
Introduction to the
Semantic Web,
XML & RDF(S)

Πληροφοριακά Συστήματα Διαδικτύου

How the Web is Today?
• WWW is an impressive success:

– amount of available information (> 1 Giga pages)
– number of human users (> 200 Mega users)

• Information and its presentation are mixed up in
the form of HTML documents
– all intended for human consumption
– many generated automatically by applications

• Easy to fetch any Web page, from any server,
any platform
– access through a uniform interface

Semantic Web: the vision

• We’ve only seen two generations:
– handwritten HTML
– dynamically generated pages

• The real power will come with the 3rd
generation:
– machine accessible semantics
– machine-accessible meaning of information

(reasoning services)

Semantic Web: the vision
• The “Next Generation Web” aims to provide

infrastructure for expressing information in a precise,
human-readable, and machine-interpretable form

• Enable both syntactic and semantic interoperability
among independently-developed Web applications,
allowing them to efficiently perform sophisticated tasks
for humans

• Enable Web resources (data & applications) to be
accessible by their meaning rather than by keywords and
syntactic forms
– Conceptual Navigation & Querying
– Inference Services

Semantic Web: the vision
• The aim of the Semantic Web is to allow much more

advanced knowledge management systems:
– Knowledge will be organised in conceptual spaces according to

its meaning.
– Automated tools will support maintenance by checking for

inconsistencies and extracting new knowledge.
– Keyword-based search will be replaced by query answering:

requested knowledge will be retrieved, extracted, and presented
in a human friendly way.

– Query answering over several documents will be supported.
– Definition of views on certain parts of information (even parts of

documents) will be possible.

Impossible (?) using the
Syntactic Web…

• Complex queries involving background knowledge
– Find information about “animals that use sonar and are either

bats or dolphins”
• Locating information in data repositories

– Travel enquiries
– Prices of goods and services
– Results of human genome experiments

• Finding and using “web services”
– Visualise surface interactions between two proteins

• Delegating complex tasks to web “agents”
– Book me a holiday next weekend somewhere warm, not too far

away, and where they speak French or English

What is the Problem?

• Consider a typical web page
– Markup consists of:

• rendering information (e.g., font size and colour)
• Hyper-links to related content

– Semantic content is accessible to humans but
not (easily) to computers…

What information can we see…
WWW2002
The eleventh international world wide web conference
Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
Registered participants coming from
australia, canada, chile denmark, france, germany, ghana, hong kong, india,

ireland, italy, japan, malta, new zealand, the netherlands, norway,
singapore, switzerland, the united kingdom, the united states, vietnam, zaire

On the 7th May Honolulu will provide the backdrop of the eleventh international
world wide web conference. This prestigious event …

Speakers confirmed
Tim berners-lee
Tim is the well known inventor of the Web, …
Ian Foster
Ian is the pioneer of the Grid, the next generation internet …

What information can
a machine see…

WWW2002
The eleventh international world wide web
conference

Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
1 location 5 days learn interact
Registered participants coming from
australia, canada, chile denmark, france,
germany, ghana, hong kong, india,
ireland, italy, japan, malta, new zealand,
the netherlands, norway, singapore,
switzerland, the united kingdom, the united
states, vietnam, zaire

Register now
On the 7th May Honolulu will provide the
backdrop of the eleventh international world
wide web conference This prestigious event 

Speakers confirmed
Tim is the well known inventor of the Web, 
Ian is the pioneer of the Grid, the next
generation internet 

Solution: XML markup with
“meaningful” tags?

<name>WWW2002
The eleventh international world wide
webcon</name>

<location>Sheraton waikiki hotel
Honolulu, hawaii, USA</location>
<date>7-11 may 2002</date>
<participants>Registered participants coming from
australia, canada, chile denmark, france,
germany, ghana, hong kong, india,
ireland, italy, japan, malta, new zealand,
the netherlands, norway, singapore,
switzerland, the united kingdom, the united
states, vietnam, zaire</participants>

<introduction>Register now
On the 7th May Honolulu will provide the
backdrop of the eleventh international world
wide web conference This prestigious event 

Speakers confirmed</introduction>
<speaker>Tim berners-lee</speaker>
<bio>Tim is the well known inventor of the
Web,</bio>…

But What About…
<conf>WWW2002
The eleventh international world wide webcon</conf>
<place>Sheraton waikiki hotel
Honolulu, hawaii, USA</place>
<date>7-11 may 2002</date>
<participants>Registered participants coming from
australia, canada, chile denmark, france,
germany, ghana, hong kong, india,
ireland, italy, japan, malta, new zealand,
the netherlands, norway, singapore,
switzerland, the united kingdom, the united
states, vietnam, zaire</participants>

<introduction>Register now
On the 7th May Honolulu will provide the
backdrop of the eleventh international world
wide web conference This prestigious event 

Speakers confirmed</introduction>
<speaker>Tim berners-lee</speaker>
<bio>Tim is the well known inventor of the Web,…

Machine sees…
<name>WWW2002
The eleventh international world wide
webc</name>

<location>Sheraton waikiki hotel
Honolulu, hawaii, USA</location>
<date>7-11 may 2002</date>
<participants>Registered participants coming
from

australia, canada, chile denmark, france,
germany, ghana, hong kong, india,
ireland, italy, japan, malta, new zealand,
the netherlands, norway, singapore,
switzerland, the united kingdom, the united
states, vietnam, zaire</participants>

<introduction>Register now
On the 7th May Honolulu will provide the
backdrop of the eleventh international world
wide web conference This prestigious event 

Speakers confirmed</introduction>
<speaker>Ian Foster</speaker>
<bio>Ian is the pioneer of the Grid, the
ne</bio>

Need to Add “Semantics”
• External agreement on meaning of annotations

– E.g., Dublin Core
• Agree on the meaning of a set of annotation tags

– Problems with this approach
• Inflexible
• Limited number of things can be expressed

• Use Ontologies to specify meaning of annotations
– Ontologies provide a vocabulary of terms
– New terms can be formed by combining existing ones
– Meaning (semantics) of such terms is formally specified
– Can also specify relationships between terms in multiple

ontologies

A Semantic Web – First Steps
• Make web resources more accessible to automated

processes
• Extend existing rendering markup with semantic markup

– Metadata annotations that describe content/function of web
accessible resources

• Use Ontologies to provide vocabulary for annotations
– “Formal specification” is accessible to machines

• A prerequisite is a standard web ontology language
– Need to agree common syntax before we can share semantics
– Syntactic web based on standards such as HTTP and HTML

HTML Document Presentation

What’s wrong with HTML
• HTML may reflect document presentation, but it cannot

adequately represent semantics & structure of data.

MONET, Claude

Haystacks at Chailly at Sunrise

1865

Oil on canvas

30x60 cm 11 (11 7/8 x 23 3/5 in.)

San Diego Museum of Art

<P>
<IMG SRC=“http://192.41.13.240/artchive/
m/monet/hayricks.jpg”>

Artist name

Date

Material

Museum

Artifact title

Dimensions

Image reference

But Modern Web Applications
Need More!

• Infomediaries:
– Community Web Portals
– Digital Museums &

Libraries
• Electronic commerce:

– On-line Catalogs &
Procurement

– Comparison Shoppers
– Market Places
– Virtual Enterprises

• Scientific applications:
– E-learning
– Data & Knowledge Grids

• Advanced Information
Management
– finding,
– extracting,
– representing,
– interpreting,
– maintaining

• Flexible, Quick
Interoperation: the ability
to uniformly share,
interpret and manipulate
heterogeneous information
– applications cannot

consume HTML

XML Data Representation
• A possible XML markup of the same information will

retain the structure (and the semantics) of the various
data objects

<ARTIST>
<NAME><FIRST>Claude</FIRST><LAST>Monet</LAST></NAME>
<ARTWORK>

<ARTIFACT>
<TITLE>Haystacks at Chailly at Sunrise</TITLE>
<DATE>1865</DATE>
<MATERIAL>Oil on canvas</MATERIAL>
<DIM Metric=‘cm’>

<HEIGHT>30</HEIGHT><WIDTH>60</WIDTH></DIM>
<DIM Metric=‘in’>

<HEIGHT>11 7/8</HEIGHT><WIDTH>23 3/4</WIDTH></DIM>
<LOCATION>San Diego Museum of Art</LOCATION>
<IMAGE File=‘http://192.41.13.240/artchive/m/monet/hayricks.jpg’/>

</ARTIFACT>
</ARTWORK>

</ARTIST>

Introduction to XML

What is XML?

• XML stands for EXtensible Markup Language
• XML is a markup language much like HTML
• XML was designed to describe data
• XML tags are not predefined. You must define

your own tags
• XML uses a Document Type Definition (DTD) or

an XML Schema to describe the data
• XML with a DTD or XML Schema is designed to

be self-descriptive

The main difference between
XML and HTML

• XML was designed to carry data.
• XML is not a replacement for HTML. XML and

HTML were designed with different goals:
– XML was designed to describe data and to focus on

what data is.
– HTML was designed to display data and to focus on

how data looks.
• HTML is about displaying information, while XML

is about describing information.

XML does not do anything
on its own

• XML was not designed to do anything on its own.
• Maybe it is a little hard to understand, but XML does not do

anything. XML was created to structure information.

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>

<to>George</to>
<from>Marios</from>
<heading>Reminder</heading>
<body>Don't forget your appointment!</body>

</note>

• The note has a header and a message body. It also has sender and
receiver information. But still, this XML document does not do
anything. It is just pure information wrapped in XML tags. Someone
must write a piece of software to send, receive or display it.

XML is free and extensible
• XML tags are not predefined. You must "invent" your

own tags.
• The tags used to mark up HTML documents and the

structure of HTML documents are predefined. The
author of HTML documents can only use tags that are
defined in the HTML standard (like <p>, <h1>, etc.).

• XML allows the author to define his own tags and his
own document structure.

• The tags in the example above (like <to> and <from>)
are not defined in any XML standard. These tags are
"invented" by the author of the XML document.

XML is used to Exchange, Store
and Share Data

• With XML, data can be exchanged between incompatible
systems.

• In the real world, computer systems and databases
contain data in incompatible formats. One of the most
time-consuming challenges for developers has been to
exchange data between such systems over the Internet.

• Converting the data to XML can greatly reduce this
complexity and create data that can be read by many
different types of applications.

• Since XML data is stored in plain text format, XML
provides a software- and hardware-independent way of
sharing and storing data.

XML was not designed for the Web

• XML is in no way a successor to HTML
• XML is not tied to the Web – it is should

not be considered as a Web technology
• XML is primarily used for information

exchange
• Its true power lies in its flexibility and

portability (platform-independence)

XML is everywhere

• How does a technology spread?
– By gaining wide acceptance, becoming a

standard
• In what way is XML everywhere?

– XML parsers exist for most programming
languages and software technologies

• Built-in support for XML makes it very
easy to use it for data exchange

Technologies using XML
• Semantic Web – introducing semantics to the

Web
• Web Services – distributed computing
• The Grid – distributed computing
• VRML – creating virtual worlds
• SVG – image exchange format
• Ant – creating build files for programs
• XRL – composing workflows
• Web/Application server configuration files
• . . .

XML Syntax
• The first line in the document - the XML

declaration - defines the XML version and the
character encoding used in the document (such
as ISO-8859-1,UTF-8 etc). The character
encoding is not mandatory.

<?xml version="1.0" encoding="ISO-8859-1"?>

• The next line describes the root element of the
document:

<note>

• The syntax for writing comments in XML is
similar to that of HTML.

<!-- This is a comment -->

XML elements

• An element consists of an opening tag, its
content, and a closing tag. For example:

<heading>Reminder</heading>

• Tag names can be chosen almost freely, there
are very few restrictions. The most important
ones are that the first character must be a letter,
an underscore or a colon; and that no name may
begin with the string “xml” in any combination of
cases (such as “Xml” and “xML”).

XML elements
• The content may be text, or other elements, or

nothing. It is illegal to omit the closing tag (e.g.
like <p> in HTML). Unlike HTML, XML tags are
case sensitive.

<Name>
<First>Marios</First>

<Last>Marios</Last>
</Name>

• If there is no content then the element is called
empty.

<heading></heading> OR <heading/>

Attributes

• An empty element is not necessarily
meaningless, because it may have some
properties in terms of attributes. An
attribute is a name-value pair inside the
opening tag of an element.

<heading title=“Reminder”/>

• The same information could be written
replacing attributes by nested elements.

Attributes
• As in HTML, in XML attributes provide

additional information about elements:

• Attribute values must always be enclosed
in quotes, but either single or double
quotes can be used.

• Note: If the attribute value itself contains
double quotes it is necessary to use single
quotes, like in this example:

<pilot name=‘John “The Fox” Carter'>

Avoid using attributes?
• Here are some of the problems using attributes:

– attributes cannot contain multiple values (child elements can)
– attributes are not easily expandable (for future changes)
– attributes cannot describe structures (child elements can)
– attributes are more difficult to manipulate by program code
– attribute values are not easy to test against a Document Type

Definition (DTD) - which is used to define the legal elements of
an XML document

• If you use attributes as containers for data, you end up
with documents that are difficult to read and maintain.
Try to use elements to describe data. Use attributes
only to provide information that is not relevant to the
data.

The “correct” way ?

• A date attribute is used in the first example:
<note date="12/11/2002">

• A date element is used:
<note>

<date>12/11/2002</date>

• An expanded date element is used:
<note>

<date>
<day>12</day>
<month>11</month>
<year>2002</year>

</date>

Example
• Imagine that this XML document describes the book:

<book>
<title>My First XML</title>
<prod id="33-657" media="paper"></prod>
<chapter>Introduction to XML

<para>What is HTML</para>
<para>What is XML</para>

</chapter>
<chapter>XML Syntax

<para>Elements must have a closing tag</para>
<para>Elements must be properly nested</para>

</chapter>
</book>

• Book is the root element. Title, prod, and chapter are child
elements of book. Book is the parent element of title, prod, and
chapter. Title, prod, and chapter are siblings (or sister elements)
because they have the same parent.

Well-formed XML documents

• An XML document is well-formed if it is
syntactically correct. Some syntactic rules are:
– There is only one outermost element in the document

(root element).
– Each element contains an open and a corresponding

closing tag.
– Tags may not overlap, as in

<author><name>John Smith</author></name>

– Attributes within an element have unique names.
– Element and tag names must be permissible.

The tree model of XML documents

• It is possible to represent well-formed XML
documents as trees, thus trees provide a
formal data model for XML.

• This representation is often instructive. As
an example, consider the following
document:

The tree model of XML documents
<?xml version="1.0" encoding="UTF-16"?>
<!DOCTYPE email SYSTEM "email.dtd">
<email>

<head>
<from name=“Marios Pitikakis“ address=“mpitikak@inf.uth.gr"/>
<to name=“George Vasilakis“ address=“vasilak@inf.uth.gr"/>
<subject>Where is your draft?</subject>

</head>
<body>

George, where is the draft of the paper
you promised me last week?

</body>
</email>

The tree model of XML documents

email

bodyhead

subjecttofrom

Where is
your draft?

George
Vasilakis

root

mpitikak@
inf.uth.gr

George, where is
the draft of the

paper you promised
me last week?

addressnameaddressname

Marios
Pitikakis

vasilak@
Inf.uth.gr

The tree model of XML documents

• It is an ordered labeled tree. So:
– There is exactly one root.
– There are no cycles.
– Each node, other than the root, has exactly one

parent.
– Each node has a label.
– The order of elements is important.

• However we should note that while the order of
elements is important, the order of attributes is
not. So, the following two elements are
equivalent:

<person lastname=“Smith" firstname=“John"/>
<person firstname=“John" lastname=“Smith"/>

XML Data Representation
<country name=”Greece”>

<capital name=”Athens”>
<areacode>210</areacode>

</capital>
</country>

• Syntax:
– angle brackets, elements
and attributes, etc.

• Data model:
– ordered, labeled treecountry

capitalname

areacodename“Greece”

“210”“Athens”

Structuring

<nation>
<name>Greece</name>
<capital>Athens</capital>
<capital_areacode>

210
</capital_areacode>

</nation>

<country name=”Greece”>
<capital name=”Athens”>

<areacode>210</areacode>
</capital>

</country>

• Are the above XML documents the same?
• Do they convey the same information?
• Is that information machine-accessible?

• No agreement on:
- structure

• is country a:
– object?
– class?
– attribute?
– relation?
– something else?

• what does nesting mean?
- vocabulary

• is country the same as
nation ?

Structuring:
DTDs and XML Schema

• An XML document is well-formed if it respects
certain syntactic rules. However those rules say
nothing specific about the structure of the
document.

• Now imagine two applications which try to
communicate, further suppose they wish to use
the same vocabulary. For this purpose it is
necessary to define all the element and attribute
names that may be used. Moreover their
structure should also be defined: what values an
attribute may take, which elements may, or
must, occur within other elements etc.

Structuring:
DTDs and XML Schema

• In the presence of such structuring information
we have an enhanced possibility of document
validation. We say that an XML document is
valid if it is well-formed, uses structuring
information, and respects that structuring
information.

• There are two ways of defining the structure of
XML documents: DTDs (Document Type
Definitions), the older and more restricted way,
and XML Schema, which offers extended
possibilities, mainly for the definition of data
types.

XML Structuring:
DTDs

DTDs

• The components of a DTD can be defined
in a separate file (external DTD), or within
the XML document itself (internal DTD).
Usually it is better to use external DTDs,
because their definitions can be used
across several documents.

DTD Elements

• Consider the element:
<person>

<firstname>John</firstname>
<lastname>Smith</lastname>
<phone>+30 2810 223344</phone>

</person>

• A DTD for this element type looks as follows:
<!ELEMENT person (firstname,lastname,phone)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT phone (#PCDATA)>

DTD Elements

• The meaning of this DTD is as follows:
– The element types person, firstname,

lastname and phone may be used in the
document.

– A person element contains a firstname
element, a lastname element and a phone
element, in this order.

– A name element and a phone element may
have any content. In DTDs, #PCDATA is the
only atomic type for elements.

DTD Elements
• We express that a person element contains either a

firstname element or a lastname element as
follows:

<!ELEMENT person (firstname | lastname)>
• It gets more difficult when we wish to specify that a

person element contains a firstname element and a
lastname element in any order. We can only use
the trick:

<!ELEMENT person ((firstname,lastname) | (lastname,
firstname))>

• However this approach suffers from practical
limitations (imagine ten elements in any order!).

DTD Attributes
Consider the element:

<order orderNo="23456"
customer="John Smith“
date="October 15, 2002">

<item itemNo="a528"
quantity="1"/>

<item itemNo="c817"
quantity="3"/>

</order>

A DTD for it looks as follows:

<!ELEMENT order (item+)>
<!ATTLIST order
orderNo ID #REQUIRED
customer CDATA #REQUIRED
date CDATA #REQUIRED>
<!ELEMENT item EMPTY>
<!ATTLIST item
itemNo ID #REQUIRED
quantity CDATA #REQUIRED
comments CDATA #IMPLIED>

DTD Attributes
• Compared to the previous example, a new

aspect is that the item element type is defined to
be empty. Another new aspect is the
appearance of + after item in the definition of the
order element type. It is one of the cardinality
operators. These are:
– ?: appears zero times or once
– *: appears zero or more times
– +: appears one or more times
– No cardinality operator means exactly once.

• In addition to defining elements, we have to
define attributes, too. This is done in an attribute
list.

DTD Attributes Types
• They are similar to predefined data types, but the

selection is very limited. The most important types are:
– CDATA: a string (sequence of characters).
– ID: a name that is unique across the entire XML document.
– IDREF: a reference to another element with an ID attribute

carrying the same value as the IDREF attribute.
– IDREFS: A series of IDREFs.
– (v1| . . . |vn): an enumeration of all possible values.

• The selection is indeed not satisfactory. For example,
dates and numbers cannot be specified, they have to be
interpreted as strings (CDATA); Thus their specific
structure cannot be enforced.

DTD Value types
• There are four value types:

– #REQUIRED: the attribute must appear in every occurrence of
the element type in the XML document. In our example above,
itemNo and quantity must always appear within an item element.

– #IMPLIED: the appearance of the attribute is optional. In our
example above, comments are optional.

– #FIXED "value": every element must have this attribute, which
has always the value given after #FIXED in the DTD. A value
given in an XML document is meaningless because it is
overridden by the fixed value.

– "value": it specifies the default value for the attribute. If a specific
value appears in the XML document, it overrides the default
value. For example, the default encoding of the email system
may be mime, but binhex will be used if specified explicitly by the
user.

DTD Referencing
Here is an example for the use of

IDREF and IDREFS.

<!ELEMENT family (person*)>
<!ELEMENT person (name)>
<!ELEMENT name (#PCDATA)>
<!ATTLIST person

id ID #REQUIRED
mother IDREF #IMPLIED
father IDREF #IMPLIED
children IDREFS #IMPLIED>

An XML element that respects this DTD is the
following:

<family>
<person id="bob" mother="mary" father="peter">

<name>Bob Marley</name>
</person>
<person id="bridget" mother="mary">

<name>Bridget Jones</name>
</person>
<person id="mary" children="bob bridget">

<name>Mary Poppins</name>
</person>
<person id="peter" children="bob">

<name>Peter Marley</name>
</person>

</family>

DTD Example
<!ELEMENT email (head,body)>
<!ELEMENT head (from,to+,cc*,subject)>
<!ELEMENT from EMPTY>
<!ATTLIST from

name CDATA #IMPLIED
address CDATA #REQUIRED>

<!ELEMENT to EMPTY>
<!ATTLIST to

name CDATA #IMPLIED
address CDATA #REQUIRED>

<!ELEMENT cc EMPTY>
<!ATTLIST cc

name CDATA #IMPLIED
address CDATA #REQUIRED>

<!ELEMENT subject (#PCDATA)>
<!ELEMENT body (text,attachment*)>
<!ELEMENT text (#PCDATA)>
<!ELEMENT attachment EMPTY>
<!ATTLIST attachment

encoding (mime|binhex) "mime"
file CDATA #REQUIRED>

XML Structuring:
XML Schema

XML Schema
• XML Schema offers a significantly richer

language for defining the structure of XML
documents. One of its characteristics is that its
syntax is based on XML itself! This design
decision provides a significant improvement in
readability but more importantly, it also allows
significant reuse of technology.

• It is not longer necessary to write separate
parsers, editors, etc. for a separate syntax, as
was required for DTD’s.

XML Schema
• An even more important improvement is the

possibility to reuse and refine schemas. XML
Schema allows to define new types by extending
or restricting already existing ones.

• Finally, XML Schema provides a sophisticated
set of datatypes that can be be used in XML
documents (DTD’s were limited to strings only).

• An XML schema is an element with an opening
tag like:

<xsd:schema
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
version="1.0">

Elements types

• Syntax:
<element name=". . ."/>

• Optional attributes
– type:

type = ". . ." (more on types later)
– cardinality constraints:

• minOccurs="x", where x may be any natural
number (including zero)

• maxOccurs="x", where x may be any natural
number (including zero), or unbounded.

Elements types

• minOccurs and maxOccurs are obviously
generalizations of the cardinality operators ?, *,
and +, offered by DTDs. When cardinality
constraints are not provided explicitly,
minOccurs and maxOccurs have value 1 by
default.

• Here are a few examples
<element name="email"/>
<element name="head" minOccurs="1" maxOccurs="1"/>
<element name="to" minOccurs="1"/>

Attribute types
• Syntax:

<attribute name=". . ."/>
• Optional attributes

– type:
type = ". . ."

– existence (corresponds to #OPTIONAL and #IMPLIED in DTDs):
use="x", where x may be: optional or required

– default value (corresponds to #FIXED and default values in
DTDs):

use="x" value=". . .", where x may be default or fixed.
• Here are a few examples:

<attribute name="id" type="ID" use="required"/>
<element name="speaks" type="Language" use="default"
value="en"/>

Data types

• A key weakness of DTDs is the very limited data
types. XML Schema provides powerful
capabilities for defining data types.

• A few built-in data types:
– Numerical data types: integer, Short, Byte, Long,

Decimal, Float etc.
– String data types: string, ID, IDREF, CDATA,

Language etc.
– Date and time data types: time, Date, Month, Year

etc.

Data types
• User-defined data types:

– simple data types which cannot use elements or
attributes

– complex data types which can use elements and
attributes.

• Complex types are defined from already existing
data types by defining some attributes (if any),
and by using:
– sequence: a sequence of existing data type elements,

the appearance of which in a predefined order is
important.

– all: a collection of elements that must appear, but the
order of which is not important.

– choice: a collection of elements, of which one will be
chosen.

Complex data type example
<complexType name="lecturerType">

<sequence>
<element name="firstname" type="string"

minOccurs="0" maxOccurs="unbounded"/>
<element name="lastname" type="string"/>

</sequence>
<attribute name="title" type="string" use="optional"/>

</complexType>

• The meaning is that an element in an XML document
that is declared to be of type lecturerType may have a
title attribute, it may also include any number of
firstname elements, and must include exactly one
lastname element.

Data type extensions
• An existing data types can be extended by new elements

or attributes. As an example, we extend the lecturerType
data type:
<complexType name="extendedLecturerType">

<extension base="lecturerType">
<sequence>

<element name="email" type="string"
minOccurs="0" maxOccurs="1"/>

</sequence>
<attribute name="rank" type="string" use="required"/>

</extension>
</complexType>

• In this example, lecturerType is extended by an email
element and a rank attribute.

Data type restriction

• An existing data type may also be restricted by
adding constraints on certain values. For
example, new type and use attributes may be
added, or the numerical constraints of
minOccurs and maxOccurs tightened.

• It is important to understand that restriction is not
the opposite process from extension. Restriction
is not achieved by deleting elements or
attributes.

Data type restriction
<complexType name="restrictedLecturerType">

<restriction base="lecturerType">
<sequence>

<element name="firstname" type="string"
minOccurs="1" maxOccurs="2"/>

</sequence>
<attribute name="title" type="string" use="required"/>

</restriction>
</complexType>

• The tightened constraints are highlighted

Data type restriction

• Simple data types can also be defined by
restricting existing data types. For example, we
can define a type dayOfMonth which admits
values from 1 to 31 as follows:
<simpleType name="dayOfMonth">

<restriction base="integer">
<minInclusive value="1"/>
<maxInclusive value="31"/>

</restriction>
</simpleType>

Data type restriction
• Also it is possible to define a data type by listing all the

possible values. For example, we can define a data type
dayOfWeek as follows:

<simpleType name="dayOfWeek">
<restriction base="string">

<enumeration value ="Mon"/>
<enumeration value ="Tue"/>
<enumeration value ="Wed"/>
<enumeration value ="Thu"/>
<enumeration value ="Fri"/>
<enumeration value ="Sat"/>
<enumeration value="Sun"/>

</restriction>
</simpleType>

DTD and XML Schema example

• XML documents can have a reference to a DTD
or an XML Schema. This is a simple XML
document called "note.xml“ with a DTD reference:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE note SYSTEM "note.dtd">
<note>

<to>George</to>
<from>Marios</from>
<heading>Reminder</heading>
<body>Don't forget your appointment!</body>

</note>

DTD and XML Schema example
• This is a simple XML document called "note.xml“ with a XML

Shema reference:
<?xml version="1.0" encoding="ISO-8859-1"?>
<note xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="note.xsd">
<to>George</to>
<from>Marios</from>
<heading>Reminder</heading>
<body>Don't forget your appointment!</body>

</note>
• The line xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" tells the XML parser that this document should be
validated against a schema. The line:
xsi:noNamespaceSchemaLocation=“note.xsd" specifies
WHERE the schema resides (here it is in the same folder as
“note.xml").

DTD and XML Schema example
• This is a simple DTD file called "note.dtd" that defines

the elements of the XML document "note.xml":

<!ELEMENT note (to, from, heading, body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

• Line 1 defines the note element to have four elements:
"to, from, heading, body". Line 2-5 defines the to
element to be of the type "#PCDATA", the from element
to be of the type "#PCDATA", and so on...

DTD and XML Schema example
• This is a simple XML Schema file called "note.xsd" that

defines the elements of the XML document "note.xml":
<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="note">
<complexType>

<sequence>
<element name="to" type="string"/>
<element name="from" type="string"/>
<element name="heading" type="string"/>
<element name="body" type="string"/>

</sequence>
</complexType>

</element>
</schema>

XML Namespaces
• One of the main advantages of using XML is that

information from various sources may be accessed; in
technical terms, an XML document may use more than
one DTD or schema.

• But since each structuring document was developed
independently, name clashes appear inevitable. If DTD A
and DTD B define an element type e in different ways, a
parser that tries to validate an XML document in which
an e element appears must be told which DTD to use for
validation purposes.

• The technical solution is simple: disambiguation is
achieved by using a different prefix for each DTD or
schema. The prefix is separated from the local name by
a colon:

prefix:name

XML Namespaces

• Namespaces are declared within an element,
and can be used in that element and any of its
children (elements and attributes). A namespace
declaration has the form:

xmlns:prefix="location"
where location is the address of the DTD or
schema. If a prefix is not specified, as in

xmlns="location"
then the location is used by default.

XML Namespaces example
<?xml version="1.0" encoding="UTF-8"?>
<vu:instructors

xmlns:vu="http://www.vu.com/empDTD"
xmlns="http://www.gu.au/empDTD"
xmlns:uky="http://www.uky.edu/empDTD">

<uky:faculty
uky:title="assistant professor"
uky:name="John Smith"
uky:department="Computer Science"/>

<academicStaff
title="lecturer"
name="Mate Jones"
school="Information Technology"/>

</vu:instructors>

Introduction to RDF(S)

What is RDF
• RDF stands for Resource Description Framework
• RDF is for describing resources on the web
• RDF is designed to be read by computers
• RDF is not designed for being displayed to people
• RDF uses URIs (Uniform Resource Identifier) to identify

web resources
• RDF uses property values to describe web resources
• RDF is essentially a data-model.
• RDF is written in XML
• RDF is a web standard - became a W3C (World Wide

Web Consortium) Recommendation in February 2004

• RDF: enables communities to
describe their resources in a quite
natural and flexible way
– Data Model: Directed Labeled

Graphs
• Nodes: Resources (URIs) or

Literals
• Edges: Properties – Attributes or

Relationships
• Statement: assertion of the form

resource, property, value
• Description: set of statements

concerning a resource
– XML syntax

R1 R2
P1

R1 “foo”
P1

R1 R2 R3

R6R4

R7

R5

R8

P1 P2

P3 P4 P5

P6

P7

The Core RDF Data Model

RDF: Basic Ideas

• Resources: We can think of a resource as
an object; a “thing” we want to talk about.
Resources may be authors, books,
publishers, places, people, hotels, rooms
etc. Every resource has a URI, a Universal
Resource Identifier. A URI can be a URL
(Unified Resource Locator, or Web
address), or some other kind of unique
identifier; note that an identifier does not
necessarily enable access to a resource.

RDF: Basic Ideas
• Properties: They are special kinds of resources,

and describe relations between resources, for
example “written by”, “age”, “title” etc. Properties
in RDF are also identified by URIs (and in
practice by URLs). The value of using URIs to
identify “things” and the relations between them
should not be underestimated. This choice gives
us in one stroke a global, worldwide unique
naming scheme. The use of such a scheme
greatly reduces the homonym problem that has
plagued distributed data-representation until
now.

RDF: Basic Ideas

• Statements, which assert the properties
of resources. A statement is an object-
attribute-value triple, consisting of
– a Resource
– a Property
– a Value

• Values can either be resources, or literals.
Literals are atomic values (strings).

RDF: Basic Ideas

• statements are (subject, predicate, object) triples:
(Greece, hasCapital, Athens)

• statements describe properties of resources
• a resource is any object that can be pointed at by

a URI :
– a document, a picture, a paragraph on the Web

• http://www.inf.uth.gr

– a book in the library, ’real-world’ objects
• isbn://5031-4444-3333

Greece Athens
hasCapital

RDF syntax: XML
• An RDF document is represented by an XML element

with tag rdf:RDF. The content of this element is a
number of descriptions, which use rdf:Description tags.
Every description makes a statement about a resource
which is identified in one of three different ways:
– an about attribute, referencing an existing resource.
– an ID attribute, creating a new resource.
– without a name, creating an anonymous resource.

• Example:
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:mydomain="http://www.mydomain.org/my-rdf-ns">
<rdf:Description rdf:about="http://www.mysite.edu/~smith">

<mydomain:site-owner> John Smith </mydomain:site-owner>
</rdf:Description>

</rdf:RDF>

RDF syntax: XML
• RDF has an XML syntax that has a specific

meaning:
– every Description element describes a resource
– every attribute or nested element inside a Description

is a property of that resource

<Description about=”http://www.countries.org/countries#Greece”>
<hasCapital resource=”http://www.cities.org/cities#Athens”/>

</Description>
<Description about=”http://www.cities.org/cities#Athens”>

<areacode>210</areacode>
</Description>

• Keep in mind that the order of descriptions (or
resources) is not significant according to the abstract
model of RDF.

Linking statements

• The subject of one statement can be the
object of another

• Such collections of statements form a
directed, labeled graph

Greece

Athens

hasCapital

Volos 210

areacodetrainConnection

RDF/XML syntax: just a syntax
• Different ways to write down the same model

<Description about=”http://www.countries.org/countries#Greece”>
<hasCapital resource=”http://www.cities.org/cities#Athens”/>

</Description>
<Description about=”http://www.cities.org/cities#Athens”>

<areacode>210</areacode>
</Description>

<Description about=”http://www.countries.org/countries#Greece”>
<hasCapital resource=”http://www.cities.org/cities#Athens”/>

</Description>
<Description about=”http://www.cities.org/cities#Athens” areacode=”210”/>
</Description>

<Description about=”http://www.countries.org/countries#Greece”>
<hasCapital resource=”http://www.cities.org/cities#Athens”/>

<areacode>210</areacode>
</hasCapital>

</Description>

Namespaces

• Like in ’normal’ XML, you can define
namespaces to disambiguate elements
and attributes:
<rdf:RDF

xmlns:rdf=“http://www.w3.org/TR/2004/REC-rdf-primer-20040210/”
xmlns:geo=”http://www.geography.org/schema.rdf#”>

<rdf:Description rdf:about=”http://www.countries.org/countries#Greece”>
<geo:hasCapital rdf:resource=”http://www.cities.org/cities#Athens”/>

</rdf:Description>
<rdf:Description rdf:about=”http://www.cities.org/cities#Athens”>

<geo:areacode>210</geo:areacode>
</rdf:Description>

</rdf:RDF>

RDF Container Elements
• The rdf:Bag element contains an unordered list of value elements:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cd="http://www.recshop.fake/cd">
<rdf:Description rdf:about="http://www.recshop.fake/cd/Beatles for Sale">

<cd:artist>
<rdf:Bag>

<rdf:li>John</rdf:li>
<rdf:li>Paul</rdf:li>
<rdf:li>George</rdf:li>
<rdf:li>Ringo</rdf:li>

</rdf:Bag>
</cd:artist>

</rdf:Description>

• The rdf:Seq element contains an ordered list of value elements,

So what can we use this for?

• We can:
– make explicit statements about web resources
– have the machine

• know that these are statements
• know how the statements relate
• compare values

• BUT
– we still miss a way to define a vocabulary:

• Should we use ’country’ or ’nation’?
• Is Greece a country? Are there more countries? What

properties can countries have?

RDF Schema

• RDF Schema defines a set of modeling
primitives for structured vocabularies for
machine-processable semantics of
information.
– Two crucial RDF Schema constructions are

subClassOf and subPropertyOf allowing
hierarchical structured vocabularies.

RDF Schema

• RDF gives a data model for metadata
annotation, and a way to write it down in XML,
but it can not define the vocabulary for a domain.

• RDF Schema allows you to define vocabulary
terms and the relations between these terms
– It gives ’extra meaning’ to particular RDF predicates

and resources
– this ’extra meaning’, or semantics, define how a term

should be interpreted

RDF Schema
• RDF Schema does not provide actual

application-specific classes and properties.
• Instead RDF Schema provides the framework to

describe application-specific classes and
properties

• Classes in RDF Schema are much like classes
in object oriented programming languages. This
allows resources to be defined as instances of
classes, and subclasses of classes.

RDF Schema Example

Geographic Entity

CityCountry

CapitalEuropean Country

AthensGreece

subClassOfsubClassOf

subClassOfsubClassOf hasCapital range

domain

hasCapital

typetype
data level

ontology level

RDF Schema Example

Geographic Entity

CityCountry

CapitalEuropean Country

subClassOfsubClassOf

subClassOfsubClassOf hasCapital range

domain

language level

ontology level

Resource

ClassProperty

Literal

Some observations

• Classes and properties are modeled
seperately!
– this is different from ’normal’ Object-Oriented

modeling where properties (attributes) are
part of a class.

– Because of this, domain/range statements
become very restrictive

• Again: RDF Schema is ’just’ RDF, but with
some added meaning to particular terms.

RDF Schema syntax
• Class definition

<rdf:Description rdf:about=”http://www.geography.org/schema.rdf#Country”>
<rdf:type rdf:resource=”http://www.w3.org/2000/01/rdf-schema#Class”/>
<rdfs:subClassOf
rdfs:resource=”http://www.geography.org/schema.rdf#GeographicEntity”/>

</rdf:Description>

<rdfs:Class rdf:about=”http://www.geography.org/schema.rdf#Country”>
<rdfs:subClassOf
rdfs:resource=”http://www.geography.org/schema.rdf#GeographicEntity”/>

</rdfs:Class>

• Property definition
<rdf:Property rdf:about=”http://www.geography.org/schema.rdf#hasCapital”>

<rdfs:domain rdfs:resource=”http://www.geography.org/schema.rdf#Country”/>
<rdfs:range rdfs:resource=”http://www.geography.org/schema.rdf#Capital”/>

</rdfs:Property>

Ontology language?

• Ontology: a formal specification of a
shared conceptualization

• RDF Schema allows:
– specification (we have just seen that)
– sharing (because it is an open, web-based

standard)
– formality?

• Is RDF Schema expressive enough?

What is still missing?
• Cardinality constraints

– “a country can have exactly one capital”
• Conjunction, disjunction, negation, equivalence

– “countries and cities are disjoint: something can not be both a
city and a country”

• Localized constraints
– “when the property 'population' is used on a city, its value must

be between 20.000 and 10 million”
• A way to access this information!

– having it written down is nice and all, but if you want to use it for
question answering you need a query language

• A way to define rules relating concepts and properties

A motivating example
• Definitions:

– Rule1: To walk through a door a VH’s height must be
less than that of the door’s

– Rule2: To walk through a locked door a VH must
have the key

– Rule3: A VH can walk from room A to room B if
• there is a door between room A and B
• the VH is short enough
• the VH has the key to the door

– Rule4: If a VH can walk from room A to room B and
from room B to room C, then the VH can walk from
room A to room C (transitive)

– . . .

A motivating example

• Facts (metadata):
– This VH’s name is John
– Door with id D2 has a key with id K2
– Door D8 is locked
– The VH with name Marios has height 178 cm
– The VH with name John has key K3
– The VH with name John is in room A
– Door D5 connects rooms B and C

A motivating example

• Questions:
– Find all VHs who can walk from room A to

room B
• Deduce a path from A to B
• Check which doors in the path are locked
• Find a VH who has the keys for all locked doors in

the path
• Find a VH short enough to walk through all doors

in the path

Two Cultures on the Future Web
• DB Community focus on:

• XML Data Semantics
• XML Data Manipulation

Languages (Querying,
Views, Programming)

• KR Community focus on:
• Ontology Languages
• Reasoners and Theorem

Provers

XML Schema

XQuery XSLT

Web Services

XML Web

OWLDAML+OIL

Logic + Proof

RDF Schema

RDF

• Metadata annotations
• Ontologies
• Repositories
• Languages
• Search engines
• Inference RDF

RDFS,
DAML+OIL,
OWL

FaCT
Racer
Cerebra

RDF

Jena,
RDFDB,
RDFSuite,
Sesame

(reasoners)

Tools, tools, tools

	Slide Number 1
	How the Web is Today?
	Semantic Web: the vision
	Semantic Web: the vision
	Semantic Web: the vision
	Impossible (?) using the �Syntactic Web…
	What is the Problem?
	What information can we see…
	What information can �a machine see…
	Solution: XML markup with “meaningful” tags?
	But What About…
	Machine sees…
	Need to Add “Semantics”
	A Semantic Web – First Steps
	HTML Document Presentation
	What’s wrong with HTML
	But Modern Web Applications Need More!
	XML Data Representation
	Introduction to XML
	What is XML?
	The main difference between�XML and HTML
	XML does not do anything �on its own
	XML is free and extensible
	XML is used to Exchange, Store and Share Data
	XML was not designed for the Web
	XML is everywhere
	Technologies using XML
	XML Syntax
	XML elements
	XML elements
	Attributes
	Attributes
	Avoid using attributes?
	The “correct” way ?
	Example
	Well-formed XML documents
	The tree model of XML documents
	The tree model of XML documents
	The tree model of XML documents
	The tree model of XML documents
	XML Data Representation
	Structuring
	Structuring:�DTDs and XML Schema
	Structuring:�DTDs and XML Schema
	XML Structuring:�DTDs
	DTDs
	DTD Elements
	DTD Elements
	DTD Elements
	DTD Attributes
	DTD Attributes
	DTD Attributes Types
	DTD Value types
	DTD Referencing
	DTD Example
	XML Structuring:�XML Schema
	XML Schema
	XML Schema
	Elements types
	Elements types
	Attribute types
	Data types
	Data types
	Complex data type example
	Data type extensions
	Data type restriction
	Data type restriction
	Data type restriction
	Data type restriction
	DTD and XML Schema example
	DTD and XML Schema example
	DTD and XML Schema example
	DTD and XML Schema example
	XML Namespaces
	XML Namespaces
	XML Namespaces example
	Introduction to RDF(S)
	What is RDF
	The Core RDF Data Model
	RDF: Basic Ideas
	RDF: Basic Ideas
	RDF: Basic Ideas
	RDF: Basic Ideas
	RDF syntax: XML
	RDF syntax: XML
	Linking statements
	RDF/XML syntax: just a syntax
	Namespaces
	RDF Container Elements
	So what can we use this for?
	RDF Schema
	RDF Schema
	RDF Schema
	RDF Schema Example
	RDF Schema Example
	Some observations
	RDF Schema syntax
	Ontology language?
	What is still missing?
	A motivating example
	A motivating example
	A motivating example
	Two Cultures on the Future Web
	Tools, tools, tools

