Ontology Development

Πληροφοριακά Συστήματα Διαδικτύου

Contents

- Ontology Development Background
- Methodology:
 - Kick-off
 - Refinement
 - Evaluation
 - Maintenance & Evolution

Ontology development: Motivation

- Why creating an ontology?
 - Sharing a common understanding of the information in a knowledge domain
 - Improving interoperability among applications that use the domain
 - Making domain assumptions explicit so that applying changes as these assumptions evolve becomes easier
 - Enabling re-use of the knowledge domain

Ontology development vs. O.O. Software design

- Ontology development is different from object-oriented software design
 - In OO software design the operational properties of a class are important
 - In ontology design the structural properties of a class – how each class relates to other classes in the hierarchy – are important

Ontology development: A complex process

- Ontology construction is not yet a well understood process
 - Size
 - Complexity
 - Shared understanding within a group of people with different backgrounds
- There is not a single correct methodology for building an ontology
 - Applications using the ontology
 - Anticipated extensions

OntoKnowledge methodology

http://www.ontoknowledge.org/

OntoKnowledge methodology

Ontology development is an iterative process

- 1. Kick-off phase: capturing the ontology
 - a. Define the requirements specification
 - Build a first draft version in a semi-formal description
- 2. Refinement phase: formal representation
- 3. Evaluation phase
- 4. Maintenance and Evolution phase

Kick-off phase

- Step 1: Obtain the concepts and the relations between them
- Step 2: Build a classification of the concepts in the ontology

Kick-off phase: Step 1 - Brainstorming

- What is the domain the ontology will cover?
- What is the ontology going to be used for?
- Brainstorming session
 - All involved must collectively possess sufficient domain expertise
 - Quickly capture potentially relevant terms and phrases of the domain

Kick-off phase: Step 1 – Sources & Usage scenarios

- Identify knowledge sources
 - Existing ontologies
 - Domain experts (interviews, CQs, etc.)
 - Dictionaries, internal documents, etc.
- Potential users and usage scenarios
 - Identify roles
 - Identify how the ontology will be used
 - Identify terms and potential relations between them

Kick-off phase: Step 1 - Competency questions

- Competency questions (CQs): basic questions the ontology should be able to answer
 - Constitute expressiveness requirements
 - Indicate scope and content of the ontology
 - Used as reference during the evaluation
 - Ideally defined in a modular manner (higher level questions require the answer of lower level questions)

Kick-off phase: Step 1 – CQ examples

- Example competency questions
 - Is "Ford Mondeo" a 2-wheeled or a 4wheeled vehicle ?
 - What is the brand name of "Ford Mondeo" ?
 - What brands manufacture busses ?
 - What brands manufacture both 2wheeled and 4-wheeled vehicles?

Kick-off phase: Step 1 – Ontology reuse

- Reusing existing ontologies
 - Worth considering what others have done
 - Due to compatibility requirements
 - If applicable in the problem at hand:
 - Extend and refine to fit specific needs
 - Possibly integrate with other ontologies

Kick-off phase: Step 1 - Guidelines

- Design guidelines: provide guidelines for users not familiar with ontology modelling
 - Estimate on the number of concepts
 - Level of granularity (how many classes in each level)
 - Naming rules for concepts and relations
 - Concepts in the ontology should be close to objects (physical or logical) and relations in the target domain

- Clarity: the ontology should minimize ambiguity
- Coherence: the ontology should be internally consistent
- ISA modelling: a subclass represents a concept that is "kind of" the concept represented by the superclass
- Synonyms for the same concept should not represent different classes
- Siblings in the hierarchy must be in the same level of generality

Cycles in the hierarchy should be avoided

- A new class or a new property value? A new class when
 - The concept is important in the domain
 - The concept becomes a restriction for some property in some other class

A new property value when

The concept represents an extrinsic property of some class (number, color, location, etc.)

- When to introduce a new class?
 When the concept to model
 - Has additional properties
 - Has different restrictions
 - Participates in different relations
- Modelling a concept as an instance or as a class?
 - Individual instances represent the most specific concepts in the knowledge domain
 - Depends on applications using the ontology

- Minimal ontological commitments: limiting the scope of the ontology
 - Domain assumptions
 - Make as few claims as possible
 - Make as much claims as necessary
 - Domain information
 - Do not include all possible information
 - Include what is necessary for the applications that will use the ontology

Kick-off phase: Step 2 – The different approaches

- Define the classes of the ontology
 - Top-down approach: Model the most general concepts first and refine them
 - Bottom-up approach: Find the most specific concepts and generalize to obtain higher level concepts
 - Middle-out approach: Identify the most important concepts and obtain the rest by specialization and generalization

Kick-off phase: Step 2 – Pros and cons

- Defining classes pros and cons of different approaches
 - Top-down: high quality, fine grained ontology but may not cover all domain information
 - Bottom-up: less quality, more complete ontology addressing all available domain information
 - Middle-out: more natural, concentrates on what is important and builds on from there, better controls the desired level of detail

Kick-off phase: Step 2 – Defining properties & relations

- Define the relations of the ontology
 - Identify which domain terms represent relations or properties of some classes
 - A property should be attached to the most general class that can have this property
 - Kinds of properties
 - Intrinsic (flavor, color)
 - Extrinsic (name, location)
 - Relations to other classes

Kick-off phase: Step 2 – Defining restrictions

Restrictions on properties

- Cardinality: how many values a property has
- Value type: String, Number, Boolean, Class, etc.
- Domain: the classes to which the property is attached
- Range: the allowed classes, if the valuetype is Class

Utilizing Facets

- Facets can be viewed as different perspectives, viewpoints, or dimensions of a particular domain
- Based on synthesis of classes from subject statements of the domain – conceptual clustering
- A faceted scheme provides a controlled vocabulary in the form of terms arranged systematically by facets and a set of rules on how to combine such terms to define conceptual categories

Facets Example

- Consider the following statements
 - A comfortable, luxurious red Mercedes
 - An expensive fast Maserati
 - A cheap slow Punto
- Conceptual grouping will result in
 - Brand: Mercedes, Punto, Maserati
 - Price: expensive, cheap
 - Performance: slow, fast
 - Quality: comfortable, luxurious

Refinement phase

- Produce a formal representation of the ontology described in the previous phase
 - Refine the ontology
 - Choose a representation language (RDFS, DAML+OIL, OWL, etc.)
 - Expressive power
 - Tool support for reasoning
 - Formalize the representation and produce a mature application-oriented ontology

Evaluation phase

- Evaluate the resulting ontology
 - Using as reference
 - Requirements specifications
 - Competency questions
 - Usage scenarios
 - Test the ontology in the target application environment
 - Obtain usage patterns by monitoring user navigation
 - Recheck less frequently accessed parts for relevance
 - Possibly expand parts accessed with high frequency

Maintenance and Evolution phase

- Apply changes to the ontology while it evolves over time
 - Who is responsible for maintaining the ontology?
 - How the maintenance is going to be performed
- Before each major change all possible effects must be thoroughly examined
- Thoroughly documented according to purpose and scope

The importance of documentation

One of the main barriers to effective knowledge sharing is the inadequate documentation of knowledge bases and ontologies

- All important assumptions should be documented
- Tools that facilitate both formal and informal documentation are necessary

Formal procedure for the generation and evaluation of the conceptualization

