
1 Dynamic Programming: The Optimality Equation

We introduce the idea of dynamic programming and the principle of optimality. We
give notation for state-structured models, and introduce ideas of feedback, open-loop,
and closed-loop controls, a Markov decision process, and the idea that it can be useful
to model things in terms of time to go.

1.1 Control as optimization over time

Optimization is a key tool in modelling. Sometimes it is important to solve a prob-
lem optimally. Other times either a near-optimal solution is good enough, or the real
problem does not have a single criterion by which a solution can be judged. However,
even then optimization is useful as a way to test thinking. If the ‘optimal’ solution is
ridiculous it may suggest ways in which both modelling and thinking can be refined.

Control theory is concerned with dynamic systems and their optimization over
time. It accounts for the fact that a dynamic system may evolve stochastically and
that key variables may be unknown or imperfectly observed (as we see, for instance, in
the UK economy).

This contrasts with optimization models in the IB course (such as those for LP and
network flow models); these static and nothing was random or hidden. It is these three
new features: dynamic and stochastic evolution, and imperfect state observation, that
give rise to new types of optimization problem and which require new ways of thinking.

We could spend an entire lecture discussing the importance of control theory and
tracing its development through the windmill, steam governor, and so on. Such ‘classic
control theory’ is largely concerned with the question of stability, and there is much of
this theory which we ignore, e.g., Nyquist criterion and dynamic lags.

1.2 The principle of optimality

A key idea is that optimization over time can often be regarded as ‘optimization in
stages’. We trade off our desire to obtain the lowest possible cost at the present stage
against the implication this would have for costs at future stages. The best action
minimizes the sum of the cost incurred at the current stage and the least total cost that
can be incurred from all subsequent stages, consequent on this decision. This is known
as the Principle of Optimality.

Definition 1.1 (Principle of Optimality) From any point on an optimal trajectory,
the remaining trajectory is optimal for the corresponding problem initiated at that point.

1.3 Example: the shortest path problem

Consider the ‘stagecoach problem’ in which a traveler wishes to minimize the length
of a journey from town A to town J by first traveling to one of B, C or D and then
onwards to one of E, F or G then onwards to one of H or I and the finally to J. Thus
there are 4 ‘stages’. The arcs are marked with distances between towns.

1

A

B

C

D

E

F

G

H

I

J

1

1

2

2

3

3

3

3
3

3

4

4

4

4

4

4

5

6

6

7

Road system for stagecoach problem

Solution. Let F (X) be the minimal distance required to reach J from X. Then clearly,
F (J) = 0, F (H) = 3 and F (I) = 4.

F (F) = min[6 + F (H), 3 + F (I)] = 7 ,

and so on. Recursively, we obtain F (A) = 11 and simultaneously an optimal route, i.e.,
A→D→F→I→J (although it is not unique).

The study of dynamic programming dates from Richard Bellman, who wrote the
first book on the subject (1957) and gave it its name. A very large number of problems
can be treated this way.

1.4 The optimality equation

The optimality equation in the general case. In discrete-time t takes integer
values, say t = 0, 1, Suppose ut is a control variable whose value is to be chosen at
time t. Let Ut−1 = (u0, . . . , ut−1) denote the partial sequence of controls (or decisions)
taken over the first t stages. Suppose the cost up to the time horizon h is given by

C = G(Uh−1) = G(u0, u1, . . . , uh−1) .

Then the principle of optimality is expressed in the following theorem.

Theorem 1.2 (The principle of optimality) Define the functions

G(Ut−1, t) = inf
ut,ut+1,...,uh−1

G(Uh−1) .

Then these obey the recursion

G(Ut−1, t) = inf
ut

G(Ut, t + 1) t < h ,

with terminal evaluation G(Uh−1, h) = G(Uh−1).

The proof is immediate from the definition of G(Ut−1, t), i.e.,

G(Ut−1, t) = inf
ut

inf
ut+1,...,uh−1

G(u0, . . . , ut−1, ut , ut+1, . . . , uh−1) .

2

The state structured case. The control variable ut is chosen on the basis of knowing
Ut−1 = (u0, . . . , ut−1), (which determines everything else). But a more economical
representation of the past history is often sufficient. For example, we may not need to
know the entire path that has been followed up to time t, but only the place to which
it has taken us. The idea of a state variable x ∈ R

d is that its value at t, denoted xt,
is calculable from known quantities and obeys a plant equation (or law of motion)

xt+1 = a(xt, ut, t) .

Suppose we wish to minimize a cost function of the form

C =
h−1∑

t=0

c(xt, ut, t) + Ch(xh) , (1.1)

by choice of controls {u0, . . . , uh−1}. Define the cost from time t onwards as,

Ct =

h−1∑

τ=t

c(xτ , uτ , τ) + Ch(xh) , (1.2)

and the minimal cost from time t onwards as an optimization over {ut, . . . , uh−1} con-
ditional on xt = x,

F (x, t) = inf
ut,...,uh−1

Ct .

Here F (x, t) is the minimal future cost from time t onward, given that the state is x at
time t. Then by an inductive proof, one can show as in Theorem 1.2 that

F (x, t) = inf
u

[c(x, u, t) + F (a(x, u, t), t + 1)] , t < h , (1.3)

with terminal condition F (x, h) = Ch(x). Here x is a generic value of xt. The mini-
mizing u in (1.3) is the optimal control u(x, t) and values of x0, . . . , xt−1 are irrelevant.
The optimality equation (1.3) is also called the dynamic programming equation
(DP) or Bellman equation.

The DP equation defines an optimal control problem in what is called feedback or
closed loop form, with ut = u(xt, t). This is in contrast to the open loop formulation
in which {u0, . . . , uh−1} are to be determined all at once at time 0. A policy (or
strategy) is a rule for choosing the value of the control variable under all possible
circumstances as a function of the perceived circumstances. To summarise:

(i) The optimal ut is a function only of xt and t, i.e, ut = u(xt, t).

(ii) The DP equation expresses the optimal ut in closed loop form. It is optimal
whatever the past control policy may have been.

(iii) The DP equation is a backward recursion in time (from which we get the optimum
at h − 1, then h − 2 and so on.) The later policy is decided first.

‘Life must be lived forward and understood backwards.’ (Kierkegaard)

3

1.5 Markov decision processes

Consider now stochastic evolution. Let Xt = (x0, . . . , xt) and Ut = (u0, . . . , ut) denote
the x and u histories at time t. As above, state structure is characterised by the fact
that the evolution of the process is described by a state variable x, having value xt at
time t, with the following properties.

(a) Markov dynamics: (i.e., the stochastic version of the plant equation.)

P (xt+1 | Xt, Ut) = P (xt+1 | xt, ut) .

(b) Decomposable cost, (i.e., cost given by (1.1)).

These assumptions define state structure. For the moment we also require.

(c) Perfect state observation: The current value of the state is observable. That is,
xt is known at the time at which ut must be chosen. So, letting Wt denote the
observed history at time t, we assume Wt = (Xt, Ut−1). Note that C is determined
by Wh, so we might write C = C(Wh).

These assumptions define what is known as a discrete-time Markov decision pro-
cess (MDP). Many of our examples will be of this type. As above, the cost from time
t onwards is given by (1.2). Denote the minimal expected cost from time t onwards by

F (Wt) = inf
π

Eπ [Ct | Wt] ,

where π denotes a policy, i.e., a rule for choosing the controls u0, . . . , uh−1. We can
assert the following theorem.

Theorem 1.3 F (Wt) is a function of xt and t alone, say F (xt, t). It obeys the opti-
mality equation

F (xt, t) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t + 1) | xt, ut]} , t < h , (1.4)

with terminal condition
F (xh, h) = Ch(xh) .

Moreover, a minimizing value of ut in (1.4) (which is also only a function xt and t) is
optimal.

Proof. The value of F (Wh) is Ch(xh), so the asserted reduction of F is valid at time
h. Assume it is valid at time t + 1. The DP equation is then

F (Wt) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t + 1) | Xt, Ut]} . (1.5)

But, by assumption (a), the right-hand side of (1.5) reduces to the right-hand member
of (1.4). All the assertions then follow.

4

2 Some Examples of Dynamic Programming

We illustrate the method of dynamic programming and some useful ‘tricks’.

2.1 Example: managing spending and savings

An investor receives annual income from a building society of xt pounds in year t. He
consumes ut and adds xt − ut to his capital, 0 ≤ ut ≤ xt. The capital is invested at
interest rate θ × 100%, and so his income in year t + 1 increases to

xt+1 = a(xt, ut) = xt + θ(xt − ut).

He desires to maximize his total consumption over h years, C =
∑h−1

t=0
ut.

Solution. In the notation we have been using, c(xt, ut, t) = ut, Ch(xh) = 0. This is
a time-homogeneous model, in which neither costs nor dynamics depend on t. It is
easiest to work in terms of ‘time to go’, s = h − t. Let Fs(x) denote the maximal
reward obtainable, starting in state x and when there is time s to go. The dynamic
programming equation is

Fs(x) = max
0≤u≤x

[u + Fs−1(x + θ(x − u))] ,

where F0(x) = 0, (since no more can be obtained once time h is reached.) Here, x and
u are generic values for xs and us.

We can substitute backwards and soon guess the form of the solution. First,

F1(x) = max
0≤u≤x

[u + F0(u + θ(x − u))] = max
0≤u≤x

[u + 0] = x .

Next,
F2(x) = max

0≤u≤x
[u + F1(x + θ(x − u))] = max

0≤u≤x
[u + x + θ(x − u)] .

Since u + x + θ(x − u) linear in u, its maximum occurs at u = 0 or u = x, and so

F2(x) = max[(1 + θ)x, 2x] = max[1 + θ, 2]x = ρ2x .

This motivates the guess Fs−1(x) = ρs−1x. Trying this, we find

Fs(x) = max
0≤u≤x

[u + ρs−1(x + θ(x − u))] = max[(1 + θ)ρs−1, 1 + ρs−1]x = ρsx .

Thus our guess is verified and Fs(x) = ρsx, where ρs obeys the recursion implicit in
the above, and i.e., ρs = ρs−1 + max[θρs−1, 1]. This gives

ρs =

{
s s ≤ s∗

(1 + θ)s−s∗

s∗ s ≥ s∗
,

where s∗ is the least integer such that s∗ ≥ 1/θ, i.e., s∗ = ⌈1/θ⌉. The optimal strategy
is to invest the whole of the income in years 0, . . . , h− s∗ − 1, (to build up capital) and
then consume the whole of the income in years h − s∗, . . . , h − 1.

5

There are several things worth remembering from this example. (i) It is often useful
to frame things in terms of time to go, s. (ii) Although the form of the dynamic
programming equation can sometimes look messy, try working backwards from F0(x)
(which is known). Often a pattern will emerge from which we can piece together a
solution. (iii) When the dynamics are linear, the optimal control lies at an extreme
point of the set of feasible controls. This form of policy, which either consumes nothing
or consumes everything, is known as bang-bang control.

2.2 Example: exercising a stock option

The owner of a call option has the option to buy a share at fixed ‘striking price’ p.
The option must be exercised by day h. If he exercises the option on day t and then
immediately sells the share at the current price xt, he can make a profit of xt − p.
Suppose the price sequence obeys the equation xt+1 = xt + ǫt, where the ǫt are i.i.d.
random variables for which E|ǫ| < ∞. The aim is to exercise the option optimally.

Let Fs(x) be the value function (maximal expected profit) when the share price is x

and there are s days to go. Show that (i) Fs(x) is non-decreasing in s, (ii) Fs(x)− x is
non-increasing in x and (iii) Fs(x) is continuous in x. Deduce that the optimal policy
can be characterised as follows.

There exists a non-decreasing sequence {as} such that an optimal policy is to exercise
the option the first time that x ≥ as, where x is the current price and s is the number
of days to go before expiry of the option.

Solution. The state variable at time t is, strictly speaking, xt plus a variable which
indicates whether the option has been exercised or not. However, it is only the latter
case which is of interest, so x is the effective state variable. Since dynamic programming
makes its calculations backwards, from the termination point, it is often advantageous
to write things in terms of the time to go, s = h − t. So if we let Fs(x) be the value
function (maximal expected profit) with s days to go then

F0(x) = max{x − p, 0},

and so the dynamic programming equation is

Fs(x) = max{x − p, E[Fs−1(x + ǫ)]}, s = 1, 2, . . .

Note that the expectation operator comes outside, not inside, Fs−1(·).
One can use induction to show (i), (ii) and (iii). For example, (i) is obvious, since

increasing s means we have more time over which to exercise the option. However, for
a formal proof

F1(x) = max{x − p, E[F0(x + ǫ)]} ≥ max{x − p, 0} = F0(x).

Now suppose, inductively, that Fs−1 ≥ Fs−2. Then

Fs(x) = max{x − p, E[Fs−1(x + ǫ)]} ≥ max{x − p, E[Fs−2(x + ǫ)]} = Fs−1(x),

6

whence Fs is non-decreasing in s. Similarly, an inductive proof of (ii) follows from

Fs(x) − x︸ ︷︷ ︸ = max{−p, E[Fs−1(x + ǫ) − (x + ǫ)︸ ︷︷ ︸] + E(ǫ)},

since the left hand underbraced term inherits the non-increasing character of the right
hand underbraced term. Thus the optimal policy can be characterized as stated. For
from (ii), (iii) and the fact that Fs(x) ≥ x−p it follows that there exists an as such that
Fs(x) is greater that x− p if x < as and equals x− p if x ≥ as. It follows from (i) that
as is non-decreasing in s. The constant as is the smallest x for which Fs(x) = x − p.

2.3 Example: accepting the best offer

We are to interview h candidates for a job. At the end of each interview we must either
hire or reject the candidate we have just seen, and may not change this decision later.
Candidates are seen in random order and can be ranked against those seen previously.
The aim is to maximize the probability of choosing the candidate of greatest rank.

Solution. Let Wt be the history of observations up to time t, i.e., after we have
interviewed the t th candidate. All that matters are the value of t and whether the t th
candidate is better than all her predecessors: let xt = 1 if this is true and xt = 0 if it
is not. In the case xt = 1, the probability she is the best of all h candidates is

P (best of h | best of first t) =
P (best of h)

P (best of first t)
=

1/h

1/t
=

t

h
.

Now the fact that the tth candidate is the best of the t candidates seen so far places
no restriction on the relative ranks of the first t − 1 candidates; thus xt = 1 and Wt−1

are statistically independent and we have

P (xt = 1 | Wt−1) =
P (Wt−1 | xt = 1)

P (Wt−1)
P (xt = 1) = P (xt = 1) =

1

t
.

Let F (t − 1) be the probability that under an optimal policy we select the best candi-
date, given that we have passed over the first t − 1 candidates.Dynamic programming
gives

F (t − 1) =
t − 1

t
F (t) +

1

t
max

(
t

h
, F (t)

)
= max

(
t − 1

t
F (t) +

1

h
, F (0, t)

)

The first term deals with what happens when the tth candidate is not the best so far;
we should certainly pass over her. The second term deals with what happens when it
is. In that case we have a choice: accept that candidate (which will turn out to be best
with probability t/h, or pass over that candidate).

These imply F (t − 1) ≥ F (t) for all t ≤ h. Therefore, since t/h and F (t) are
respectively increasing and non-increasing in t, it must be that for small t we have

7

F (t) > t/h and for large t we have F (t) ≤ t/h. Let t0 be the smallest t such that
F (t) ≤ t/h. Then

F (t − 1) =






F (t0) , t < t0 ,

t − 1

t
F (t) +

1

h
, t ≥ t0 .

Solving the second of these backwards from the point t = h, F (h) = 0, we obtain

F (t − 1)

t − 1
=

1

h(t − 1)
+

F (t)

t
= · · · =

1

h(t − 1)
+

1

ht
+ · · · +

1

h(h − 1)
,

whence

F (t − 1) =
t − 1

h

h−1∑

τ=t−1

1

τ
, t ≥ t0 .

Since we require F (t0) ≤ t0/h, it must be that t0 is the smallest integer satisfying

h−1∑

τ=t0

1

τ
≤ 1 .

For large h the sum on the left above is about log(h/t0), so log(h/t0) ≈ 1 and we find
t0 ≈ h/e. The optimal policy is to interview ≈ h/e candidates, but without selecting
any of these, and then select the first one thereafter that is the best of all those seen
so far. The probability of success is F (t0) ∼ t0/h ∼ 1/e = 0.3679. It is surprising that
the probability of success is so large for arbitrarily large h.

There are a couple lessons in this example. (i) It is often useful to try to establish
the fact that terms over which a maximum is being taken are monotone in opposite
directions, as we did with t/h and F (t). (ii) A typical approach is to first determine
the form of the solution, then find the optimal cost (reward) function by backward
recursion from the terminal point, where its value is known.

8

3 Dynamic Programming over the Infinite Horizon

We define the cases of discounted, negative and positive dynamic programming and
establish the validity of the optimality equation for an infinite horizon problem.

3.1 Discounted costs

For a discount factor, β ∈ (0, 1], the discounted-cost criterion is defined as

C =

h−1∑

t=0

βtc(xt, ut, t) + βhCh(xh) . (3.1)

This simplifies things mathematically, particularly when we want to consider an
infinite horizon. If costs are uniformly bounded, say |c(x, u)| < B, and discounting is
strict (β < 1) then the infinite horizon cost is bounded by B/(1 − β). In economic
language, if there is an interest rate of r% per unit time, then a unit amount of money
at time t is worth ρ = 1 + r/100 at time t + 1. Equivalently, a unit amount at time
t + 1 has present value β = 1/ρ. The function, F (x, t), which expresses the minimal
present value at time t of expected-cost from time t up to h is

F (x, t) = inf
ut,...,uh−1

E

[
h−1∑

τ=t

βτ−tc(xτ , uτ , τ) + βh−tCh(xh)

∣∣∣∣∣ xt = x

]
. (3.2)

The DP equation is now

F (x, t) = inf
u

[c(x, u, t) + βEF (a(x, u, t), t + 1)] , t < h , (3.3)

where F (x, h) = Ch(x).

3.2 Example: job scheduling

A collection of n jobs is to be processed in arbitrary order by a single machine. Job i

has processing time pi and when it completes a reward ri is obtained. Find the order
of processing that maximizes the sum of the discounted rewards.

Solution. Here we take ‘time k’ as the point at which the n − k th job has just been
completed and the state at time k as the collection of uncompleted jobs, say Sk. The
dynamic programming equation is

Fk(Sk) = max
i∈Sk

[riβ
pi + βpiFk−1(Sk − {i})] .

Obviously F0(∅) = 0. Applying the method of dynamic programming we first find
F1({i}) = riβ

pi . Then, working backwards, we find

F2({i, j}) = max[riβ
pi + βpi+pj rj , rjβ

pj + βpj+piri] .

There will be 2n equations to evaluate, but with perseverance we can determine
Fn({1, 2, . . . , n}). However, there is a simpler way.

9

An interchange argument. Suppose that jobs are scheduled in the order
i1, . . . , ik, i, j, ik+3, . . . , in. Compare the reward of this schedule to one in which the
order of jobs i and j are reversed: i1, . . . , ik, j, i, ik+3, . . . , in. The rewards under the
two schedules are respectively

R1 + βT+piri + βT+pi+pj rj + R2 and R1 + βT+pj rj + βT+pj+piri + R2 ,

where T = pi1 + · · · + pik
, and R1 and R2 are respectively the sum of the rewards due

to the jobs coming before and after jobs i, j; these are the same under both schedules.
The reward of the first schedule is greater if riβ

pi/(1 − βpi) > rjβ
pj /(1 − βpj). Hence

a schedule can be optimal only if the jobs are taken in decreasing order of the indices
riβ

pi/(1 − βpi). This type of reasoning is known as an interchange argument.
There are a couple points to note. (i) An interchange argument can be useful

for solving a decision problem about a system that evolves in stages. Although such
problems can be solved by dynamic programming, an interchange argument – when it
works – is usually easier. (ii) The decision points need not be equally spaced in time.
Here they are the points at which a number of jobs have been completed.

3.3 The infinite-horizon case

In the finite-horizon case the cost function is obtained simply from (3.3) by the backward
recursion from the terminal point. However, when the horizon is infinite there is no
terminal point and so the validity of the optimality equation is no longer obvious.

Let us consider the time-homogeneous Markov case, in which costs and dynamics
do not depend on t, i.e., c(x, u, t) = c(x, u). Suppose also that there is no terminal cost,
i.e., Ch(x) = 0. Define the s-horizon cost under policy π as

Fs(π, x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣∣∣∣∣ x0 = x

]
,

where Eπ denotes expectation over the path of the process under policy π. If we take
the infimum with respect to π we have the infimal s-horizon cost

Fs(x) = inf
π

Fs(π, x).

Clearly, this always exists and satisfies the optimality equation

Fs(x) = inf
u

{c(x, u) + βE[Fs−1(x1) | x0 = x, u0 = u]} , (3.4)

with terminal condition F0(x) = 0.
The infinite-horizon cost under policy π is also quite naturally defined as

F (π, x) = lim
s→∞

Fs(π, x). (3.5)

This limit need not exist, but it will do so under any of the following scenarios.

10

D (discounted programming): 0 < β < 1, and |c(x, u)| < B for all x, u.

N (negative programming): 0 < β ≤ 1 and c(x, u) ≥ 0 for all x, u.

P (positive programming): 0 < β ≤ 1 and c(x, u) ≤ 0 for all x, u.

Notice that the names ‘negative’ and ‘positive’ appear to be the wrong way around
with respect to the sign of c(x, u). However, the names make sense if we think of
equivalent problems of maximizing rewards. Maximizing positive rewards (P) is the
same thing as minimizing negative costs. Maximizing negative rewards (N) is the same
thing as minimizing positive costs. In cases N and P we usually take β = 1.

The existence of the limit (possibly infinite) in (3.5) is assured in cases N and P
by monotone convergence, and in case D because the total cost occurring after the sth
step is bounded by βsB/(1 − β).

3.4 The optimality equation in the infinite-horizon case

The infimal infinite-horizon cost is defined as

F (x) = inf
π

F (π, x) = inf
π

lim
s→∞

Fs(π, x) . (3.6)

The following theorem justifies our writing an optimality equation.

Theorem 3.1 Suppose D, N, or P holds. Then F (x) satisfies the optimality equation

F (x) = inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u)]} . (3.7)

Proof. We first prove that ‘≥’ holds in (3.7). Suppose π is a policy, which chooses
u0 = u when x0 = x. Then

Fs(π, x) = c(x, u) + βE[Fs−1(π, x1) | x0 = x, u0 = u] . (3.8)

Either D, N or P is sufficient to allow us to takes limits on both sides of (3.8) and
interchange the order of limit and expectation. In cases N and P this is because of
monotone convergence. Infinity is allowed as a possible limiting value. We obtain

F (π, x) = c(x, u) + βE[F (π, x1) | x0 = x, u0 = u]

≥ c(x, u) + βE[F (x1) | x0 = x, u0 = u]

≥ inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u]} .

Minimizing the left hand side over π gives ‘≥’.

To prove ‘≤’, fix x and consider a policy π that having chosen u0 and reached state
x1 then follows a policy π1 which is suboptimal by less than ǫ from that point, i.e.,
F (π1, x1) ≤ F (x1)+ ǫ. Note that such a policy must exist, by definition of F , although
π1 will depend on x1. We have

11

F (x) ≤ F (π, x)

= c(x, u0) + βE[F (π1, x1) | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) + ǫ | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) | x0 = x, u0] + βǫ .

Minimizing the right hand side over u0 and recalling ǫ is arbitrary gives ‘≤’.

3.5 Example: selling an asset

A spectulator owns a rare collection of tulip bulbs and each day has one opportunity to
sell it, which he may either accept or reject. The potential sale prices are independently
and identically distributed with probability density function g(x), x ≥ 0. Each day
there is a probability 1−β that the market for tulip bulbs will collapse, making his bulb
collection completely worthless. Find the policy that maximizes his expected return
and express it as the unique root of an equation. Show that if β > 1/2, g(x) = 2/x3,
x ≥ 1, then he should sell the first time the sale price is at least

√
β/(1 − β).

Solution. There are only two states, depending on whether he has sold the collection
or not. Let these be 0 and 1 respectively. The optimality equation is

F (1) =

∫
∞

y=0

max[y, βF (1)] g(y) dy

= βF (1) +

∫
∞

y=0

max[y − βF (1), 0] g(y) dy

= βF (1) +

∫
∞

y=βF (1)

[y − βF (1)] g(y) dy

Hence

(1 − β)F (1) =

∫
∞

y=βF (1)

[y − βF (1)] g(y) dy . (3.9)

That this equation has a unique root, F (1) = F ∗, follows from the fact that left and
right hand sides are increasing and decreasing in F (1) respectively. Thus he should sell
when he can get at least βF ∗. His maximal reward is F ∗.

Consider the case g(y) = 2/y3, y ≥ 1. The left hand side of (3.9) is less that the
right hand side at F (1) = 1 provided β > 1/2. In this case the root is greater than 1
and we compute it as

(1 − β)F (1) = 2/βF (1)− βF (1)/[βF (1)]2 ,

and thus F ∗ = 1/
√

β(1 − β) and βF ∗ =
√

β/(1 − β).
If β ≤ 1/2 he should sell at any price.
Notice that discounting arises in this problem because at each stage there is a

probability 1 − β that a ‘catastrophe’ will occur that brings things to a sudden end.
This characterization of a manner in which discounting can arise is often quite useful.

12

4 Positive Programming

We address the special theory of maximizing positive rewards, (noting that there may
be no optimal policy but that if a policy has a value function that satisfies the optimality
equation then it is optimal), and the method of value iteration.

4.1 Example: possible lack of an optimal policy.

Positive programming concerns minimizing non-positive costs, c(x, u) ≤ 0. The name
originates from the equivalent problem of maximizing non-negative rewards, r(x, u) ≥ 0,
and for this section we present results in that setting. The following example shows
that there may be no optimal policy.

Suppose the possible states are the non-negative integers and in state x we have a
choice of either moving to state x + 1 and receiving no reward, or moving to state 0,
obtaining reward 1 − 1/i, and then remaining in state 0 thereafter and obtaining no
further reward. The optimality equations is

F (x) = max{1 − 1/x, F (x + 1)} x > 0 .

Clearly F (x) = 1, x > 0, but the policy that chooses the maximizing action in the
optimality equation always moves on to state x+1 and hence has zero reward. Clearly,
there is no policy that actually achieves a reward of 1.

4.2 Characterization of the optimal policy

The following theorem provides a necessary and sufficient condition for a policy to be
optimal: namely, its value function must satisfy the optimality equation. This theorem
also holds for the case of strict discounting and bounded costs.

Theorem 4.1 Suppose D or P holds and π is a policy whose value function F (π, x)
satisfies the optimality equation

F (π, x) = sup
u
{r(x, u) + βE[F (π, x1) | x0 = x, u0 = u]} .

Then π is optimal.

Proof. Let π′ be any policy and suppose it takes ut(x) = ft(x). Since F (π, x) satisfies
the optimality equation,

F (π, x) ≥ r(x, f0(x)) + βEπ′ [F (π, x1) | x0 = x, u0 = f0(x)] .

By repeated substitution of this into itself, we find

F (π, x) ≥ Eπ′

[
s−1∑

t=0

βtr(xt, ut)

∣∣∣∣∣ x0 = x

]
+ βsEπ′ [F (π, xs) | x0 = x] . (4.1)

13

In case P we can drop the final term on the right hand side of (4.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (π, x) ≥ F (π′, x).

4.3 Example: optimal gambling

A gambler has i pounds and wants to increase this to N . At each stage she can bet any
fraction of her capital, say j ≤ i. Either she wins, with probability p, and now has i+ j
pounds, or she loses, with probability q = 1 − p, and has i − j pounds. Let the state
space be {0, 1, . . . , N}. The game stops upon reaching state 0 or N . The only non-zero
reward is 1, upon reaching state N . Suppose p ≥ 1/2. Prove that the timid strategy,
of always betting only 1 pound, maximizes the probability of the gambler attaining N
pounds.

Solution. The optimality equation is

F (i) = max
j,j≤i

{pF (i + j) + qF (i − j)} .

To show that the timid strategy is optimal we need to find its value function, say
G(i), and show that it is a solution to the optimality equation. We have G(i) =
pG(i + 1) + qG(i − 1), with G(0) = 0, G(N) = 1. This recurrence gives

G(i) =






1 − (q/p)i

1 − (q/p)N
p > 1/2,

i

N
p = 1/2.

If p = 1/2, then G(i) = i/N clearly satisfies the optimality equation. If p > 1/2 we
simply have to verify that

G(i) =
1 − (q/p)i

1 − (q/p)N
= max

j:j≤i

{
p

[
1 − (q/p)i+j

1 − (q/p)N

]
+ q

[
1 − (q/p)i−j

1 − (q/p)N

] }
.

It is a simple exercise to show that j = 1 maximizes the right hand side.

4.4 Value iteration

The infimal cost function F can be approximated by successive approximation or
value iteration. This is important and practical method of computing F . Let us
define

F∞(x) = lim
s→∞Fs(x) = lim

s→∞ inf
π

Fs(π, x) . (4.2)

This exists (by monotone convergence under N or P, or by the fact that under D the
cost incurred after time s is vanishingly small.)

Notice that (4.2) reverses the order of lims→∞ and infπ in (3.6). The following
theorem states that we can interchange the order of these operations and that therefore

14

Fs(x) → F (x). However, in case N we need an additional assumption:

F (finite actions): There are only finitely many possible values of u in each state.

Theorem 4.2 Suppose that D or P holds, or N and F hold. Then F∞(x) = F (x).

Proof. First we prove ‘≤’. Given any π̄,

F∞(x) = lim
s→∞Fs(x) = lim

s→∞ inf
π

Fs(π, x) ≤ lim
s→∞Fs(π̄, x) = F (π̄, x).

Taking the infimum over π̄ gives F∞(x) ≤ F (x).
Now we prove ‘≥’. In the positive case, c(x, u) ≤ 0, so Fs(x) ≥ F (x). Now let

s → ∞. In the discounted case, with |c(x, u)| < B, imagine subtracting B > 0 from
every cost. This reduces the infinite-horizon cost under any policy by exactly B/(1−β)
and F (x) and F∞(x) also decrease by this amount. All costs are now negative, so the
result we have just proved applies. [Alternatively, note that

Fs(x) − βsB/(1 − β) ≤ F (x) ≤ Fs(x) + βsB/(1 − β)

(can you see why?) and hence lims→∞ Fs(x) = F (x).]
In the negative case,

F∞(x) = lim
s→∞min

u
{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u

{c(x, u) + lim
s→∞E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u

{c(x, u) + E[F∞(x1) | x0 = x, u0 = u]}, (4.3)

where the first equality follows because the minimum is over a finite number of terms and
the second equality follows by Lebesgue monotone convergence (since Fs(x) increases
in s). Let π be the policy that chooses the minimizing action on the right hand side of
(4.3). This implies, by substitution of (4.3) into itself, and using the fact that N implies
F∞ ≥ 0,

F∞(x) = Eπ

[
s−1∑

t=0

c(xt, ut) + F∞(xs)

∣∣∣∣∣ x0 = x

]

≥ Eπ

[
s−1∑

t=0

c(xt, ut)

∣∣∣∣∣ x0 = x

]
.

Letting s → ∞ gives F∞(x) ≥ F (π, x) ≥ F (x).

4.5 Example: pharmaceutical trials

A doctor has two drugs available to treat a disease. One is well-established drug and is
known to work for a given patient with probability p, independently of its success for

15

other patients. The new drug is untested and has an unknown probability of success θ,
which the doctor believes to be uniformly distributed over [0, 1]. He treats one patient
per day and must choose which drug to use. Suppose he has observed s successes and f
failures with the new drug. Let F (s, f) be the maximal expected-discounted number of
future patients who are successfully treated if he chooses between the drugs optimally
from this point onwards. For example, if he uses only the established drug, the expected-
discounted number of patients successfully treated is p + βp + β2p + · · · = p/(1 − β).
The posterior distribution of θ is

f(θ | s, f) =
(s + f + 1)!

s!f !
θs(1 − θ)f , 0 ≤ θ ≤ 1,

and the posterior mean is θ̄(s, f) = (s + 1)/(s + f + 2). The optimality equation is

F (s, f) = max
[

p

1 − β
,

s + 1
s + f + 2

(1 + βF (s + 1, f)) +
f + 1

s + f + 2
βF (s, f + 1)

]
.

It is not possible to give a nice expression for F , but we can find an approximate
numerical solution. If s + f is very large, say 300, then θ̄(s, f) = (s + 1)/(s + f + 2)
is a good approximation to θ. Thus we can take F (s, f) ≈ (1 − β)−1 max[p, θ̄(s, f)],
s + f = 300 and work backwards. For β = 0.95, one obtains the following table.

s 0 1 2 3 4 5f
0 .7614 .8381 .8736 .8948 .9092 .9197
1 .5601 .6810 .7443 .7845 .8128 .8340
2 .4334 .5621 .6392 .6903 .7281 .7568
3 .3477 .4753 .5556 .6133 .6563 .6899
4 .2877 .4094 .4898 .5493 .5957 .6326

These numbers are the greatest values of p for which it is worth continuing with
at least one more trial of the new drug. For example, with s = 3, f = 3 it is worth
continuing with the new drug when p = 0.6 < 0.6133. At this point the probability
that the new drug will successfully treat the next patient is 0.5 and so the doctor
should actually prescribe the drug that is least likely to cure! This example shows the
difference between a myopic policy, which aims to maximize immediate reward, and
an optimal policy, which forgets immediate reward in order to gain information and
possibly greater rewards later on. Notice that it is worth using the new drug at least
once if p < 0.7614, even though at its first use the new drug will only be successful with
probability 0.5.

16

5 Negative Programming

We address the special theory of minimizing positive costs, (noting that the action that
extremizes the right hand side of the optimality equation gives an optimal policy), and
stopping problems and their solution.

5.1 Stationary policies

A Markov policy is a policy that specifies the control at time t to be simply a function
of the state and time. In the proof of Theorem 4.1 we used ut = ft(xt) to specify the
control at time t. This is a convenient notation for a Markov policy, and we write
π = (f0, f1, . . .). If in addition the policy does not depend on time, it is said to be a
stationary Markov policy, and we write π = (f, f, . . .) = f∞.

5.2 Characterization of the optimal policy

Negative programming concerns minimizing non-negative costs, c(x, u) ≥ 0. The name
originates from the equivalent problem of maximizing non-positive rewards, r(x, u) ≤ 0.

The following theorem gives a necessary and sufficient condition for a stationary
policy to be optimal: namely, it must choose the optimal u on the right hand side of
the optimality equation. Note that in the statement of this theorem we are requiring
that the infimum over u is attained as a minimum over u.

Theorem 5.1 Suppose D or N holds. Suppose π = f∞ is the stationary Markov policy
such that

c(x, f(x)) + βE[F (x1) | x0 = x, u0 = f(x)]

= min
u

[c(x, u) + βE[F (x1) | x0 = x, u0 = u] .

Then F (π, x) = F (x), and π is optimal.

Proof. Suppose this policy is π = f∞. Then by substituting the optimality equation
into itself and using the fact that π specifies the minimizing control at each stage,

F (x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣∣∣∣∣ x0 = x

]
+ βsEπ [F (xs)|x0 = x] . (5.1)

In case N we can drop the final term on the right hand side of (5.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (x) ≥ F (π, x).

A corollary is that if assumption F holds then an optimal policy exists. Neither
Theorem 5.1 or this corollary are true for positive programming (c.f., the example in
Section 4.1).

17

5.3 Optimal stopping over a finite horizon

One way that the total-expected cost can be finite is if it is possible to enter a state
from which no further costs are incurred. Suppose u has just two possible values: u = 0
(stop), and u = 1 (continue). Suppose there is a termination state, say 0, that is entered
upon choosing the stopping action. Once this state is entered the system stays in that
state and no further cost is incurred thereafter.

Suppose that stopping is mandatory, in that we must continue for no more that s

steps. The finite-horizon dynamic programming equation is therefore

Fs(x) = min{k(x), c(x) + E[Fs−1(x1) | x0 = x, u0 = 1]} , (5.2)

with F0(x) = k(x), c(0) = 0.
Consider the set of states in which it is at least as good to stop now as to continue

one more step and then stop:

S = {x : k(x) ≤ c(x) + E[k(x1) | x0 = x, u0 = 1)]} .

Clearly, it cannot be optimal to stop if x 6∈ S, since in that case it would be strictly
better to continue one more step and then stop. The following theorem characterises
all finite-horizon optimal policies.

Theorem 5.2 Suppose S is closed (so that once the state enters S it remains in S.)
Then an optimal policy for all finite horizons is: stop if and only if x ∈ S.

Proof. The proof is by induction. If the horizon is s = 1, then obviously it is optimal
to stop only if x ∈ S. Suppose the theorem is true for a horizon of s − 1. As above, if
x 6∈ S then it is better to continue for more one step and stop rather than stop in state
x. If x ∈ S, then the fact that S is closed implies x1 ∈ S and so Fs−1(x1) = k(x1). But
then (5.2) gives Fs(x) = k(x). So we should stop if s ∈ S.

The optimal policy is known as a one-step look-ahead rule (OSLA).

5.4 Example: optimal parking

A driver is looking for a parking space on the way to his destination. Each parking
space is free with probability p independently of whether other parking spaces are free
or not. The driver cannot observe whether a parking space is free until he reaches it.
If he parks s spaces from the destination, he incurs cost s, s = 0, 1, If he passes
the destination without having parked the cost is D. Show that an optimal policy is to
park in the first free space that is no further than s∗ from the destination, where s∗ is
the greatest integer s such that (Dp + 1)qs ≥ 1.

Solution. When the driver is s spaces from the destination it only matters whether
the space is available (x = 1) or full (x = 0). The optimality equation gives

Fs(0) = qFs−1(0) + pFs−1(1),

Fs(1) = min

{
s, (take available space)
qFs−1(0) + pFs−1(1), (ignore available space)

18

where F0(0) = D, F0(1) = 0.
Suppose the driver adopts a policy of taking the first free space that is s or closer.

Let the cost under this policy be k(s), where

k(s) = ps + qk(s − 1) ,

with k(0) = qD. The general solution is of the form k(s) = −q/p + s + cqs. So after
substituting and using the boundary condition at s = 0, we have

k(s) = −
q

p
+ s +

(
D +

1

p

)
qs+1, s = 0, 1,

It is better to stop now (at a distance s from the destination) than to go on and take
the first available space if s is in the stopping set

S = {s : s ≤ k(s − 1)} = {s : (Dp + 1)qs ≥ 1} .

This set is closed (since s decreases) and so by Theorem 5.2 this stopping set describes
the optimal policy.

If the driver parks in the first available space past his destination and walk backs,
then D = 1 + qD, so D = 1/p and s∗ is the greatest integer such that 2qs ≥ 1.

5.5 Optimal stopping over the infinite horizon

Let us now consider the stopping problem over the infinite-horizon. As above, let Fs(x)
be the infimal cost given that we are required to stop by time s. Let F (x) be the infimal
cost when all that is required is that we stop eventually. Since less cost can be incurred
if we are allowed more time in which to stop, we have

Fs(x) ≥ Fs+1(x) ≥ F (x) .

Thus by monotone convergence Fs(x) tends to a limit, say F
∞

(x), and F
∞

(x) ≥ F (x).

Example: we can have F
∞

> F

Consider the problem of stopping a symmetric random walk on the integers, where
c(x) = 0, k(x) = exp(−x). The policy of stopping immediately, π, has F (π, x) =
exp(−x), and this satisfies the infinite-horizon optimality equation,

F (x) = min{exp(−x), (1/2)F (x + 1) + (1/2)F (x − 1)} .

However, π is not optimal. A symmetric random walk is recurrent, so we may wait until
reaching as large an integer as we like before stopping; hence F (x) = 0. Inductively,
one can see that Fs(x) = exp(−x). So F

∞
(x) > F (x).

(Note: Theorem 4.2 says that F
∞

= F , but that is in a setting in which there is no
terminal cost and for different definitions of Fs and F than we take here.)

19

Example: Theorem 4.1 is not true for negative programming

Consider the above example, but now suppose one is allowed never to stop. Since
continuation costs are 0 the optimal policy for all finite horizons and the infinite horizon
is never to stop. So F (x) = 0 and this satisfies the optimality equation above. However,
F (π, x) = exp(−x) also satisfies the optimality equation and is the cost incurred by
stopping immediately. Thus it is not true (as for positive programming) that a policy
whose cost function satisfies the optimality equation is optimal.

The following lemma gives conditions under which the infimal finite-horizon cost
does converge to the infimal infinite-horizon cost.

Lemma 5.3 Suppose all costs are bounded as follows.

(a) K = sup
x

k(x) < ∞ (b) C = inf
x

c(x) > 0 . (5.3)

Then Fs(x) → F (x) as s → ∞.

Proof. (*starred*) Suppose π is an optimal policy for the infinite horizon problem and
stops at the random time τ . Then its cost is at least (s + 1)CP (τ > s). However, since
it would be possible to stop at time 0 the cost is also no more than K, so

(s + 1)CP (τ > s) ≤ F (x) ≤ K .

In the s-horizon problem we could follow π, but stop at time s if τ > s. This implies

F (x) ≤ Fs(x) ≤ F (x) + KP (τ > s) ≤ F (x) +
K2

(s + 1)C
.

By letting s → ∞, we have F
∞

(x) = F (x).

Note that the problem posed here is identical to one in which we pay K at the start
and receive a terminal reward r(x) = K − k(x).

Theorem 5.4 Suppose S is closed and (5.3) holds. Then an optimal policy for the
infinite horizon is: stop if and only if x ∈ S.

Proof. By Theorem 5.2 we have for all finite s,

Fs(x)
= k(x) x ∈ S ,

< k(x) x 6∈ S .

Lemma 5.3 gives F (x) = F
∞

(x).

20

6 Average-cost Programming

We address the infinite-horizon average-cost case, the optimality equation for this case
and the policy improvement algorithm.

6.1 Average-cost optimization

It can happen that the undiscounted expected total cost is infinite, but the accumulation
of cost per unit time is finite. Suppose that for a stationary Markov policy π, the
following limit exists:

λ(π, x) = lim
t→∞

1

t
Eπ

[
t−1∑

s=0

c(xs, us)

∣∣∣∣∣ x0 = x

]
.

It is reasonable to expect that there is a well-defined notion of an optimal average-cost
function, λ(x) = infπ λ(π, x), and that under appropriate assumptions, λ(x) = λ should
not depend on x. Moreover, one would expect

Fs(x) = sλ + φ(x) + ǫ(s, x) ,

where ǫ(s, x) → 0 as s → ∞. Here φ(x) + ǫ(s, x) reflects a transient due to the initial
state. Suppose that the state space and action space are finite. From the optimality
equation for the finite horizon problem we have

Fs(x) = min
u

{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]} . (6.1)

So by substituting Fs(x) ∼ sλ + φ(x) into (6.1), we obtain

sλ + φ(x) ∼ min
u

{c(x, u) + E[(s − 1)λ + φ(x1) | x0 = x, u0 = u]}

which suggests, what it is in fact, the average-cost optimality equation:

λ + φ(x) = min
u

{c(x, u) + E[φ(x1) | x0 = x, u0 = u]} . (6.2)

Theorem 6.1 Let λ denote the minimal average-cost. Suppose there exists a constant
λ′ and bounded function φ such that for all x and u,

λ′ + φ(x) ≤ c(x, u) + E[φ(x1) | x0 = x, u0 = u] . (6.3)

Then λ′ ≤ λ. This also holds when ≤ is replaced by ≥ and the hypothesis is weakened
to: for each x there exists a u such that (6.3) holds when ≤ is replaced by ≥.

Proof. Suppose u is chosen by some policy π. By repeated substitution of (6.3) into
itself we have

φ(x) ≤ −tλ′ + Eπ

[
t−1∑

s=0

c(xs, us)

∣∣∣∣∣ x0 = x

]
+ Eπ [φ(xt) | x0 = x]

21

Divide this by t and let t → ∞ to obtain

0 ≤ −λ′ + lim
t→∞

1

t
Eπ

[
t−1∑

s=0

c(xs, us)

∣∣∣∣∣ x0 = x

]
,

where the final term on the right hand side is simply the average-cost under policy π.
Minimizing the right hand side over π gives the result. The claim for ≤ replaced by ≥
is proved similarly.

Theorem 6.2 Suppose there exists a constant λ and bounded function φ satisfying
(6.2). Then λ is the minimal average-cost and the optimal stationary policy is the one
that chooses the optimizing u on the right hand side of (6.2).

Proof. Equation (6.2) implies that (6.3) holds with equality when one takes π to be the
stationary policy that chooses the optimizing u on the right hand side of (6.2). Thus π

is optimal and λ is the minimal average-cost.

The average-cost optimal policy is found simply by looking for a bounded solution
to (6.2). Notice that if φ is a solution of (6.2) then so is φ+(a constant), because the
(a constant) will cancel from both sides of (6.2). Thus φ is undetermined up to an
additive constant. In searching for a solution to (6.2) we can therefore pick any state,
say x̄, and arbitrarily take φ(x̄) = 0.

6.2 Example: admission control at a queue

Each day a consultant is presented with the opportunity to take on a new job. The
jobs are independently distributed over n possible types and on a given day the offered
type is i with probability ai, i = 1, . . . , n. Jobs of type i pay Ri upon completion.
Once he has accepted a job he may accept no other job until that job is complete. The
probability that a job of type i takes k days is (1 − pi)

k−1pi, k = 1, 2, Which jobs
should the consultant accept?

Solution. Let 0 and i denote the states in which he is free to accept a job, and in
which he is engaged upon a job of type i, respectively. Then (6.2) is

λ + φ(0) =

n∑

i=1

ai max[φ(0), φ(i)],

λ + φ(i) = (1 − pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n .

Taking φ(0) = 0, these have solution φ(i) = Ri − λ/pi, and hence

λ =

n∑

i=1

ai max[0, Ri − λ/pi] .

The left hand side is increasing in λ and the right hand side is decreasing λ. Hence
there is a root, say λ∗, and this is the maximal average-reward. The optimal policy
takes the form: accept only jobs for which piRi ≥ λ∗.

22

6.3 Value iteration bounds

Value iteration in the average-cost case is based upon the idea that Fs(x) − Fs−1(x)
approximates the minimal average-cost for large s.

Theorem 6.3 Define

ms = min
x

{Fs(x) − Fs−1(x)} , Ms = max
x

{Fs(x) − Fs−1(x)} . (6.4)

Then ms ≤ λ ≤ Ms, where λ is the minimal average-cost.

Proof. (*starred*) Suppose that the first step of a s-horizon optimal policy follows
Markov plan f . Then

Fs(x) = Fs−1(x) + [Fs(x) − Fs−1(x)] = c(x, f(x)) + E[Fs−1(x1) | x0 = x, u0 = f(x)] .

Hence
Fs−1(x) + ms ≤ c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u] ,

for all x, u. Applying Theorem 6.1 with φ = Fs−1 and λ′ = ms, implies ms ≤ λ. The
bound λ ≤ Ms is established in a similar way.

This justifies the following value iteration algorithm. At termination the algo-
rithm provides a stationary policy that is within ǫ × 100% of optimal.

(0) Set F0(x) = 0, s = 1.
(1) Compute Fs from

Fs(x) = min
u

{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]} .

(2) Compute ms and Ms from (6.4). Stop if Ms − ms ≤ ǫms. Otherwise set s := s + 1
and goto step (1).

6.4 Policy improvement

Policy improvement is an effective method of improving stationary policies.

Policy improvement in the average-cost case.

In the average-cost case a policy improvement algorithm can be based on the following
observations. Suppose that for a policy π = f∞, we have that λ, φ is a solution to

λ + φ(x) = c(x, f(x0)) + E[φ(x1) | x0 = x, u0 = f(x0)] ,

and suppose for some policy π1 = f∞

1 ,

λ + φ(x) ≥ c(x, f1(x0)) + E[φ(x1) | x0 = x, u0 = f1(x0)] , (6.5)

23

with strict inequality for some x. Then following the lines of proof in Theorem 6.1

lim
t→∞

1

t
Eπ

[
t−1∑

s=0

c(xs, us)

∣∣∣∣∣x0 = x

]
= λ ≥ lim

t→∞

1

t
Eπ1

[
t−1∑

s=0

c(xs, us)

∣∣∣∣∣ x0 = x

]
.

If there is no π1 for which (6.5) holds then π satisfies (6.2) and is optimal. This justifies
the following policy improvement algorithm

(0) Choose an arbitrary stationary policy π0. Set s = 1.
(1) For a given stationary policy πs−1 = f∞

s−1 determine φ, λ to solve

λ + φ(x) = c(x, fs−1(x)) + E[φ(x1) | x0 = x, u0 = fs−1(x)] .

This gives a set of linear equations, and so is intrinsically easier to solve than (6.2).
(2) Now determine the policy πs = f∞

s from

c(x, fs(x)) + E[φ(x1) | x0 = x, u0 = fs(x)]

= min
u

{c(x, u) + E[φ(x1) | x0 = x, u0 = u]} ,

taking fs(x) = fs−1(x) whenever this is possible. By applications of Theorem 6.1,
this yields a strict improvement whenever possible. If πs = πs−1 then the algorithm
terminates and πs−1 is optimal. Otherwise, return to step (1) with s := s + 1.

If both the action and state spaces are finite then there are only a finite number
of possible stationary policies and so the policy improvement algorithm will find an
optimal stationary policy in finitely many iterations. By contrast, the value iteration
algorithm can only obtain more and more accurate approximations of λ∗.

Policy improvement in the discounted-cost case.

In the case of strict discounting, the following theorem plays the role of Theorem 6.1.
The proof is similar, by repeated substitution of (6.6) into itself.

Theorem 6.4 Suppose there exists a bounded function G such that for all x and u,

G(x) ≤ c(x, u) + βE[G(x1) | x0 = x, u0 = u]. (6.6)

Then G ≤ F , where F is the minimal discounted-cost function. This also holds when
≤ is replaced by ≥ and the hypothesis is weakened to: for each x there exists a u such
that (6.6) holds when ≤ is replaced by ≥.

The policy improvement algorithm is similar. E.g., step (1) becomes

(1) For a given stationary policy πs−1 = f∞

s−1 determine G to solve

G(x) = c(x, fs−1(x)) + βE[G(x1) | x0 = x, u0 = fs−1(x)] .

24

