 = Rn whose
gradient is Lipschitz continuous with constant L > 0, i.e.

‖∇ f0(x)−∇ f0(y)‖2 ≤ L‖x− y‖2 ∀x,y

162 Bo Yang and Mikael Johansson

Assume that f0 has finite optimal value f ?0 with minimizer x?. Let {x(t)} be a se-
quence generated by the gradient iteration (5.3) with a constant stepsize α(t) = α

satisfying 0 < α ≤ 1/L. Then

f0(x(t))− f ?0 ≤
1

2αt
‖x?− x(0)‖2

2

This result tells us several things. First, the gradient iteration improves the objec-
tive function value in each step. Second, the iterates converge asymptotically to the
optimum. Third, ε accuracy can be achieved in O(1/ε) iterations for any continu-
ously differentiable function with Lipschitz continuous gradient.

Practical performance can be improved by time-varying step sizes, either found
via line search in each iteration or predetermined (“open-loop”). Common open-
loop step-size sequences include the square summable but not summable,

∞

∑
t=1

α
(t) = ∞,

∞

∑
t=1

(α(t))2 < ∞ (5.4)

such as α(t) = a/(b+ t) for a > 0,b≥ 0, or diminishing stepsizes

∞

∑
t=1

α
(t) = ∞, lim

t→∞
α
(t) = 0 (5.5)

such as α(t) = a/
√

t for a > 0. However, the complexity of the method is not im-
proved but O(1/ε) iterations are still needed to achieve ε accuracy.

An important performance measure of optimization algorithms is their conver-
gence rate. If we assume that f0(x) is strongly convex, i.e. that there exist a positive
constant l such that

l‖x− x?‖2
2 ≤ f0(x− x?)

and that f0 is twice continuously differentiable with Lipschitz-continuous gradient.
Then, in a neighborhood of x? where f can be approximated as

f0(x)≈ f0(x?)+ f ′0(x)(x− x?)+ f ′′0 ‖x− x?‖2
2

one can show that the distance between optimal point and the iterates produced by
the gradient method decreases geometrically

‖x(t)− x?‖ ≤ cqt

for some positive constants c and q with q < 1. In the optimization literature, one
then says that the method converges linearly, since the distance to the optimal set
in iteration t is a linear function of the distance to the optimal set in iteration t−1.
The convergence rate q of the basic gradient method can be improved by multi-step
methods. One of the first such method was the heavy-ball method due to Polyak:

5 Distributed Optimization and Games: a Tutorial Overview 163

x(t+1) = x(t)−α
(t)

∇ f0(x(t))+β
(t)(x(t)− x(t−1)) (5.6)

The following result reveals the optimal constant step-size parameters α and β and
quantifies the speed-up compared to the classical gradient iteration [53].

Proposition 5.2. Let x? be a nonsingular minimum point of f0(x) : Rn 7→ R and
assume that f0 is twice continuously differentiable and satisfies

lIn � f ′′0 (x
?)≤ LIn

Then, we can find and ε > 0 such that for any x(0),x(1) with ‖x(0)− x?‖2 ≤ ε and
‖x(1)−x?‖2 ≤ ε , both the gradient and the heavy-ball method produce iterates that
converge to x? with geometric progression

‖x(t)− x?‖ ≤ c(δ)(q+δ)t , 0≤ q < 1, 0 < δ < 1−q

For the gradient method, the smallest achievable value of q is (L− l)/(L + l)
obtained for α(t) = 2/(L + l). For the heavy-ball method, the smallest achiev-
able value of q is (

√
L−
√

l)/(
√

L +
√

l) obtained for the step size parameters
α(t) = 4/(

√
L+
√

l)2, β (t) = (
√

L−
√

l)2/(
√

L+
√

l)2.

If the problem is ill-conditioned, i.e. if L/l is large, then heavy-ball improves the
value of q by roughly a factor of

√
L/l. Since multi-step methods can improve the

convergence rate of the gradient iteration, it is interesting to see if also the com-
plexity can be improved from O(1/ε) to the theoretical lower bound O(1/

√
ε). The

answer to this question was given by Nesterov [47], who constructed a family of
multi-step methods on the form

x(t) = x̂(t−1)−α(t)∇ f0(x̂(t−1))

x̂(t) = x(t)+β (t)(x(t)− x(t−1))

(5.7)

For appropriate choices of α(t) and β (t), these methods have complexity O(1/
√

ε)
and are thus order optimal. In most cases, α(t) and β (t) are time-varying, which
sometimes makes it inconvenient to use them in distributed optimization, but when
f0 is strongly convex, the constant step-sizes α(t)= 1/L and β (t)=(

√
L−
√

l)/(
√

L+√
l) also yield an optimal scheme.
The gradient methods can also be extended to deal with problems with con-

straints. In this case, one typically uses projected gradient methods,

x(t+1) = PX{x(t)−α
(t)

∇ f0(x(t))} (5.8)

where PX{x} denotes the (Euclidean) projection of x onto the constraint set X . Sim-
ilar convergence results hold as for the unprojected gradient method (see, e.g., [5]).

Example 5.1. To get a feel for the different gradient methods introduced above, con-
sider the problem of minimizing

164 Bo Yang and Mikael Johansson

f0(x) =
n

∑
k=1

k2 x2
k

2

Since the Lipschitz constant equals n2, the gradient method uses α(t) = 1/(n+1)2;
the heavy-ball method uses α(t) = 4/(n+ 1)2,β (t) = (n− 1)2/(n+ 1)2, and Nes-
terov’s method uses the updates above with α(t) = 1/n. The figures below show
the evolution objective function for n = 1 (left) and n = 7 (right). We can notice
several things: first, the heavy-ball method is perfectly tuned towards a second-
order quadratic function and has the best convergence rate for n = 2 and Nesterov’s
method does not show any advantage over the gradient scheme. Note how Nes-
terov’s method is not a descent method as the objective function sometimes in-
creases. Moving to n = 7 we see that the asymptotic convergence rate of the heavy-
ball method is still superior, but that is too aggressive initially. The improvement of
Nesterov’s scheme compared to the ordinary gradient method is now significantly
improved.

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

Iteration count

O
b

je
c
ti
v
e

Gradient descent

Heavy−ball

Nesterov

0 20 40 60 80 100
10

−10

10
−5

10
0

10
5

Iteration count

O
b

je
c
ti
v
e

Gradient descent

Heavy−ball

Nesterov

Fig. 5.2 Comparison of ordinary gradient descent, the heavy-ball method, and Nesterov’s scheme

5.2.2 Subgradient Methods for Non-smooth Problems

In many situations when we do distributed optimization, we will need to work with
objective functions that are not smooth. One natural extension of the gradient of a
convex function is the concept of a subgradient. Like the gradient, the subgradient
of a convex function is a global underestimator, i.e.

Definition 5.1. A vector g ∈ Rn is a subgradient of f at x if

f (y)≥ f (x)+gT (y− x) for all y ∈ dom f

The set of all g satisfying the inequality is called the subdifferential of f at x and
denoted ∂ f (x).

5 Distributed Optimization and Games: a Tutorial Overview 165

The subgradient method for unconstrained minimization of a non-smooth convex
function now takes the form

x(t+1) = x(t)−α
(t)g(t) (5.9)

where g(t) ∈ ∂ f (x(t)), and the result corresponding to Proposition 5.1 reads

Proposition 5.3. Assume that f0(x) is a convex function with dom f0 = Rn and that
f0 is Lipschitz continuous with constant L > 0, i.e.

‖ f0(x)− f0(y)‖2 ≤ L‖x− y‖2 ∀x,y

Assume that f0 has finite optimal value f ?0 with minimizer x?. Let {x(t)} be a se-
quence of generated by the subgradient iteration (5.9) with a constant stepsize
α(t) = α . Then

min
0≤k≤t

f0(x(k))− f ?0 ≤
‖x?− x(0)‖2

2 + tα2L2

2αt

There are several important differences between this result and the corresponding
result for the gradient method: the analysis only establishes properties of the best it-
erate found so far and says nothing about the most recent iterate. In fact, the subgra-
dient method is not a descent method and the objective function typically does not
improve in each iteration Moreover, under fixed stepsize even the best iterate does
not converge to the optimum when t→∞: all we can say is that liminft→∞ f0(x(t)) is
approximately L2α/2 suboptimal. If we change from constant to divergent stepsize
sequences (5.4) or (5.5), then liminft→∞ f0(x(t))→ f ?0 . It is possible to show that
the subgradient method can achieve ε-convergence in O(1/ε2) iterations, which is
considerably slower than the gradient methods (see, e.g. [62]). Only recently, Nes-
terov has demonstrated how smoothing techniques can be applied to non-smooth
optimization to recover the O(1/ε) complexity of the basic gradient method [48].

It is possible to make slightly stronger statements about the subgradient method
by considering the Cesàro averages

x̃(t) =
∑

t
k=0 α(k)x(k)

∑
t
k=0 α(k)

Under the same conditions as Proposition 5.3, if x(t) are generated by the subgradi-
ent iteration (5.9) with a constant stepsize α(k) = α , then

f0(x̃(t))− f ?0 ≤
‖x(0)− x?‖2

2 + tα2L2

2αt

This inequality establishes that limt→∞ f0(x̃(t)) ≤ f ?+αL2/2. Similarly, the corre-
sponding analysis for divergent step-size sequences (5.4) or (5.5) establishes that
the Cesàro averages converge asymptotically to the optimal set.

166 Bo Yang and Mikael Johansson

As for the gradient method, the subgradient method can be extended to handle
constrained minimization by projecting the iterates onto the constraint set. The pro-
jected subgradient method takes the form

x(t+1) = PX

{
x(t)−α

(t)g(t)
}

Again, very convergence results similar to those of the (unprojected) subgradient
method can be established also for the projected subgradient method [62].

5.2.3 Incremental Subgradient Methods

In many applications, we will encounter objective functions on the form

f0(x) =
N

∑
i=1

f0i(x)

where each component f0i can be evaluated in parallel (on different machines, or by
different decision-makers). The projected subgradient method

x(t+1) = PX

{
x(t)−α

(t)
N

∑
i=1

g(t)0i

}

would need to collect all the subgradients g0i of the individual objective function
components f0i at the current iterate x(t) to perform an iteration. In contrast, incre-
mental subgradient methods cycle through the components and make incremental
changes of the iterate in the direction of the negative subgradient of each component,

x(t)i = PX

{
x(t)i−1−α(t)g(t)0i

}
, i = 1, . . . ,N

x(t+1)
0 = x(t)N

(5.10)

Here x(t)i is the iterate computed by accounting for component i, and the subgradient
is evaluated at the iterate produced by component i−1 at the same iteration, i.e.

g(t)0i ∈ ∂ f0i(x
(t)
i−1)

The first line of (5.10) describes how the inner iterations cycle through components,
one-by-one in a given order, and make incremental updates in the iterate. The sec-
ond line describes how a new round of iterations are started by passing the iterate
produced by the last component to the first. By analyzing how the iterates behave
at the beginning of each iteration round, very similar convergence results as for the
standard subgradient method can be obtained

5 Distributed Optimization and Games: a Tutorial Overview 167

Proposition 5.4. Assume that f0i(x) are convex functions with X ⊆ dom f0i and that
f0i are Lipschitz continuous with constants Li > 0, i.e.

‖ f0i(x)− f0i(y)‖2 ≤ Li‖x− y‖2 ∀x,y

Assume that f0 = ∑i f0i has finite optimal value f ?0 with minimizer x?. Let {x(t)}
be a sequence of generated by the incremental subgradient iteration (5.10) with a
constant stepsize α(t) = α . Then

min
0≤k≤t

f0(x
(k)
0)− f ?0 ≤

‖x?− x(0)0 ‖2
2 + tα2L2

2αt

where L = ∑i Li.

Analysis for diminishing step-size rules can be found in, e.g. [45]. Several varia-
tions, including methods where a new ordering of the components are chosen at
random at the beginning of each outer iterations, have also been proposed [45]. It
turns out that the expected convergence rate is better for the randomized method
than the deterministic ones that uses the same fixed update order throughout.

Example 5.2. To illustrate the subgradient and incremental subgradient methods,
consider the problem of minimizing

f0(x) =
n

∑
k=1

k|xk|

Since the f0 has Lipschitz constant n, targeting an accuracy of ε gives a constant
step-size of α = 2ε/n2. We consider n = 4 and ε = 0.1 which gives α = 1/80. Fig-
ure 5.3 shows how the objective function evolves for fixed (dark color) and dimin-
ishing (light color) stepsize α(t) = 1/t . In both cases, the iterates oscillate around
the optimum: for fixed stepsize, there is a sustained oscillation with fixed ampli-
tude (below the target accuracy, as predicted by theory); for diminishing stepsize,
the magnitude of the oscillations decreases (due to the decreasing stepsize of the di-
vergent step-size rules) and the best function value found during the iterations will
asymptotically converge to the optimum.

5.3 Decomposition Techniques

The basic idea of decomposition techniques is to exploit problem structure to di-
vide a complex optimization problem into subproblems that are easier to solve. The
subproblems are then coordinated towards the globally optimal solution by the (re-
peated) solution of a master problem, see Figure 5.1.

One can essentially trace two different motivations for using decomposition in
the mathematical programming literature. One line of work is motivated by the need
to solve very large-scale optimization problems, e.g. [15, 4, 37, 21, 6]. Another line

168 Bo Yang and Mikael Johansson

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

Iteration count

O
b

je
c
ti
v
e

Fixed stepsize

Diminishing stepsize

Fig. 5.3 Comparison of subgradient method for fixed and diminishing stepsizes

of work is motivated by decentralization of decision-making in organizations or en-
gineering systems, e.g. [3, 65, 14, 25]. In the first line of work, subproblems are typ-
ically easier to solve simply because they are smaller (in terms of decision variables
or constraints) or because they have a special structure that can be exploited. In the
other line of work, it is not the computations that complicate the original problem
but the fact that the overall problem combines variables (decisions) that belong to
separate components in an underlying system. Implementation advantages are then
obtained if we can find a problem decomposition that places the main computations
within individual components and restricts the coordination overhead among these.

In this section, we will review the basic primal and dual decomposition tech-
niques and some variations.

5.3.1 Dual Decomposition

From a large-scale optimization perspective, the basic idea with dual decomposition
is to exploit the structure of the dual optimization problem to improve computa-
tional efficiency. The theoretical foundation for this is one of Lagrangean duality.
Associated to the optimization problem (5.2) is the Lagrangean

L(x,λ ,µ) = f0(x)+∑
i

λi fi(x)+∑
i

µihi(x)

Here, the constraints of the original problem have been relaxed and are accounted
for by adding a weighted sum of the constraint functions to the objective. Note that
if λ � 0 and x ∈ X , then L(x,λ ,µ)≤ f0(x), and that the dual function

q(λ ,µ) = inf
x

L(x,λ ,µ) (5.11)

is a lower bound to the optimal value of the original problem. It is hence natural to
try to maximize this lower bound, which leads to the dual problem

5 Distributed Optimization and Games: a Tutorial Overview 169

maximize q(λ ,µ)

subject to λ � 0
(5.12)

The fact that the optimal value of this program is always a lower bound to the orig-
inal problem is called weak duality. For convex problems, which is the focus of
this chapter, relatively mild conditions guarantee that the optimal value of the dual
problem coincides with the optimal value of the (original) primal problem. We then
say that strong duality holds. Conditions for strong duality are known as constraint
qualification, and the most well-known result is due to Slater.

Proposition 5.5. Consider the convex optimization problem (5.2). If there exists a
strictly feasible point x̌ satisfying

fi(x̌)< 0 i = 1, . . . ,m
hi(x̌) = 0 i = 1, . . . , p

then strong duality holds.

For alternative constraint qualification theorems and stronger version of Slater’s
conditions, see e.g. [5].

To solve the dual problem using a first-order method, we need a gradient or sub-
gradient of the dual function at the current dual variables (λ ,µ). To this end, the
following result is useful.

Proposition 5.6. The dual function (5.11) is concave in λ and µ , and a subgradient
of −q(λ ,µ) at (λ ,µ) is given by

−
(

f1(x?(λ ,µ)), · · · , fm(x?(λ ,µ)), h1(x?(λ ,µ)), · · · , hp(x?(λ ,µ))
)

where x?(λ ,µ) = arg infx L(x,λ ,µ). If f0(x) is strictly convex in all variables, then
the dual function is continuously differentiable.

This result tells us that the dual problem is always convex (in fact, it is convex even
if the original problem is not), and hence can be solved using gradient or subgradient
techniques depending on if the original problem is strictly convex or not.

As we already mentioned, the basic idea of dual decomposition is to explore
structure in the dual function to improve computational efficiency and/or ensure
decentralization of decisions. The following two examples, taken from [9], illustrate
the ideas.

Example 5.3 (Dual decomposition of coupling constraint). To illustrate the dual de-
composition technique, consider the following problem

minimize ϕ1(x1)+ϕ2(x2)

subject to x1 + x2 ≤ xtot

170 Bo Yang and Mikael Johansson

If it were not for the coupling constraint on the total resource, the problem would be
separable and the optimal allocations x?1 and x?2 could easily be found. Introducing a
dual variable λ for the total resource constraint, we find the Lagrangian

L(x,λ) = ϕ1(x1)+ϕ2(x2)+λ (x1 + x2−tot) =

= ϕ1(x1)+λx1 +ϕ2(x2)+λx2−λxtot

which is separable in x1 and x2. Hence, so is the dual

q(λ) = inf
x

L(x,λ) = inf
x1
{ϕ1(x1)+λx1

︸ ︷︷ ︸
}

q1(λ)

+ inf
x2
{ϕ2(x2)+λx2

︸ ︷︷ ︸
}

q2(λ)

−λxtot

= q1(λ)+q2(λ)−λxtot

The dual function can thus be evaluated in parallel, by letting one decision-maker
find the x1 that minimizes ϕ1(x1)+λx1 and another decision-maker find the x2 that
minimizes ϕ2(x2)+λx2, and then compute the sum above. Coordination of the two
decision-makers is done by adjusting λ to maximize g(λ) (i.e. to solve the dual
problem), e.g. using the subgradient iteration

λ
(t+1) = max

{
λ
(t)+α

(t)
(

xtot− x?1(λ
(t))− x?2(λ

(t))
)
,0
}

Convergence of the Lagrange multipliers (and hence of the dual function) is guar-
anteed using the classical results on projected gradient and subgradient iterations.

The above example also illustrates why dual decomposition is sometimes re-
ferred to as price-directive decomposition. Interpreting the dual variable as the unit
price for the common resource, the system is directed towards its optimal opera-
tion by appropriate pricing of the common resource. Constraints on the common
resource are not explicitly enforced, but the demand is asymptotically aligned with
the supply using a simple pricing strategy: increase the prices if the resource is in
shortage and decrease the price if the resource is in excess. To exercise this pricing
interpretation further, and to be able to make a link to the game-theoretic methods
descried later in this chapter, we consider the following application to rate allocation
in communication networks [30].

Example 5.4. Consider a communication system where N flows are routed through
the same bottleneck link with capacity c. To find how to optimally allocate the avail-
able bandwidth to the flows, consider the following optimization problem

maximizex ∑i ui (xi)

subject to ∑i xi ≤ c

xi ≥ 0, i = 1, · · · ,N
, (5.13)

5 Distributed Optimization and Games: a Tutorial Overview 171

Here, xi is the rate allocated to flow i and the constraints encode that rates are
positive and the total communication rate cannot exceed capacity. Associated to
each flow i is a concave, strictly increasing, and continuously differentiable util-
ity function with domain xi ≥ 0.. The utility function ui (·) is used to represent the
degree of satisfaction when user i is allocated rate xi. Concavity here corresponds
to the assumption of elastic traffic. Note that (5.13) is a convex optimization prob-
lem that can be put into our standard form by replacing maximize ∑i ui(xi) with
minimize ∑i−ui(xi) and introducing fi (xi) = −ui (xi). Hence, the problem (5.13)
can be solved by dual decomposition with Lagrange multiplier λ partial Lagrangian

L(x,λ) =

{
∑

i
−ui (xi)+λ

(
∑

i
xi− c

)
| xi ≥ 0, i = 1, . . . ,N

}
.

In the dual decomposition framework, each user is charged a common price λ per
unit flow and sets its rate to maximize ui(xi)−λxi. One could also imagine alter-
native mechanisms for allocating the capacity. One such mechanism is biding: each
user i submits a bid bi ≥ 0 of the amount of money that the user is willing to pay to
get a share of the bandwidth. Each user is charged the same price µ per unit flow,
leading to a rate allocation of xi = bi/µ . In this case, given a price µ ≥ 0, user i acts
to maximize the following payoff function over bi ≥ 0 :

wi (bi,µ) = ui

(
bi

µ

)
−bi. (5.14)

It was shown in [30] that if the link manager sets price to ”clear the market”, i.e.

µ =
∑i bi

c
. (5.15)

there is a pair (b,µ) solving (5.14)− (5.15) , which also solves (5.13). In the above
situation, user is assumed to be a price taker, i.e. the payoff function wi (5.14) takes
the price µ as a fixed parameter. Price-anticipating users will realize that µ is set
according to (5.15). This makes the model a game between N users, which will be
discussed more detailed in Section 5.5.2.3

The next example illustrates how dual decomposition can be used when variables
couple the objective functions in an otherwise decoupled optimization problem.

Example 5.5 (Dual decomposition of coupling variable). The dual decomposition
technique can also be used to decouple problems in which the same decision variable
appears in several objective functions. One of the simplest instances is

minimize ϕ1(x)+ϕ2(x)

To decouple the problem, introduce x1 and x2 to reflect the two decision-makers’
respective view of the optimal variable x, i.e. consider the equivalent problem

172 Bo Yang and Mikael Johansson

minimize ϕ1(x1)+ϕ2(x1)

subject to x1 = x2

The problem now has the same form as the previous example, and the same simple
steps yield an algorithm where decision-makers optimize there individual decision
variables, and the optimal value is found by adjusting the “consistency price” µ .

A drawback with dual decomposition is that a solution to the dual problem (5.12),
even under strong duality, only provides the optimal value of the primal problem
(5.2) but not necessarily the optimal primal decision variables. For non-optimal val-
ues of λ and µ , the primal iterates x?(λ ,µ) = arg infx L(x,λ ,µ) are typically not
even feasible to the original problem. Hence, if constraint violations cannot be tol-
erated, the dual decomposition method needs to be complemented by a method for
recovering primal feasible solutions. When the dual function is differentiable, the
primal iterates will converge to their optimal values as the dual variables approach
optimality. However, as illustrated next, the primal iterates typically do not converge
when the dual function is non-smooth.

Example 5.6. Consider the following specific instance of the problem in Exam-
ple 5.3

minimize 2|x1−2|+4|x2−4|
subject to x1 + x2 = 5

0≤ x1 ≤ 10, 0≤ x2 ≤ 10

Clearly, the optimal solution is x?1 = 1,x?2 = 4 with optimal value f ? = 2. The full
light blue lines in Figure 5.2 (left) show the evolution of the dual function for the
step-size rule α(t) = 1/(1+ t). Note that the dual function is a lower bound to the
optimal value and that the dual problem converges to the optimal value. However,
as revealed in Figure 5.2(right), the primal variables do not converge but oscillate,
in this case, between their minimal value and unconstrained optimum.

For comparison, we change the objective function to

2(x1−2)2 +4(x2−4)2

which is smooth and strictly convex. The optimal solution is now x?1 = 4/3, x?2 =
11/3 and the optimal value is f ? = 4/3. The dashed lines in Figure 5.2(left) show
how the dual objective converges. In contrast to the non-smooth example, the iterates
now also converge to their optimal values, see Figure 5.2(right).

Techniques for recovering primal optimal solutions are developed and reviewed
in [35, 46]. Since differentiability of the dual function gives several advantages,
many techniques have been proposed to ensure dual differentiability. A simple ap-
proach is to regularize the objective function, e.g. to replace f0(x) by f0(x)+ ε‖x‖2

2
for some small positive constant. A more elegant approach is to use proximal opti-
mization or augmented Lagrangian techniques described next.

5 Distributed Optimization and Games: a Tutorial Overview 173

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 5.4 When the dual function is non-smooth, the dual objective (left, full lines) converges while
the primal iterates (right, full lines) do not. When the dual function is differentiable, both objective
and iterates converge asymptotically (dashed lines)

5.3.2 Augmented Lagrangian and Proximal Point Methods

.
The basic idea of the proximal point method is to ensure strict convexity by

introducing an artificial variable y and re-write the original problem (5.1) as

minimize f0(x)+ 1
2c‖x− y‖2

2

subject to x ∈ X , y ∈ Rn
(5.16)

for some positive constant c > 0. This problem can be considered as one in y only:

minimize fc(y)

where fc(y) = infx∈X f0(x)+ 1
2c‖y− x‖2

2

(5.17)

Now, fc(y) is continuously differentiable with

∇ fc(y) =
1
c
(y− x?(y))

where

x?(y) = arg inf
x∈X

f0(x)+
1
2c
‖y− x‖2

2

so the problem is readily solved using the gradient iteration

y(t+1) = y(t)− c∇ fc(y(t)) = x?(y(t))

A related technique is the method of augmented Lagrangians, which is most readily
explained on convex problems with equality constraints

174 Bo Yang and Mikael Johansson

minimize f (x)

subject to Ax = b
(5.18)

We re-write the problem as

minimize f (x)+ 1
2c‖Ax−b‖2

2

subject to Ax = b
(5.19)

introduce multipliers µ for the constraints and form the augmented Lagrangian

La(x,µ) = f (x)+µ
T (Ax−b)+

1
2c
‖Ax−b‖2

2

Now, the method of multipliers is essentially dual decomposition applied to (5.19),
i.e. we run the iterations

x(t+1) = argmin
x

La(x,µ(t))

µ
(t+1) = µ

(t)+ c(Ax(t+1)−b)

It is possible to show that these iterations are equivalent to what would have been
derived using proximal minimization of the dual of (5.18), see e.g. [6, Ch. 3]. Next,
we illustrate how the techniques work on simple problem from Example 5.5.

Example 5.7. Consider the problem from Example 5.5, introduce an auxillary vari-
able y, and re-write the problem as

minimize ϕ1(x1)+ϕ2(x2)

subject to x1 = y

x2 = y

The augmented Lagrangian is thus

La(x,y,µ) = ϕ1(x1)+ϕ2(x2)+µ1(x1− y)+µ2(x2− y)+
1
2c

(
(x1− y)2 +(x2− y)2)

and performing alternating minimization of the primal variables, we find

x(t+1)
i = argmin

z
ϕi(z)+µ

(t)
i z+

1
2c

(z− y)2, i = 1,2

y(t+1) =
x(t+1)

1 + x(t+1)
2

2
− c

µ
(t)
1 +µ

(t)
2

2
µ
(t+1)
i = µ

(t)
i +(x(t+1)

i − y(t+1)), i = 1,2

5 Distributed Optimization and Games: a Tutorial Overview 175

In fact, the iterations can be simplified by noting that at optimality, µ?
1 + µ?

2 = 0
and that if we initialize the multipliers such that µ

(0)
1 + µ

(0)
2 = 0, it will hold that

µ
(t)
1 +µ

(t)
2 = 0 for all t. Thus, the simplified iterations can be written as

x(t+1)
i = argmin

z

{
ϕi(z)+µ

(t)
i z+

1
2c

(z− x(t))2
}
, i = 1,2

µ
(t+1)
i = µ

(t)
i +(x(t+1)

i − x(t+1)), i = 1,2

where x(t) = (x(t)1 + x(t)2)/2.

Although the proximal and augmented Lagrangian techniques are guaranteed to
converge for all values of c, the choice of c influences both the numerical condition-
ing of the subproblems and the converge speed of the method, see [6].

5.3.3 Primal Decomposition

Primal decomposition is also called resource-directive decomposition. Rather than
introducing a pricing scheme for the common resources, the primal decomposition
approach sequentially updates the resource allocation to minimize the global system
objective. Contrary to dual decomposition, the iterates generated by primal decom-
position techniques are always feasible (by construction) and converge asymptoti-
cally to their optimal values.

The theory for primal decomposition is built around the concept of primal func-
tion of an optimization problem. The primal function p(u) of the problem (5.2) is
the optimal value of the perturbed problem

minimize f0(x)

subject to fi(x)≤ ui, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(5.20)

The domain of p is the set of perturbations u for which there is a feasible primal
solution x and, hence, p(u)< ∞. We denote the domain of p by P:

P = {u | p(u)< ∞}

Contrary to the dual function (which is always concave), convexity of the primal
function and its domain requires convexity of the original problem:

Proposition 5.7. Consider the convex optimization problem (5.2) and assume that
p(u)>−∞ for all u ∈ P. Then P is a convex set and p(u) is convex over P.

In order to minimize p(u) we also need to be able to compute (at least) a subgra-
dient. The following characterization is then useful.

176 Bo Yang and Mikael Johansson

Proposition 5.8. Consider the convex optimization problem (5.2) with optimal dual
variables (λ ?,µ?). Then

p(0)≤ p(u)+uT
λ
?

i.e., −λ ? is a subgradient of p at u = 0.

Next, we demonstrate how primal decomposition can be applied to Example 5.3.

Example 5.8. The key trick in applying primal decomposition to a problem with a
complicating constraint such as Example 5.3 is to introduce variables ri that repre-
sent the amount of the common resource allocated to subproblem i and re-write it
as

minimize ϕ1(x1)+ϕ2(x2)

subject to x1 ≤ r1, x2 ≤ r2

r1 + r2 ≤ xtot

For notational simplicity, introduce the constant rtot = xtot and define functions
νi(ri) = inf{ϕi(xi) |xi ≤ ri}. The problem can then be equivalently written as

minimize ∑i νi(ri)

subject to ∑i ri ≤ rtot

(5.21)

Now, from the results on the primal function, νi is a convex, possibly non-smooth
function and a subgradient of νi at ri is given by the optimal dual variable λ ?

i (ri)
associated with the inequality constraint of the primal minimization problem

minimize ϕi(xi)

subject to xi ≤ ri

Hence, (5.21) is a convex optimization problem that can be solved using a projected
subgradient method

r(t+1) = PR{r(t)+α
(t)

λ
?(r(t))}

where r(t) = (r(t)1 , r(t)2), λ ?(r(t)) = (λ ?
1 (r

(t)
1), λ ?

2 (r
(t)
2)) and PR{·} denotes projection

onto the total budget constraint r1 + r2 ≤ rtot.

It is useful to compare the solution mechanisms suggested by primal and dual de-
composition. In primal decomposition, the master problem assigns resources to the
subsystems. The subsystems then optimize their operation to “perform their best”
with the amount of resources they have been assigned (compute the optimal xi and
the associated value of νi(ri) above), and return a Lagrange multiplier vector back

5 Distributed Optimization and Games: a Tutorial Overview 177

to the coordinator. It is well-known from sensitivity theory that the Lagrange mul-
tipliers indicate the potential cost reduction that can be achieved by an additional
amount of resource. In our case, if we assume that ϕi are (in addition to convex)
smooth and decreasing, and ri are scalar variables, then the first-order optimality
conditions yield that λi(ri) =− f ′(ri). In other words, the Lagrange multipliers sig-
nal exactly the amount of cost reduction that a subsystem could generate if it would
obtain a small additional amount of resource. When the master problem updates
the resource allocation via the projected (sub)gradient iteration, it effectively shifts
resources from subsystems with small predicted cost reduction to subsystems with
large predicted cost reduction. The local decisions (iterates xi) taken by nodes are,
by construction, feasible to the original problem.

In the dual decomposition method, on the other hand, the coordinator announces
a dual variable λ which, by similar reasoning as above, can be interpreted as the unit
cost of the common resource. Subsystems then optimize their operation accounting
both for their operational cost (ϕi(xi)) and the resource cost (λxi). The coordinator
then updates the price to align supply and demand: increase the price if the resource
is overbooked and decrease the price otherwise. The iterates are, in general, not
guaranteed to be feasible to the original problem.

5.4 Networked Optimization

With a basic understanding of first-order methods and decomposition techniques,
we are ready to consider networked optimization problems. Contrary to decomposi-
tion techniques, in which the problem structure determines how the original problem
is divided into subproblems, networked optimization problems arise when the com-
munication structure (which decision-makers are allowed to coordinate with each
other) is fixed and the computation structure has to be tailored to match. This class
of optimization algorithms have also been termed multi-user optimization, since
the set-up can be used to model a multi-agent system in which agents cooperate
and exchange information with neighbors to find a globally optimal decision [33].
Although decomposition techniques will turn out to be useful also in this context,
decomposition does not necessarily yield distributed optimization algorithms unless
the master- and sub-problems can be distributed.

To study networked optimization, we consider problems on the form

minimize ∑v∈V fv(xv,θ)

subject to xv ∈ Xv, θ ∈Θ

(5.22)

with an associated communication graph G = (V ,E); see Figure 5.1. The vertices
of the graph represent decision-makers, and the edges encode which agents can
exchange information to coordinate their decisions. Each node has a set of local
(private) decision variables xv. These variables are under exclusive control of node

178 Bo Yang and Mikael Johansson

v and only influences the local loss function fv(xv,θ). The global variables θ , on
the other hand, impact the loss functions of multiple nodes. We focus on convex
problems and assume that the constraint sets Xv and Θ are non-empty, closed and
convex and that the local loss functions fv(xv,θ) are convex in (xv,θ).

We can eliminate the local variables by introducing new loss functions

νv(θ) = inf
xv∈Xv

fv(xv,θ)

and reformulate (5.22) as

minimize ∑v∈V νv(θ)

subject to θ ∈Θ

(5.23)

Clearly, under our assumptions νv : Rn 7→ R are convex but possibly non-smooth.

5.4.1 Networked Optimization Via Dual Decomposition

The most direct approach to networked optimization is dual decomposition. First,
introduce local decision variables θv at each node v ∈ V and rewrite (5.23) as

minimize ∑v∈V νv(θv)

subject to θv = θw ∀(v,w) ∈ E

θv ∈Θ ∀v ∈V

(5.24)

The problem would be separable if it were not for the edge-wise coupling con-
straints. It is thus natural to relax these constraints by dual decomposition. To this
end, introduce multipliers µ(v,w) for all (v,w) ∈ E and form the partial Lagrangean

L(θ ,µ) = {∑
v

νv(θv)+µ(v,w)(θv−θw) | θv ∈Θ}

with associated dual function

g(µ) = inf
θv∈Θv

∑
v

νv(θv)+θv ∑
w
(µ(v,w)−µ(w,v))

Since the problem is equality-constrained, the dual problem is unconstrained and
can be solved using a standard subgradient optimization

µ
(t)
(v,w) = µ

(t)
(v,w)+α

(t)(θ ?
v (µ

(t))−θ
?
w(µ

(t))) (5.25)

where θ ?(µ(t)) = arg infθ L(θ ,µ(t)). The following example illustrates how the
technique applies to a networked least-squares problem.

5 Distributed Optimization and Games: a Tutorial Overview 179

Example 5.9. Consider a networked least-squares problem, where

fv(xv,θ) =
1
2
(θ − zv)

2

Introducing local variables θv and following the procedure outlined above, we find

νv(θv) =
1
2
(θv− zv)

2

In this case, it is also possible to find an explicit expression for θ ?
v (µ

(t)),

θ
?
v (µ

(t)) = zv−∑
w
(µ

(t)
(v,w)−µ

(t)
(w,v))

This expression, together with the iteration (5.25), defines a networked optimization
algorithm that is guaranteed to find the optimal solution, provided that the step-
length sequence {α(t)} is chosen appropriately.

To implement the algorithm, note that each link needs information about θ ?
v and

θ ?
w, i.e. the current version of the local decision variables of the two nodes connected

to the link. To compute these decisions, on the other hand, nodes need to know the
Lagrange multipliers of all links that they are connected to.

Since the optimization problem is strictly convex, the dual function is smooth
we can use a higher-order method to accelerate convergence. We omit the details
here but evaluate both the direct and the accelerated method to a ring network of
N = 100 nodes. Figure 5.5 shows how the methods converge, with a significant
speed-up advantage of the accelerated method.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of iterations

O
b
j
e
c
t
i
v
e

Fig. 5.5 Distributed least-squares: gradient (full) and accelerated gradient (dashed)

180 Bo Yang and Mikael Johansson

While dual decomposition is classical, the first applications to networked opti-
mization (and estimation) in the spirit above the authors are aware of are the work
by Fawal, Georges and Bornard [18] and the one by Rabbat and Nowak [54] (who
also analyze convergence of the method for time-varying graphs). For ease of ex-
position, we have introduced one Lagrange multiplier for every edge in the graph,
but it is possible to only introduce dual variables for a subset of links (as long as the
underlying graph is connected) [60]. Finally, it is also possible to apply alternative
decomposition techniques, such as the augmented Lagrangian method, to networked
optimization [18, 60].

5.4.2 Consensus-subgradient Schemes

In the dual decomposition approach, asymptotic agreement on the global decision
variable is enforced by adjusting Lagrange multipliers. However, agreement among
nodes in a network can be achieved by many different techniques [50, 52, 68], in-
dicating that there could be a rich family of algorithms for networked optimization.
We will consider one such class of algorithms which combines subgradient opti-
mization and consensus algorithms. Although consensus algorithms are described
in depth in other chapters in this book, we will give a brief overview for complete-
ness.

The consensus problem considers the design of protocols that ensure that all
nodes in a network agree on a common quantity. In the area of multi-agent system,
a lot of attention has been focused on conditions where linear iteration on the form

xv(t +1) = xv(t)− ∑
w:(v,w)∈E

W(vw)(xv− xw) (5.26)

converge so that all node variables equal the average of the initial values, i.e.

lim
t→∞

xv(t)→
1
|V |∑v

xv(0)

It is convenient to write the iterations in matrix form:

x(t +1) =Wx(t), (5.27)

where the i-th element of the vector x(t) corresponds to the local value at node i,
xi(t). We make the following assumptions on W .

Assumption 5.1 (Consensus Matrix Properties) The weight matrix W satisfies

5 Distributed Optimization and Games: a Tutorial Overview 181

i) [W]i j = 0, if (i, j) /∈ E and i 6= j,

ii) W1N = 1N , ρ

(
W − 1N1T

N
N

)
< 1,

iii) W =W T ,

where ρ(·) is the spectral radius and 1N ∈ RN is the column vector of all ones.

The first assumption restricts nodes to only communicate with their immediate
neighbors, while iii) encodes the assumption that the underlying graph is undirected
(or that all links are bidirectional) and that the same weight is used in the consen-
sus iterations for both directions of the same link. Finally, the second assumption
ensures asymptotic average consensus:

Lemma 5.1. If the weight matrix W ∈ RN×N is symmetric, then the limit

lim
k→∞

W k =
1N1T

N
N

(5.28)

holds if and only if Assumption 5.1 ii) holds for W.

Proof. See, e.g., [68, Theorem 1].

There are many ways of selecting W to satisfy the above conditions using either
centralized or decentralized information, see e.g. the chapter by Garin and Schenato
in this book or references [50, 8]. We will only present one example, namely the
Metropolis-Hastings scheme [23, 8]:

Lemma 5.2 (Metropolis-Hastings). If the graph G is connected, then W fulfills
Assumption 5.1 if the elements of W are set to

[W]vw =

min{d−1
v ,d−1

w } if (v,w) ∈ E and v 6= w

∑(v,w)∈E max{0,d−1
v −d−1

w } if v = w
0 otherwise.

(5.29)

where dv denotes the degree (number of neighbors) of node v.

Note that the iteration (5.26) is simply a method for distributed computation of
a network-wide average. To make use of the algorithm for networked optimization,
we must first compute the local quantity that should be averaged across nodes and
then execute one or more iterations of the consensus algorithm. As an example,
consider the consensus-subgradient method from [44] and further developed in [27].
The basic idea of this algorithm is to interpret the gradient of the objective function

∂

∂θ
ν(θ) = N

1
N ∑

v
ν
′
v(θ)

as (N times) the average of the gradients of the individual node objective functions.
Hence, for smooth objectives with Θ = Rn it is natural to consider the algorithm

182 Bo Yang and Mikael Johansson

θ
(t+1)
v = ∑

w∈V
[W ϕ]vw

(
θ
(t)
w −α

(t)
ν
′
w(θ

(t)
w)
)

Here, W ϕ denotes that the consensus iteration is performed ϕ times. Hence, every
node v maintains a vector of θv of local variables, and computes a desired next
iterate by accounting only for the local gradient. Nodes then perform consensus
iterations to agree on the next iterate and execute this one. Clearly, if all nodes
start with the equal initial values, θv(0) = θw(0) for all (v,w) ∈ E and we let ϕ →
∞ we recover the classical gradient iteration. More surprisingly, the method still
works when nodes start with different initial values and perform a finite number of
iterations, even when the objective functions are not differentiable and θ is subject
to (convex) constraints. The constrained non-smooth version of algorithm reads

θ
(t+1)
v = PΘ

[
∑
w
[W ϕ]vw

(
θ
(t)
w −α

(t)gw(θ
(t)
w)
)]

, (5.30)

where θ
(0)
v ∈ Θ for all v ∈ V , gv(θ

(t)
v) ∈ ∂ fv(θ

(t)
v), ϕ ∈ N, and [W ϕ]vw denotes

the element of W ϕ in the v-th row and w-th column. Hence, using this scheme,
agents maintain their local variable vector θ

(t)
v and compute a desired next iterate

θ
(t)
v −α(t)gv(θ

(t)
w). They then announce this desired iterate to their neighbors and

update their own decision taking the neighbors desires into account. More specifi-
cally, (5.30) implies that each agent runs ϕ number of consensus iterations with its
neighbors defined by (5.27) to determine its next iterate. The total number of itera-
tions in the algorithm up to step t is therefore tϕ . To give the flavor of the method,
we give the following result

Theorem 5.2. Consider Problem (5.23) with Θ = Rn and assume that ‖gv‖2 ≤ L
for all gv ∈ ∂νv and all v ∈ V . Let {θ̄v(t)}∞

t=0 be the Cesàro averages

θ̃
(t)
v =

∑
t
k=0 α(k)θ

(k)
v

∑
t
k=0 α(k)

of the iterates θ
(t)
v produced by (5.30) with a consensus matrix satisfying Assump-

tion 5.1. Define

γ = ρ

(
W − 11T

N

)

and β (0) such that ‖θ (0)
v −|V |−1

∑w∈V θ
(0)
w ‖ ≤ β (0). Then, under diminishing step-

sizes satisfying α(t+1)/α(t) > µ , if

ϕ ≥ log(µβ (0))− log(4
√
|V |n(β (0)+α(0)L2)

log(γ)

we have that

5 Distributed Optimization and Games: a Tutorial Overview 183

lim
t→∞

ν(θ̃
(t)
v) = ν

?, ∀v ∈ V .

More extensive analysis results for several variants of the method can be found
in [27].

5.4.3 Networked Incremental Subgradient Methods

The use of classical incremental subgradient methods in a networked setting would
suggest a message-passing solution where in each iteration, one node receive a to-
ken that contains the most recent iterate from another node in the network, computes
the next iterate by taking a step in the negative subgradient of its own local objective
function, and then passes the token to another node. A drawback with the incremen-
tal subgradient method is that the analysis assumes that the token is passed around
in a ring (i.e. it performs cyclic rounds in which each component is updated once).

An alternative approach, tailored to the networked setting, was proposed and an-
alyzed in [28]. Here, nodes pass their updated iterate to a random neighbor and the
need for organizing the nodes into an underlying logical ring is removed. The algo-
rithm is shown to converge as long as each component of the objective function is
updated with equal probability. In other words, the token should perform an unbi-
ased random walk on the graph. To design such a random walk, consider a Markov
chain in which each state is associated to a node in the underlying network. To en-
sure that the token is passed only between neighboring nodes, the transition matrix
W must fulfill the sparsity constraint that Wvw = 0 if (v,w) 6∈ E . Furthermore, the
analysis requires that the Markov chain is irreducible, aperiodic, and its stationary
distribution is uniform. It turns out that matrices W constructed using Lemma 5.2
satisfy these assumptions. Now, the algorithm takes the form

θ
(t+1) = PΘ

{
θ
(t)−αgw

}
, (5.31)

where w(t) is the state of Markov Chain in iteration t, α is a fixed step-length pa-
rameter and gw ∈ ∂ fw(θ

(t)
w). The following result establishes its convergence

Proposition 5.9. Let {θ (t)}∞
t=0 be generated by (5.31). With probability 1

liminft→∞ ν

(
θ (t)
)
= ν?, if f ? =−∞

liminft→∞ ν

(
θ (t)
)
≤ ν?+ αL2K

2 , if ν? >−∞.

where K is an upper bound on the second moment of the recurrence time for all
states in the Markov Chain.

Several variations and extensions of the basic method are given in [28], including
stronger results (limsup rather than liminf) for the running average of the iterate that

184 Bo Yang and Mikael Johansson

a specific node sees during the course of the algorithm. The same paper also com-
pares the predicted convergence rates for the networked incremental subgradient
method with the provable convergence for the classical (deterministic or random-
ized) incremental subgradient method on several classes of graphs. Extensions to
time-varying graph topologies and diminishing step-sizes can be found in [55].

5.5 Game Theory in Distributed Optimization

Game theory is typically used to model and counteract selfish behaviors in dis-
tributed systems. However, there are several reasons for us to introduce game the-
ory in this chapter. First, networked optimization usually consists of multiple agents
who can observe and react to their environment. Game theory offers a powerful
tool set to analyze interactions between such intelligent entities. Second, although
network components or agents would like to cooperate, it might be impractical or
impossible to exchange the information required to implement any of the distributed
optimization techniques described so far. It might then be better for agents to op-
timize their local or private objective and react to limited network information. In
these cases, we use non-cooperation to capture limited information. The third rea-
son is that game theory provides a way to predict, analyze or even to improve the
outcome of a non-cooperative interaction, e.g. the notation of equilibrium.

5.5.1 Basics of Game Theory

We will mainly focus on the discussion of non-cooperative game model with com-
plete information1 and finite number of players. Formally, a normal or strategic
form of a game Ξ is given by Ξ =

{
V ,{Sv}v∈V ,{wv}v∈V

}
, where V is the set of

agents or players; Sv is the set of strategies2 of player v and wv is its payoff func-
tion3, which is a function of the strategy xv chosen by player v and the strategies
chosen by other players, denoted as x−v. We will use S =Π

|V |
v=1Sv to denote the

Cartesian product of sets and use x = [xv,x−v] =
[
x1,x2, · · · ,x|V |

]
, ∀v ∈ V to refer

to a vector. Based on this model, the Nash equilibrium steady-state of a game can be
defined. The definition is based on the concept of a best response correspondence.

Definition 5.2. Let Ξ =
{
V ,{Sv}v∈V ,{wv}v∈V

}
be a strategic game. For any

x−v ∈S−v we define the best response correspondence BRv (x−v) as,

1 The complete information means that every player knows the payoff of the others.
2 When a game is presented in normal form or strategic form, it is presumed that each player
acts simultaneously or, at least, without knowing the actions of the other. If players have some
information about the choices of other players, the game is usually presented in extensive form.
3 Hereafter, we consider each player chooses strategy to maximize its payoff. The game can be
defined accordingly if each play chooses strategies to minimize its own cost function.

5 Distributed Optimization and Games: a Tutorial Overview 185

BRv (x−v) =
{

xv ∈Sv|wv (xv,x−v)≥ wv
(
x′v,x−v

)
for all x′v ∈Sv

}
.

A strategy profile x∗ is a Nash equilibrium if and only if x∗v ∈BRv
(
x∗−v
)

for all v∈V .

The above definition is referred to pure Nash equilibrium. As seen in the above
definition, the pure Nash equilibrium consists of selecting one element from each
player’s possible action sets and is also stable for each player to deviate from the
equilibrium. A mixed strategy consists of selecting multiple elements from each
player’s action set and run the series of actions with some probability. The associ-
ated equilibrium is then called a mixed Nash equilibrium. In the following we will
assume the strategic game Ξ is static, i.e. it is played in one-shot with complete
information of payoffs, with a finite number of players and finite strategy sets. As
shown later, although best response and gradient methods are usually adopted to up-
date players’ strategies to optimize the current payoff in reaction to other players’
strategies, the game is still called a static game. If players choose their strategies to
maximize their payoff functions averaged over the whole game duration, the game
is called a repeated game.

5.5.2 Properties of Nash Equilibria

5.5.2.1 Existence of Nash Equilibria

The strategy tuples corresponding to Nash equilibria are consistent predictions of
the outcome of a game. The first question after defining a game is whether there
exists an equilibrium. Generally, proving the existence of an equilibrium involves
proving the existence of a solution to a fixed-point problem [7]. However, a number
of sufficient conditions for the existence of Nash equilibria have been developed for
games with particular structure of strategy sets and payoff functions.

Theorem 5.3 (Debreu, Glicksberg, Fan [20]). Let Ξ =
{
V ,{Sv}v∈V ,{wv}v∈V

}

be a strategic game, where V is a finite set. If ∀v ∈ V , Sv is a non-empty compact
and convex subset of a finite-dimensional Euclidean space; wv (x) is a continuous
function in the profile of strategies x and quasi-concave in xv; then the game has at
least one pure Nash equilibrium.

The power control game in [22] has been shown to be a quasi-concave game with
a compact convex strategy set and hence has at least one pure Nash equilibrium. The
multiple access game in [71] has a concave payoff function, which is a special case
of the above theorem and thus it has a pure Nash equilibrium.

If a game does not have quasi-concave payoffs, one may turn to supermodular
games [66] and potential games [43] to argue about the existence of Nash equilibria.
Let us first look at the definition of supermodular game.

Definition 5.3 ([66]). The strategic form game Ξ is called supermodular if: ∀v∈ V ,
Sv is a compact subset of R; wv is upper semi-continuous in x; ∀v ∈ V , ∀x−v � x′−v
the quantity wv (x)−wv

(
xv,x′−v

)
is non-decreasing in xv.

186 Bo Yang and Mikael Johansson

Intuitively, the definition means that the marginal payoff of increasing a player’s
strategy rises with increases in the other players’ strategies. This implies that the
best response of a player is a non-decreasing function of other players’ strategies.
Supermodular games are interesting for several reasons. First, many applied models
satisfy the assumptions of supermodular games. Second, they have the remarkable
property that many solution concepts yield the same predictions. Finally, they tend
to be analytically appealing – they have nice comparative statical properties and
behave well under various learning rules.

Theorem 5.4 ([66]). If Ξ is an supermodular game, it has at least one pure Nash
equilibrium.

Applications of supermodular games include the pricing-based power control
algorithm designed in [26] for solving a sum utility maximization problem. In [26],
each wireless transmitter adapts transmission power and charges interference price
to interfering transmitters based on best response update in an implicit supermodular
game. Sum rate maximization, which is a special case in [26], has been solved by
[13] using gradient algorithm based on dual decomposition. As opposed to gradient
methods that might need a small stepsize to converge to the optimum at the price
of slow convergece, the convergence of the best response algorithm in the fictitious
game [26] is ensured by supermodular game theory without appealing to stepsize.

Another particular game possessing equilibrium is the potential game.

Definition 5.4 ([43]). A strategic game Ξ is called

1. an exact potential game if there exists a function Φ : S → R such that for all
v ∈ V , and (xv,x−v) ∈S , x′v ∈Sv :

wv (xv,x−v)−wv
(
x′v,x−v

)
= Φ (xv,x−v)−Φ

(
x′v,x−v

)
. (5.32)

If the payoff function wv is continuously differentiable, then (5.32) is equivalent
to

∂wv (xv,x−v)

∂xv
=

∂Φ (xv,x−v)

∂xv
, ∀v ∈ V . (5.33)

2. an ordinal potential game if there exists a function Φ : S → R such that
for all v ∈ V , and (xv,x−v) ∈ S , x′v ∈ Sv : sgn(wv (xv,x−v)−wv (x′v,x−v)) =
sgn(Φ (xv,x−v)−Φ (x′v,x−v))).

For definitions of min-max potential games and state-based potential games,
please refer to [56] and [41], respectively.

Theorem 5.5. If Ξ is a potential game with a finite number of players, compact
strategy sets, and continuous payoffs, then it has at least one pure Nash equilibrium.

One good example of potential game is the application to cooperative control,
where multiple agents interact with each other to achieve a common target, e.g.
the consensus problem [51] and vehicle formation problem [56]. There are two ad-
vantages when the cooperative control is modelled as a potential game. First, for

5 Distributed Optimization and Games: a Tutorial Overview 187

cooperative control each agent updates its strategy by evaluating its effects on the
common objective function. This evaluation will require to observe the decisions
of all agents [40]. In the potential game formulation, each player has local payoff
function that captures the player’s marginal contribution to the potential function,
which is the common objective of cooperative control. The implementation over-
head is reduced in the game setting. Thus, one critical point in applying potential
game to cooperative control is to assign each player a reasonable payoff function
that is aligned with the potential function. Secondly, with cooperative control prob-
lems formulated as a potential game, there are many learning algorithms, adaptive
to a time-varying environment, available that are guaranteed convergence to Nash
equilibria.

5.5.2.2 Uniqueness of Nash Equilibrium

After establishing the existence of a Nash equilibrium the next issue is to study its
uniqueness. Uniqueness of Nash equilibria is both critical for predicting outcome
of a game and important for convergence issues. A general result is given by Rosen
[58] to ensure that a game has a unique Nash equilibrium. Another value of [58] is
that it points out a way to select one equilibrium if there are multiple equilibria. See
[36] and the references therein for more discussions. The sufficient conditions in
[58] change the structure of a game and restrict the payoff and strategy sets. When
the best response of a game can be explicitly expressed, there are some weaker
conditions that guarantee uniqueness of Nash equilibrium. The first result is based
on properties of contraction mapping.

Definition 5.5 ([67]). M (·) : X → X , where X is a subset of R|V |, is a contraction
mapping if there exists ε ∈ (0,1) such that ‖M (x)−M (y)‖ ≤ ε ‖x− y‖ 4, ∀x,y∈X .

Theorem 5.6. Suppose that M (·) : X → X is a contraction mapping and X be a
closed subset of R|V |. Then M has a unique fixed point x∗ that is globally asymptot-
ically stable.

When the contraction mapping theorem is applied, the best response correspon-
dence is presumed to be a mapping. In the context of game theory, if the best re-
sponse mapping BR(·) : S →S is a contraction mapping, the sequence

{
x(k)
}

generated by x(k+1) = BR
(

x(k)
)

converges to a unique fixed point x∗ from any ini-
tial strategy profiles x(0) ∈ S . According to the definition of Nash equilibrium,
this fixed point x∗ is the unique Nash equilibrium. The application of contraction
mapping theorem to study uniqueness of Nash equilibrium can be found in [69] for
scalar strategies and in [63] for vector strategies.

In addition to contraction mapping, if the best response correspondences satisfy
some nice properties there can be a unique intersection in the strategy space. One of

4 Here ‖·‖ is some norm.

188 Bo Yang and Mikael Johansson

such functions or correspondences is called standard function [72], which was gen-
eralized by [64] to include type-II standard function. Together this type of function
is called two-sided scalable function.

Definition 5.6 ([64]). A vector function I (·) : X → X with X a subset of R, is said
to be two-sided scalable, if for all β > 1, ∀x ∈ X , ∀x′ ∈ X , (1/β)x≤x′ ≤ βx implies

1
β

I (x)< I
(
x′
)
< β I (x) .

Theorem 5.7 ([64]). If I (·) : X → X is two-sided scalable and a fixed point exists,
then I (·) has a unique fixed point, which is globally asymptotically stable.

Once again, if the best response mapping BR(·) : S →S of a strategic game
is two sided scalable it converges to the unique Nash equilibrium when there is a
Nash equilibrium of the game. Note that the above theorem can not guarantee the
existence of Nash equilibrium. To study existence of Nash equilibrium one has to
invoke Theorem 2 in [20] or turn to Brouwer’s Fixed-Point Theorem in [7].

5.5.2.3 Efficiency of Nash Equilibrium

The Nash equilibrium discussed above provides a solution to multi-objective opti-
mization problem where no agent can increase its performance through individual
effort. Thus, it is an outcome of distributed decision making which could be less ef-
ficient than a possible scheme through cooperation between agents and/or as a result
of centralized optimization. Equilibrium efficiency is also a criterion to select one
from multiple equilibria, if there are more than one equilibrium.

A well known efficiency criterion is Pareto optimality. An outcome of a game
is Pareto optimal if there is no other outcome that makes every player at least as
well off and at least one player strictly better off. In other words, a Pareto-optimal
outcome cannot be improved upon without hurting at least one player. It should be
noted that a Nash equilibrium solving a social optimal problem such as those dis-
cussed in Example 7 is Pareto-optimal. However, in reality the competitive solution
is far from social optimal or Pareto-optimal. One may expect to quantify the perfor-
mance gap between the social optimal and Nash equilibria. The performance gap is
known as the price of anarchy [34] , defined next.

Let us first represent the social performance achieved by all players at a given
Nash equilibrium x as

SUM (x) = ∑
v∈V

υv (xv,x−v) ,

where υv (x) denotes the utility (or payoff) of player v at equilibrium x. The social
optimum OPT is defined to be the maximum SUM (x) achieved by all players.

Definition 5.7. The price of anarchy of a game is the worst-case efficiency ratio
among all pure strategy Nash equilibria,

5 Distributed Optimization and Games: a Tutorial Overview 189

PoA = min
x∈S

SUM (x)
OPT

Example 5.10. Given the example considered in (5.14), in the case of price-anticipating
users the problem turns into a game. Each user chooses bi to maximize its payoff

wi (bi,b−i) =

ui

(
bi

∑
N
v=1 bv

c
)
−bi if bi > 0

ui (0) if bi = 0
(5.34)

over non-negative bi. Note that the payoff function in (5.34) maybe discontinuous
at bi = 0, if ∑v 6=i bv = 0. This discontinuity may preclude the existence of a Nash
equilibrium [29]. The authors in [29] explore the effects of price-anticipation and
prove that the price of anarchy is a 25% efficiency loss compared with the maximum
possible aggregate utility in (5.13) or (5.14).

The reason for low efficiency of Nash equilibrium in a non-cooperative game is
that each player aims to optimize its own performance without regarding the cost it
imposes on others. Pricing (or taxation) has been proven to be an efficient way to
improve efficiency. Here, we do not use price to generate revenue for the system but
to use price to encourage players to use system resources more efficiently rather than
the aggressive competition of the purely non-cooperative game. A pricing scheme
is called incentive compatible if pricing enforces a Nash equilibrium that improves
social welfare. An efficient price should reflect accurately the costs of usage of a
resource and must take into account the individual player’s effects on system. In
[59], it has been shown that the utility in the energy-efficient power control game
can be improved when some players deviate somewhat from the Nash equilibrium,
i.e. the resulting equilibrium is not Pareto-optimal. To restrict interference (negative
results of selfish behaviors), the authors use a usage-based pricing to improve the
equilibrium utilities. However, this linear usage-based pricing in [59] is far from
social optimum since it does not take into account individual player’s effects on
system performance. Maximizing the sum of coupled utilities in a non-cooperative
environment usually involves some control message passing. To illustrate this, let
us consider a social optimal problem,

max
x∈S ∑

v∈V
uv (x) , (5.35)

where uv (x) is assumed to be differentiable. One of the necessary conditions for
x∗∈S to be optimal for (5.35) is

∂uv (x∗)
∂xv

+ ∑
m:m 6=v

∂um (x∗)
∂xv

= λ
∗
v ,∀v ∈ V (5.36)

where λ ∗v is a Lagrange multiplier used to regulate the strategy selection within the
strategy set of player v. In a non-cooperative game, where each player selfishly tries
to optimize its own payoff rather than the common objective in (5.35), the condition

190 Bo Yang and Mikael Johansson

(5.36) can serve as a guideline to design an incentive compatible pricing scheme.
Since each player solves

max
xv∈Sv

wv (x) , ∀v ∈ V , (5.37)

where wv (x) = uv (x)− κv (x), the unit price κv (x) that user v is charged for the
common resource should be based on ∑m:m 6=v

∂um(x)
∂xv

. Specifically, κv (x), ∀v ∈ V

should be designed to guarantee that the Nash equilibrium for (5.37) also satisfies
the first order necessary conditions of (5.35) .

Applications of these techniques to communication systems can be found in, for
example, [26, 39]. To bring the competitive players to solve a social utility maxi-
mization problem in (5.35) , the authors in [26] duplicate the player sets into two
sets. In the first set, each player updates its decision by best response to maximize
its individual payoff in (5.37). In another set, each player charge prices according
to the first order necessary condition (5.36). The existence and stability of a Nash
equilibrium is guaranteed using supermodular game theory. In [39], the divisible
resource allocation is addressed by proportional auction scheme. The efficiency of
this auction is determined by the cost function, since it is related to the Lagrange
multiplier, which is used to relax the global constraint in the corresponding social
welfare maximization problem. To maximize the social welfare, the cost function is
carefully designed by comparing the first order necessary conditions of local payoff
function with those of social utility function. More discussion on pricing to improve
equilibrium efficiency can be found in [42].

The intuition behind why pricing allows to improve the efficiency of Nash equi-
libria is that it introduces an (implicit) message passing between players such that
the original interior equilibrium is driven to the Pareto frontier. In a word, the dis-
crepancy of equilibrium states between the social optimum and selfish behavior is
compensated by the price scheme.

5.6 Dynamics of Gradient Algorithms

When people propose a gradient algorithm to solve an optimization problem, one
of the basic questions to be answered is whether the algorithm will converge to the
desired equilibria. We have already provided several convergence results when the
gradient is immediately and accurately available to the decision-makers. However,
in practice, information is often delayed and sometimes distorted. To study such
information limitations, it is often useful to study the properties of the correspond-
ing differential equation under delays and perturbations. For this purpose, we next
introduce the Lyapunov stability theory, which is widely used in control theory.

Let x = 0 be an equilibrium point for

dx(t)
dt

= ϑ (x(t)) (5.38)

5 Distributed Optimization and Games: a Tutorial Overview 191

and B⊂Rn be a region containing 0. Let V : B→R be a continuously differentiable
function such that V (x) > 0, ∀x 6= 0 and V (0) = 0. There are the following condi-
tions for various notions of stability.
(1) If dV (x(t))

dt ≤ 0, ∀x ∈ B, then the equilibrium is stable and V (x) is called a Lya-
punov function.
(2) In addition, if dV (x(t))

dt < 0, ∀x ∈ B\{0} , then the equilibrium is asymptotically
stable.
(3) In addition to (1) and (2) above, if V is radially unbounded i.e. V (x)→ ∞ as
x→ ∞ then the equilibrium is globally asymptotically stable.

Note that the above theorem also holds if the equilibrium is a nonzero x̂. In this
case, consider a system with state y = x− x̂ and the results hold immediately.

5.6.1 Connection between Lyapunov Functions and Objective
Functions

In this section we first start to consider

minx∈Rn f (x) , (5.39)

where the function f : Rn → R is differentiable and strictly convex. One of the
simplest methods for solving (5.39) is the gradient descent algorithm (5.40), which
attempts to maximize the decrease of the objective function in each iteration by
updating the current iterate in the opposite direction of the gradient of f .

x(k+∆) = x(k)−α∇ f (x) (5.40)

Let us use the gradient flow in (5.41) to approximate the sequence
{

x(k)
}

gen-
erated by (5.40) .

dx
dt

= lim
∆→0+

x(k+∆)− x(k)

∆
=−α∇ f (x) . (5.41)

When people study the dynamics of gradient method, Lyapunov functions are
usually adopted to study the stability of stationary point (local or global optimum) to
which the gradient algorithm may converge. However, there is no common method
to construct a Lyapunov function, whose existence is only sufficient to guarantee the
stability of a stationary point. A Lyapunov function can be regarded as the ”energy”
of a system. If one can prove that the energy along the considered dynamics is
continuously decreasing, the system would finally settle down at the lowest-energy
state. When we study the convergence of gradient method in an optimization setting,
the convex cost function f (x) will keep decreasing until it reaches a stationary point
of the gradient dynamics, which coincides with the minimum of f (x). Thus, one
intuition of selecting Lyapunov function for ẋ := dx

dt := g (x) is to associate it with

192 Bo Yang and Mikael Johansson

the objective function. More precisely, choose

V (x(t)) := f (x∗)− f (x(t)) (5.42)

as the Lyapunov candidate, where x∗ is one optimum solution of (5.39) . It is
straightforward to see that V (x) ≥ 0, ∀x ∈ X and V (x) = 0 iff x = x∗. Furthermore
V (x) is nondecreasing along the trajectories of (5.41) by showing

dV (x(t))
dt

=
n

∑
i=1

∂V (x)
∂xi

· dxi

dt
=−α ‖∇ f (x)‖2 ≤ 0 (5.43)

with dV (x(t))
dt = 0 iff x = x∗. It follows that (5.42) is a Lyapunov function. Accord-

ing to Lyapunov stability theory, the unique minimum x∗ is globally asymptotically
stable.

For a concrete example, Kelly et al. [31] study the stability of dual-based flow
control algorithm in communication networks, where the Lyapunov function coin-
cides the concave objective function of dual network problem. For the stability of
primal algorithm in network resource allocation [2], [11], the Lyapunov function is
the same as the associated strictly concave objective function.

Similar like the direct connection between Lyapunov function and objective func-
tion in convex optimization problems, in some non-cooperative game, say potential
game, its Lyapunov function is just the potential of the game. Let’s consider a strate-
gic non-cooperative game Ξ =

{
V ,{Sv}v∈V ,{wv}v∈V

}
, where V is the set of |V |

players; Sv is the set of strategies of player v and wv is its payoff function.
Gradient based algorithm are usually adopted for each player to follow to reach

a Nash equilibrium,
dxv

dt
= α

∂wv (x(t))
∂xv

, ∀v ∈ V , (5.44)

where α > 0 is the stepsize.
One interesting property of potential games is that the Lyapunov function for the

gradient system (5.44) is just the (scaled version) of potential function Φ (x) given
in (5.33). Let’s consider the following candidate Lyapunov function [61]:

V (x) = Φmax−Φ (x) ,

where Φ (x∗) := Φmax denotes the maximum value of the potential Φ over S . It
is easy to show the positiveness of V (x) , ∀x∈S except x = x∗. Following (5.33),
V (x(t)) is non-decreasing along the trajectories of the system (5.44) ,

dV (x(t))
dt

=−∇
T
x Φ (x)

(
d
dt

x(t)
)
=−α ‖∇xΦ (x)‖2 ≤ 0. (5.45)

By LaSalle’s invariance principle5 and (5.45) the trajectories of (5.44) converge to
the largest invariant set

5 To be introduced afterwards.

5 Distributed Optimization and Games: a Tutorial Overview 193
{

x∈S :
dV (x(t))

dt
= 0
}
. (5.46)

Since the set in (5.46) contains only the unique Nash equilibrium of the game Ξ

if Φ (x) is strictly concave, the dynamics (5.44) converges to such an equilibrium
asymptotically. In a potential game, although each player v selfishly maximizes its
own payoff wv (x) , it implicitly maximizes an imaginary objective, the potential
function. Thus, V (x) = Φmax−Φ (x) can be used to measure the ”energy” accumu-
lated along the trajectory (5.44).

By the discussions above, the convexity (concavity) plays an essential role in
finding a candidate Lyapunov function. The connection between Lyapunov function
and objective function may be invalidated in some cases. For example, the integra-
tion of gradient dynamics with respect to the variables does not result in a common
objective function or the potential function in a non-cooperative game is hard to
find. One may seek Lyapunov function by a more general method, the Krasovskii’s
method.

5.6.2 Krasovskii’s Method

Let us use a saddle point problem to illustrate Krasovskii’s method: find x∗ and λ ∗

such that
L(x∗,λ)≤ L(x∗,λ ∗)≤ L(x,λ ∗) , ∀x ∈ X , ∀λ ∈M,

where L : X×M→R is a strictly convex-concave function. X and M are closed con-
vex sets in Rn and Rm. The saddle point function can for example be a Lagrangian

L(x,λ) = f0 (x)+λ
T f (x)

of a convex programming problem

x∗ ∈ argmin{ f0 (x) | fi (x)≤ 0, i = 1, . . . ,m, x ∈ X} .

Assuming that the function L(x,λ) is differentiable, the sufficient and necessary
conditions to be a saddle point are

x∗ = PX (x∗−α∇xL(x∗,λ ∗)) , (5.47a)
λ
∗ = PM (λ ∗+α∇λ L(x∗,λ ∗)) (5.47b)

where PX (·) and PM (·)are the projection on sets X and M, respectively. The differ-
ence between the left and right side of of (5.47), which is equal to zero at the point
x∗, λ ∗ and non-zero at an arbitrary point x, λ , specifies a mapping of the set Rn×Rm

into itself. The resultant space can be viewed as a vector field with the fixed point
x∗, λ ∗. If X = Rn, M = Rm, this problem is written as the system of

194 Bo Yang and Mikael Johansson

dx
dt

= −α∇xL(x,λ) (5.48a)

dλ

dt
= α∇λ L(x,λ) (5.48b)

where α is the step-size. It can be checked that (5.48) admits a unique solution.
Obviously, L(x,λ) is not a Lyapunov function of (5.48) since (5.48) accounts

for the decrease in one variable x and increase in another variable λ . One alternative
Lyapunov function is constructed by Krasovskii’s method,

V (z) = żT Aż, (5.49)

where z = [x,λ]T , A = 1
2 diag

(
α−1

)
. V (z) is positive except the equilibrium z∗ =

[x∗,λ ∗]T . It can be computed that the time-derivative of (5.49) along the trajectories
of (5.48) results in

V̇ (z) =−żT

∂ 2L
∂x2 0

0 − ∂ 2L
∂λ 2

 ż≤ 0. (5.50)

V̇ (z) = 0 happens only at the equilibrium point z∗ = [x∗,λ ∗]T . Hence, the trajectory
of dynamics (5.48) will tend to the saddle point of (x∗,λ ∗) asymptotically.

Krasovskii’s method is quite general and it can also be used to construct a Lya-
punov function for the gradient based algorithms (5.41) and (5.44). Recently it
has been used for studying stability of gradient algorithms for network resource al-
location based on convex optimization [19]. Since the time-derivative of Lyapunov
function (5.49) contains the second order global information, it can be used to prove
the global asymptotic stability of the unique Nash equilibrium in a non-cooperative
game [58], [1], [70]. However, imposing conditions on the Jacobian of pseudo-
gradient [58]-[70] may be sometimes conservative since it ignores local structure
of each player’s payoff. By exploiting the local structure of payoff in [17], the same
stability of gradient algorithm can be proved by a quadratic Lyapunov function with-
out imposing global conditions proposed by [1].

5.6.3 Non-strictly Convex Problem

So far, we only discussed the stability of gradient algorithm for strictly concave/con-
vex problem. For non-strictly convex/concave objective function, there may exist
multiple equilibria. Then the corresponding gradient algorithm is no more guar-
anteed to converge to one of the equilibria asymptotically, see [12], [38]. We will
invoke LaSalle’s invariance principle to determine the convergence of gradient al-
gorithms to multiple equilibria.

Theorem 5.8 (LaSalle’s invariance principle [32]). Consider the differential equa-
tion in (5.38) . Let V : B→R be a radially unbounded, continuoustly differentiable,
positive definite function such that V̇ (x)≤ 0 for all x∈B. Let E be the set of points in

5 Distributed Optimization and Games: a Tutorial Overview 195

B such that V̇ (x) = 0. Let M be the largest invariant set6 in E . Then, every solution
of (5.38) starting in B tends to M as t→ ∞.

LaSalle’s invariance principle implies that any equilibrium point of a gradient
algorithm is in invariant set M . Also the domain of attraction7 of an equilibrium
point is also an invariant set. However, we do not know whether all elements in in-
variant set are preferred in terms of stability and optimality. The key is to ensure
that the invariant set includes the global optimal equilibria exclusively. Basically,
the invariant set also gives us some insight to construct a Lyapunov function. Recall
that the invariant set should include all global optimum for the gradient algorithm to
converge to. One possible way of constructing Lyapunov function is to connect the
time-derivative of Lyapunov function with KKT conditions, i.e. any equilibrium sat-
isfying KKT conditions should be in the largest invariant set M . After that, one may
argue that the trajectories of gradient algorithm converge to the desired equilibrium
in M . They may also converge to non-equilibria in M if there are any. To achieve
optimality, one usually establish conditions to exclude those undesired points in the
set M . This is done by studying the dynamics or properties of a reduced system,
which is obtained by substituting the elements in M into original gradient systems.

Recently, a primal-dual algorithm was proposed in [73] to solve a non-strictly
concave problem, which comes from uplink resource allocation problem in OFDM
networks. The authors first established some properties that the elements in the
largest invariant set should satisfy. Based on those properties they reduced the orig-
inal primal-dual gradient-based algorithm into a set of linear differential equations.
By studying stability of the reduced linear system, they equivalently excluded the
undesired elements in M . It should be noted that LaSalle’s invariance principle can
also be used to argue the uniqueness of Lagrange multiplier to which a primal-dual
algorithm converges, although the Lagrange multiplier satisfying KKT conditions
can be multiple, see [16] for network resource allocation example.

5.7 Conclusions

We have attempted to provide a tutorial overview of distributed optimization and
games for decision-making in networked systems. Starting with a review of first-
order methods for convex optimization, we have discussed how distributed op-
timization mechanisms can be designed using mathematical decomposition, net-
worked optimization, and game theory. While decomposition methods result in very
efficient computations, they typically require central coordination of subsystems.

6 A set I is an invariant set for a dynamic system dx(t)
dt = ϑ (x(t)) if every trajectory x(t) which

starts from a point in I remains in I for all time. For example, any equilibrium point is an
invarient set.
7 Let ϕ (t;x) be the solution of (5.38) that starts at initial state x at time t = 0. Then, the do-
main of attraction is defined as the set of all points x such that ϕ (t;x) is defined for t ≥ 0 and
limt→∞ϕ (t;x) = 0.

196 Bo Yang and Mikael Johansson

Networked optimization techniques, on the other hand, remove the central coordi-
nation and subsystems communicate and cooperate only with their nearest neighbors
to find the global optimum. Finally, techniques from non-cooperative games allow
to eliminate the overhead traffic for coordination of subsystems altogether, but will
in general not be able to find the global optimum (unless a pricing mechanism is
introduced that encourages entities to strive towards the common good).

Naturally, a book chapter like this has to be selective in scope. Many interesting
and useful ideas and results had to be left out. This includes, for example, optimiza-
tion of systems with stochastic parameters or noise, and analysis of decomposition
and networked optimization under information delay. For the material that we have
presented, our focus has been on basic concepts and ideas rather than the very latest
extensions and generalizations. Although many of the key results are now almost
half a century old, they have proven to be very useful in a wide range of applica-
tions, from resource allocation in communication systems to wide-area control of
infrastructures. It is our firm belief that these techniques will play an increasingly
important role in engineering, as the systems that we build become more and more
networked and interconnected, and as the requirements on their performance and
resource-efficiency continue to increase.

References

1. T. Alpcan, T. Basar, and S. Dey. A power control game based on outage probabilities for
multicell wireless data networks. IEEE transactions on wireless communications, 5(4), 2006.

2. T. Alpcan, X. Fan, T. Basar, M. Arcak, and J.T. Wen. Power control for multicell CDMA
wireless networks: A team optimization approach. Wireless Networks, 14(5):647–657, 2008.

3. K. J. Arrow and L. Hurwicz. Essays in Economics and Econometrics, chapter Decentralization
and Computation in Resource Allocation. University of North Carolina Press, Rayleigh, North
Carolina, 1960.

4. J. F. Benders. Partitioning procedures for solving mixed-variables programming. Numerische
Matematik, 4:238–252, 1962.

5. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
6. D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical methods.

Prentice-Hall, 1989.
7. K.C. Border. Fixed point theorems with applications to economics and game theory. Cam-

bridge Univ Pr, 1989.
8. S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing markov chain on a graph. SIAM Review,

46:667–689, 2004.
9. S. P. Boyd. Course material for ee364b, stanford university. Available via

http://www.stanford.edu/class/ee364b/, 2007.
10. S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
11. L. Chen, SH Low, and J.C. Doyle. Joint congestion control and media access control design

for wireless ad hoc networks. In Proceedings of IEEE Infocom, pages 2212–2222, 2005.
12. M. Chen, M. Ponec, S. Sengupta, J. Li, and P.A. Chou. Utility maximization in peer-to-peer

systems. In Proc. ACM Sigmetrics, 2008.
13. Mung Chiang. Balancing transport and physical layers in wireless multihop networks: Jointly

optimal congestion control and power control. IEEE Journal on Selected Areas in Communi-
cations, 23:104–116, 2005.

5 Distributed Optimization and Games: a Tutorial Overview 197

14. G. Cohen. Optimization by decomposition and coordination: a unified approach. IEEE Trans-
actions on Automatic Control, 23(2):222–232, 1978.

15. G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Re-
search, 8:101–111, 1960.

16. A. Eryilmaz and R. Srikant. Joint congestion control, routing and mac for stability and fairness
in wireless networks. IEEE Journal on Selected Areas in Communications, 24:1514–1524,
2006.

17. X. Fan, T. Alpcan, M. Arcak, TJ Wen, and T. Basar. A passivity approach to game-theoretic
CDMA power control. Automatica, 42(11):1837–1847, 2006.

18. H.E. Fawal, D. Georges, and G. Bornard. Optimal control of complex irrigation systems
via decomposition-coordination and the use of augmented lagrangian. In IEEE International
Conference on Systems, Man, and Cybernetics, pages 3874 – 3879, San Diego, CA, November
1998.

19. D. Feijer and F. Paganini. Krasovskiis Method in the Stability of Network Control. In Pro-
ceedings of the 2009 conference on American Control Conference, pages 3292–3297. Institute
of Electrical and Electronics Engineers Inc., The, 2009.

20. D. Fudenberg and J. Tirole. Game theory. MIT Press, 1991.
21. A. M. Geoffrion. Elements of large-scale mathematical programming I–II. Management

Science, 16:652–691, 1970.
22. David Goodman and Narayan Mandayam. Power control for wireless data. IEEE PERSONAL

COMMUNICATIONS, 7:48–54, 2000.
23. W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.

Biometrika, 57:97–109, 1970.
24. J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer, 2001.
25. K. Holmberg. Design models for hierarchical organizations: computation, information and

decentralization, chapter Primal and dual decomposition as organizational design: price and/or
resource directive decomposition, pages 61–92. Kluwer Academic Publishers, 1995.

26. Jianwei Huang, Randall A. Berry, and Michael L. Honig. Distributed interference compen-
sation for wireless networks. IEEE Journal on Selected Areas in Communications, 24:1074–
1084, 2006.

27. B. Johansson, T. Keviczky, M. Johansson, and K.H. Johansson. Subgradient methods and
consensus algorithms for solving convex optimization problems. In Decision and Control,
2008. CDC 2008. 47th IEEE Conference on, pages 4185 –4190, 2008.

28. Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM Journal on Optimization,
20(3):1157–1170, 2009.

29. Ramesh Johari, Shie Mannor, and John N. Tsitsiklis. Efficiency loss in a network resource
allocation game: The case of elastic supply. Mathematics of Operations Research, 29:407–
435, 2004.

30. F. Kelly. Charging and rate control for elastic traffic. European transactions on Telecommu-
nications, 8(1):33–37, 1997.

31. F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control for communication networks: shadow
prices, proportional fairness and stability. Journal of the Operational Research society,
49(3):237–252, 1998.

32. H.K. Khalil. Nonlinear systems. 3rd, 2002.
33. J. Koshal, A. Nedic, and U.V. Shanbhag. Distributed multiuser optimization: Algorithms and

error analysis. In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control
Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages 4372 –
4377, 2009.

34. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review,
3(2):65–69, 2009.

35. T. Larsson, M. Patriksson, and A.-B. Strömberg. Ergodic primal convergence in dual subgra-
dient schemes for convex programming. Mathematical Programming, 86:283–312, 1999.

36. S. Lasaulce, M. Debbah, E. Altman, E.N.S. de Cachan, and F. Cachan. Methodologies for
analyzing equilibria in wireless games. IEEE Signal Processing Magazine, 26(5):41–52, 2009.

198 Bo Yang and Mikael Johansson

37. L. S. Lasdon. Optimization Theory for Large Systems. Macmillan Co., New York, N. Y., 1970.
38. X. Lin and N.B. Shroff. Utility maximization for communication networks with multipath

routing. IEEE Transactions on Automatic Control, 51(5), 2006.
39. R. Maheswaran and T. Basar. Efficient signal proportional allocation (ESPA) mechanisms:

Decentralized social welfare maximization for divisible resources. IEEE Journal on Selected
Areas in Communications, 24(5), 2006.

40. J.R. Marden, G. Arslan, and J.S. Shamma. Cooperative control and potential games. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(6):1393–1407, 2009.

41. J.R. Marden and A. Wierman. Overcoming limitations of game-theoretic distributed control.
In 48th IEEE Conference on Decision and Control, 2009.

42. R.R. Mazumdar, C.A. Courcoubetis, N. Duffield, G. Kesidis, A. Odlyzko, R. Srikant, J. Wal-
rand, and P. Cosman. Guest Editorial Price-Based Access Control and Economics of Net-
working. IEEE Journal on Selected Areas in Communications, 24(5), 2006.

43. D. Monderer and L.S. Shapley. Potential games. Games and economic behavior, 14:124–143,
1996.

44. A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization.
Automatic Control, IEEE Transactions on, 54(1):48 –61, jan. 2009.

45. Angelia Nedic and Dimitri P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM J. on Optimization, 12(1):109–138, 2001.

46. Angelia Nedić and Asuman Ozdaglar. Approximate primal solutions and rate analysis for dual
subgradient methods. SIAM Journal on Optimization, 19(4):1757–1780, 2008.

47. Y. Nesterov. A method for unconstrained convex minimization problem with the rate of con-
vergence o(1/k2). Doklady AN SSSR (translated as Soviet Math. Docl.), 269:543–547, 1983.

48. Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 1995.

49. Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Nether-
lands, 2003.

50. R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-
agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

51. R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation in networked multi-
agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

52. A. Olshevsky and J. N. Tsitsiklis. Convergence rates in distributed consensus and averaging.
In Proceedings of IEEE CDC, 2006.

53. B. Polyak. Introduction to Optimization. Optimization Software, 1987.
54. M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Information Pro-

cessing in Sensor Networks, 2004. IPSN 2004. Third International Symposium on, pages 20 –
27, 2004.

55. S. Sundhar Ram, Angelia Nedic, and Venugopal V. Veeravalli. Incremental stochastic sub-
gradient algorithms for convex optimization. SIAM Journal on Optimization, 20(2):691–717,
2009.

56. A. Rantzer. Using game theory for distributed control engineering. Department of Automatic
Control, Lund University, Sweden, Tech. Rep. ISRN LUTFD2/TFRT–7620–SE, July, 2008.

57. R. T. Rockafellar. Convex Analysis. Princeton University Press, 1996.
58. JB Rosen. Existence and uniqueness of equilibrium points for concave n-person games.

Econometrica: Journal of the Econometric Society, 33(3):520–534, 1965.
59. C.U. Saraydar, N.B. Mandayam, and D.J. Goodman. Efficient power control via pricing in

wireless data networks. IEEE transactions on Communications, 50(2):291–303, 2002.
60. I.D. Schizas, A. Ribeiro, and G.B. Giannakis. Consensus in ad hoc wsns with noisy links part

i: Distributed estimation of deterministic signals. Signal Processing, IEEE Transactions on,
56(1):350 –364, jan. 2008.

61. G. Scutari, S. Barbarossa, and DP Palomar. Potential games: A framework for vector power
control problems with coupled constraints. In 2006 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, volume 4, 2006.

62. N. Z. Shor. Minimization methods for non-differentiable functions. Springer-Verlag, 1985.

5 Distributed Optimization and Games: a Tutorial Overview 199

63. K.W. Shum, K.K. Leung, and C.W. Sung. Convergence of iterative waterfilling algorithm
for Gaussian interference channels. IEEE Journal on Selected Areas in Communications,
25(6):1091–1100, 2007.

64. C.W. Sung and K.K. Leung. A generalized framework for distributed power control in wireless
networks. IEEE Transactions on Information Theory, 51(7):2625, 2005.

65. Y. Takahara. Multilevel approach to dynamic optimization. Technical Report SRC-50-C-64-
18, Systems Research Center, Case Western Reserve University, 1964.

66. D.M. Topkis. Supermodularity and complementarity. Princeton Univ Pr, 1998.
67. R. Walter. Principles of mathematical analysis. McGraw-Hill, 1976.
68. L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems & Control

Letters, 53(1):65–78, 2004.
69. B. Yang, G. Feng, and X. Guan. Noncooperative random access game via pricing in ad hoc

networks. In 2007 46th IEEE Conference on Decision and Control, pages 5704–5709, 2007.
70. B. Yang, G. Feng, Y. Shen, C. Long, and X. Guan. Channel-Aware Access for Cognitive Radio

Networks. IEEE transactions on vehicular technology, 58(7):3726–3737, 2009.
71. B. Yang, Y. Shen, M. Johansson, and X. Guan. Threshold-based Multichannel Access with

Energy Constraint . In ICC 2010-IEEE International Conference on Communications, 2010.
72. R.D. Yates. A framework for uplink power control in cellular radio systems. IEEE Journal on

Selected Areas in Communications, 13(7):1341–1347, 1995.
73. X. Zhang, L. Chen, J. Huang, M. Chen, and Y.P. Zhao. Distributed and optimal reduced primal-

dual algorithm for uplink OFDM resource allocation . In 2009 Joint 48th IEEE Conference
on Decision and Control (CDC) and 28th Chinese Control Conference (CCC 2009), 2009.

