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1 Introduction

1.1 State-of-the-art in networks and wireless net-
works

3G (WCDMA), 4G (MIMO-based)

• LTE, LTE-Advanced

• WLANs (IEEE 802.11/a/b/g/n)

• WiMAX (IEEE 802.16a/e/m/j): wireless mesh networks,

relay based networks, femtocells

• WPANs (IEEE 802.15): Bluetooth

• Cognitive Radio Networks (CRNs): operate in an open

spectrum market, by dynamic spectrum access and

sharing

• Wireless sensor networks (various applications)

• Machine-to-machine communications: capture an event

through a sensor network, relay it through a network to

an application (software program) that translates cap-

tured event into meaningful information

Other classes of wireless networks

• Vehicular Networks
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• Delay-tolerant Networks (DTNs)

• Peer-to-peer networks (P2P): for content distribution

• Other modern developments: cloud computing, resource

virtualization,. . .

OPTIMIZATION: (i) control of adaptable parameters in com-

munication networks, (ii) resource management.

Resources to be managed:

• Spectrum

• Energy (especially in battery devices, but also for green

communications)

• Storage capacity, cache memory

• Processing power (CPU)

Self-organizing networks: need for autonomous control,

self-awareness, cognition, learning, self-coordination.

1.2 The mechanisms of OSI layers

The OSI layers are:
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Application

Transport

Network

MAC

Physical

Mechanisms :

• Application layer: HTTP protocol, Source coding,

Security (e.g. cryptography), compression (source

coding).

• Transport layer: Flow control, Congestion control, TCP

retransmission.

• Network layer: Routing, multi-casting, any-casting,

admission control, end-to-end information transfer.

• Medium Access Control (MAC) layer: channel random

access (probability of access), channel allocation

(TDMA, FDMA, CDMA, OFDMA), MAC packet

retransmission protocol, queue management, CRC

check, scheduling.

• Physical (PHY) layer: Transmit power control, transmit

rate control (modulation/demodulation, channel coding

/ decoding), transmit directionality control (e.g. beam-

forming in smart antenna systems), MIMO, receiver de-

sign and functionality.
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Digital Communication deals mostly with PHY.

1.3 Physical layer view (one link)

We examine a link between a source and a destination and not

the entire network.

Procedures that take place before transmission:

• Source coding (e.g Quantization): describe source as

succinctly as possible, i.e. with as few bits as possible.

• Channel coding: Some redundant bits are added to

useful data bits. These bits can be a linear combination

of useful data bits (if the code is linear). If some data

bits are lost due to channel errors, we can retrieve them

by using the redundant bits.

• Modulation: The signal is transformed into a continuous

waveform.

1.4 Modes of information transport

• Uni-cast : if a separate message is conveyed to one

destination.

• Broadcast : transmit the same data to all destinations in

the network.
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• Multi-cast : the delivery of a common message to a group

of destination nodes (multi-cast group).

1.5 Performance Metrics to be optimized

• Reception rate in a hop (single-hop throughput).

• End-to-end amount of information per unit time that is

received successfully (throughput).

• Latency: the amount of time it takes for data to travel

from one location to another one across a network.

• Energy Consumption: Refers to the amount of energy is

consumed for every bit is send. More general: Energy

efficiency : energy consumption, network lifetime).

• Network Reliability: ability of network to provide

communication in the event of failure of one or more

components.

• Deadline:Accomplish to transmit data in a particular

point in time.

• Estimation / detection accuracy : estimation error, prob-

ability of false alarm, . . .
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1.6 Application areas of Optimization theory

• started from Operations Research

• Computer Science, Algorithm design

• Economics, Finance

• Transportation

• Data management, data mining

• Statistical Physics

2 Optimization preliminaries

Optimization problem: the problem of maximizing or minimizing

an objective function with respect to a set of variables subject

to given constraints to be fulfilled by these variables.

• Network consists of various elements that interact.

• Network operational objective viewed as an

optimization problem.

• Network control variables→ problem variables.

Remark: Variables may be discrete (combinatorial opti-

mization problems) or continuous. We will deal with continuous

variables.
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Figure 1: Transmission and reception.

An optimization problem (P) has the form:

minimize f0(x) (1)

subject to:

gi(x) ≤ 0, for i = 1, 2, . . . ,m (2)

• Vector x = (x1, x2, . . . , xn) is the vector of

optimization variables of the problem.

• Function f0(·) : Rn −→ R is the objective function.

• Functions gi(·) : Rn −→ R, i = 1, 2, . . . ,m, are

called constraint functions or constraints.

A vector x0 is feasible or a feasible solution for problem

(P) if its satisfies all constraints, i.e. if gi(x0) ≤ 0, for i =
1, . . . ,m.
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A vector x∗ is called optimal, or an optimal solution for

problem (P), if it is feasible and it has the smallest objective

function value among all feasible vectors. That is, for any feasi-

ble x with gi(x) ≤ 0, i = 1, . . . ,m, it is f0(x
∗) ≤ f0(x).

2.1 Special cases of optimization problems

2.1.1 Least-squares problem (LS)

A least-squares problem is an optimization problem with no

constraints and an objective function which is the sum of squares

of K terms of the form aTi x− bi,

minimize f0(x) = ‖Ax− b‖2 =

K
∑

i=1

(aTi x− bi)
2

(3)

where A ∈ Rk×n with (k ≥ n) is a real matrix, b ∈ RK is a

real vector, aTi for i = 1, . . . , k are the rows of A, and vector

x ∈ Rn is the vector of optimization variables.

• LS is one of few optimization problems that can be

solved analytically. Its solution can be reduced to

solving a set of linear equations,

(ATA)x = ATb, (4)

with analytical solution x∗ = (ATA)−1ATb.

• Efficient algorithms exist.
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2.1.2 Linear Programming (LP)

The objective and all constraint functions are linear:

minimize cTx (5)

subject to

aTi x ≤ bi, i = 1, . . . ,m. (6)

Vectors c, a1, . . . , am ∈ Rn and scalars b1, . . . , bm ∈
R are parameters that specify the objective function and con-

straints.

• LP problems do not have solution in analytical form.

• There exist algorithms to solve LP problems efficiently:

the Simplex algorithm.

2.1.3 Convex optimization problems

minimize f0(x) (7)

such that

gi(x) ≤ 0, for i = 1, . . . ,m. (8)

where f0(·), g1(·), . . . , gm(·) are convex functions i.e they

satisfy:

fi(ax+ (1− a)y) ≤ afi(x) + (1− a)fi(y) (9)
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for all x,y ∈ Rn and all a ∈ R with 0 ≤ a ≤ 1.

Note: The corresponding maximization problem where f0(·)
is concave is also called convex optimization problem (con-

straint functions must still be convex).

Non-linear programming problems (NLP): all problems

that are not LP.

3 Convex Sets

Line segment between two pointsx1,andx2 is the set of points

x which can be written as: x = θx1 + (1 − θ)x2, with

0 ≤ θ ≤ 1. Due to this special constraint on θ, x is not a

linear but a convex combination of x1, x2.

Convex Set : A set of points C is called convex if all points

on the line segment between any two points of the set C also

belong in C. That is, C is convex set if

∀x1,x2 ∈ C and 0 ≤ θ ≤ 1, it is θx1 + (1− θ)x2 ∈ C

A set of discrete points is always non-convex.

For example, the set of points on the real line defined by

{x : |x− a| ≥ 1} is not convex.

Note: A set of points that is not convex is called non-

convex.

A Convex combination of K points x1,x2, . . . ,xK is ev-
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Figure 2: Examples: (a) a convex set, (b) a non-convex set

ery point x of the form:

x =
K
∑

i=1

θixi, with

K
∑

i=1

θi = 1. (10)

3.1 Convex Hull

For a set of points C = {x1,x2, . . . ,xK}, the Convex hull

of C, Conv(C), is the set of all convex combination of points

in C:

Conv(C) =
{

x : x =
∑K

i=1 θixi, for xi ∈ C
}

with

0 ≤ θ ≤ 1 for i = 1, . . . ,K and
∑K

i=1 θi = 1.

Special Cases: If C = {x1,x2}, then Conv(C) is the

line segment connecting x1 and x2. If C = {x1,x2,x3},
then Conv(C) is the triangle with these points as vertices.

Note: The Convex Hull of a set of points C is the smallest

convex set that encloses all points of C.
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Figure 3: Convex hull of: (a) C = {x1,x2} (b) C =
{x1,x2,x3}

Remarks :

• Conv(C) is always a continuous and convex set

irrespective of C.

• If C is a convex continuous set, then Conv(C) = C.

• If C is non-convex and continuous, then

Conv(C) ⊃ C.

• If C is a discrete set, then Conv(C) ⊃ C.

3.1.1 Example

Consider two wireless links: link 1 transmitting from A to B and

link 2 from C to D. If link 1 only is active, it achieves reception
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(a) (b)

Figure 4: Convex hull of (a) a discrete set of points, (b) a con-

tinuous set of points.

of traffic at the receiver at rate R1 bits/sec. If link 2 only is

active, it achieves rate R2 bits/sec. If both links are active, link

i achieves R′
i < Ri bits/sec, i = 1, 2. This is due to the

interference caused by the other link.

Denote by I the set of activation policies, in that case there

are 3 such policies (only link 1 active, only link 2 active, both

links active).

An average link rate vector (r1, r2) is achievable if there

exists an activation schedule for the links such that the long-

term average rate vector is (r1, r2).
The set of achievable average rate vectors (r1, r2) is the

convex hull of vectors (R1, 0), (0, R2) and (R′
1, R

′
2), i.e:

(r1, r2) = a1(R1, 0) + a2(0, R2) + a3(R
′
1, R

′
2). for any
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a1, a2, a3 ∈ [0, 1], with a1 + a2 + a3 = 1. Note that

a1, a2, a3 can be viewed as the percentages of time that a

certain activation policy is used.

A specific choice of (a1, a2, a3) corresponds to an activa-

tion schedule for the 2 links.

More formally, let s be the (fixed) system state. Let Is
be the set of possible activation policies when the system is in

that state. Let C(I, s) be the rate vector for activation policy

I ∈ Is. The rate region, i.e the set of all possible rate vectors

is given by Conv(C(I, s) : I ∈ Is).
In order to check whether a certain link rate vector (ρ1, ρ2)

is achievable, one has to check whether the corresponding set

of linear equations with unknowns a1, a2, a3 has solution.

Suppose now that S is the set of possible states of the

system, and let πs be the stationary distribution of s ∈ S . The

rate region in that case is the set of vectors R such that:

R =
∑

s∈S

πsConv(C(I, s) : I ∈ Is).

E.g., suppose that the state of each link is {G,B} where

these stand for good and bad state.

Note that a vector in the rate region is the time-average

of rate vectors corresponding to a given state, which in turn

is the time average of rate vectors corresponding to a certain

activation policy.

18



3.2 Properties of Convex Sets

1. If C is convex set and b ∈ R is real number, then the

set

D = bC = {x : x = bu : u ∈ C}. (11)

is also convex (scaling property): when a convex set is

multiplied by a real number, the resulting set remains

convex.

2. If C1, C2 are convex sets then C1 + C2,

C1 + C2 = {x : x = u1 + u2} where u1 ∈ C1 and

u2 ∈ C2 is also convex (addition property). Example for

set addition: If C1 = {1, 2} and C2 = {10, 15, 18},
then C1 + C2 = {11, 16, 19, 12, 17, 20}.

3. If C1, C2 are convex sets, then C1 ∩ C2 is convex (inter-

section property).

Remark: Generalization of convex combinations . The

convex combination of a distinct set of K points are all points

x, such that:

x =
K
∑

i=1

θixi with

K
∑

i=1

θi = 1 (12)

How to generalize to continuous set of points C and con-

tinuous coefficients θ? Consider functions P (·) : R → Rn
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such that P (x) ≥ 0 for all x ∈ C and
∫

x∈C
P (x) = 1. Then

the convex combination is that case is given by the set of all

points y: y =
∫

x∈C
xP (x)dx. If x is a random vector, then

the above becomes E[X].

3.3 Hyperplanes and Polyhedra

Hyperplane: A Hyperplane P is a set of points x with a con-

stant inner product to a given vector a:

P = {x ∈ Rn : aTx = b} where b ∈ R or P =
{(x1, ...., xn) : a1x1 + a2x2 + . . . + anxn = b}. A pro-

jection of a hyperplane in a two-dimensional plane is shown in

figure 5.

a

x0

x

Figure 5: Projection of a hyperplane in two-dim.

The equation characterizing P is also written as aT (x −
x0) = 0 where x0 is any point on P , (namely, it satisfies
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aTx0 = b). Vector a defines a hyperplane P and is vertical

to all points of the hyperplane.

The dimension of x, n, specifies the type of hyperplane.

1. If n = 2, P = {(x1, x2) : a1x1+ a2x2 = b}, which

is a straight line with slope defined by vector (a1, a2).

2. Ifn = 3, (three-dimensional space), thenP = {(x1, x2, x3) :
a1x1 + a2x2 + a3x3 = b}. which is the usual plane.

Half-spaces: A hyperplane P satisfying aTx = b divides

the space into two half-spaces. The one is all points x such

that aTx ≤ b and the other one consists of all points x such

that aTx ≥ b.

Polyhedron: A Polyhedron is the intersection of many half-

spaces:

P = {x : aTj x ≤ bj , j = 1, . . . ,m and

cTj x = dj , j = 1, . . . , p }
In this definition, there are m half-spaces and p hyper-

planes that make up the polyhedron P .

Example: A polyhedron defined as intersection of 5 half-

spaces, aTj x ≤ bj , j = 1, ..., 5.

• If the polyhedron is closed (bounded), it is called a poly-

tope.
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4 Calculus Overview

4.1 Neighborhood

Given a point x ∈ Rn, the set of points {y ∈ Rn :
‖y − x‖2 < ǫ} is called neighborhood of x, N(x), where

‖a‖2 =
√
aTa is the quadratic norm of vector a and ǫ is a

small positive constant.

Depending on the dimension n of Rn, the neighborhood

can be:

• n = 1 : the neighborhood of x ∈ R is the set of

points N(x) = {y : y ∈ (x− ǫ, x+ ǫ)}.

• n = 2: the neighborhood of x is a disk centered at x

22



with radius ǫ.

• n = 3: the neighborhood of x is a sphere centered at

x with radius ǫ.

• n > 3: the neighborhood of x is a ”hyper-sphere”.

4.2 Local and global solutions

A point x∗ is called local optimum (say minimum) of function

f(·) if

f(x∗) ≤ f(x), ∀x ∈ N(x∗). (13)

A point x∗ is called global optimum (minimum) of function

f(·) if

f(x∗) ≤ f(x), ∀x ∈ Ω. (14)

with Ω the definition set of f(·) (set of real vectors over which

f(·) is defined.

Note: In the same spirit, Local Maximum and Global Max-

imum can be defined respectively by changing the inequality

from≤ to≥.

4.3 Derivatives and Gradient

Reminder:
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The first derivative f ′(x) of function f of one variable at

point x is defined as:

lim
a→0

f(x+ a)− f(x)

a
= f ′(x).

It denotes the value of the slope of the tangent line in the

graph of f(x) at point x or the rate of change of the value of f
at point x.

Remark: The slope is the tanφ, where φ is the angle that

the tangent line above makes with the horizontal axis.

For a function f : Rn → R of many variables

x = (x1, x2, . . . , xn) , the partial derivative of f with respect

to xi at point x is defined as:

lim
a→0

f(x+ aei)− f(x)

a

and denoted as ∂f(x)/∂xi, where ei is the vector with 1 in

the i-th position and 0 otherwise.

For a function f : Rn → R of several variables

x = (x1, x2, . . . , xn) , the gradient of f(·) at point x, de-

noted as gradf(x) or∇f(x), is defined as the n× 1 vector:

∇f(x) =













∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)













.
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The gradient can be defined at point x only if partial deriva-

tives of f(·) which respect to all variables exist at x.

The i-th component of∇f(x) denotes the rate of variation

of the value of f(·) at point x when only variable xi changes

and the others remain fixed.

Example: For f(x) = x2 + y2, calculate the gradient

∇f(x) at point x0 = (1, 2).

∇f(1, 2) =
(

2x
2y

)

=

(

2
4

)

.

4.4 Hessian Matrix

The Hessian Matrix of a function of several variables f(·) :
Rn → R at point x is defined as:

∇
2
f(x) =















∂2f

∂x2

1

(x) ∂2f

∂x2∂x1

(x) . . . ∂2f

∂xn∂x1

(x)

∂2f

∂x1∂x2

(x) ∂2f

∂x2

2

(x) . . . ∂2f

∂xn∂x2

(x)

...
...

...
...

∂2f

∂x1∂xn
(x) ∂2f

∂x2∂xn
(x) . . . ∂2f

∂x2
n

(x)















also denoted by F (x).
If f(·) has continuous second derivatives, then the Hes-

sian Matrix is symmetric, i.e. ∂2f/∂xi∂xj = ∂2f/∂xj∂xi,

for i 6= j.

Properties: Given a N × 1 vector x a N ×N matrix A,

the following properties hold:
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1. ∇(xTAx) = (A + AT )x , and if A is symmetric

matrix (A = AT ) , then∇(A+AT )x = 2Ax.

2. ∇(yTx) = y.

3. ∇(xTx) = 2x.

4. ∇(yTAx) = ATy

For example suppose x = (x1, x2),y = (y1, y2) and A is

2× 2 matrix , then we have:

∇(x1y1 + x2y2) =

(

y1
y2

)

= y.

∇(x2
1 + x2

2) = 2

(

x1

x2

)

= 2x.

4.5 Taylor’s expansion formula

Let f : Rn → R be twice continuously differentiable function,

then for all x,x0, Taylor’s expansion formula of f(x) around

point x0 gives

f(x) = f(x0) +∇T (f(x0))(x− x0)

+
1

2
(x− x0)

T∇2f(x0)(x− x0) +O(‖x− x0‖2)
or

f(x+∆x) = f(x) +∇T (f(x))∆x

26



+
1

2
∆xT∇2f(x)∆x+O(‖∆x‖2)

where ∆x is an infinitesimal change in x. For functions of one

variable, we get the known expressions:

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)(x− x0)
2

.

4.6 Square matrices and eigenvalues

1. The characteristic polynomial φ of an n × n matrix A
is defined as φ(λ) = det(λI − A), where I is the

identity matrix.

2. Then (possibly repeated, and, in general, complex) roots

of φ(λ) are called the eigenvalues of A.

3. A vector x such that Ax = λx, where λ is an eigen-

value of A, is called an eigenvector of A corresponding

to λ.

4. The eigenvalues of a triangular matrix are equal to its

diagonal entries.

5. The eigenvalues of cI+A, c ∈ C, are c+λ1, . . . , c+
λn, where λ1, . . . , λn are the eigenvalues of A.
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6. If A is non-singular, the eigenvalues of A−1 are the re-

ciprocals of the eigenvalues of A.

7. The eigenvalues of A and AT coincide.

8. The spectral radius, ρ(A) of a square matrix A is the

maximum (in absolute value) of the magnitudes of its

eigenvalues.

4.7 Symmetric and positive definite matrices

1. A symmetric matrix A has real eigenvalues and n mu-

tually orthogonal, real and nonzero eigenvectors.

2. Suppose that the eigenvectors of A are normalized,

‖xi‖ = 1 for i = 1, . . . , n. ThenA =
∑n

i=1 λixix
T
i ,

where λi is the eigenvalue corresponding toxi. (Known

as Singular Value Decomposition-SVD-)

3. A symmetric square matrix A is positive definite (sym-

bolized as A > 0) in Rn if and only if the quadratic

form

xTAx > 0 ∀x ∈ Rn, with x 6= 0.

4. A is called positive semi-definite if and only if

xTAx ≥ 0 ∀x ∈ Rn.

5. A square symmetric matrix A > 0, if and only if all its

eigenvalues are positive.
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5 Convex functions

A function f : Ω→ R, Ω ⊆ Rn is convex if and only if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), (15)

∀x,y ∈ Rn and θ ∈ [0, 1].
A convex function f(x) of one variable x is shown in Fig-

ure

x yf(x)f(y)
f(x)

x
Figure 6: A convex function of one variable, f(x).

That is, given any two points x,y ∈ Ω with values f(x)
and f(y) respectively, the chord between points (x, f(x))
and (y, f(y)) lies above the graph of f .
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5.1 Concave functions

A function f : Ω→ R is concave if and only if

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y), (16)

∀x,y ∈ Rn and θ ∈ [0, 1].
The schematic representation of a concave function f(x)

of one variable is shown below:

x y

f(x)

f(y)

f(x)

x

Figure 7: A concave function of one variable, f(x).

That is, given any 2 pointsx,y ∈ Ωwith values f(x), f(y)
respectively, the chord between points (x, f(x)) and (y, f(y))
lies below the graph of f .

Remarks:
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• A linear function is both convex and concave, since

f(θx+ (1− θ)y) = θf(x) + (1− θ)f(y),

∀x,y ∈ Rn and θ ∈ [0, 1].

• f is concave if and only if (−f) is convex.

• For a convex function f ,

f

(

n
∑

i=1

aixi

)

≤
n
∑

i=1

aif(xi)

for a1, . . . , an ≥ 0 with
∑n

i=1 ai = 1.

• The weighted sum of convex functions with positive weights

is convex function.

5.2 Convexity Conditions

5.2.1 First-order convexity conditions

Suppose the first-order derivatives of f(x) exist. Then f is

convex at Ω if and only if

f(x) ≥ f(x0) +∇T f(x0)(x− x0)

∀x,x0 ∈ Ω ⊆ Rn.
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For functions of one variable, x, the equation for the tan-

gent line of f at point x0 is f(x0) + f ′(x0)(x − x0). For

many dimensions, the equation for the tangent plane of f at

point x0 is f(x0) +∇T f(x0)(x− x0).

φ

x y

tangent

Figure 8: Demonstration of first-order convexity condition.

Note : We can say that, for convex functions, the first-order

Taylor series linear approximation of the function value at every

point underestimates (is a lower bound to) the value of the func-

tion at that point.

In the same spirit, f is concave at Ω if and only if

f(x) ≤ f(x0) +∇T f(x0)(x− x0)

∀x,x0 ∈ Ω ⊆ Rn.
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5.2.2 Second-order Convexity Conditions

Suppose that f , defined on Ω ⊆ Rn, is twice differentiable (all

second derivatives exist). If the Hessian matrix of f is positive

semi-definite, i.e

∇2f(x) ≥ 0 ∀x ∈ Ω ⊆ Rn

then f is convex in Ω.

If∇2f(x) is positive-definite, then f is called strictly con-

vex.

The inverse condition holds with the following difference: If

Ω is an open set and f is convex function, then ∇2f(x) is

positive semi-definite (∇2f(x) ≥ 0), for all x ∈ Ω.

Remark: If f(x) = xTQx where Q is symmetric matrix,

then f is convex if and only if Q is positive semi-definite.

A function f is concave in Ω if ∇2f(x) ≤ 0 ∀x ∈ Ω ⊆
Rn.

If function f depends on only one variable the convexity

condition becomes: if f ′′(x) ≥ 0, then f is convex.

5.3 Global and local minima of convex functions

If f is a convex function, defined on a convex set Ω, then any

local minimum of f is global minimum.

Proof: Suppose that x is a local minimum, but not a global

minimum. Then there must exist a y 6= x such that
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f(y) < f(x). Using the convexity of f :

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y) < f(x)

and this contradicts the fact that x is local minimum.

An equivalent proof: Since x is local minimum,∇f(x) =
0 (as we will see later). Then from the first-order convexity

condition: f(y) ≥ f(x), ∀y ∈ Rn, so x is global optimum

(minimum).

Also, if f is a concave function, defined on a convex set Ω,

then any local maximum of f is also a global maximum.

5.4 Examples of convex and concave functions
(one variable)

1.

f(x) = eαx is convex onR, ∀α ∈ R.

2.

f(x) = xα =

{

convex on R+ if a ≥ 1 and a ≤ 0,
concave if a ∈ [0, 1]

3.

f(x) = xα =

{

concave on R− if a ≥ 1 and a ≤ 0,
convex if a ∈ [0, 1]
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4.

f(x) = log x is concave on R+.

The supremum and infimum of a set X are straightforward

to define based on maximum and minimum.

5.5 Convex functions of several variables

• If J is an index set, and Ω a convex subset ofRn, and

functions fi : Ω→ R, are convex, then the function:

g(x) = sup
i∈J

fi(x)

is convex.

• f(x) =
√
xTx =

∣

∣|x
∣

∣|2 is a convex function of

x = (x1, x2, . . . , xn).

• f(x) = max{x1, x2, . . . , xn} is a convex function

of x = (x1, . . . , xn).

• f(x) = log(ex1 + . . .+ exn) is a convex function of

x = (x1, x2, . . . , xn) (although f(x) = log(x) is a

concave function of x in R+).

Note: We will use this later to show that function

f(P) =

N
∑

i=1

qi log
GiiPi

∑

j 6=i

GjiPj

=

N
∑

i=1

qi log(SIRi(P)

(17)
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is a concave function of P, where SIR is the

signal-to-interference ratio.

• f(x) =

(

n
∏

i=1

xi

)1/n

is a concave function of

x = (x1, x2, . . . , xn) in R+.

5.6 Jensen’s Inequality

If f is a convex function, then

f

(

x+ y

2

)

≤ f(x) + f(y)

2

If f is a convex function and X is a random variable, we

can generalize the above to show that f(E[X]) ≤ E[f(X)].
Sketch of Jensen’s Inequality: First, we use the definition

of convex function f for two points x, y :

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).
Then extend the inequality to more points: x1, x2, . . . , xk

as

f(θ1x1+ . . .+θkxk) ≤ θ1f(x1)+ . . .+θkf(xk), (18)

where

k
∑

i=1

θi = 1, ∀ θi ≥ 0 (convex combination of k dis-

crete points).
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Considering that
∫

S
p(x)dx = 1, where S is the set of

points where f is defined, the inequality for continuous set of

points becomes

f

(∫

S

p(x)xdx

)

≤
∫

S

f(x)p(x)dx. (19)

Thus the probability distribution p(·) is ”similar” to a continu-

ous distribution of θ’s and declares the convex combinations.

Eventually, we conclude that f(E[X]) ≤ E[f(X)].
Notation:

x∗ = argmin
x∈Ω

f(x)⇐⇒ f(x∗) ≤ f(x)∀x ∈ Ω. (20)

(”arg” stands for argument of a function)

6 Example: Notion of the Utility func-

tion

The utility function U(x) quantifies the amount of satisfaction

from or the desirability of consumption of x amount of goods

or resources. In networking, such resources may be the link or

devoted service bandwidth or the allocated power or storage.

The notion of utility function is central in resource allocation.

The following example is from [1].

Suppose that a central authority has a divisible good of size

C to be divided among N different users. For example, the
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government has determined that a fixed quantity of ground wa-

ter may be pumped in a certain region and would like to allo-

cate quotas that may be pumped by different farms.One way

of performing the allocation is to simply divide the resource

into N parts and allocate C/N to each player. But such a

scheme does not take into account the fact that each player

might value the good differently. In our example, based on the

type of crops being grown, the value of pumping a certain quan-

tity water might be different for different farms. We refer to the

value or utility obtained from an allocation x as U(x). This util-

ity is measured in any denomination common to all the players

such as dollars.

What would be the properties of a utility function? It would

be increasing in the amount of resource obtained. We might

also expect that a law of diminishing returns applies. In our ex-

ample of water resources, the return obtained by increasing the

quota from 10 units to 20 units would make a large difference

in the crop obtained, but an increase from 100 units to 110
units would not make such a significant difference. Such a law

of diminishing returns is modeled by specifying that the utility

function is a strictly concave function since the second deriva-

tive of a strictly concave function is negative. Thus, the first

derivative (which is the rate at which the function increases)

decreases.

The objective of the authority would be to maximize the

system-wide utility. One commonly used measure of system-
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wide utility is the sum of the utilities of all the players. Since

the utility of each player can be thought of the happiness that

he/she obtains, the objective of the central authority can be

likened to maximizing the total happiness in the system, subject

to the constraint that resources are fixed.

Remark: A similar example holds for the problem of divid-

ing a pie of fixed amount C among two individuals, one poor

and one rich. The poor will valuate a given portion x of the

resource differently than the rich one. That means the different

users to which the pie is to be allocated have different utility

functions. That is, U1(x) 6= U2(x), ∀x.

6.1 Concave utility function

GivenU(x) = log x, its second derivative, U ′′(x) = − 1
x2 <

0, ∀x > 0. Thus, U is concave function. The log-function is

useful in defining the utility function.

The first derivative in a point x of the curve gives the slope

of the tangent line at x. Since U ′′(x) < 0, then f ′(x) is de-

creasing (↓). So, as x increases, the rate of increase of utility,

dU/dx, decreases (this attribute holds only for concave func-

tions) as figure 6. shows. For large enough values of power, the

capacity is ”saturated”, in the sense that there are no marginal

returns. Thus, the higher the power, the smaller the rate of

increase of capacity.

In wireless networks, the first example of utility is capacity
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Utility U(x)

x

Figure 9: Concave utility function.

which depends on the amount of allocated power. The information-

theoretic definition of capacity of a link is the largest number of

bits per second that can be transmitted over a link with arbitrar-

ily small probability of error,

C(P ) = log(1 + SNR) = log(1 +
P

N
), (21)

where P is the transmit power and N is the noise power. Func-

tion C(P ) is a concave function of P .

We have the following approximations:

• For large power P , C(P ) = log(1 + P
N ) ≈ log P

N

• For small P , C(P ) ≈ P
N , since log(1 + x) ≈ x for

small x.

Another example is link bandwidth W dedicated to a user

flow out of the ones traversing a link of total capacity C .
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6.2 Convex utility function

Convex utility functions may quantify the amount of cost ob-

tained as a function of the amount of allocated resource.

µ
X

λ

Figure 10: An M/M/1 queue.

A very important example of convex cost function arises in

an M/M/1 queue. Let λ be the average customer arrival rate

and µ be the customer service rate (both in customers/sec).

¿From Little’s theorem, the average number of customers,

E[N ] in the queue is E[N ] = λ ·E[T ], where E[T ] is the av-

erage waiting time in the queue for a customer, E[T ] = 1
µ−λ

for an M/M/1 queue.

Is function E[N ] = λ
µ−λ convex or concave ? For fixed

λ, E[N ] is decreasing since E[N ]′ < 0 and

N
′′(µ) = 2λ/(µ− λ)

3
> 0. Thus, for fixed λ, function

E[N ] is convex decreasing in µ.
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For fixed µ, the function is increasing, since N
′(λ) > 0.

Also, N ′′(λ) = 2µ/(µ− λ)
3

> 0, thus N(·) is convex

increasing in λ.

µ

N N

λ

Figure 11: N(·) is convex increasing in λ and convex decreas-

ing in µ.

7 Numerical methods for one-dimensional

minimization

In this section, we provide numerical methods for finding the

minimum of functions of one variable.
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7.1 Bisection method

• Given a differentiable function f : ℜ → ℜ, a point x⋆

that minimizes f(x) has the property that f ′(x⋆) = 0.

Define g(x) = f ′(x). Then, we need to find a point

x⋆ such that g(x⋆) = 0, i.e., a root of g(·). To find x⋆,

we can use the bisection method.

Pseudo-algorithm:

STEP 1: Find two points a, b such that

g(a) · g(b) < 0 (g(a), g(b) should have opposite

signs. Otherwise, function g(·) is increasing, or

decreasing and the minimum within interval [a, b]
coincides with one of the two end points of the interval).

STEP 2: Go to bisection point y = b−a
2 + a.

STEP 3:
(a) If g(a) · g(y) < 0 , then set b = y,

(b) If g(y) · g(b) < 0 , then set a = y,

(c) If g(y) · g(a) = 0 or g(y) · g(b) = 0, then y is the

minimum. STOP.

STEP 4: If |b− a| < δ (where δ << 1) STOP.

Note : If we search for minimum in a closed interval

[c, d], the minimum is either c or d, depending on

whether f is increasing or decreasing.

In the algorithm above, the root is either found (hit)

exactly, or the searching range constantly gets
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narrower, until the minimizer is found with some

pre-specified accuracy δ.

The first step of the algorithm is depicted in figure 8.

g(x)

a

b
b−a

2

Figure 12: The first step of bisection method.

Number of iterations: At most log2

(

|b−a|
δ

)

iterations to

find the minimum. Complexity depends on the initial search

range [a, b] and the error tolerance parameter δ.

7.2 Unimodal function method

Here we attempt to minimize function f : ℜ → ℜ directly,

(namely without finding the root of f ′).

Uni-modal function: A function f : ℜ → ℜ defined

in a closed interval [a, b] ⊂ ℜ is unimodal in [a, b] if f has
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only one local minimizer in [a, b]. Specifically, f is unimodal if,

given x∗ ∈ [a, b], f is increasing for x ≥ x∗ and decreasing

for x ≤ x∗, x ∈ [a, b].
Conditions satisfied by uni-modal functions: Given points

x1, x2 such that a ≤ x1 < x2 ≤ b, there exists a point x∗

that:

(a) If x1 > x∗, then f(x1) < f(x2). Thus, f is decreas-

ing, as x moves from x1 towards x∗ (Figure 9).

(b) If x2 < x∗, then f(x1) > f(x2). Thus, f is increas-

ing, as x moves from x∗ towards x2 (Figure 10).

x1 x2 x
⋆

Figure 13: Conditions satisfied by a unimodal function.

The bisection method cannot be used in this case, because

we cannot conclude about the sign of intermediate point. For

example, f may have one of the two forms shown in figure

11 and the minimum can be either in the first interval or in the
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x
⋆

x1 x2

Figure 14: Conditions satisfied by a unimodal function.

second interval.

We proceed as follows: We find two points x̂1, x̂2 ∈ [a, b]
such that a < x̂1 < x̂2 < b and we find f(x̂1), f(x̂2). We

can distinguish the following cases:

1. If f(a) > f(x̂1) > f(x̂2), the interval [a, x̂1] is ex-

cluded, as the minimum cannot be in that interval. Thus,

we set the right point of search interval x̂1 ← a. The

minimum should be somewhere in [x̂1, b]. This case is

shown is figure 12.

2. If f(b) > f(x̂2) > f(x̂1), the interval [x̂2, b] is being

excluded, as the minimum cannot be in that interval. The

minimum should be somewhere in [a, x̂2]. Thus, we set

the left point of search interval x̂2 ← b. This case is

shown is figure 13.
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a bb−a

2

type1
type2

Figure 15: Bisection method cannot give any hint on where the

minimum is.

3. Proceed in that fashion, until we find minimum x∗ with

some accuracy.

How do we choose the points x̂1, x̂2 at each iteration?
We need to choose them so that the search interval (and thus

the number of iterations) at each step are reduced fast. The fol-

lowing methods exist for choosing x̂1, x̂2: Golden ratio search

and Fibbonacci search.

7.3 Newton’s method

Newton’s method is an iterative method that uses the second

derivative of f . Thus, f needs to be twice differentiable.

Given a function f(x) and a point x(k) the idea is to ap-
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a bx̂1 x̂2

f(b)

f(x̂2)

f(x̂1)

Figure 16: Case 1 in the method of directly finding the mini-

mum.

proximate f(x) with a quadratic function, namely a second de-

gree polynomial, q(x). Instead of minimizing f we then mini-

mize its approximation q(x),

q(x) = f(x(k))+f ′(x(k))(x−x(k))+
1

2
f ′′(x(k))(x−x(k))2

(22)

Note that polynomial q(x) is chosen so as to satisfy:

q(x(k)) = f(x(k))

q′(x(k)) = f ′(x(k))

q′′(x(k)) = f ′′(x(k)).
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a bx̂1 x̂2

f(a)

f(x̂1)

f(x̂2)

Figure 17: Case 2 in the method of directly finding the mini-

mum.

By minimizing function q(·)we get: q′(x) = 0⇒ f ′(x(k))+
f ′′(x(k))(x − x(k)) = 0. Solving this equation to find the x
that minimizes f ,we get:

x = x(k) − f ′(x(k))

f ′′(x(k))
(23)

By setting the next point to be the minimizing x, i.e, x ←
x(k+1) the equation above becomes:

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
(24)

and gives the form of iteration of Newton method.

As we will see later, Newton method belongs to the class

of gradient methods.
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- The iteration starts from an initial point x0 and

terminates either if f ′(x(k)) = 0 (in which case

x(k+n) = x(k), for n > 0), or if |x(k+1)−x(k)| < ε.

- In stopping condition |x(k+1) − x(k)| < ε, there

exists a tradeoff: if ε is too small, then the minimum is

found with more accuracy, but it takes more iterations to

compute. If ε is larger, then the minimum is found faster

but the error may be large.

- For functions of several variables, we will see that the

Newton iteration becomes:

x(k+1) = x(k) −
[

∇2f(x(k))
]−1

∇f(x(k)) (25)

where ∇2f(x(k)) is the Hessian matrix of f at point

x(k).

8 Optimality conditions

Remark: Necessary and sufficient condition:

N is necessary condition for A, or A⇒ N .

S is sufficient condition for A, or S ⇒ A.
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8.1 Necessary Optimality Conditions

8.1.1 Condition on the Gradient

Let x∗ be an unconstrained local minimum of

f : Rn → R. Then

∇f(x∗) = 0.

Proof: From the Taylor expansion of first order around local

minimum x∗, we have that for small variations ∆x around x∗:

f(x∗ +∆x)− f(x∗) ≈ ∇T f(x∗)∆x .

This means that:

N
∑

i=1

∂f(x∗)

∂xi
∆xi ≥ 0 (26)

for all ∆x = (∆x1, . . . ,∆xN ). Clearly, the value of f in-

creases wherever we move to, since currently we are at x∗,

the local minimum.

Take ∆x to be positive and negative multiples of the unit

coordinate vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1).
The positive and negative ones are:

∆x = ±ε(1, 0, . . . , 0)

∆x = ±ε(0, 1, . . . , 0)
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...

∆x = ±ε(0, 0, . . . , 1)
¿From equation above, we have for example for ∆x =

(1, 0, . . . , 0):

∂f(x∗)

∂x1
ε ≥ 0 and

∂f(x∗)

∂x1
ε ≤ 0. (27)

Thus,
∂f(x∗)
∂x1

ε = 0 and ε > 0. Similarly for the rest. So

finally,
∂f(x∗)
∂xi

= 0 ∀i or

∇f(x∗) = 0

8.1.2 Condition on the Hessian matrix

If x∗ is an unconstrained local minimum of f ,

then ∇2f(x∗) ≥ 0 (assuming that f has all partial second

derivatives at x∗). Equivalently, if x∗ is a local minimum, then

the Hessian matrix of f at x∗ , ∇2f(x∗) is positive semi-

definite.

Proof: From the Second Order Taylor series expansion of

f around x∗:

f(x+∆x)−f(x) ≈ ∇T f(x)∆x+
1

2
(∆x)T∇2f(x)(∆x)

.
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If x∗ is a local minimum, then the difference above is non-

negative (≥ 0). Since∇T f(x∗) = 0, the above becomes:

f(x+∆x)− f(x) ≈ 1

2
(∆x)T∇2f(x)(∆x) ≥ 0 ∀∆x.

which implies that∇2f(x∗) is positive semi-definite.

Similar necessary conditions hold for local maximum.

8.2 Sufficient Optimality Conditions

Let f : Rn → Rn be twice continuously differentiable. If x∗

satisfies ∇f(x∗) = 0 and ∇2f(x∗) > 0 (positive definite),

then x∗ is a local minimum of f .

Similarly, for a local maximum, we can prove that if x∗ ∈ Ω
satisfies∇f(x∗) = 0 and∇2f(x∗) < 0 (negative definite),

then x∗ is a local maximum of f .

8.3 The case of convex / concave function

Recall that if f is convex function, every local minimum is also

global minimum.

For f convex, the condition ∇f(x∗) = 0 is necessary

and sufficient for optimality. Indeed, from a basic property of a

convex function:

f(x) ≥ f(x∗) +∇T f(x∗)(x− x∗)
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So, if ∇f(x) = 0, then f(x) ≥ x∗), for all x and x∗ is

global minimum.

If f is a concave function every local maximum is also

global maximum and the condition∇f(x∗) = 0 is necessary

and sufficient for optimality.

Exercise: Given a set of vectors {x(1), . . . ,x(p)}, with

x(i) ∈ R
n for i = 1, . . . , p, find vector x ∈ Rn such

that the average squared distance (norm) between x and all

x(1), . . . ,x(n),

1

p

p
∑

i=1

∣

∣|x− x(i)
∣

∣|2 (28)

is minimized. Is the local minimum a global minimum?

Solution:

x∗ =
1

p

p
∑

i=1

x(i). (29)
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