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What Is the Communications Toolbox?
The Communications Toolbox is a set of MATLAB® functions that can help you 
design and analyze advanced communication systems. Functions in the toolbox 
can accomplish these tasks:

• Random signal production

• Error analysis, including eye diagrams and scatter plots

• Source coding, including scalar quantization, differential pulse code 
modulation, and companders

• Error-control coding, including convolutional and linear block coding

• Analog and digital modulation/demodulation

• Filtering of data using special filters

• Computations in Galois fields
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Related Products
The MathWorks provides several products that are especially relevant to the 
kinds of tasks you can perform with the Communications Toolbox. They are 
listed in the table below. In particular, the Communications Toolbox requires 
these products:

• MATLAB

• Signal Processing Toolbox

For more information about any of these products, see either:

• The online documentation for that product, if it is installed or if you are 
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products” 
section

Note  The toolboxes listed below all include functions that extend MATLAB’s 
capabilities. The blocksets all include blocks that extend the capabilities of 
Simulink®.

Product Description

CDMA Reference 
Blockset

Simulink block libraries for the design and 
simulation of the IS-95A wireless 
communications standard

Communications 
Blockset

Simulink block libraries for modeling the 
physical layer of communications systems

DSP Blockset Simulink block libraries for the design, 
simulation, and prototyping of digital signal 
processing systems
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Signal Processing 
Toolbox

Tool for algorithm development, signal and 
linear system analysis, and time-series data 
modeling

Simulink Interactive, graphical environment for 
modeling, simulating, and prototyping 
dynamic systems

Product Description
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Using This Guide
This guide describes and illustrates the capabilities of the Communications 
Toolbox. The table below matches sections of this guide with your possible 
learning goals.

Expected Background
This guide assumes that you already have background knowledge in the 
subject of communications. If you do not yet have this background, then you 
can acquire it using a standard communications text or the books listed in one 
of this guide’s sections entitled “Selected Bibliography for... .”

For New Users
Start with “Getting Started with the Communications Toolbox”, which 
describes an example in detail. Then read those parts of “Using the 
Communications Toolbox” that address the functionality that concerns you. 
When you find out from that chapter which functions you want to use, refer to 
the references pages in “Reference” that describe those functions.

For Experienced Users
The reference descriptions in “Reference” are probably the most relevant parts 
of this guide for you. Each reference description includes the function’s syntax 
as well as a complete explanation of its options and operation. Many reference 
descriptions also include examples, a description of the function’s algorithm, 
and references to additional reading material.

You might also want to browse through “Getting Started with the 
Communications Toolbox” and “Using the Communications Toolbox” based on 
your interests or needs.

Goal Section

Examine an example in detail, to begin learning 
about the toolbox

“Getting Started with the 
Communications Toolbox”

Learn how this toolbox implements a particular 
category of functionality, such as source coding

“Using the Communications Toolbox”

Learn about particular functions in this toolbox “Reference”
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Supplementing This Guide with Command-Line Help
Command-line help is text that MATLAB displays in its command window. 
The table below lists two kinds of command-line help that are available for the 
Communications Toolbox, along with the command that you would type at the 
MATLAB prompt in order to display the help text.

Method-Specific Help
Some multipurpose functions also provide command-line help on specific 
methods. For example, help encode displays text that describes the use of the 
encode command for error-control encoding. One specific method of 
error-control encoding is BCH encoding. The command

encode bch

displays text that describes the use of the encode command for BCH encoding. 
The functions that provide method-specific help are: amod, ademod, amodce, 
ademodce, ddemod, ddemodce, decode, demodmap, dmod, dmodce, encode, and 
modmap. The general help text, displayed by the help function command, lists 
the available methods.

Type of Command-Line Help MATLAB Command

List of functions in the 
Communications Toolbox

help comm

Information about a particular 
function

help function (for example, help 
ademod)
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Configuration Information
To determine if the Communications Toolbox is installed on your system, type 

ver

at the MATLAB prompt. MATLAB displays information about the version of 
MATLAB you are running, including a list of all toolboxes installed on your 
system and their version numbers. Check the list to see if the Communications 
Toolbox appears.

For information about installing the toolbox, see the MATLAB Installation 
Guide for your platform.
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Technical Conventions
This section mentions some technical conventions that this guide uses.

Polynomials as Vectors
MATLAB represents a polynomial in one variable x using a vector that lists the 
polynomial’s coefficients, arranged according to the powers of x. Descending 
order means that the coefficient of the highest power of x appears first and that 
the polynomial’s constant term appears last. Ascending order is the opposite. 
The table below illustrates the conventions for functions in this toolbox and for 
built-in MATLAB functions.

Matrices
Matrix dimensions are described by listing the number of rows and the number 
of columns of the matrix in that order, as below.

u = [1 2 3;4 5 6] % A 2-by-3 matrix

Category of Functions Vector That Represents the 
Polynomial 1+2x+3x2

Error-control coding or Galois 
field computations

[1, 2, 3] (ascending order)

Modulation/demodulation, e.g., 
when using filters

[3, 2, 1] (descending order)

Built-in MATLAB, e.g., roots, 
poly, polyval

[3, 2, 1] (descending order)
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Typographical Conventions
This guide uses some or all of these conventions.

Item Convention Used Example

Example code Monospace font To assign the value 5 to A, 
enter

A = 5

Function names/syntax Monospace font The cos function finds the 
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Keys Boldface with an initial capital 
letter

Press the Return key.

Literal strings (in syntax 
descriptions in reference 
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions, 
operators, and constants

This vector represents the 
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with
A =

5

Menu titles, menu items, 
dialog boxes, and controls

Boldface with an initial capital 
letter

Choose the File menu.

New terms Italics An array is an ordered 
collection of information.

Omitted input arguments (...) ellipsis denotes all of the 
input/output arguments from 
preceding syntaxes. 

[c,ia,ib] = union(...)

String variables (from a 
finite list)

Monospace italics sysc = d2c(sysd,'method')
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A Detailed Example
This chapter describes a particular example in detail, to help you get started 
using the Communications Toolbox. It uses several functions from the toolbox, 
as the table below indicates. 

This chapter assumes very little about your prior knowledge of MATLAB, 
although it still assumes that you have a basic knowledge about 
communications subject matter.

What the Example Does
The example creates a random digital signal consisting of integers between 0 
and 8, and modulates it using two varieties of the 8-ary quadrature amplitude 
shift keying (QASK) technique. This technique associates each integer in the 
signal with some point in an eight-point signal constellation, and then uses the 
associations to create a modulated signal.

There are 8!, that is, factorial(8), ways to associate eight symbols with eight 
constellation points. One category of configurations implements what is called 
Gray coding. In a Gray coded constellation, the symbol associated with a given 
point and the symbol of any of the point’s nearest neighbors differ in exactly 
one bit. Thus, the constellation point associated with the symbol 3 (= 011) can 
have as a nearest neighbor the point associated with the symbol 1 (= 001), 2 
(= 010), or 7 (= 111), but not any other number.

In order to compare the behavior of different constellation configurations, the 
example modulates the message signal separately using two varieties of 
8-QASK modulation. Both varieties use constellations with the same points, 

Function Purpose in Example

randint Generate a random signal

dmodce Modulate signals

ddemodce Demodulate signals

biterr Compute bit error rate

modmap Plot a signal constellation
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but one variety labels the constellation points so as to implement Gray code 
while the other variety does not implement Gray code. After modulating, the 
example adds noise to both modulated signals, demodulates both noisy signals, 
and compares the bit error rates in the two cases.

The example outputs the two bit error rates. The expectation is that although 
noise might cause demodulation errors in both cases, the errors in the Gray 
coding case should involve fewer bits. When you execute the example, check to 
see whether the bit error rate from the Gray coding case is smaller than the bit 
error rate from the non-Gray coding case.

Where to Find the Example
If you have already installed MATLAB and the Communications Toolbox, then 
the toolbox will be there whenever you start up MATLAB. The example is 
contained in a file called commgettingstarted.m, which is located in the 
toolbox/comm/commdemos directory within your MATLAB installation. You 
can view the contents of the example file by typing 

type commgettingstarted

at the MATLAB prompt.

You can execute the example by typing

commgettingstarted

at the MATLAB prompt.

How the Example Works
This section displays and explains the example code, piece by piece.

Setting Up Parameters
The first part of the example defines variables that the rest of the example will 
use. The symbol alphabet has M different symbols, namely, the integers 
between 0 and M-1. The message will be a column vector having len entries, 
each of which is chosen from the symbol alphabet.

The variables Fd and Fs refer to the relative sampling rates for the modulation 
scheme. They would be more meaningful if the example were sampling a real 
signal that had a natural notion of time. However, since this example uses a 
random signal that does not have a built-in notion of time, the main purpose of 
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Fd and Fs is to indicate that the modulated signal has three entries for every 
one entry of the original signal.

% Set up parameters.
M = 8; % Number of symbols in alphabet
len = 10000; % Number of symbols in the original message
Fd = 1; % Assume the original message is sampled
% at a rate of 1 sample per second.
Fs = 3; % The modulated signal will be sampled
% at a rate of 3 samples per second.

Creating the Signal
The variable signal is a len-by-1 matrix, that is, a column vector of length len, 
whose entries are randomly chosen integers between 0 and M-1. This is the 
signal that the example will modulate. The randint function is part of this 
toolbox.

% Create a signal.
signal = randint(len,1,M); % Random digital message
% consisting of integers between 0 and M-1

Modulating the Signal
This part of the example modulates the data in the column vector signal in two 
different ways. The dmodce function performs both modulations and puts the 
results into the two-column matrix modsignal.

The first call to dmodce, which creates the first column of modsignal, tells 
dmodce to use QASK modulation on M symbols. The string 'qask' indicates the 
QASK method as well as the default square constellation configuration. In this 
case, the configuration implements Gray code.

The second call to dmodce, which creates the second column of modsignal, tells 
dmodce to use QASK modulation with a signal constellation whose 
configuration is represented in the vectors inphase and quad. The variables 
inphase and quad are length-M vectors that list the in-phase and quadrature 
components, respectively, of the points in the signal constellation. The points 
are listed in sequence, to associate a message symbol of k with the (k+1)st 
elements in inphase and quad. Whereas Gray code labels the constellation 
points in a special way, this configuration lists points in a sequence that is 
merely convenient for creating inphase and quad.
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These lines also illustrate some common ways to manipulate matrices in 
MATLAB. If you are not familiar with MATLAB’s colon notation or with 
functions like ones and zeros, then you should consult the MATLAB 
documentation set.

% Use M-ary QASK modulation with two different labeled
% square constellations.
modsignal(:,1) = dmodce(signal,Fd,Fs,'qask',M);
inphase = [-3:2:3 -3:2:3];
quad = [ones(1,4), -1*ones(1,4)];
modsignal(:,2) = dmodce(signal,Fd,Fs,'qask/arb',inphase,quad);

Adding Noise
According to the definition of baseband QASK modulation, modsignal is a 
complex matrix having len*Fs/Fd rows and two columns. The command below 
adds normally distributed random numbers to the real and imaginary parts of 
modsignal, to produce a noisy signal noisy. The randn function is a built-in 
MATLAB function.

Notice that the command adds to modsignal an entire real matrix of the 
appropriate size and an entire imaginary matrix of the appropriate size. Using 
a loop to add noise to individual scalar entries of modsignal would be less 
efficient, since MATLAB is optimized for matrix operations.

% Add noise to real and imaginary parts of the modulated signal.
noisy = modsignal+.5*randn(len*Fs/Fd,2)...
+j*.5*randn(len*Fs/Fd,2);

Demodulating the Signal
This part of the example demodulates the noisy modulated signal, noisy, in 
two different ways. The ddemodce function performs both demodulations by 
operating on each column of noisy separately. In each case, ddemodce puts the 
results into the two-column matrix newsignal.

% Demodulate to recover the message.
newsignal(:,1) = ddemodce(noisy(:,1),Fd,Fs,'qask',M);
newsignal(:,2) = ddemodce(noisy(:,2),Fd,Fs,...
'qask/arb',inphase,quad);
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Computing and Displaying Bit Error Rates
The biterr function compares each demodulated signal (that is, each column 
of newsignal) to the original signal. Then biterr computes the number of bit 
errors, as well as the rate or fraction of bit errors. The built-in MATLAB 
function disp displays the two bit error rates in the command window.

% Check whether Gray code resulted in fewer bit errors.
% Compare signal with each column of newsignal.
[num,rate] = biterr(newsignal,signal); 
disp('Bit error rates for the two constellations used here')
disp('----------------------------------------------------')
disp(['Gray code constellation:     ', num2str(rate(1))])
disp(['Non-Gray code constellation: ', num2str(rate(2))])

Plotting a Signal Constellation
The modmap function plots and labels the default square signal constellation 
having M points. The constellation that inphase and quad determine looks the 
same, except that the points are labeled from left to right across each row in 
the diagram, starting with the upper row.

% Plot signal constellations with Gray code labeling.
modmap('qask',M);

Output from the Example
The example produces output in the command window like that shown below. 
Since the message signal and the noise are random, you will probably not get 
the exact numbers below. (For information about states and repeatable 
sequences of random numbers, see the reference page for the built-in MATLAB 
function rand.) 

Bit error rates for the two constellations used here
----------------------------------------------------
Gray code constellation:     0.0003
Non-Gray code constellation: 0.00036667

The example also produces a figure window containing the signal constellation 
plot in the figure below. The horizontal axis represents the in-phase 
components and the vertical axis represents the quadrature components. The 
dots are the constellation points. The number next to each dot is the message 
symbol associated with that dot. By considering the binary form of each 
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number from 0 to M-1, you can check that this constellation implements Gray 
code.

Figure 1-1:  Square 8-ary QASK Signal Constellation, Labeled for Gray Code
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A typical communication system includes a signal source, sink, and channel, as 
well as processes for transmitting and receiving. This chapter describes and 
illustrates how to implement communication components using the functions 
provided in the Communications Toolbox. Each section in this chapter 
corresponds to a category of functionality within the Communications Toolbox. 
The sections are:

• “Random Signals and Error Analysis” on page 2-3

• “Source Coding” on page 2-14

• “Block Coding” on page 2-24

• “Convolutional Coding” on page 2-43

• “Modulation” on page 2-56

• “Special Filters” on page 2-78

• “Galois Field Computations” on page 2-89
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2. Using the Communications Toolbox

Random Signals and Error Analysis
Simulating a communication system often involves analyzing its response to 
the noise inherent in real-world components. Such analysis aims to illustrate 
the system’s response and possibly to help design a system appropriate for the 
most likely kinds of noise.

Error Analysis Features of the Toolbox
Error analysis tasks supported in the Communications Toolbox include:

• Simulating noise or signal sources using random signals

• Computing the error rate or number of errors

• Plotting an eye diagram

• Generating a scatter plot

This section describes these toolbox functions that accomplish error-analysis 
tasks: biterr, eyediagram, randerr, randint, randsrc, scatterplot, symerr, 
and wgn. Since error analysis is often a component of communication system 
simulation, other portions of this guide provide additional examples.

Random Signals
Random signals are useful for simulating noise, errors, or signal sources. 
Besides built-in MATLAB functions like rand and randn, you can also use these 
functions from this toolbox:

• wgn, for generating white Gaussian noise

• randsrc, for generating random symbols

• randint, for generating uniformly distributed random integers

• randerr, for generating random bit error patterns

While randsrc and randint are suitable for representing sources, randerr is 
more appropriate for modeling channel errors.

White Gaussian Noise
The wgn function generates random matrices using a white Gaussian noise 
distribution. You specify the power of the noise in either dB (decibels), dBm, or 
linear units. You can generate either real or complex noise.
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For example, the command below generates a column vector of length 50 
containing real white Gaussian noise whose power is 2 dB. The function 
assumes that the load impedance is 1 Ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a 
load of 60 Ohms, use either of the commands below. Notice that the ordering of 
the string inputs does not matter.

y2 = wgn(50,1,2,60,'complex','linear');
y3 = wgn(50,1,2,60,'linear','complex');

To send a signal through an additive white Gaussian noise channel, use the 
awgn function.

Random Symbol Matrices
The randsrc function generates random matrices whose entries are chosen 
independently from an alphabet that you specify, with a distribution that you 
specify. A special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries are 
independently chosen and uniformly distributed in the set {1,3,5}. (Your results 
may vary because these are random numbers.)

a = randsrc(5,4,[1,3,5])

a =

     3     5     1     5
     1     5     3     3
     1     3     3     1
     1     1     3     5
     3     1     1     3

If you want 1 to be twice as likely to occur as either 3 or 5, then use the 
command below to prescribe the skewed distribution. Notice that the third 
input argument has two rows, one of which indicates the possible values of b 
and the other indicates the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])



Random Signals and Error Analysis

2-5

b =

     3     3     5     1
     1     1     1     1
     1     5     1     1
     1     3     1     3
     3     1     3     1

Random Integer Matrices
The randint function generates random integer matrices whose entries are in 
a range that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing random 
integers between 2 and 10.

c = randint(5,4,[2,10])

c =

     2     4     4     6
     4     5    10     5
     9     7    10     8
     5     5     2     3
    10     3     4    10

If your desired range is [0,10] instead of [2,10] then you can use either of the 
commands below. They produce different numerical results, but use the same 
distribution.

d = randint(5,4,[0,10]);
e = randint(5,4,11);

Random Bit Error Patterns
The randerr function generates matrices whose entries are either 0 or 1. 
However, its options are rather different from those of randint, since randerr 
is meant for testing error-control coding. For example, the command below 
generates a 5-by-4 binary matrix having the property that each row contains 
exactly one 1.

f = randerr(5,4)



2 Using the Communications Toolbox

2-6

f =

     0     0     1     0
     0     0     1     0
     0     1     0     0
     1     0     0     0
     0     0     1     0

You might use such a command to perturb a binary code that consists of five 
four-bit codewords. Adding the random matrix f to your code matrix (modulo 
2) would introduce exactly one error into each codeword.

On the other hand, if you want to perturb each codeword by introducing one 
error with probability 0.4 and two errors with probability 0.6, then the 
command below should replace the one above.

% Each row has one '1' with probability 0.4, otherwise two '1's
g = randerr(5,4,[1,2; 0.4,0.6])

g =

     0     1     1     0
     0     1     0     0
     0     0     1     1
     1     0     1     0
     0     1     1     0

Note  The probability matrix that is the third argument of randerr affects 
only the number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element 
column vector using any of the commands below. The three commands produce 
different numerical outputs, but use the same distribution. Notice that the 
third input arguments vary according to each function’s particular way of 
specifying its behavior.

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1.
binarymatrix2 = randint(100,1,2); % Two possible values
binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1
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Error Rates
Comparing messages before and after transmission can help you evaluate the 
quality of a communication system design or the performance of a special 
technique or algorithm. If your communication system uses several bits to 
represent a single symbol, then counting bit errors is different from counting 
symbol errors. In either the bit- or symbol-counting case, the error rate is the 
number of errors divided by the total number (of bits or symbols) transmitted.

The biterr function compares two messages and computes the number of bit 
errors and the bit error rate. The symerr function compares two messages and 
computes the number of symbol errors and the symbol error rate.

Example: Computing Error Rates
The script below uses the symerr function to compute the symbol error rates for 
a noisy linear block code. After artificially adding noise to the encoded message, 
it compares the resulting noisy code to the original code. Then it decodes and 
compares the decoded message to the original one.

m = 3; n = 2^m-1; k = n-m; % Prepare to use Hamming code.
msg = randint(k*200,1,2); % 200 messages of k bits each
code = encode(msg,n,k,'hamming');
codenoisy = rem(code+(rand(n*200,1)>.95),2); % Add noise.
% Decode and correct some errors.
newmsg = decode(codenoisy,n,k,'hamming');
% Compute and display symbol error rates.
[codenum,coderate] = symerr(code,codenoisy);
[msgnum,msgrate] = symerr(msg,newmsg);
disp(['Error rate in the received code: ',num2str(coderate)])
disp(['Error rate after decoding: ',num2str(msgrate)])

The output is below. The error rate decreases after decoding because the 
Hamming decoder corrects some of the errors. Your results might vary because 
the example uses random numbers.

Error rate in the received code: 0.054286
Error rate after decoding: 0.03
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Comparison of Symbol Error Rate and Bit Error Rate
In the example above, the symbol errors and bit errors are the same because 
each symbol is a bit. The commands below illustrate the difference between 
symbol errors and bit errors in other situations. 

a = [1 2 3]'; b = [1 4 4]';
format rat % Display fractions instead of decimals.
[snum,srate] = symerr(a,b)

snum =

      2      

srate =

     2/3 

[bnum,brate] = biterr(a,b)

bnum =

     5

brate =

     5/9 

bnum is five because the second entries differ in two bits and the third entries 
differ in three bits. brate is 5/9 since the total number of bits is nine. The total 
number of bits is, by definition, the number of entries in a or b times the 
maximum number of bits among all entries of a and b.

Eye Diagrams
An eye diagram is a simple and convenient tool for studying the effects of 
intersymbol interference and other channel impairments in digital 
transmission. To construct an eye diagram, plot the received signal against 
time on a fixed-interval axis. At the end of the fixed time interval, wrap around 
to the beginning of the time axis. Thus the diagram consists of many 
overlapping curves. One way to use an eye diagram is to look for the place 
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where the “eye” is most widely opened, and use that point as the decision point 
when demapping a demodulated signal to recover a digital message.

To produce an eye diagram from a signal, use the eyediagram function. The 
signal can have different formats, as the table below indicates.

Example: Eye Diagrams
The code below illustrates the use of the eye diagram for finding the best 
decision point. It maps a random digital signal to a 16-QASK waveform, then 
uses a raised cosine filter to simulate a noisy transmission channel. Several 
commands manipulate the filtered data to isolate its steady-state behavior. 
Then the eyediagram command produces an eye diagram from the resulting 
signal.

% Define the M-ary number and sampling rates.
M = 16; Fd = 1; Fs = 10; 
Pd = 100; % Number of points in the calculation
msg_d = randint(Pd,1,M); % Random integers in the range [0,M-1]
% Modulate using square constellation QASK method.
msg_a = modmap(msg_d,Fd,Fd,'qask',M);
% Assume the channel is equivalent to a raised cosine filter.
delay = 3; % Delay of the raised cosine filter
rcv = rcosflt(msg_a,Fd,Fs,'fir/normal',.5,delay);

% Truncate the output of rcosflt to remove response tails.
propdelay = delay .* Fs/Fd + 1; % Propagation delay of filter

Table 2-1:  Representing In-Phase and Quadrature Components of Signal

Signal Format Source of In-Phase 
Components

Source of Quadrature 
Components

Real matrix with two 
columns

First column Second column

Complex vector Real part Imaginary part

Real vector Vector contents Quadrature 
component is always 
zero
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rcv1 = rcv(propdelay:end-(propdelay-1),:); % Truncated version
N = Fs/Fd;

% Plot the eye diagram of the resulting signal sampled and
% displayed with no offset.
offset1 = 0;
h1 =  eyediagram(rcv1,N,1/Fd,offset1);
set(h1,'Name','Eye Diagram Displayed with No Offset');

Notice that a vertical line down the center of the diagram would cross the “eye” 
at its most widely opened point, as in the left-hand side below.

In the right-hand diagram above, a similar vertical line would not cross the eye 
at the most widely opened point. This diagram results from the commands

offset2 = 2;
h2 = eyediagram(rcv1,N,1/Fd,offset2,'r-');
set(h2,'Name','Eye Diagram Displayed with Offset of Two');

This example continues by using the information gathered from the eye 
diagrams to choose the decision-timing offset in the demodmap command. 
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(Notice that the actual offset value in demodmap is offset1+1 because 
eyediagram and demodmap express offsets in a different way.)

% Continue, using the offset information for digital demapping.
newmsg1 = demodmap(rcv1,[Fd offset1+1],Fs,'qask',16);
s1 = symerr(msg_d,newmsg1) % Number of symbol errors

s1 =

     0

By contrast, an offset value based on offset2 leads to errors in the recovered 
digital signal. Your exact number of errors might vary because the message 
msg_d consists of random numbers.

newmsg2 = demodmap(rcv1,[Fd offset2+1],Fs,'qask',16);
s2 = symerr(msg_d,newmsg2)

s2 =

    8

As an additional example of using the eyediagram function, the commands 
below display the eye diagram with no offset, but based on data that is sampled 
with an offset of two samples.  This sampling offset simulates errors in timing 
that result from being two samples away from perfect synchronization.

h3 = eyediagram(rcv1(1+offset2:end,:),N,1/Fd,0);
set(h3,'Name','Eye Diagram Sampled with Offset of Two');

Scatter Plots
A scatter plot of a signal shows the signal’s value at a given decision point. In 
the best case, the decision point should be at the time when the eye of the 
signal’s eye diagram is the most widely open.

To produce a scatter plot from a signal, use the scatterplot function. The 
signal can have different formats, as in the case of the eyediagram function. 
See Table 2-1, Representing In-Phase and Quadrature Components of Signal, 
on page 2-9 for details.
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Example: Scatter Plots
The code below is similar to the example from the section, “Example: Eye 
Diagrams” on page 2-9. It produces a scatter plot from the received analog 
signal, instead of an eye diagram.

% Define the M-ary number and sampling rates.
M = 16; Fd = 1; Fs = 10;
Pd = 200; % Number of points in the calculation
msg_d = randint(Pd,1,M); % Random integers in the range [0,M-1]
% Modulate using square constellation QASK method.
msg_a = modmap(msg_d,Fd,Fs,'qask',M);
% Assume the channel is equivalent to a raised cosine filter.
rcv = rcosflt(msg_a,Fd,Fs);
% Create the scatter plot of the received signal,
% ignoring the first three and the last four symbols.
N = Fs/Fd;
rcv_a = rcv(3*N+1:end-4*N,:);
h = scatterplot(rcv_a,N,0,'bx');

Varying the third parameter in the scatterplot command changes the offset. 
An offset of zero yields optimal results, shown on the left below.
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The diagram on the right results from the commands below. The x’s and +’s 
reflect two offsets that are not optimal because they are too late and too early, 
respectively. Notice that in the diagram, the dots are the actual constellation 
points, while the other symbols are perturbations of those points.

hold on;
scatterplot(rcv_a,N,N+1,'r+',h); % Plot +'s
scatterplot(rcv_a,N,N-1,'mx',h); % Plot x's
scatterplot(rcv_a,N,0,'b.',h); % Plot dots
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Source Coding
Source coding, also known as quantization or signal formatting, is a way of 
processing data in order to reduce redundancy or prepare it for later 
processing. Analog-to-digital conversion and data compression are two 
categories of source coding.

Source coding divides into two basic procedures: source encoding and source 
decoding. Source encoding converts a source signal into a digital signal using a 
quantization method. The symbols in the resulting signal are nonnegative 
integers in some finite range. Source decoding recovers the original 
information from the source coded signal.

Source Coding Features of the Toolbox
This toolbox supports two source coding quantization methods: scalar 
quantization and predictive quantization. It does not support vector 
quantization. Functions in the toolbox can accomplish these tasks:

• Quantize a signal according to a partition and codebook that you specify

• Optimize partition and codebook parameters for a set of training data

• Encode or decode a signal using the differential pulse code modulation 
(DPCM) technique

• Optimize DPCM parameters for a set of training data

• Perform µ-law or A-law compressor or expander calculations

Representing Quantization Parameters
Scalar quantization is a process that maps all inputs within a specified range 
to a common value. It maps inputs in a different range of values to a different 
common value. In effect, scalar quantization digitizes an analog signal. Two 
parameters determine a quantization: a partition and a codebook. This section 
describes how toolbox functions represent these parameters.

Partitions
A quantization partition defines several contiguous, nonoverlapping ranges of 
values within the set of real numbers. To specify a partition in MATLAB, list 
the distinct endpoints of the different ranges in a vector.
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For example, if the partition separates the real number line into the four sets:

1 {x: x ≤ 0}

2 {x: 0< x ≤ 1}

3 {x: 1 < x ≤ 3} and

4 {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

Notice that the length of the partition vector is one less than the number of 
partition intervals.

Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall 
into each range of the partition. Represent a codebook as a vector whose length 
is the same as the number of partition intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

Quantizing a Signal
The previous section described how you can represent the partition and 
codebook that determine your scalar quantization process. This section shows 
how to use these parameters in the quantiz function.

Scalar Quantization Example 1
The code below shows how the quantiz function uses partition and codebook 
to map a real vector, samp, to a new vector, quantized, whose entries are either 
-1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized
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quantized =

  Columns 1 through 6 

   -1.0000   -1.0000   -1.0000   -1.0000    0.5000    0.5000

  Columns 7 through 12 

    2.0000    2.0000    2.0000    2.0000    2.0000    3.0000

  Column 13 

    3.0000

Scalar Quantization Example 2
This example illustrates the nature of scalar quantization more clearly. After 
quantizing a sampled sine wave, it plots the original and quantized signals. 
The plot contrasts the x’s that make up the sine curve with the dots that make 
up the quantized signal. The vertical coordinate of each dot is a value in the 
vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')
axis([-.2 7 -1.2 1.2])
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Determining Which Interval Each Input Is in
The quantiz function also returns a vector that tells which interval each input 
is in. For example, the output below says that the input entries lie within the 
intervals labeled 0, 6, and 5, respectively. Here, the 0th interval consists of real 
numbers less than or equal to 3; the 6th interval consists of real numbers 
greater than 8 but less than or equal to 9; and the 5th interval consists of real 
numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)
index =

     0
     6
     5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];
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then the equation below relates the vector index to the quantized signal 
quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you 
instead phrase the example more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimizing Quantization Parameters
Quantization distorts a signal. You can lessen the distortion by choosing 
appropriate partition and codebook parameters. However, testing and 
selecting parameters for large signal sets with a fine quantization scheme can 
be tedious. One way to produce partition and codebook parameters easily is to 
optimize them according to a set of so-called training data.

Note  The training data that you use should be typical of the kinds of signals 
that you will actually be quantizing.

Example: Optimizing Scalar Quantization Parameters
The lloyds function optimizes the partition and codebook according to the 
Lloyd algorithm. The code below optimizes the partition and codebook for one 
period of a sinusoidal signal, starting from a rough initial guess. Then it uses 
these parameters to quantize the original signal using the initial guess 
parameters as well as the optimized parameters. The output shows that the 
mean square distortion after quantizing is much less for the optimized 
parameters. Notice that the quantiz function automatically computes the 
mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];
codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.
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[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

ans =

    0.0148    0.0024

Implementing Differential Pulse Code Modulation
The quantization in the section “Quantizing a Signal” on page 2-15 requires no 
a priori knowledge about the transmitted signal. In practice, you can often 
make educated guesses about the present signal based on past signal 
transmissions. Using such educated guesses to help quantize a signal is known 
as predictive quantization. The most common predictive quantization method 
is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a 
DPCM predictive quantizer with a linear predictor.

DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a 
partition and codebook as described in “Representing Quantization 
Parameters” on page 2-14, but also a predictor. The predictor is a function that 
the DPCM encoder uses to produce the educated guess at each step. A linear 
predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p 
is an m-tuple of real numbers. Instead of quantizing x itself, the DPCM encoder 
quantizes the predictive error, x-y. The integer m above is called the predictive 
order. The special case when m = 1 is called delta modulation.

Representing Predictors
If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)
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then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note  The initial zero in the predictor vector makes sense if you view the 
vector as the polynomial transfer function of a finite impulse response (FIR) 
filter.

Example: DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal’s 
current value and its value at the previous step. Thus the predictor is just 
y(k) = x(k-1). The code below implements this scheme. It encodes a sawtooth 
signal, decodes it, and plots both the original and decoded signals. The solid 
line is the original signal, while the dashed line is the recovered signals. The 
example also computes the mean square error between the original and 
decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
distor = sum((x-decodedx).^2)/length(x) % Mean square error

distor =

    0.0327
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Optimizing DPCM Parameters
The section “Optimizing Quantization Parameters” on page 2-18 describes how 
you can use training data with the lloyds function to help find quantization 
parameters that will minimize signal distortion. This section describes similar 
procedures for using the dpcmopt function in conjunction with the two 
functions dpcmenco and dpcmdeco, which first appear in the previous section.

Note  The training data that you use with dpcmopt should be typical of the 
kinds of signals that you will actually be quantizing with dpcmenco.

Example: Comparing Optimized and Nonoptimized DPCM Parameters
This example is similar to the one in the last section. However, whereas the last 
example created predictor, partition, and codebook in a straightforward but 
haphazard way, this example uses the same codebook (now called 
initcodebook) as an initial guess for a new optimized codebook parameter. 
This example also uses the predictive order, 1, as the desired order of the new 
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optimized predictor. The dpcmopt function creates these optimized parameters, 
using the sawtooth signal x as training data. The example goes on to quantize 
the training data itself; in theory, the optimized parameters are suitable for 
quantizing other data that is similar to x. Notice that the mean square 
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error

distor =

    0.0063

Companding a Signal
In certain applications, such as speech processing, it is common to use a 
logarithm computation, called a compressor, before quantizing. The inverse 
operation of a compressor is called an expander. The combination of a 
compressor and expander is called a compander.

The compand function supports two kinds of companders: µ-law and A-law 
companders. Its reference page lists both compressor laws.

Example: A µ-Law Compander
The code below quantizes an exponential signal in two ways and compares the 
resulting mean square distortions. First, it simply uses the quantiz function 
with a partition consisting of length-one intervals. In the second trial, compand 
implements a µ-law compressor, quantiz quantizes the compressed data, and 
finally compand expands the quantized data. The output shows that the 
distortion is smaller for the second scheme. This is because equal-length 
intervals are well-suited to the logarithm of sig, but not well-suited to sig 
itself. 
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Mu = 255; % Parameter for mu-law compander
sig = -4:.1:4;
sig = exp(sig); % Exponential signal to quantize
V = max(sig);
% 1. Quantize using equal-length intervals and no compander.
[index,quants,distor] = quantiz(sig,0:floor(V),0:ceil(V));

% 2. Use same partition and codebook, but compress
% before quantizing and expand afterwards.
compsig = compand(sig,Mu,V,'mu/compressor');
[index,quants] = quantiz(compsig,0:floor(V),0:ceil(V));
newsig = compand(quants,Mu,max(quants),'mu/expander');
distor2 = sum((newsig-sig).^2)/length(sig);
[distor, distor2] % Display both mean square distortions.

ans =

    0.5348    0.0397

Selected Bibliography for Source Coding
[1] Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons, 
1994.

[2] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 
Englewood Cliffs, N.J.: Prentice-Hall, 1988.
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Block Coding
Error-control coding techniques detect and possibly correct errors that occur 
when messages are transmitted in a digital communication system. To 
accomplish this, the encoder transmits not only the information symbols but 
also extra redundant symbols. The decoder interprets what it receives, using 
the redundant symbols to detect and possibly correct whatever errors occurred 
during transmission. You might use error-control coding if your transmission 
channel is very noisy or if your data is very sensitive to noise. Depending on the 
nature of the data or noise, you might choose a specific type of error-control 
coding.

Block coding is a special case of error-control coding. Block coding techniques 
maps a fixed number of message symbols to a fixed number of code symbols. A 
block coder treats each block of data independently and is a memoryless device.

This section discusses these topics:

• “Block Coding Features of the Toolbox” on page 2-25

• “Block Coding Terminology” on page 2-26

• “Representing Messages and Codewords” on page 2-26

• “Representing Block Coding Parameters” on page 2-30

• “Creating and Decoding Block Codes” on page 2-36

• “Performing Other Block Code Tasks” on page 2-40

For background information about block coding, see the works listed in 
“Selected Bibliography for Block Coding” on page 2-42.
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Block Coding Features of the Toolbox
The class of linear block coding techniques includes categories shown below.

The Communications Toolbox supports general linear block codes. It also 
includes functions to process cyclic, BCH, Hamming, and Reed-Solomon codes 
(which are all special kinds of linear block codes). Functions in the toolbox can 
accomplish these tasks:

• Encode or decode a message using one of the techniques mentioned above

• Determine characteristics of a technique, such as error-correction capability 
or valid message length

• Perform lower-level computations associated with a technique, such as:

- Compute a decoding table

- Compute a generator or parity-check matrix

- Convert between generator and parity-check matrices

- Compute a generator polynomial

Note  The functions in this toolbox are designed for block codes that use an 
alphabet having 2 or 2m symbols.

Cyclic codes

Hamming codes

BCH codes

Reed-Solomon codes

Linear block codes
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The table below lists the functions that are related to each supported block 
coding technique.

Block Coding Terminology
Throughout this section, the information to be encoded consists of a sequence 
of message symbols and the code that is produced consists of a sequence of 
codewords.

Each block of k message symbols is encoded into a codeword that consists of n 
symbols; in this context, k is called the message length, n is called the codeword 
length, and the code is called an [n,k] code.

Representing Messages and Codewords
Each message or codeword is an ordered grouping of symbols. The next few 
subsections illustrate the various ways that these symbols may be organized or 
interpreted as input and output.

Binary Vector Format
One straightforward MATLAB format for messages and codewords is a vector 
of 0s and 1s. That is, messages and codes might look like msg and code in the 
lines below.

Table 2-2:  Functions Related to Block Coding Techniques

Block Coding Technique Toolbox Functions

Linear block encode, decode, gen2par, syndtable

Cyclic encode, decode, cyclpoly, cyclgen, gen2par, 
syndtable

BCH encode, decode, bchenco, bchdeco, bchpoly, 
cyclgen, gen2par, syndtable

Hamming encode, decode, hammgen, gen2par, 
syndtable

Reed-Solomon encode, decode, rsenco, rsdeco, rsencode, 
rsdecode, rspoly, rsencof, rsdecof, 
syndtable
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n = 6; k = 4; % Set codeword length and message length
% for a [6,4] code.
msg = [1 0 0 1 1 0 1 0 1 0 1 1]'; % Message is a binary column.
code = encode(msg,n,k,'cyclic'); % Code will be a binary column.
msg'

ans =

     1     0     0     1     1     0     1     0     1     0     1     1

code'

ans =

  Columns 1 through 12 

     0     0     1     0     0     1     1     0     1     0     1     0

  Columns 13 through 18 

     0     1     1     0     1     1

In this example, msg consists of 12 entries, which are interpreted as three 
four-digit (since k = 4) messages. The resulting vector code comprises three 
six-digit (since n = 6) codewords, which are concatenated to form a vector of 
length eighteen.

Binary Matrix Format
You can also organize coding information so as to emphasize the grouping of 
digits in a single message or codeword. The code below illustrates this by listing 
each four-digit message on a separate row in msg and each six-digit codeword 
on a separate row in code.

n = 6; k = 4; % Set codeword length and message length.
msg = [1 0 0 1; 1 0 1 0; 1 0 1 1]; % Message is a binary matrix.
code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.
msg
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msg =

     1     0     0     1
     1     0     1     0
     1     0     1     1

code

code =

     0     0     1     0     0     1
     1     0     1     0     1     0
     0     1     1     0     1     1

For all coding techniques except Reed-Solomon, the message matrix must have 
k columns. The corresponding code matrix has n columns.

Reed-Solomon Coding Using Binary Matrix Format. For Reed-Solomon codes, the 
message matrix must have m columns, where m is an integer greater than or 
equal to 3 that satisfies n = 2m-1.

Decimal Format
Another way to process the same information is to regard each of the three rows 
of msg and code above as binary representations of decimal integers. MATLAB 
then accepts the corresponding decimal integers as valid messages, and 
returns decimal integers as codewords.

Note  If 2n or 2k is large, then you should use the default binary format 
instead of the decimal format. This is because the function uses a binary 
format internally, while the round-off error associated with converting many 
bits to large decimal numbers and back might be substantial.

Note  In this context, MATLAB expects the leftmost bit to be the least 
significant bit. 
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The syntax for the encode command must mention the decimal format 
explicitly, as in the example below. Notice that /decimal is appended to the 
fourth argument in the encode command.

n = 6; k = 4; % Set codeword length and message length.
msg = [9;5;13]; % Message is a decimal column vector.
% Code will be a decimal vector.
code = encode(msg,n,k,'cyclic/decimal')

code =

    36
    21
    54

Note  The three examples above used cyclic coding. The formats for messages 
and codes are similar for Hamming, generic linear, and BCH codes.

Reed-Solomon Coding Using Decimal Format. For Reed-Solomon coding using 
decimal formats, the message matrix must have k columns. Each entry in the 
matrix must be an integer between 0 and n. The example below illustrates the 
decimal format for Reed-Solomon coding using the encode command.

m = 3;
n = 2^m-1; k = 4; % Set codeword length and message length.
msgdec = [1 6 4 1; 0 0 4 3]; % Message is a decimal matrix.
% Code will be a decimal vector.
codedec = encode(msgdec,n,k,'rs/decimal')

codedec =

     0     4     3     1     6     4     1
     3     7     5     0     0     4     3

The example below illustrates how to convert between binary and decimal 
message formats for Reed-Solomon coding.

m = 3;
n = 2^m-1; k = 4;
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msgbin = [1 1 1; 1 0 1; 0 0 1; 0 1 0];
% Convert binary matrix format to decimal format.
% Replace k by n below if this is a code instead of a message.
msgdec = vec2mat(bi2de(msgbin),k);
% Convert decimal format back to binary matrix format.
msgbin2 = de2bi(vec2mat(msgdec,1),m);

Exponential Format (Reed-Solomon Code Only)
For Reed-Solomon coding using exponential formats, the message matrix must 
have k columns. Each entry of the matrix must be an integer between -1 and 
n-1. The example below is the exponential-form counterpart of the 
Reed-Solomon example from the previous section.

m = 3;
n = 2^m-1; k = 4; % Set codeword length and message length.
msg = [0 5 3 0; -1 -1 3 2]; 
% Message is an exponential-form matrix.
% Code will be an exponential-form matrix.
code = encode(msg,n,k,'rs/power');

The name “exponential format” comes from one of MATLAB’s standard formats 
for elements of GF(2m). This format uses integers from -1 to 2m-2, where the 
symbol -Inf is sometimes substituted for -1. See “Exponential Format” on 
page 2-90 for definitions.

To convert from decimal format to exponential format, simply subtract one. To 
convert from exponential format to decimal format, replace any negative 
values by -1 and then add one.

Representing Block Coding Parameters
This subsection describes the items that you might need in order to process 
[n,k] linear block codes. The table below lists the items and the coding 
techniques for which they are most relevant.

Table 2-3:  Parameters Used in Block Coding Techniques

Parameter Block Coding Technique

Generator Matrix Generic linear block

Parity-Check Matrix Generic linear block
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Generator Matrix
The process of encoding a message into an [n,k] linear block code is determined 
by a k-by-n generator matrix G. Specifically, the 1-by-k message vector v is 
encoded into the 1-by-n codeword vector vG. If G has the form [Ik P] or [P Ik], 
where P is some k-by-(n-k) matrix and Ik is the k-by-k identity matrix, then G 
is said to be in standard form. (Some authors, e.g., Clark and Cain [1], use the 
first standard form, while others, e.g., Lin and Costello [2], use the second.) 
Most functions in this toolbox  assume that a generator matrix is in standard 
form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check 
Matrix.”

Parity-Check Matrix
Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix 
H. It satisfies GHtr = 0 (mod 2), where Htr denotes the matrix transpose of H, 
G is the code’s generator matrix, and this zero matrix is k-by-(n-k). If G = [Ik P] 
then H = [-Ptr In-k]. Most functions in this toolbox  assume that a parity-check 
matrix is in standard form when you use it as an input argument.

The table below summarizes the standard forms of the generator and 
parity-check matrices for an [n,k] binary linear block code.

Generator Polynomial Cyclic, BCH, Reed-Solomon

Primitive Polynomial and 
List of Galois Field Elements

Hamming, Reed-Solomon

Decoding Table Generic linear block, Hamming

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n

Parity-check [-P' In-k] or [In-k -P' ] (n-k)-by-n

Table 2-3:  Parameters Used in Block Coding Techniques (Continued)

Parameter Block Coding Technique
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Ik is the identity matrix of size k and the ' symbol indicates matrix transpose. 
(For binary codes, the minus signs in the parity-check form listed above are 
irrelevant; that is, -1 = 1 in the binary field.)

Examples. In the command below, parmat is a parity-check matrix and genmat 
is a generator matrix for a Hamming code in which [n,k] = [23-1, n-3] = [7,4]. 
Notice that genmat has the standard form [P Ik].

[parmat,genmat] = hammgen(3)

parmat =

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

genmat =

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1

The next example finds parity-check and generator matrices for a [7,3] cyclic 
code. The cyclpoly function is mentioned below in “Generator Polynomial.”

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)

parmat =

     1     0     0     0     1     1     0
     0     1     0     0     0     1     1
     0     0     1     0     1     1     1
     0     0     0     1     1     0     1

genmat =

     1     0     1     1     1     0     0
     1     1     1     0     0     1     0
     0     1     1     1     0     0     1
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The example below converts a generator matrix for a [5,3] linear block code into 
the corresponding parity-check matrix.

genmat = [1 0 0 1 0; 0 1 0 1 1; 0 0 1 0 1];
parmat = gen2par(genmat)

parmat =

     1     1     0     1     0
     0     1     1     0     1

The same function gen2par can also convert a parity-check matrix into a 
generator matrix.

Generator Polynomial
Cyclic codes, including the special cases of BCH and Reed-Solomon codes, have 
special algebraic properties that allow a polynomial to determine the coding 
process completely. This so-called generator polynomial is a degree-(n-k) 
divisor of the polynomial xn-1. Van Lint [4] explains how a generator 
polynomial determines a cyclic code.

The functions in this toolbox that produce generator polynomials are bchpoly, 
cyclpoly, and rspoly. They represent a generator polynomial using a row 
vector that lists the polynomial’s coefficients in order of ascending powers of 
the variable. Functions dealing with BCH and generic cyclic codes use binary 
digits as coefficients, as in the first example below. Functions dealing with 
Reed-Solomon codes express the coefficients (which are elements of GF(2m)) in 
exponential format, as in the second example below. See “Representing 
Elements of Galois Fields” on page 2-90 for a description of this exponential 
format for elements of Galois fields.

Examples. The command

genpoly = cyclpoly(7,3)

genpoly =

     1     0     1     1     1

finds that one valid generator polynomial for a [7,3] cyclic code is 
1 + x2 + x3 + x4.
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A second example finds that a generator polynomial for a [15,13] Reed-Solomon 

code is , where α is a root of MATLAB’s default primitive 
polynomial for GF(15+1).

r = rspoly(15,13)

r =

     3     5     0

Primitive Polynomial and List of Galois Field Elements
Hamming and Reed-Solomon codes rely on algebraic fields that have 2m 
elements (or, more generally, pm elements for a prime number p). Elements of 
such fields are named relative to a distinguished element of the field that is 
called a primitive element. Some functions in this toolbox use a primitive 
polynomial or a list of elements in the field as a way to determine the primitive 
element and, consequently, as a way to name elements of the field. See “Galois 
Field Computations” on page 2-89 and especially the subsection “Representing 
Elements of Galois Fields” for details about MATLAB’s use of primitive 
polynomials and lists of Galois field elements.

To reduce the mathematical background that you need to use the block coding 
functions, simply use the default parameters in commands that ask for 
primitive polynomials or lists of Galois field elements. For more specifics, see 
the reference pages for encode, decode, hammgen, rsenco, rsencode, rsdeco, 
rsdecode, and rspoly.

Decoding Table
A decoding table tells a decoder how to correct errors that may have corrupted 
the code during transmission. Hamming codes can correct any single-symbol 
error in any codeword. Other codes can correct, or partially correct, errors that 
corrupt more than one symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and 2n-k 
rows. Each row gives a correction vector for one received codeword vector. A 
Hamming decoding table has n+1 rows. The syndtable function generates a 
decoding table for a given parity-check matrix.

α3 α5x α0x2
+ +
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Example: Using a Decoding Table
The script below shows how to use a Hamming decoding table to correct an 
error in a received message. The hammgen function produces the parity-check 
matrix, while the syndtable function produces the decoding table. The 
transpose of the parity-check matrix is multiplied on the left by the received 
codeword, yielding the syndrome. The decoding table helps determine the 
correction vector. The corrected codeword is the sum (modulo 2) of the 
correction vector and the received codeword.

% Use a [7,4] Hamming code.
m = 3; n = 2^m-1; k = n-m;
parmat = hammgen(m); % Produce parity-check matrix.
trt = syndtable(parmat); % Produce decoding table.
recd = [1 0 0 1 1 1 1] % Suppose this is the received vector.
syndrome = rem(recd * parmat',2);
syndrome_de = bi2de(syndrome,'left-msb'); % Convert to decimal.
disp(['Syndrome = ',num2str(syndrome_de),...
      ' (decimal), ',num2str(syndrome),' (binary)'])
corrvect = trt(1+syndrome_de,:) % Correction vector
% Now compute the corrected codeword.
correctedcode = rem(corrvect+recd,2) 

The output is below.

recd =

     1     0     0     1     1     1     1

Syndrome = 3 (decimal), 0  1  1 (binary)

corrvect =

     0     0     0     0     1     0     0

correctedcode =

     1     0     0     1     0     1     1
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Creating and Decoding Block Codes
The functions for encoding and decoding linear block codes are encode, decode, 
bchenco, bchdeco, rsenco, rsdeco, rsencode, rsdecode, rsencof, and rsdecof. 
The first two in this list are general-purpose functions that invoke other 
functions from the list when appropriate. This section discusses how to use 
these functions to create and decode generic linear block codes, cyclic codes, 
BCH codes, Hamming codes, and Reed-Solomon codes.

Generic Linear Block Codes
Encoding a message using a generic linear block code requires a generator 
matrix. If you have defined variables msg, n, k, and genmat, then either of the 
commands

code = encode(msg,n,k,'linear',genmat);
code = encode(msg,n,k,'linear/decimal',genmat);

encodes the information in msg using the [n,k] code that the generator matrix 
genmat determines. The /decimal option, suitable when 2n and 2k are not very 
large, indicates that msg contains nonnegative decimal integers rather than 
their binary representations. See “Representing Messages and Codewords” on 
page 2-26 or the reference page for encode for a description of the formats of 
msg and code.

Decoding the code requires the generator matrix and possibly a decoding table. 
If you have defined variables code, n, k, genmat, and possibly also trt, then the 
commands

newmsg = decode(code,n,k,'linear',genmat);
newmsg = decode(code,n,k,'linear/decimal',genmat);
newmsg = decode(code,n,k,'linear',genmat,trt);
newmsg = decode(code,n,k,'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix 
genmat determines. decode also corrects errors according to instructions in the 
decoding table that trt represents.

Example: Generic Linear Block Coding. The example below encodes a message, 
artificially adds some noise, decodes the noisy code, and keeps track of errors 
that the decoder detects along the way. Since the decoding table contains only 
zeros, the decoder does not correct any errors.

n = 4; k = 2;
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genmat = [[1 1; 1 0], eye(2)]; % Generator matrix
msg = [0 1; 0 0; 1 0]; % Three messages, two bits each
% Create three codewords, four bits each.
code = encode(msg,n,k,'linear',genmat); 
noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2^(n-k),n);  % No correction of errors
% Decode, keeping track of all detected errors.
[newmsg,err] = decode(noisycode,n,k,'linear',genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your 
results might vary since this example uses random numbers as errors.

err_words =

     1
     2

Cyclic Codes
Encoding a message using a cyclic code requires a generator polynomial. If you 
have defined variables msg, n, k, and genpoly, then either of the commands

code = encode(msg,n,k,'cyclic',genpoly);
code = encode(msg,n,k,'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the 
generator polynomial genpoly. genpoly is an optional argument for encode. 
The default generator polynomial is cyclpoly(n,k). The /decimal option, 
suitable when 2n and 2k are not very large, indicates that msg contains 
nonnegative decimal integers rather than their binary representations. See 
“Representing Messages and Codewords” on page 2-26 or the reference page for 
encode for a description of the formats of msg and code.

Decoding the code requires the generator polynomial and possibly a decoding 
table. If you have defined variables code, n, k, genpoly, and trt, then the 
commands

newmsg = decode(code,n,k,'cyclic',genpoly);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly);
newmsg = decode(code,n,k,'cyclic',genpoly,trt);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly,trt);
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decode the information in code, using the [n,k] code that the generator matrix 
genmat determines. decode also corrects errors according to instructions in the 
decoding table that trt represents. genpoly is an optional argument in the first 
two syntaxes above. The default generator polynomial is cyclpoly(n,k).

There are no lower-level functions that provide alternative means to process 
cyclic codes.

Example. The example in the section “Generic Linear Block Codes” on page 2-36 
can be modified so that it uses the cyclic coding technique, instead of the linear 
block code with the generator matrix genmat. Make the changes listed below:

• Replace the second line by
genpoly = [1 0 1]; % generator poly is 1 + x^2

• In the fifth and ninth lines (encode and decode commands), replace genmat 
by genpoly and replace 'linear' by 'cyclic'.

Another example of encoding and decoding a cyclic code is on the reference page 
for encode.

BCH Codes
BCH codes are a special case of cyclic codes, though the decoding algorithm for 
BCH codes is more complicated than that for generic cyclic codes. The 
discussion in the section “Cyclic Codes” above applies almost exactly to the case 
of BCH codes. The only differences are that:

• bch replaces cyclic in the syntax for encode and decode.

• bchpoly(n,k) replaces cyclpoly(n,k) as the default generator polynomial.

• n and k must be valid codeword and message lengths for BCH code.

Valid codeword lengths for BCH code are those integers of the form 2m-1 for 
some integer m greater than or equal to 3. Given a valid BCH codeword length, 
the corresponding valid BCH message lengths are those numbers in the second 
column of the output of the command below.

params = bchpoly(n); % Where n = 2^m-1 for some integer m >= 3

For example, the output of the command below shows that a BCH code with 
codeword length 15 may have message length 5, 7, or 11. No other message 
lengths are valid for this codeword length.
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params = bchpoly(15)

params =

    15    11     1
    15     7     2
    15     5     3

The third column of the output above represents the error-correction capability 
for each pair of codeword length and message length.

Choice of Functions for BCH Coding. To process BCH codes, you can use either the 
encode and decode functions, or the lower-level bchenco and bchdeco 
functions. The syntax of the lower-level functions is slightly different from that 
of the higher-level functions. The only difference in functionality is that the 
higher-level functions prepare the input data (including default values of 
options that you omit) before invoking the lower-level commands. The 
reference page for encode contains an example that uses encode and decode. 
The reference pages for bchenco and bchdeco contain other examples.

Hamming Codes
The reference pages for encode and decode contain examples of encoding and 
decoding Hamming codes. Also, the section “Decoding Table” on page 2-34 
illustrates error-correction in a Hamming code. There are no lower-level 
functions that provide alternative means to process Hamming codes.

Reed-Solomon Codes
Reed-Solomon codes are useful for correcting errors that occur in bursts. The 
codeword length n of a Reed-Solomon code must have the form 2m-1, where m 
is an integer greater than or equal to 3. The error correction capability of a 
Reed-Solomon code is floor((n-k)/2). Since n is an odd number, the coding is 
more efficient when the message length k is also odd.

One difference between Reed-Solomon codes and the other codes supported in 
this toolbox is that Reed-Solomon codes process symbols in GF(2m) instead of 
GF(2). Each such symbol is specified by m bits. That is why some parts of the 
section “Representing Messages and Codewords” on page 2-26 make exceptions 
for Reed-Solomon codes.
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Encoding a message using a Reed-Solomon code requires a generator 
polynomial. The rspoly function finds generator polynomials. For example, the 
command

genpoly = rspoly(15,12)

genpoly =

     6    13    11     0

shows that the generator polynomial for a [15,12] Reed-Solomon code is

where α is a root of MATLAB’s default primitive polynomial for GF(16). In this 
example, m = 4, n = 2m-1 = 15, and k = 12.

Choice of Functions for Reed-Solomon Coding. To process Reed-Solomon codes, you 
can use either the encode and decode functions, or the lower-level rsenco, 
rsdeco, rsencode, and rsdecode functions. The syntax of the lower-level 
functions is slightly different from that of the higher-level functions. The only 
difference in functionality is that the higher-level functions prepare the input 
data (including default values of options that you omit) before invoking the 
lower-level functions. The reference pages for the lower-level functions contain 
examples that illustrate their use.

Performing Other Block Code Tasks
This section describes functions that compute typical parameters associated 
with block codes and functions that convert information from one format to 
another. Specific tasks are:

• Finding a generator polynomial

• Finding generator and parity-check matrices

• Converting between parity-check and generator matrices

• Finding the error-correction capability

Finding a Generator Polynomial
To find a generator polynomial for cyclic, BCH, and Reed-Solomon codes, use 
the functions cyclpoly, bchpoly, and rspoly, respectively. The commands

α6 α13x α11x2 x3+ + +
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genpolyCyclic = cyclpoly(7,4);
genpolyBCH = bchpoly(7,4);
genpolyRS = rspoly(7,4);

all represent valid ways to find one generator polynomial for a [7,4] code of the 
respective coding method. The result is suitable for use in other block coding 
functions, such as encode.

For generic cyclic coding, there might be more than one generator polynomial 
consistent with a given codeword length and message length. The cyclpoly 
command syntax includes ways to retrieve all of them or those that satisfy 
certain constraints that you specify. For example, the command

genpolys = cyclpoly(7,4,'all')

genpolys =

     1     0     1     1
     1     1     0     1

shows that 1 + x2 + x3 and 1 + x + x3 are two possible generator polynomials for 
a [7,4] cyclic code.

See the reference pages for cyclpoly, bchpoly, and rspoly for details about 
other options.

Finding Generator and Parity-Check Matrices
To find a parity-check and generator matrix for a Hamming code with 
codeword length 2m-1, use the hammgen function as below. m must be at least 
three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen 
function. You must provide the codeword length and a valid generator 
polynomial. You can use the cyclpoly command to produce one possible 
generator polynomial after you provide the codeword length and message 
length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic
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To find a parity-check and generator matrix for a BCH code, use the same 
cyclgen function mentioned above. Since the generator polynomial must now 
be valid for BCH code, the bchpoly function replaces cyclpoly.

[parmat,genmat] = cyclgen(7,bchpoly(7,4)); % BCH

Converting Between Parity-Check and Generator Matrices
The gen2par function converts a generator matrix into a parity-check matrix, 
and vice-versa. Examples to illustrate this are on the reference page for 
gen2par.

Finding the Error-Correction Capability
The error-correction capability of BCH codes and Reed-Solomon codes depends 
on the codeword length and message length. The functions bchpoly and rspoly 
perform such computations. To retrieve the error-correction capability t of 
BCH and Reed-Solomon codes, respectively, use the commands below.

[temp1,temp2,temp3,temp4,t] = bchpoly(n,k); % BCH
[temp1,t] = rspoly(n,k); % Reed-Solomon

For Reed-Solomon codes, the error-correction capability is floor((n-k)/2); for 
BCH codes, there is no easy formula.

Selected Bibliography for Block Coding
[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital 
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and Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1983.

[3] Peterson, W. Wesley and E. J. Weldon, Jr. Error-correcting Codes, 2nd ed. 
Cambridge, Mass.: MIT Press, 1972.

[4] van Lint, J. H. Introduction to Coding Theory. New York: Springer-Verlag, 
1982.
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Convolutional Coding
Convolutional coding is a special case of error-control coding. Unlike a block 
coder, a convolutional coder is not a memoryless device. Even though a 
convolutional coder accepts a fixed number of message symbols and produces a 
fixed number of code symbols, its computations depend not only on the current 
set of input symbols but on some of the previous input symbols.

This section:

• Outlines the convolutional coding features of the Communications Toolbox

• Defines the two supported ways to describe a convolutional encoder:

- Polynomial description

- Trellis description

• Describes how to encode and decode using the convenc and vitdec functions

• Gives additional examples of convolutional coding

Convolutional Coding Features of the Toolbox
The Communications Toolbox supports feedforward or feedback convolutional 
codes that can be described by a trellis structure or a set of generator 
polynomials. It uses the Viterbi algorithm to implement hard-decision and 
soft-decision decoding.

For background information about convolutional coding, see the works listed in 
“Selected Bibliography for Convolutional Coding” on page 2-55.

Polynomial Description of a Convolutional Encoder
A polynomial description of a convolutional encoder describes the connections 
among shift registers and modulo-2 adders. For example, the figure below 
depicts a feedforward convolutional encoder that has one input, two outputs, 
and two shift registers.
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Figure 2-1:  Example of a Convolutional Encoder Diagram with Shift Registers

A polynomial description of a convolutional encoder has either two or three 
components, depending on whether the encoder is a feedforward or feedback 
type:

• Constraint lengths

• Generator polynomials

• Feedback connection polynomials (for feedback encoders only)

Constraint Lengths
The constraint lengths of the encoder form a vector whose length is the number 
of inputs in the encoder diagram. The elements of this vector indicate the 
number of bits stored in each shift register, including the current input bits.

In the figure above, the constraint length is three. It is a scalar because the 
encoder has one input stream, and its value is one plus the number of shift 
registers for that input.

Generator Polynomials
If the encoder diagram has k inputs and n outputs, then the code generator 
matrix is a k-by-n matrix. The element in the ith row and jth column indicates 
how the ith input contributes to the jth output.

+

+

z-1 z-1

Second output

First output

Input
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For systematic bits of a systematic feedback encoder, match the entry in the 
code generator matrix with the corresponding element of the feedback 
connection vector. See “Feedback Connection Polynomials” below for details.

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where a 
connection line from the shift register feeds into the adder, and a zero 
elsewhere. The leftmost spot in the binary number represents the current 
input, while the rightmost spot represents the oldest input that still remains 
in the shift register.

2 Convert this binary representation into an octal representation by 
considering consecutive triplets of bits, starting from the rightmost bit. The 
rightmost bit in each triplet is the least significant. If the number of bits is 
not a multiple of three, then place zero bits at the left end as necessary. (For 
example, interpret 1101010 as 001 101 010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower adders 
in the figure above are 110 and 111, respectively. These binary numbers are 
equivalent to the octal numbers 6 and 7, respectively. Thus the generator 
polynomial matrix is [6 7].

For a table of some good convolutional code generators, refer to [1] in the 
section “Selected Bibliography for Block Coding” on page 2-42, especially that 
book’s appendices.

Feedback Connection Polynomials
If you are representing a feedback encoder, then you need a vector of feedback 
connection polynomials. The length of this vector is the number of inputs in the 
encoder diagram. The elements of this vector indicate the feedback connection 
for each input, using an octal format. First build a binary number 
representation as in step 1 above. Then convert the binary representation into 
an octal representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, then the 
code generator and feedback connection parameters corresponding to the 
systematic bits must have the same values.

For example, the diagram below shows a rate 1/2 systematic encoder with 
feedback.
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This encoder has a constraint length of 5, a generator polynomial matrix of 
[37 33], and a feedback connection polynomial of 37. The first generator 
polynomial matches the feedback connection polynomial because the first 
output corresponds to the systematic bits.

Using the Polynomial Description in MATLAB
To use the polynomial description with the functions convenc and vitdec, first 
convert it into a trellis description using the poly2trellis function. For 
example, the command below computes the trellis description of the encoder in 
Figure 2-1, Example of a Convolutional Encoder Diagram with Shift Registers, 
on page 2-44.

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trellis is a suitable input argument for convenc and 
vitdec.

Trellis Description of a Convolutional Encoder
A trellis description of a convolutional encoder shows how each possible input 
to the encoder influences both the output and the state transitions of the 
encoder. This section describes trellises, describes how to represent trellises in 
MATLAB, and gives an example of a MATLAB trellis.

The figure below depicts a trellis for the convolutional encoder from the 
previous section. The encoder has four states (numbered in binary from 00 to 
11), a one-bit input, and a two-bit output. (The ratio of input bits to output bits 
makes this encoder a rate-1/2 encoder.) Each solid arrow shows how the 

+

+

z-1 z-1z-1 z-1

Second output

First output (systematic)

Input



Convolutional Coding

2-47

encoder changes its state if the current input is zero, and each dashed arrow 
shows how the encoder changes its state if the current input is one. The octal 
numbers above each arrow indicate the current output of the encoder.

Figure 2-2:  A Trellis for a 4-State Rate-1/2 Convolutional Encoder

As an example of interpreting this trellis diagram, if the encoder is in the 10 
state and receives an input of zero, then it outputs the code symbol 3 and 
changes to the 01 state. If it is in the 10 state and receives an input of one, then 
it outputs the code symbol 0 and changes to the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent 
to some trellis description, although some trellises have no corresponding 
polynomial descriptions.

Specifying a Trellis in MATLAB
To specify a trellis in MATLAB, use a specific form of a MATLAB structure 
called a trellis structure. A trellis structure must have five fields, as in the 
table below.

00

01

10

11

00

01

10

11

State State
0

State transition when input is 0

State transition when input is 1

3
1
2

3
0
2
1

Table 2-4:  Fields of a Trellis Structure for a Rate k/n Code

Field in Trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to the encoder: 2k

numOutputsymbols Scalar Number of output symbols from the encoder: 2n

numStates Scalar Number of states in the encoder
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Note  While your trellis structure can have any name, its fields must have 
the exact names as in the table. Field names are case-sensitive.

In the nextStates matrix, each entry is an integer between 0 and numStates-1. 
The element in the ith row and jth column denotes the next state when the 
starting state is i-1 and the input bits have decimal representation j-1.  To 
convert the input bits to a decimal value, use the first input bit as the most 
significant bit (MSB).  For example, the second column of the nextStates 
matrix stores the next states when the current set of input values is {0,...,0,1}. 
To learn how to assign numbers to states, see the reference page for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes the 
encoder’s output when the starting state is i-1 and the input bits have decimal 
representation j-1. To convert to decimal value, use the first output bit as the 
MSB.

How to Create a MATLAB Trellis Structure
Once you know what information you want to put into each field, you can create 
a trellis structure in any of these ways:

• Define each of the five fields individually, using structurename.fieldname 
notation. For example, set the first field of a structure called s using the 
command below. Use additional commands to define the other fields.
s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.

nextStates numStates-by-2k 
matrix

Next states for all combinations of current state 
and current input

outputs numStates-by-2k 
matrix

Outputs (in decimal) for all combinations of 
current state and current input

Table 2-4:  Fields of a Trellis Structure for a Rate k/n Code (Continued)

Field in Trellis Structure Dimensions Meaning
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• Collect all field names and their values in a single struct command. For 
example:
s = struct('numInputSymbols',2,'numOutputSymbols',2,...
'numStates',2,'nextStates',[0 1;0 1],'outputs',[0 0;1 1]);

• Start with a polynomial description of the encoder and use the poly2trellis 
function to convert it to a valid trellis structure. The polynomial description 
of a convolutional encoder is described in “Polynomial Description of a 
Convolutional Encoder” on page 2-43.

To check whether your structure is a valid trellis structure, use the istrellis 
function.

Example: A MATLAB Trellis Structure
Reconsider the trellis shown in Figure 2-2, A Trellis for a 4-State Rate-1/2 
Convolutional Encoder, which is repeated below.

To build a trellis structure that describes it, use the command below.

trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types of 
input path, the solid arrow and the dashed arrow. The number of output 
symbols is 4 because the numbers above the arrows can be either 0, 1, 2, or 3. 
The number of states is 4 because there are four bullets on the left side of the 
trellis diagram (equivalently, four on the right side). To compute the matrix of 
next states, create a matrix whose rows correspond to the four current states 
on the left side of the trellis, whose columns correspond to the inputs of 0 and 

00

01

10

11

00

01

10

11

State State
0

State transition when input is 0

State transition when input is 1

3
1
2
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2
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1, and whose elements give the next states at the end of the arrows on the right 
side of the trellis. To compute the matrix of outputs, create a matrix whose 
rows and columns are as in the next states matrix, but whose elements give the 
octal outputs shown above the arrows in the trellis.

Creating and Decoding Convolutional Codes
The functions for encoding and decoding convolutional codes are convenc and 
vitdec. This section discusses using these functions to create and decode 
convolutional codes.

Encoding
A simple way to use convenc to create a convolutional code is shown in the 
commands below.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.

The first command converts a polynomial description of a feedforward 
convolutional encoder to the corresponding trellis description. The second 
command encodes 100 bits, or 50 two-bit symbols. Since the code rate in this 
example is 2/3, the output vector code contains 150 bits (that is, 100 input bits 
times 3/2).

Hard-Decision Decoding
To decode using hard decisions, use the vitdec function with the flag 'hard' 
and with binary input data. Since the output of convenc is binary, 
hard-decision decoding can use the output of convenc directly, without 
additional processing. This example extends the previous example and 
implements hard decision decoding.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.
tb = 2; % Traceback length for decoding
decoded = vitdec(code,t,tb,'trunc','hard'); % Decode.
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Soft-Decision Decoding
To decode using soft decisions, use the vitdec function with the flag 'soft'. 
You must also specify the number, nsdec, of soft-decision bits and use input 
data consisting of integers between 0 and

2nsdec - 1

An input of 0 represents the most confident 0, while an input of 2nsdec-1 
represents the most confident 1. Other values represent less confident 
decisions. For example, the table below lists interpretations of values for 3-bit 
soft decisions.

Example: Soft-Decision Decoding. The script below illustrates decoding with 3-bit 
soft decisions. First it creates a convolutional code with convenc and adds 
white Gaussian noise to the code with awgn. Then, to prepare for soft-decision 
decoding, the example uses quantiz to map the noisy data values to 
appropriate decision-value integers between 0 and 7. The second argument in 
quantiz is a partition vector that determines which data values map to 0, 1, 2, 
etc. The partition is chosen so that values near 0 map to 0, and values near 1 
map to 7. (You can refine the partition to obtain better decoding performance 
if your application requires it.) Finally, the example decodes the code and 
computes the bit error rate. Notice that when comparing the decoded data with 
the original message, the example must take the decoding delay into account. 

Table 2-5:  Input Values for 3-bit Soft Decisions

Input Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1
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The continuous operation mode of vitdec causes a delay equal to the traceback 
length, so msg(1) corresponds to decoded(tblen+1) rather than to 
decoded(1).

msg = randint(4000,1,2,139); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Encode the data.
ncode = awgn(code,6,'measured',244); % Add noise.

% Quantize to prepare for soft-decision decoding.
qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length
decoded = vitdec(qcode,t,tblen,'cont','soft',3); % Decode.

% Compute bit error rate.
[number,ratio] = biterr(decoded(delay+1:end),msg(1:end-delay))

The output is below.

number =

     5

ratio =

    0.0013

Examples of Convolutional Coding
This section contains more examples of convolutional coding:

• The first example determines the correct trellis parameter for its encoder 
and then uses it to process a code. The decoding process uses hard decisions 
and the continuous operation mode. This operation mode causes a decoding 
delay, which the error rate computation takes into account.

• The second example processes a punctured convolutional code. The decoding 
process uses the unquantized decision type.
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Example: A Rate-2/3 Feedforward Encoder
The example below uses the rate 2/3 feedforward encoder depicted in the 
schematic below. The accompanying description explains how to determine the 
trellis structure parameter from a schematic of the encoder and then how to 
perform coding using this encoder.

Figure 2-3:  Schematic for a Rate 2/3 Feedforward Convolutional Encoder

Determining Coding Parameters. The convenc and vitdec functions can implement 
this code if their parameters have the appropriate values.

The encoder’s constraint length is a vector of length 2 since the encoder has two 
inputs. The elements of this vector indicate the number of bits stored in each 
shift register, including the current input bits. Counting memory spaces in 
each shift register in the diagram and adding one for the current inputs leads 
to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal 
numbers, use the element in the ith row and jth column to indicate how the ith 
input contributes to the jth output. For example, to compute the element in the 
second row and third column, notice that the leftmost and two rightmost 
elements in the second shift register of the diagram feed into the sum that 
forms the third output. Capture this information as the binary number 1011, 
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z-1 z-1 z-1

z-1z-1z-1

+
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which is equivalent to the octal number 13. The full value of the code generator 
matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc and 
vitdec functions, use the poly2trellis function to convert those parameters 
into a trellis structure. The command to do this is below.

trel = poly2trellis([5 4],[27 33 0;0 5 13]); % Define trellis.

Using the Encoder. Below is a script that uses this encoder.

len = 1000;
msg = randint(2*len,1); % Random binary message of 2-bit symbols
trel = poly2trellis([5 4],[27 33 0;0 5 13]); % Trellis
code = convenc(msg,trel); % Encode the message.
ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.
decoded = vitdec(ncode,trel,34,'cont','hard'); % Decode.
[number,ratio] = biterr(decoded(68+1:end),msg(1:end-68));

Notice that convenc accepts a vector containing 2-bit symbols and produces a 
vector containing 3-bit symbols, while vitdec does the opposite. Also notice 
that biterr ignores the first 68 elements of decoded. That is, the decoding 
delay is 68, which is the number of bits per symbol (2) of the recovered message 
times the traceback depth value (34) in the vitdec function. The first 68 
elements of decoded are zeros, while subsequent elements represent the 
decoded messages.

Example: A Punctured Convolutional Code
This example processes a punctured convolutional code. It begins by 
generating 3000 random bits and encoding them using a rate-1/2 convolutional 
encoder. The resulting vector contains 6000 bits, which are mapped to values 
of -1 and 1 for transmission. The puncturing process removes every third value 
and results in a vector of length 4000. The punctured code, punctcode, passes 
through an additive white Gaussian noise channel. Afterwards, the example 
inserts values to reverse the puncturing process. While the puncturing process 
removed both -1s and 1s from code, the insertion process inserts zeros. Then 
vitdec decodes the vector of -1s, 1s, and 0s using the 'unquant' decision type. 
This unquantized decision type is appropriate here for these reasons:

• tcode uses -1 to represent the 1s in code.

• tcode uses 1 to represent the 0s in code.
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• The inserted 0s are acceptable for the 'unquant' decision type, which allows 
any real values as input.

Finally, the example computes the bit error rate and the number of bit errors.

len = 3000; msg = randint(len,1,2,94384); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Length is 2*len.
tcode = -2*code+1; % Transmit -1s and 1s.

% Puncture by removing every third value.
punctcode = tcode;
punctcode(3:3:end)=[]; % Length is (2*len)*2/3.

ncode = awgn(punctcode,8,'measured',1234); % Add noise.

% Insert zeros.
nicode = zeros(2*len,1); % Zeros represent inserted data.
nicode(1:3:end) = ncode(1:2:end); % Write actual data.
nicode(2:3:end) = ncode(2:2:end); % Write actual data.

decoded = vitdec(nicode,t,96,'trunc','unquant'); % Decode.
[number,ratio]=biterr(decoded,msg); % Bit error rate

Selected Bibliography for Convolutional Coding
[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital 
Communications. New York: Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data 
Communications Principles. New York: Plenum Press, 1992.
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2. Using the Communications Toolbox

Modulation
In most media for communication, only a fixed range of frequencies is available 
for transmission. One way to communicate a message signal whose frequency 
spectrum does not fall within that fixed frequency range, or one that is 
otherwise unsuitable for the channel, is to alter a transmittable signal 
according to the information in your message signal. This alteration is called 
modulation, and it is the modulated signal that you transmit. The receiver 
then recovers the original signal through a process called demodulation.

The table shows how this section is organized.

For background information about modulation and demodulation, see the 
works listed in “Selected Bibliography for Modulation” on page 2-77.

Subject Topics

General 
modulation

“Modulation Features of the Toolbox” on page 2-57

“Modulation Terminology” on page 2-58

Analog 
modulation

“Representing Analog Signals” on page 2-59

“Simple Analog Modulation Example” on page 2-61

“Other Options in Analog Modulation” on page 2-62

“Filter Design Issues” on page 2-62

Digital 
modulation

“Digital Modulation Overview” on page 2-66

“Representing Digital Signals” on page 2-67

“Significance of Sampling Rates” on page 2-70

“Representing Signal Constellations” on page 2-70

“Simple Digital Modulation Example” on page 2-74

“Customizing the Modulation Process” on page 2-75

“Other Options in Digital Modulation” on page 2-77
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Modulation Features of the Toolbox
The available methods of modulation depend on whether the input signal is 
analog or digital. The figures below show the modulation techniques that the 
Communications Toolbox supports for analog and digital signals, respectively. 
As the figures suggest, some categories of techniques include named special 
cases.

Modulation methods for analog signals

Frequency 
modulation (FM)

Amplitude 
modulation (AM)

Single-sideband 
suppressed-carrier 
(SSB)

Quadrature 
amplitude 
modulation 
(QAM)

Double-sideband 
suppressed-carrier 
(DSB-SC)

Phase 
modulation (PM)

Modulation methods for digital signals

Frequency shift 
keying (FSK)

Amplitude shift 
keying (ASK)

Quadrature 
amplitude shift 
keying (QASK)

Phase shift 
keying (PSK)

Minimum shift 
keying (MSK)
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Baseband Versus Passband Simulation
For a given modulation technique, two ways to simulate modulation techniques 
are called baseband and passband. Baseband simulation, also known as the 
lowpass equivalent method, requires less computation. This toolbox supports 
both baseband and passband simulation. Since baseband simulation is more 
prevalent, this guide focuses more on baseband simulation. 

Note  To use this toolbox for passband simulation, see the reference pages for 
the functions amod, ademod, dmod, and ddemod.

Supported Modulation Tasks
Functions in the toolbox can accomplish these tasks:

• Modulate a signal using one of the techniques shown in the figures above

• Demodulate a signal using one of the techniques shown in the figures above

• Map a digital signal to an analog signal, before modulation

• Demap an analog signal to a digital signal, after demodulation

• Map, demap, and plot constellations for QASK modulation

The modulation and demodulation functions also let you control such features 
as the initial phase of the modulated signal, post-demodulation filtering, and 
the decision timing for digital demodulation.

Modulation Terminology
Modulation is a process by which a carrier signal is altered according to 
information in a message signal. The carrier frequency, denoted Fc, is the 
frequency of the carrier signal. The sampling rate is the rate at which the 
message signal is sampled during the simulation.

The frequency of the carrier signal is usually much greater than the highest 
frequency of the input message signal. The Nyquist sampling theorem requires 
that the simulation sampling rate Fs be greater than two times the highest 
frequency of the modulated signal, in order for the demodulator to recover the 
message correctly. The sampling rate Fs of a modulated digital signal is greater 
than or equal to the sampling rate Fd of the original message signal before 
modulation.
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The table below lists the requirements in terms of the input arguments for this 
toolbox’s modulation and demodulation functions. Note that the situations are 
not mutually exclusive.

Representing Analog Signals
To perform baseband modulation of an analog signal using this toolbox, start 
with a real message signal and a sampling rate Fs in Hertz. For modulation 
techniques other than quadrature amplitude modulation (QAM), represent the 
signal using a vector x, the entries of which give the signal’s values in time 
increments of 1/Fs. Baseband modulation (using a technique other than QAM) 
produces a complex vector.

For example, if t measures time in seconds, then the vector x below is the result 
of sampling a frequency-one sine wave 100 times per second for 2 seconds. The 
vector y represents the modulated signal. The output shows that y is complex.

Fs = 100; % Sampling rate is 100 samples per second.
t = [0:1/Fs:2]'; % Sampling times for 2 seconds
x = sin(2*pi*t); % Representation of the signal
y = amodce(x,Fs,'pm'); % Modulate x to produce y.
whos
  Name      Size           Bytes  Class

  Fs        1x1                8  double array
  t       201x1             1608  double array
  x       201x1             1608  double array
  y       201x1             3216  double array (complex)

Grand total is 604 elements using 6440 bytes

Situation Requirement

Passband simulation 2*(highest frequency of modulated signal) < Fs

Digital signals Fd ≤ Fs

Passband simulation, 
digital signals

Fd < Fc
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Baseband Modulated Signals Defined
This section explains the connection between this complex vector y and the real 
signal that you might expect to get after modulating a real signal. If the 
modulated signal has the waveform

Y1(t) cos(2πfct+θ) - Y2(t) sin(2πfct+θ)

where fc is the carrier frequency and θ is the carrier signal’s initial phase, then 
a baseband simulation recognizes that this equals the real part of

and models only the part inside the square brackets. Here j is the square root 
of -1. The complex vector y is a sampling of the complex signal 
(Y1(t) + jY2(t)) exp(jθ).

Note  You can also simultaneously process several signals of equal length. To 
do this, make x a matrix in which each signal occupies one column. The 
corresponding modulated signal y is a complex matrix whose kth column is 
the modulation of the kth column of x.

Changes for QAM
The case for quadrature amplitude modulation (QAM) is similar, except that 
the message signal has in-phase and quadrature components. Represent the 
signal using a matrix x that has an even number of columns. The odd-indexed 
columns represent in-phase components of the signal and the even-indexed 
columns represent quadrature components. If the message signal is a 2n-by-m 
matrix, then the modulated signal is an n-by-m matrix. As in the other 
methods, baseband modulation turns a real message signal into a complex 
modulated signal.

For example, the code below implements QAM on a set of sinusoidal input 
signals.

Fs = 100; % Sampling rate is 100 samples per second.
t = [0:1/Fs:2]'; % Sampling times
% Signal is a four column matrix.
% Each column models a sinusoidal signal, the frequencies

Y1 t( ) jY2 t( )+( )ejθ[ ]e
j2πfct
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% of which are 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz respectively.
x = sin([2*pi*t,3*pi*t,4*pi*t,5*pi*t]);
y = amodce(x,Fs,'qam'); % Modulate x to produce y.

The output below shows the sizes and types of x and y.

whos
  Name      Size           Bytes  Class

  Fs        1x1                8  double array
  t       201x1             1608  double array
  x       201x4             6432  double array
  y       201x2             6432  double array (complex)

Grand total is 1408 elements using 14480 bytes

Simple Analog Modulation Example
This example illustrates the basic format of the baseband modulation and 
demodulation commands, amodce and ademodce. Although the example uses 
the AMDSB-TC method, most elements of this example apply to other analog 
modulation techniques as well. The example samples an analog signal and 
modulates it. Then it demodulates it and displays the order of magnitude of the 
variance between the original and demodulated signals.

% Sample the signal for two seconds,
% at a rate of 100 samples per second.
Fs = 100; 
t = [0:1/Fs:2]';
% The signal is a sum of sinusoids.
x = sin(2*pi*t) + sin(4*pi*t);
% Use AMDSB-TC modulation to produce y.
y = amodce(x,Fs,'amdsb-tc');
% Demodulate y to recover the message.
z = ademodce(y,Fs,'amdsb-tc');
v = floor(log10(var(x-z)))

v =

   -33
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Other Options in Analog Modulation
The table below lists a few ways in which you might vary the simple example 
in the previous section in order to perform the modulation and demodulation 
slightly differently. See the reference pages for full details about options.

Filter Design Issues
After demodulating, you might want to filter out the carrier signal, especially 
if you are using passband simulation. The Signal Processing Toolbox provides 
functions that can help you design your filter, such as butter, cheby1, cheby2, 
and ellip. Different demodulation methods have different properties, and you 

Table 2-6:  Substitutions in “Simple Analog Modulation Example”

Modification of Process Modifications in the Code

Set the carrier signal’s initial phase to 
phs, measured in radians

y = amodce(x,[Fs phs],'amdsb-tc');
z = ademodce(y,[Fs phs],'amdsb-tc');

Use a lowpass filter after 
demodulating. num and den are row 
vectors that give the coefficients, in 
descending order, of the numerator 
and denominator of the filter’s 
transfer function.

z = ademodce(y,Fs,'amdsb-tc',0,num,den);

(For other demodulation methods, the 0 in the 
statement above would be unnecessary. See the 
reference page for ademodce for details.)

(AM-SSB only) Use a Hilbert filter in 
the time domain. num and den are as 
above.

y = amodce(x,Fs,'amssb/time',num,den);
z = ademodce(y,Fs,'amssb');

(AMDSB only) Use a Costas 
phase-locked loop

z = ademodce(y,Fs,'amdsb-tc/costas');

or

y = amodce(x,Fs,'amdsb-sc');
z = ademodce(y,Fs,'amdsb-sc/costas');

(AMDSB-TC only) Shift the signal 
values by offset before modulating 
and after demodulating

y = amodce(x,Fs,'amdsb-tc',offset);
z = ademodce(y,Fs,'amdsb-tc',offset);
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might need to test your application with several filters before deciding which is 
most suitable. This subsection mentions two issues that relate to the use of 
filters: cutoff frequency and time lag.

Example: Varying the Filter’s Cutoff Frequency
In many situations, a suitable cutoff frequency is half the carrier frequency. 
Since the carrier frequency must be higher than the bandwidth of the message 
signal, a cutoff frequency chosen in this way limits the bandwidth of the 
message signal. If the cutoff frequency is too high, then the carrier frequency 
may not be filtered out. If the cutoff frequency is too low, then it might narrow 
the bandwidth of the message signal. 

The code below modulates a sawtooth message signal, demodulates the 
resulting signal using a Butterworth filter, and plots the original and recovered 
signals. Note that the scaling in the butter function causes the cutoff 
frequency of the filter to be F*Fs/2, not F itself.

Fc = 25; % Carrier frequency
Fs = 100; % Signal sampling rate
t = [0:1/Fs:2]'; % Times to sample the signal
x = sawtooth(6*t,0); % Signal is a sawtooth.
y = amod(x,Fc,Fs,'amssb'); % Modulate.
F = Fc/Fs; % Change F to vary the filter's cutoff frequency.
[num,den] = butter(2,F); % Design Butterworth filter.
z = ademod(y,Fc,Fs,'amssb',num,den); % Demodulate and filter.
plot(t,x,'-',t,z,'--') % Plot original and recovered signals.

The plots below show the effects of three lowpass filters with different cutoff 
frequencies. In each plot, the dotted curve is the demodulated signal and the 
solid curve is the original message signal. The top plot uses the suggested cutoff 
frequency (F = Fc/Fs). The lower left plot uses a higher cutoff frequency (F = 
3.9*Fc/Fs), which allows the carrier signal to interfere with the demodulated 
signal. The lower right plot uses a lower cutoff frequency (F = Fc/Fs/4), which 
narrows the bandwidth of the demodulated signal.
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Figure 2-4:  Original and Recovered Signals, with Filter Cutoff F = Fc/Fs, 3.9*Fc/Fs, and Fc/Fs/4

Example: Time Lag From Filtering
There is invariably a time delay between a demodulated signal and the original 
received signal. Both the filter order and the filter parameters directly affect 
the length of this delay. The example below illustrates the time delay by 
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plotting a signal before and after the modulation, demodulation, and filtering 
processes. The solid curve is the original sine wave and the dashed curve is the 
recovered signal.

Fs = 100; % Sampling rate of signal
[num,den] = butter(2,0.8); % Design Butterworth filter.
t = [0:1/Fs:10]'; % Times to sample the signal
x = sin(t); % Signal is a sine wave.
y = amodce(x,Fs,'pm'); % Modulate.
z = ademodce(y,Fs,'pm',num,den); % Demodulate and filter.
plot(t,x,t,z,'r--') % Plot original signal and recovered signal.
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Digital Modulation Overview
Modulating a digital signal can be interpreted as a combination of two steps: 
mapping the digital signal to an analog signal and modulating the analog 
signal. These are depicted in the schematic below.

Figure 2-5:  Two Steps of Digital Modulation

Except for FSK and MSK methods, when the receiver tries to recover a digital 
message from the analog signal that it receives, it performs two steps: 
demodulating the analog signal and demapping the demodulated analog signal 
to produce a digital message. These are depicted in the schematic below.

Figure 2-6:  Two Steps of Digital Demodulation

For FSK and MSK methods, the demodulator uses correlation techniques 
instead of the two-stage process above. 

The mapping process increases the sampling rate of the signal from Fd to Fs, 
whereas the demapping process decreases the sampling rate from Fs to Fd.

Modulate

0 0 1 1 0 0

• Digital signal

• Sampling rate Fd

• Real

• Analog signal

• Sampling rate Fs (Fd ≤ Fs)

• Real

• Analog signal

• Sampling rate Fs

• Complex, if baseband simulation

Map

0 0 1 1 0 0

DemapDemodulate

• Analog signal

• Sampling rate Fs

• Complex, if baseband simulation

• Analog signal

• Sampling rate Fs

• Real

• Digital signal

• Sampling rate Fd

• Real
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Functions in this toolbox can perform any of these steps, as summarized in the 
table below.

The functions are described in more detail in the sections that follow.

Representing Digital Signals
This section describes the formats for digital message signals, the analog 
signals to which they map, and the analog signals that result from the 
two-stage baseband digital modulation process. The last part, “Constellations 
and Mapped Signals (PSK, QASK),” discusses some special formats that apply 
to the PSK and QASK modulation methods.

Message Signals
To perform M-ary baseband modulation of a digital signal using this toolbox, 
start with a message signal consisting of integers in the range [0, M-1]. 
Represent the signal using a vector x. Associate with the message signal a 
sampling rate Fd, which means that the entries of x give the signal’s values in 
time increments of 1/Fd.

Mapped Signals
Mapping produces a real signal y whose sampling rate Fs must satisfy

Fs > Fd

Table 2-7:  Functions for the Steps of Digital Modulation and Demodulation

Step Function

Mapping and modulation dmodce or dmod

Mapping only modmap

Modulation without mapping dmodce or dmod, with /nomap flag

Demodulation and demapping ddemodce or ddemod

Demodulation without demapping 
(ASK, PSK, or QASK)

ddemodce or ddemod, with /nomap flag

Demapping only demodmap
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(For passband simulation, in which the carrier frequency Fc appears explicitly, 
both of the relations Fs > Fc > Fd and Fs > 2Fc must hold.) If x consists of n 
samples, then y contains n*Fs/Fd samples. The actual dimensions of y depend 
on the modulation scheme, as detailed in “To Map a Digital Signal (General 
Information)” on page 3-149.

For example, the vector x below samples a random digital signal 100 times per 
second for 2 seconds. The vector y represents the mapped signal, sampled three 
times as frequently. The output shows that y contains three times as many 
samples as x.

Fd = 100; % Sampling rate of x
M = 32; % Digital symbols are 0,1,2,...,31
x = randint(2*Fd,1,M); % Representation of the digital signal
Fs = 3*Fd; % Sampling rate of mapped signal
y = modmap(x,Fd,Fs,'ask',M); % Mapped signal
r = [size(x,1) size(y,1)] % Number of rows in x and y

r =

   200   600

Modulated Signals
Baseband modulation produces a complex signal with sampling rate Fs. Notice 
that this is the same sampling rate as the mapped signal. Baseband signals are 
explained briefly in the section, “Representing Analog Signals” on page 2-59; 
for more details, see the works listed in “Selected Bibliography for Modulation” 
on page 2-77. To illustrate the size and nature of the modulated signal, 
supplement the example in the paragraph above with these commands.

z = dmodce(x,Fd,[Fs pi/2],'ask',M);
whos
  Name      Size           Bytes  Class

  Fd        1x1                8  double array
  Fs        1x1                8  double array
  M         1x1                8  double array
  r         1x2               16  double array
  x       200x1             1600  double array
  y       600x1             4800  double array
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  z       600x1             9600  double array (complex)

Grand total is 1405 elements using 16040 bytes

Constellations and Mapped Signals (PSK, QASK)
If you map a digital message using the phase shift keying (PSK) or quadrature 
amplitude shift keying (QASK) modulation method, then modmap describes the 
amplitude and phase of the resulting analog signal using an in-phase part and 
a quadrature part. For this reason, one column in the original message signal 
vector corresponds to two columns in the mapped signal matrix.

For example, compare the code below with the example in “Mapped Signals” 
above. The mapped signal ypsk is a two-column matrix, whereas the earlier 
ASK example produced a column vector. The first column of ypsk gives the 
in-phase components of the samples and the second column gives the 
quadrature components.

Fd = 100; % Sampling rate of x
M = 32; % Digital symbols are 0,1,2,...,31.
x = randint(2*Fd,1,M); % Representation of the digital signal
Fs = 3*Fd; % Sampling rate of mapped signal
ypsk = modmap(x,Fd,Fs,'psk',M); % PSK mapped signal
s = size(ypsk)

s =

   600     2

Using Signal Constellation Plots. To understand the in-phase and quadrature 
description more easily, refer to a signal constellation plot. Each point in the 
constellation represents an analog signal to which modmap can map the digital 
message data. Each row of y in the example above gives the two rectangular 
coordinates of some point in the constellation. To produce a signal constellation 
plot that corresponds to the example above, use the command

modmap('psk',M) % Using M = 32 from before

More about creating signal constellation plots is in the section “Representing 
Signal Constellations” on page 2-70.
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Significance of Sampling Rates
The vectors and matrices that form the input and output of the modulation and 
demodulation functions do not have a built-in notion of time. That is, MATLAB 
does not know whether the digital signal [0 1 2 3 4 5 6 7] represents an 
8-second signal sampled once per second, or a 1-second signal sampled eight 
times, or something else. However, many functions appearing in this 
“Modulation” section ask for one or more sampling rates. This subsection 
discusses the significance of these sampling rates.

If your application has a natural notion of time, then you are free to use it in 
the modulation and demodulation functions. For example, if you generate the 
digital signal [0 1 2 3 4 5 6 7] and know that it represents a 1-second 
signal sampled eight times, then set Fd = 8. On the other hand, if you know 
that the signal represents a 2-second signal sampled four times per second, 
then set Fd = 4. You can also use the formula

Fd = size(x,1) / (max(t)-min(t)); % if x=signal, t=sample times

for a signal x sampled at times t. Here x is a matrix or vector and t is a vector 
whose length is the number of rows of x.

For most digital modulation computations, MATLAB does not directly use the 
sampling rates Fd and Fs of digital message signals and mapped signals, 
respectively. What it uses is their ratio Fs/Fd. For example, the two commands 
below produce exactly the same result, because 3/1 equals 6/2.

y13 = dmodce([0 1 2 3 4 5 6 7]',1,3,'ask',8);
y26 = dmodce([0 1 2 3 4 5 6 7]',2,6,'ask',8);

One exceptional situation in which the individual value of Fd matters occurs in 
the MSK and M-ary FSK methods. The default separations between successive 
frequencies are Fd/2 and Fd for these two methods, respectively.

Representing Signal Constellations
The QASK method depends on a choice of a signal constellation. The QASK 
mapping and demapping functions in this toolbox can process two special types 
of signal constellations, as well as a general type of constellation that you can 
define as you choose. The special types are called square and circle 
constellations and the general type is called an arbitrary constellation. This 
section describes how you can tell MATLAB what signal constellation you want 
to use, and how you can plot signal constellations.
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Square Constellations
To use a square constellation, you only need to tell MATLAB the number of 
points in the constellation. This number, M, must be a power of two. For 
example, to map the digital signal [3 8 15 30 28] to a square constellation 
having 32 points, use the qaskenco function as below.

[inphase,quadr] = qaskenco([3 8 15 30 28],32);

The returned vectors inphase and quadr give the in-phase and quadrature 
components, respectively, of the mapped signal. The command

msg = qaskdeco(inphase,quadr,32);

demaps to recover the original message [3 8 15 30 28]. Notice that in both 
cases, the square constellation is described only by the number 32.

The modulation and demodulation functions use the M-ary number and the 
method string 'qask' to specify the square constellation. The command below 
implements QASK modulation on the message [3 8 15 30 28], using a 32-point 
square constellation. The command assumes that the sampling rates are 1 Hz 
before modulating and 2 Hz after modulating.

y = dmodce([3 8 5 30 28],1,2,'qask',32);

Plotting Square Constellations. To plot a square constellation with M points, use one 
of these commands.

qaskenco(M)
modmap('qask',M);

Circle Constellations
To use a circle constellation having equally spaced points on each circle, you 
need to give MATLAB this information, in this order:

1 The number of points on each circle

2 The radius of each circle

3 The phase of one point on each circle

The three types of information occupy three vectors of the same length. The 
first entries of the three vectors determine one circle, the second entries of the 
three vectors determine another circle, and so on.
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For example, the apkconst command below returns the complex coordinates of 
the points on a circle constellation that contains sixteen points on each of two 
circles. The inner circle has radius one, and one of the constellation points has 
zero phase. The outer circle has radius three and a constellation point at 10 
degrees.

y = apkconst([16 16],[1 3],[0 10*pi/180]);

The constellation contains two circles because each vector has length two. The 
constellation has 32 points in total because the sum of entries in the first vector 
is 32.

The modulation and demodulation functions use three equal-length vectors 
and the method string 'qask/cir' to specify the circle constellation. The 
command below implements QASK modulation on the message [3 8 15 30 28], 
using the circle constellation described above.

y = dmodce([3 8 5 30 28],1,2,'qask/cir',[16 16],[1 3],...
[0 10*pi/180]);

Default Values. If you do not provide the phase vector, then by default one 
constellation point on each circle will have zero phase. If you provide neither 
the phase vector nor the radius vector, then by default the kth circle will have 
radius k, and one of the constellation points will have zero phase. You must 
provide the vector that specifies how many points are on each circle.

Plotting Circle Constellations. To plot a circle constellation in which numsig gives 
the number of points on each circle, amp gives the radius of each circle, and phs 
gives the phase of one point on each circle, use one of these commands.

apkconst(numsig,amp,phs)
modmap('qask/cir',numsig,amp,phs);

To label the constellation points by number, use this syntax instead.

apkconst(numsig,amp,phs,'n')

Arbitrary Constellations
You can also use a signal constellation that does not fit into the categories 
above. To do this, you need to give MATLAB two real vectors of equal length, 
one that contains the in-phase components of the constellation point and one 
that contains the corresponding quadrature components. You also need to use 
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the method string 'qask/arb' in the modulation, demodulation, mapping, and 
demapping functions.

For example, the code examples below plot signal constellations that have a 
hexagonal and triangular structure, respectively. They use the modmap 
function.

% Example #1: A hexagonal constellation
inphase = [1/2 1 1 1/2 1/2 2 2 5/2]; 
quadr = [0 1 -1 2 -2 1 -1 0]; 
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;quadr]; quadr = quadr(:);
modmap('qask/arb',inphase,quadr);

% Example #2: A triangular constellation
figure;
inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];
quadr = [1 1 0 2 1 1 2 2]; 
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;-quadr]; quadr = quadr(:);
modmap('qask/arb',inphase,quadr);

The figure below shows plots of the hexagonal and triangular signal 
constellations on the left and right, respectively. The dashed lines are not part 
of MATLAB’s output, and appear below only to suggest the hexagonal and 
triangular structures.
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The modulation and demodulation functions also use the method string 
'qask/arb' and a pair of equal-length vectors like inphase and quadr to 
determine your constellation. For example, to modulate the message 
[3 8 5 10 7] using the QASK method with one of the constellations described in 
the examples above, supplement the example code with this command.

y = dmodce([3 8 5 10 7],1,2,'qask/arb',inphase,quadr);

Simple Digital Modulation Example
This example illustrates the basic format of the baseband modulation and 
demodulation commands, dmodce and ddemodce. Although the example uses 
the PSK method, most elements of this example apply to digital modulation 
techniques other than PSK.

The example generates a random digital signal, modulates it, and adds noise. 
Then it creates a scatter plot, demodulates the noisy signal, and computes the 
symbol error rate. The ddemodce function demodulates the analog signal y and 
then demaps to produce the digital signal z.

Notice that the scatter plot does not look exactly like a signal constellation. 
Whereas the signal constellation would have 16 precisely located points, the 
noise causes the scatter plot to have a small cluster of points approximately 
where each constellation point would be. However, the noise is sufficiently 
small that the signal can be recovered perfectly.

Note  Since some options vary by method, you should check the reference 
pages before adapting the code here for other uses.

Below are the code and the scatter plot.

M = 16; % Use 16-ary modulation.
Fd = 1; % Assume the original message is sampled
% at a rate of 1 sample per second.
Fs = 3; % The modulated signal will be sampled
% at a rate of 3 samples per second.
x = randint(100,1,M); % Random digital message
% Use M-ary PSK modulation to produce y.
y = dmodce(x,Fd,Fs,'psk',M);
% Add some Gaussian noise.
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ynoisy = y + .04*randn(300,1) + .04*j*randn(300,1);
% Create scatter plot from noisy data.
scatterplot(ynoisy,1,0,'b.');
% Demodulate y to recover the message.
z = ddemodce(ynoisy,Fd,Fs,'psk',M);
s = symerr(x,z) % Check symbol error rate.

s =

     0

Customizing the Modulation Process
Recall from “Digital Modulation Overview” on page 2-66 that the modulation 
and demodulation processes each consist of two steps. You can tell the toolbox 
functions to carry out only selected steps in the processes. For example, this 
might be useful if you want to use standard mapping and demapping 
techniques along with unusual or proprietary modulation and demodulation 
techniques.
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Mapping Without Modulating and Demapping Without Demodulating
To map the digital signal to an analog signal without modulating the analog 
signal, use the modmap function instead of the dmodce function. To demap the 
analog signal to a digital signal without demodulating the analog signal, use 
the demodmap function instead of the ddemodce function. 

To alter the basic example so that it does not modulate or demodulate the 
analog signals at all, replace the “old commands” listed in the first column of 
the table below with the “new commands” listed in the second column.

Modulating Without Mapping and Demodulating Without Demapping
To carry out the analog modulation step on a signal that has already been 
mapped from a digital signal to an analog signal, use the dmodce function with 
the extra word /nomap appended to the method string. To carry out the analog 
demodulation step but avoid demapping the resulting signal to a digital signal, 
use the ddemodce function with the extra word /nomap appended to the method 
string.

If you substituted your own mapping and demapping steps into the basic 
example then it would look something like the code below. The lines in the 
second grouping differ from the original example.

M = 16; % Use 16-ary modulation.
Fd = 1; % Assume the original message is sampled
% at a rate of 1 sample per second.
Fs = 3; % The modulated signal will be sampled
% at a rate of 3 samples per second.
x = randint(100,1,M); % Random digital message

% Important changes are below.
mapx = mymappingfunction(x); % Use your own function here.

Table 2-8:  Changes in “Simple Digital Modulation Example” to Avoid Modulating

Old Command New Command

y = dmodce(x,Fd,Fs,'psk',M); y = modmap(x,Fd,Fs,'psk',M);

ynoisy = y + .04*randn(300,1) + 
.04*j*randn(300,1);

ynoisy = y + .04*randn(300,2) + 
.04*j*randn(300,2);

z = ddemodce(y,Fd,Fs,'psk',M); z = demodmap(y,Fd,Fs,'psk',M);
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y = dmodce(mapx,Fd,Fs,'psk/nomap',M); % Modulate without mapping.
% Demodulate y without demapping.
demody = ddemodce(y,Fd,Fs,'psk/nomap',M);
% Now demap.
z = mydemappingfunction(demody); % Use your own function here.

Other Options in Digital Modulation
The table below lists a few ways in which you might vary the example in the 
section “Simple Digital Modulation Example” on page 2-74 in order to perform 
the modulation and demodulation slightly differently. See the reference pages 
for full details about options.

Selected Bibliography for Modulation
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation 
of Communication Systems. New York: Plenum Press, 1992.

[2] Proakis, John G. Digital Communications, 3rd ed. New York: McGraw-Hill, 1995.

[3] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

Table 2-9:  Substitutions in the Digital Example

Modification of Process Modifications in the Code in “Simple Digital 
Modulation Example” on page 2-74

Set the carrier signal’s initial phase to 
phs, measured in radians

y = dmodce(x,Fd,[Fs phs],'psk',M);
z = ddemodce(y,Fd,[Fs phs],'psk',M);

Use a lowpass filter after 
demodulating but before demapping. 
num and den are row vectors that give 
the coefficients, in descending order, 
of the numerator and denominator of 
the filter’s transfer function.

z = ddemodce(y,Fd,Fs,'psk',M,num,den);

(See also “Filter Design Issues” on page 2-62 if you plan 
to use filters.)

(ASK only) Use a Costas phase-locked 
loop

y = dmodce(x,Fd,Fs,'ask',M);
z = ddemodce(y,Fd,Fs,'ask/costas',M);

(FSK only) Use noncoherent 
demodulation

y = dmodce(x,Fd,Fs,'fsk',M);
z = ddemodce(y,Fd,Fs,'fsk/noncoherence',M);
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Special Filters
The Communications Toolbox includes several functions that can help you 
design and use filters. Other filtering capabilities are in the Signal Processing 
Toolbox.

Special Filter Features of the Toolbox
Filtering tasks supported in the Communications Toolbox include:

• Designing a Hilbert transform filter

• Filtering data using a raised cosine filter

• Designing a raised cosine filter

After discussing an implementation issue relating to filters’ group delays, this 
section describes the toolbox functions that accomplish these tasks: hilbiir, 
rcosflt, rcosine, and the lower-level functions rcosfir and rcosiir.

For background information about Hilbert filters and raised cosine filters, see 
the works listed in “Selected Bibliography for Special Filters” on page 2-88. For 
a demonstration involving raised cosine filters, see rcosdemo.

Noncausality and the Group Delay Parameter
Without propagation delays, both Hilbert filters and raised cosine filters are 
noncausal. This means that the current output depends on the system’s future 
input. In order to design only realizable filters, the hilbiir, rcosine, and 
rcosflt functions delay the input signal before producing an output. This 
delay, known as the filter’s group delay, is the time between the filter’s initial 
response and its peak response. The group delay is defined as

where θ is the phase of the filter and ω is the frequency in radians. This delay 
is set so that the impulse response before time zero is negligible and can safely 
be ignored by the function.

For example, the Hilbert filter whose impulse is shown below uses a group 
delay of 1 second. Notice in the figure that the impulse response near time 0 is 
small and that the large impulse response values occur near time 1.

ωd
d θ ω( )–
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Figure 2-7:  Impulse Response of a Hilbert Filter

Example: Compensating for Group Delays When Analyzing Data
Comparing filtered with unfiltered data might be easier if you delay the 
unfiltered signal by the filter’s group delay. For example, suppose you use the 
code below to filter x and produce y.

tx = 0:4; % Times for data samples
x = [0 1 1 1 1]'; % Binary data samples
% Filter the data and use a delay of 2 seconds.
delay = 2;
[y,ty] = rcosflt(x,1,8,'fir',.3,delay);

Here, the elements of tx and ty represent the times of each sample of x and y, 
respectively. However, y is delayed relative to x, so corresponding elements of 
x and y do not have the same time values. Plotting y against ty and x against 
tx is less useful than plotting y against ty and x against a delayed version of tx.

% Top plot
subplot(2,1,1), plot(tx,x,'*',ty,y);
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% Bottom plot delays tx.
subplot(2,1,2), plot(tx+delay,x,'*',ty,y);

For another example of compensating for group delay, see the raised-cosine 
filter demo, rcosdemo.

Designing Hilbert Transform Filters
The hilbiir function designs a Hilbert transform filter and produces either:

• A plot of the filter’s impulse response, or

• A quantitative characterization of the filter, using either a transfer function 
model or a state-space model

Example with Default Parameters
For example, typing simply

hilbiir

plots the impulse response of a fourth-order digital Hilbert transform filter 
having a 1-second group delay. The sample time is 2/7 seconds. In this 
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particular design, the tolerance index is 0.05. The plot also displays the 
impulse response of the ideal Hilbert transform filter having a 1-second group 
delay. The plot is in Figure 2-7, Impulse Response of a Hilbert Filter, on page 
2-79.

To compute this filter’s transfer function, use the command below.

[num,den] = hilbiir

num =

   -0.3183   -0.3041   -0.5160   -1.8453    3.3105

den =

    1.0000   -0.4459   -0.1012   -0.0479   -0.0372

Here, the vectors num and den contain the coefficients of the numerator and 
denominator, respectively, of the transfer function in ascending order of 
powers of z-1.

The commands in this section used the function’s default parameters. You can 
also control the filter design by specifying the sample time, group delay, 
bandwidth, and tolerance index. The reference entry for hilbiir explains 
these parameters. The group delay is also mentioned above in “Noncausality 
and the Group Delay Parameter” on page 2-78.

Filtering with Raised Cosine Filters
The rcosflt function applies a raised cosine filter to data. Because rcosflt is 
a versatile function, you can:

• Use rcosflt to both design and implement the filter.

• Specify a raised cosine filter and use rcosflt only to filter the data.

• Design and implement either raised cosine filters or square-root raised 
cosine filters.

• Specify the rolloff factor and/or group delay of the filter, if rcosflt designs 
the filter.

• Design and implement either FIR or IIR filters.
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This section discusses the use of sampling rates in filtering, and then covers 
these options. For additional examples, see rcosdemo.

Sampling Rates
The basic rcosflt syntax

y = rcosflt(x,Fd,Fs...) % Basic syntax

assumes by default that you want to apply the filter to a digital signal x whose 
sampling rate is Fd. The filter’s sampling rate is Fs. The ratio of Fs to Fd must 
be an integer. By default, the function upsamples the input data by a factor of 
Fs/Fd before filtering. It upsamples by inserting Fs/Fd-1 zeros between input 
data samples. The upsampled data consists of Fs/Fd samples per symbol and 
has sampling rate Fs.

An example using this syntax is below. The output sampling rate is four times 
the input sampling rate.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.

Maintaining the Input Sampling Rate. You can also override the default upsampling 
behavior. In this case, the function assumes that the input signal already has 
sampling rate Fs and consists of Fs/Fd samples per symbol. You might want to 
maintain the sampling rate in a receiver’s filter if the corresponding 
transmitter’s filter has already upsampled sufficiently. 

To maintain the sampling rate, modify the fourth input argument in rcosflt 
to include the string Fs. For example, in the first command below, rcosflt uses 
its default upsampling behavior and the output sampling rate is four times the 
input sampling rate. By contrast, the second command below uses Fs in the 
string argument and thus maintains the sampling rate throughout.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.
y2 = rcosflt([1;0;0],1,4,'fir/Fs'); % Maintain sampling rate.

The second command assumes that the sampling rate of the input signal is 4, 
and that the input signal contains 4/1 samples per symbol.

An example that uses the 'Fs' option at the receiver is in “Combining Two 
Square-Root Raised Cosine Filters” on page 2-85.
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Designing Filters Automatically
The simplest syntax of rcosflt assumes that the function should both design 
and implement the raised cosine filter. For example, the command below 
designs an FIR raised cosine filter and then filters the input vector [1;0;0] with 
it. The second and third input arguments indicate that the function should 
upsample the data by a factor of 8 (that is, 8/1) during the filtering process.

y = rcosflt([1;0;0],1,8);

Types of Raised Cosine Filters. You can have rcosflt design other types of raised 
cosine filters by using a fourth input argument. Variations on the previous 
example are below.

y = rcosflt([1;0;0],1,8,'fir'); % Same as original example
y = rcosflt([1;0;0],1,8,'fir/sqrt'); % FIR square-root RC filter
y = rcosflt([1;0;0],1,8,'iir'); % IIR raised cosine filter
y = rcosflt([1;0;0],1,8,'iir/sqrt'); % IIR square-root RC filter

Specifying Filters Using Input Arguments
If you have a transfer function for a raised cosine filter, then you can provide it 
as an input to rcosflt so that rcosflt does not design its own filter. This is 
useful if you want to use rcosine to design the filter once and then use the filter 
many times. For example, the rcosflt command below uses the 'filter' flag 
to indicate that transfer function is an input argument. The input num is a 
vector that represents the FIR transfer function by listing its coefficients.

num = rcosine(1,8); y = rcosflt([1;0;0],1,8,'filter',num);

This syntax for rcosflt works whether num represents the transfer function 
for a square-root raised cosine FIR filter or an ordinary raised cosine FIR filter. 
For example, the code below uses a square-root raised cosine FIR filter. Only 
the definition of num is different.

num = rcosine(1,8,'sqrt'); y = rcosflt([1;0;0],1,8,'filter',num);

You can also use a raised cosine IIR filter. To do this, modify the fourth input 
argument of the rcosflt command above so that it contains the string 'iir' 
and provide a denominator argument. An example is below.

delay = 8;
[num,den] = rcosine(1,8,'iir',.5,delay);
y = rcosflt([1;0;0],1,8,'iir/filter',num,den,delay);
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Controlling the Rolloff Factor
If rcosflt designs the filter automatically, then you can control the rolloff 
factor of the filter, as described below. If you specify your own filter, then 
rcosflt does not need to know its rolloff factor.

The rolloff factor determines the excess bandwidth of the filter. For example, a 
rolloff factor of .5 means that the bandwidth of the filter is 1.5 times the input 
sampling frequency, Fd.  This also means that the transition band of the filter 
extends from .5 * Fd to 1.5 * Fd.

The default rolloff factor is .5, but if you want to use a value of .2, then you can 
use a command such as the one below. Typical values for the rolloff factor are 
between .2 and .5.

y = rcosflt([1;0;0],1,8,'fir',.2); % Rolloff factor is .2.

Controlling the Group Delay
If rcosflt designs the filter automatically, then you can control the group 
delay of the filter, as described below. If you specify your own FIR filter, then 
rcosflt does not need to know its group delay.

The filter’s group delay is the time between the filter’s initial response and its 
peak response. The default group delay in the implementation is three input 
samples. To specify a different value, measure it in input symbol periods and 
provide it as the sixth input argument. For example, the command below 
specifies a group delay of six input samples, which is equivalent to 6*8/1 output 
samples.

y = rcosflt([1;0;0],1,8,'fir',.2,6); % Delay is 6 input samples.

The group delay influences the size of the output, as well as the order of the 
filter if rcosflt designs the filter automatically. See the reference page for 
rcosflt for details that relate to the syntax you want to use.

Example: Raised Cosine Filter Delays. The code below filters a signal using two 
different group delays. A larger delay results in a smaller error in the 
frequency response of the filter. The plot shows how the two filtered signals 
differ, and the output pt indicates that the first peak occurs at different times 
for the two filtered signals.

[y,t] = rcosflt(ones(10,1),1,8,'fir',.5,6); % Delay = 6 samples
[y1,t1] = rcosflt(ones(10,1),1,8,'fir',.5,8); % Delay = 8 samples
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plot(t,y,t1,y1,'--') % Two curves indicate the different delays.
peak = t(find(y == max(y))); % Times where first curve peaks
peak1 = t1(find(y1 == max(y1))); % Times where second curve peaks
pt = [min(peak), min(peak1)] % First peak time for both curves

pt =

   14.6250   16.6250

Figure 2-8:  Delays of Three Samples (Dashed) and Five Samples (Solid)

If Fs/Fd is at least 4, then a group delay value of at least 8 works well in many 
cases. In the examples of this section, Fs/Fd is 8.

Combining Two Square-Root Raised Cosine Filters
If you want to split the filtering equally between the transmitter’s filter and the 
receiver’s filter, then you can use a pair of square-root raised cosine filters. In 
theory, the combination of two square-root raised cosine filters is equivalent to 
a single normal raised cosine filter. However, the limited impulse response of 
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practical square-root raised cosine filters causes a slight difference between the 
response of two successive square-root raised cosine filters and the response of 
one raised cosine filter.

Using rcosine and rcosflt to Implement Square-Root Raised Cosine Filters. One way to 
implement the pair of square-root raised cosine filters is to follow these steps:

1 Use rcosine with the 'sqrt' flag to design a square-root raised cosine filter.

2 Use rcosflt in the transmitter section of code to upsample and filter the 
data.

3 Use rcosflt in the receiver section of code to filter the received data without 
upsampling it. Use the 'Fs' flag to avoid upsampling.

An example of this approach is below. Notice that the syntaxes for rcosflt use 
the 'filter' flag to indicate that you are providing the filter’s transfer 
function as an input.

% First approach
x = randint(100,1,2,1234); % Data
num = rcosine(1,8,'sqrt'); % Transfer function of filter
y = rcosflt(x,1,8,'filter',num); % Filter the data.
z = rcosflt(y,1,8,'Fs/filter',num); % Filter the received data
% but do not upsample it.

Using rcosflt Alone. Another way to implement the pair of square-root raised 
cosine filters is to have rcosflt both design and use the square-root raised 
cosine filter. This approach avoids using rcosine. The corresponding example 
code is below. Notice that the syntaxes for rcosflt use the 'sqrt' flag to 
indicate that you want it to design a square-root raised cosine filter.

% Second approach
x = randint(100,1,2,1234); % Data (again)
y1 = rcosflt(x,1,8,'sqrt'); % Design and use a filter.
z1 = rcosflt(y1,1,8,'sqrt/Fs'); % Design and use a filter
% but do not upsample the data.

Because these two approaches are equivalent, y is the same as y1 and z is the 
same as z1.
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Designing Raised Cosine Filters
The rcosine function designs (but does not apply) filters of these types:

• Finite impulse response (FIR) raised cosine filter

• Infinite impulse response (IIR) raised cosine filter

• FIR square-root raised cosine filter

• IIR square-root raised cosine filter

The function returns the transfer function as output. To learn about applying 
raised cosine filters, see “Filtering with Raised Cosine Filters” on page 2-81.

Sampling Rates
The rcosine function assumes that you want to apply the filter to a digital 
signal whose sampling rate is Fd. The function also requires you to provide the 
filter’s sampling rate, Fs. The ratio of Fs to Fd must be an integer.

Example Designing a Square-Root Raised Cosine Filter
For example, the command below designs a square-root raised cosine FIR filter 
with a sampling rate of 2, for use with a digital signal whose sampling rate is 1.

num = rcosine(1,2,'fir/sqrt')

num =

  Columns 1 through 7 

    0.0021   -0.0106    0.0300   -0.0531   -0.0750    0.4092    0.8037

  Columns 8 through 13 

    0.4092   -0.0750   -0.0531    0.0300   -0.0106    0.0021

Here, the vector num contains the coefficients of the filter, in ascending order of 
powers of z-1.

Other Options in Filter Design
You can also control the filter design by specifying the rolloff factor, group 
delay, and (for IIR filters) tolerance index explicitly, instead of having rcosine 
use its default values. The reference entry for rcosine explains these 
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parameters. The group delay is also mentioned above in “Noncausality and the 
Group Delay Parameter” on page 2-78.

Selected Bibliography for Special Filters
[1] Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold, 
1985.

[2] Oppenheim, Alan V. and Ronald W. Schafer. Discrete-Time Signal 
Processing. Englewood Cliffs, N.J.: Prentice Hall, 1989.
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2. Using the Communications Toolbox

Galois Field Computations
A Galois field is an algebraic field that has a finite number of elements. The 
number of elements is always of the form pm, where p is a prime number and 
m is a positive integer. Galois fields are used in error-control coding.

Galois Field Features of the Toolbox
The Communications Toolbox provides functions for manipulating elements of 
Galois fields, working with polynomials over Galois fields, and performing 
other tasks related to Galois fields. This section discusses these topics:

• “Galois Field Terminology” on page 2-89

• “Representing Elements of Galois Fields” on page 2-90

• “Default Primitive Polynomials” on page 2-93

• “Converting and Simplifying Element Formats” on page 2-94

• “Arithmetic in Galois Fields” on page 2-97

• “Polynomials over Prime Fields” on page 2-99

For background information about Galois fields or their use in error-control 
coding, see the works listed in “Selected Bibliography for Galois Fields” on 
page 2-103.

Galois Field Terminology
Throughout this section, p is a prime number and m is a positive integer. 

Also, this document uses a few terms that are not used consistently in the 
literature. The definitions adopted here appear in van Lint [4].

• A primitive element of GF(pm) is a cyclic generator of the group of nonzero 
elements of GF(pm). This means that every nonzero element of the field can 
be expressed as the primitive element raised to some integer power. 
Primitive elements are called α throughout this section.

• A primitive polynomial for GF(pm) is the minimal polynomial of some 
primitive element of GF(pm). As a consequence, it has degree m and is 
irreducible.
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Representing Elements of Galois Fields
This section discusses how to represent Galois field elements using this 
toolbox’s exponential format and polynomial format. It also describes a way to 
list all elements of the Galois field, because some functions use such a list as 
an input argument. Finally, it discusses the nonuniqueness of representations 
of Galois field elements.

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least two, GF(pm) is called an extension field. Integers alone 
cannot represent the elements of GF(pm) in a straightforward way. MATLAB 
uses two main conventions for representing elements of GF(pm): the 
exponential format and the polynomial format.

Note  Both the exponential format and the polynomial format are relative to 
your choice of a particular primitive element α of GF(pm).

Exponential Format
This format uses the property that every nonzero element of GF(pm) can be 
expressed as  αc for some integer c between 0 and pm-2. Higher exponents are 
not needed, since the theory of Galois fields implies that every nonzero element 
of GF(pm) satisfies the equation xq-1 = 1 where q = pm.

MATLAB’s use of the exponential format is shown in the table below.

Table 2-10:  Exponential Format in MATLAB

Element of GF(pm) MATLAB Representation of the Element

0 -Inf

α0 = 1 0

α1 1

αq-2 where q = pm q-2

… …
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Although -Inf is the standard exponential representation of the zero element, 
all negative integers are equivalent to -Inf when used as input arguments in 
exponential format. This equivalence can be useful; for example, see the 
concise line of code at the end of the section “Default Primitive Polynomials” on 
page 2-93. 

Note  The equivalence of all negative integers and -Inf as exponential 
formats means that, for example, -1 does not represent α-1, the multiplicative 
inverse of α. Instead, -1 represents the zero element of the field.

Polynomial Format
The polynomial format uses the property that every element of GF(pm) can be 
expressed as a polynomial in α with exponents between 0 and m-1, and 
coefficients in GF(p). In the polynomial format, the element

A(1) + A(2) α + A(3) α2 + ... + A(m) αm-1

is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note  The Galois field functions in this toolbox represent a polynomial as a 
vector that lists the coefficients in order of ascending powers of the variable. 
This is the opposite of the order that other MATLAB functions use.

List of All Elements of a Galois Field
Some Galois field functions in this toolbox require an argument that lists all 
elements of an extension field GF(pm). This is again relative to a particular 
primitive element α of GF(pm). The proper format for the list of elements is that 
of a matrix having pm rows, one for each element of the field. The matrix has 
m columns, one for each coefficient of a power of α in the polynomial format 
shown in “Polynomial Format” above. The first row contains only zeros because 
it corresponds to the zero element in GF(pm). If k is between 2 and pm, then the 
kth row specifies the polynomial format of the element αk-2.
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The minimal polynomial of α aids in the computation of this matrix, since it 
tells how to express αm in terms of lower powers of α. For example, the table 
below lists the elements of GF(32), where α is a root of the primitive polynomial 
2 + 2x + x2. This polynomial allows repeated use of the substitution

α2 = -2 - 2α = 1 + α

when performing the computations in the middle column of the table.

An automatic way to generate the matrix whose rows are in the third column 
of the table above is to use the code below.

p = 3; m = 2;
% Use the primitive polynomial 2 + 2x + x^2 for GF(9).
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);

The gftuple function is discussed in more detail in “Converting and 
Simplifying Element Formats” on page 2-94.

Table 2-11:  Elements of GF(9)

Exponential 
Format

Polynomial Format Row of MATLAB 
Matrix of Elements

α-Inf 0 0 0

α0 1 1 0

α1 α 0 1

α2 1+α 1 1

α3 α + α2 = α + 1 + α = 1 + 2α 1 2

α4 α + 2α2 = α + 2 + 2α = 2 2 0

α5 2α 0 2

α6 2α2 = 2 + 2α 2 2

α7 2α + 2α2 = 2α + 2 + 2α = 2 + α 2 1
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Nonuniqueness of Representations
A given field has more than one primitive element. If two primitive elements 
have different minimal polynomials, then the corresponding matrices of 
elements will have their rows in a different order. If the two primitive elements 
share the same minimal polynomial, then the matrix of elements of the field is 
the same. 

Note  You may use whatever primitive element you want, as long as you 
understand how the inputs and outputs of Galois field functions depend on the 
choice of some primitive polynomial. It is usually best to use the same 
primitive polynomial throughout a given script or function.

Other ways in which representations of elements are not unique arise from the 
equations that Galois field elements satisfy. For example, an exponential 
format of 8 in GF(9) is really the same as an exponential format of 0, since 
α8 = 1 = α0  in GF(9). As another example, the substitution mentioned just 
before Table 2-11, Elements of GF(9), shows that the polynomial format [0 0 1] 
is really the same as the polynomial format [1 1].

Default Primitive Polynomials
This toolbox provides a default primitive polynomial for each extension field. 
You can retrieve this polynomial using the gfprimdf function. The command

primpoly = gfprimdf(m,p); % If m and p are already defined

produces the standard row-vector representation of the default minimal 
polynomial for GF(pm).

For example, the command below shows that the default primitive polynomial 
for GF(9) is 2 + x + x2, not the polynomial used in the section, “List of All 
Elements of a Galois Field” on page 2-91.

gfprimdf(2,3)

ans =

     2     1     1
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To generate a list of elements of GF(pm) using the default primitive polynomial, 
use the command

field = gftuple([-1:p^m-2]',m,p);

Converting and Simplifying Element Formats
This section describes how to convert between the exponential and polynomial 
formats for Galois field elements, as well as how to simplify a given 
representation.

Converting to Simplest Polynomial Format
The gftuple function produces the simplest polynomial representation of an 
element of GF(pm), given either an exponential representation or a polynomial 
representation of that element. This can be useful for generating the list of 
elements of GF(pm) that other functions require.

The simplest use of gftuple requires two arguments: one representing an 
element of GF(pm) and the other indicating the primitive polynomial that 
MATLAB should use when computing the output. An optional third argument 
is the prime p; if it is omitted, then the default is 2. The table below indicates 
how gftuple behaves when given the first two arguments in various formats.

Table 2-12:  Behavior of gftuple Depending on Format of Inputs

How to Specify 
Element

How to Indicate Primitive 
Polynomial

What gftuple Produces

Exponential format; 
c = any integer

Integer m > 1 Polynomial format of αc, where α is a 
root of the default primitive polynomial 
for GF(pm)

Example: tp = gftuple(6,2,3); % c = 6 here

Exponential format; 
c = any integer

Vector of coefficients of 
primitive polynomial

Polynomial format of αc, where α is a 
root of the given primitive polynomial

Example: polynomial = gfprimdf(2,3); tp = gftuple(6,polynomial,3); % c = 6 here
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The four examples that appear in the table above all produce the same vector 
tp = [2, 1], but their different inputs to gftuple correspond to the lines of 
the table. Each example expresses the fact that

α6 = 2+α

where α is a root of the (default) primitive polynomial 2 + x + x2 for GF(32).

Example. This example shows how gfconv and gftuple combine to multiply two 
polynomial-format elements of GF(34). Initially, gfconv multiplies the two 
polynomials, treating the primitive element as if it were a variable. This 
produces a high-order polynomial, which gftuple simplifies using the 
polynomial equation that the primitive element satisfies. The final result is the 
simplest polynomial format of the product.

p = 3; m = 4;
a = [1 2 0 1]; b = [2 2 1 2];
notsimple = gfconv(a,b,p) % a times b, using high powers of alpha

notsimple =

     2     0     2     0     0     1     2

simple = gftuple(notsimple,m,p) %Highest exponent of alpha is m-1

Polynomial format of 
any degree

Integer m > 1 Polynomial format of degree < m, using 
default primitive polynomial for 
GF(pm) to simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);

Polynomial format of 
any degree

Vector of coefficients of 
primitive polynomial

Polynomial format of degree < m, using 
the given primitive polynomial for 
GF(pm) to simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 0 1],polynomial,3);

Table 2-12:  Behavior of gftuple Depending on Format of Inputs (Continued)

How to Specify 
Element

How to Indicate Primitive 
Polynomial

What gftuple Produces
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simple =

     2     1     0     1

Example: Generating a List of Galois Field Elements
This example applies the conversion functionality to the task of generating a 
matrix that lists all elements of a Galois field. A matrix that lists all field 
elements is an input argument in functions such as gfadd and gfmul. The 
variables field1 and field2 below have the format that such functions expect.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field1 = gftuple([-1:p^m-2]',m,p);

primpoly = gfprimdf(m,p); % Or any primitive polynomial
% for GF(p^m)
field2 = gftuple([-1:p^m-2]',primpoly,p);

Converting to Simplest Exponential Format
The same function gftuple also produces the simplest exponential 
representation of an element of GF(pm), given either an exponential 
representation or a polynomial representation of that element. To retrieve this 
output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in Table 2-12, Behavior of 
gftuple Depending on Format of Inputs. In addition, the variable expformat 
contains the simplest exponential format of the element represented in 
polyformat. It is simplest in the sense that the exponent is either -Inf or a 
number between 0 and pm-2. 

To recover the exponential format of the element 2 + α that the previous 
section considered, use the commands below. In this case, polyformat contains 
redundant information, while expformat contains the desired result.

[polyformat, expformat] = gftuple([2 1],2,3)

polyformat =

     2     1
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expformat =

     6

This output appears at first to contradict the information in Table 2-11, 
Elements of GF(9), but in fact it does not. The table uses a different primitive 
element; two plus that primitive element has the polynomial and exponential 
formats shown below. The output below reflects the information in the bottom 
line of the table.

primpoly = [2 2 1];
[polyformat, expformat] = gftuple([2 1],primpoly,3)

polyformat =

     2     1

expformat =

     7

Arithmetic in Galois Fields
You can add, subtract, multiply, and divide elements of Galois fields using the 
functions gfadd, gfsub, gfmul, and gfdiv, respectively. Each of these functions 
has a mode for prime fields and a mode for extension fields.

Arithmetic in Prime Fields
Arithmetic in GF(p) is the same as arithmetic modulo p. The functions gfadd, 
gfmul, gfsub, and gfdiv accept two arguments that represent elements of 
GF(p) as integers between 0 and p-1. An optional third argument specifies p; if 
it does not appear, then the computations are performed in GF(2).

Example: Addition Table for GF(5). The code below constructs an addition table for 
GF(5). If a and b are between 0 and 4, then the element gfp_add(a+1,b+1) 
represents the sum a+b in GF(5). For example, gfp_add(3,5) = 1 because 2+4 
is 1 modulo 5.

p = 5;
row = 0:p-1;
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table = ones(p,1)*row;
gfp_add = gfadd(table,table',p)

gfp_add =

     0     1     2     3     4
     1     2     3     4     0
     2     3     4     0     1
     3     4     0     1     2
     4     0     1     2     3

Other values of p produce tables for different prime fields GF(p). Replacing 
gfadd by gfmul, gfsub, or gfdiv produces a table for the corresponding 
arithmetic operation in GF(p).

Arithmetic in Extension Fields
The same arithmetic functions can add elements of GF(pm) when m > 1, but the 
format of the arguments is more complicated than in the case above. In general, 
arithmetic in extension fields is more complicated than arithmetic in prime 
fields; see the works listed in “Selected Bibliography for Galois Fields” on 
page 2-103 for details about how the arithmetic operations work. 

When working in extension fields, the functions gfadd, gfmul, gfsub, and 
gfdiv use the first two arguments to represent elements of GF(pm) in 
exponential format. The third argument, which is required, lists all elements 
of GF(pm) as described in the section, “List of All Elements of a Galois Field” on 
page 2-91. The result is in exponential format.

Example: Addition Table for GF(9). The code below constructs an addition table for 
GF(32), using exponential formats relative to a root of the default primitive 
polynomial for GF(9). If a and b are between -1 and 7, then the element 
gfpm_add(a+2,b+2) represents the sum of αa and αb in GF(9). For example, 
gfpm_add(4,6) = 5 because

α2 + α4 = α5

Using the fourth and sixth rows of the matrix field, you can verify that

α2 + α4 = (1 + 2α) + (2 + 0α) = 3 + 2α = 0 + 2α = α5 modulo 3.

p = 3; m = 2; % Work in GF(3^2).
field = gftuple([-1:p^m-2]',m,p); % Construct list of elements.
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row = -1:p^m-2;
table = ones(p^m,1)*row;
gfpm_add = gfadd(table,table',field)

gfpm_add =

  -Inf     0     1     2     3     4     5     6     7
     0     4     7     3     5  -Inf     2     1     6
     1     7     5     0     4     6  -Inf     3     2
     2     3     0     6     1     5     7  -Inf     4
     3     5     4     1     7     2     6     0  -Inf
     4  -Inf     6     5     2     0     3     7     1
     5     2  -Inf     7     6     3     1     4     0
     6     1     3  -Inf     0     7     4     2     5
     7     6     2     4  -Inf     1     0     5     3

Note  If you used a different primitive polynomial, then the tables would look 
different. This makes sense because the ordering of the rows and columns of 
the tables was based on that particular choice of primitive polynomial and not 
on any natural ordering of the elements of GF(9).

Other values of p and m produce tables for different prime fields GF(pm). 
Replacing gfadd by gfmul, gfsub, or gfdiv produces a table for the 
corresponding arithmetic operation in GF(pm).

Polynomials over Prime Fields
A polynomial over GF(p) is a polynomial whose coefficients are elements of 
GF(p). The Communications Toolbox provides functions for:

• Changing polynomials in cosmetic ways

• Performing polynomial arithmetic

• Characterizing polynomials as primitive or irreducible

• Finding roots of polynomials in a Galois field
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Note  The Galois field functions in this toolbox represent a polynomial as a 
vector that lists the coefficients in order of ascending powers of the variable. 
This is the opposite of the order that other MATLAB functions use.

Cosmetic Changes of Polynomials
To display the traditionally formatted polynomial that corresponds to a row 
vector containing coefficients, use gfpretty. To truncate a polynomial by 
removing all zero-coefficient terms that have exponents higher than the degree 
of the polynomial, use gftrunc. For example,

polynom = gftrunc([1 20 394 10 0 0 29 3 0 0])

polynom =

     1    20   394    10     0     0    29     3

gfpretty(polynom)

                                   2       3       6      7
                   1 + 20 X + 394 X  + 10 X  + 29 X  + 3 X 

Note  If you do not use a fixed-width font, then the spacing in the display 
might not look correct.

Polynomial Arithmetic
The functions gfadd and gfsub add and subtract, respectively, polynomials 
over GF(p). The gfconv function multiplies polynomials over GF(p). The 
gfdeconv function divides polynomials in GF(p), producing a quotient 
polynomial and a remainder polynomial. For example, the commands below 
show that 2 + x + x2 times 1 + x over the field GF(3) is 2 + 2x2 + x3.

a = gfconv([2 1 1],[1 1],3)
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a =

     2     0     2     1

[quot, remd] = gfdeconv(a,[2 1 1],3)

quot =

     1     1

remd =

     0

The previously discussed functions gfadd and gfsub add and subtract, 
respectively, polynomials. Because it uses a vector of coefficients to represent 
a polynomial, MATLAB does not distinguish between adding two polynomials 
and adding two row vectors elementwise.

Characterization of Polynomials
Given a polynomial over GF(p), the gfprimck function determines whether it 
is irreducible and/or primitive. By definition, if it is primitive then it is 
irreducible; however, the reverse is not necessarily true.

Given an element of GF(pm), the gfminpol function computes its minimal 
polynomial over GF(p).

For example, the code below reflects the irreducibility of all minimal 
polynomials. However, the minimal polynomial of a nonprimitive element is 
not a primitive polynomial.

p = 2; m = 4;
% Use default primitive polynomial here.

primpoly = gfminpol(1,m,p);
ckprim = gfprimck(primpoly,p);
% ckprim = 1, since primpoly represents a primitive polynomial.

notprimpoly = gfminpol(3,m,p);
cknotprim = gfprimck(notprimpoly,p);
% cknotprim = 0 (irreducible but not primitive)
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% since alpha^3 is not a primitive element when p = 2.

ckreducible = gfprimck([0 1 1],p);
% ckreducible = -1 since the polynomial is reducible.

Roots of Polynomials
Given a polynomial over GF(p), the gfroots function finds the roots of the 
polynomial in a suitable extension field GF(pm). If p is not specified, then the 
default is 2. If m is not specified, then the default is the degree of the 
polynomial. There are two ways to tell MATLAB the degree m of the extension 
field GF(pm), as shown in the table below.

Example: Roots of a Polynomial in GF(9). The code below finds roots of the 
polynomial 1 + x2 + x3 in GF(9) and then checks that they are indeed roots. The 
exponential format of elements of GF(9) is used throughout.

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3
   root = rts(ii);
   rootsquared = gfmul(root,root,field);
   rootcubed = gfmul(root,rootsquared,field);
   answer(ii)=...
      gfadd(gfadd(0,rootsquared,field),rootcubed,field);
   % Recall that 1 is really alpha to the zero power.
   % If answer = -Inf, then the variable root represents
   % a root of the polynomial.

Table 2-13:  Formats for Second Argument of gfroots

Second Argument Represents

A positive integer m as in GF(pm). MATLAB uses the default 
primitive polynomial in its computations.

A row vector a primitive polynomial for GF(pm). Here m 
is the degree of this primitive polynomial.
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end
answer

The output shows that α0 (which equals 1), α5, and α7 are roots.

roots =

     0
     5
     7

answer =

  -Inf  -Inf  -Inf

See the reference page for gfroots to see how gfroots can also provide you 
with the polynomial formats of the roots and the list of all elements of the field.

Other Galois Field Functions
See the reference pages for information about these other Galois field functions 
in the Communications Toolbox:

• gfcosets, which produces cyclotomic cosets

• gffilter, which filters data using GF(p) polynomials

• gflineq, which solves a linear matrix equation over GF(p)

• gfprimfd, which finds primitive polynomials

• gfrank, which computes the rank of a matrix over GF(p)

• gfrepcov, which converts one GF(2) polynomial representation to another

Selected Bibliography for Galois Fields
[1] Blahut, Richard E. Theory and Practice of Error Control Codes. Reading, 
Mass.: Addison-Wesley, 1983, p.105.

[2] Lang, Serge. Algebra. Third Edition. Reading, Mass.: Addison-Wesley, 
1993.

[3] Lin, Shu and Daniel J. Costello, Jr. Error Control Coding: Fundamentals 
and Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1983.
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This chapter contains detailed descriptions of all Communications Toolbox 
functions. To access the descriptions, use the links in the second column of the 
table below.

Organization of Functions Section

By category “Functions by Category”

Alphabetical “Alphabetical List of Functions”



Functions by Category

3-3

3. Reference

Functions by Category

Table 3-1:  Signal Sources

Function Purpose

randerr Generate bit error patterns

randint Generate matrix of uniformly distributed random integers

randsrc Generate random matrix using prescribed alphabet

wgn Generate white Gaussian noise

Table 3-2:  Signal Analysis Functions

Function Purpose

biterr Compute number of bit errors and bit error rate

eyediagram Generate an eye diagram

scatterplot Generate a scatter plot

symerr Compute number of symbol errors and symbol error rate

Table 3-3:  Source Coding

Function Purpose

compand Source code mu-law or A-law compressor or expander

dpcmdeco Decode using differential pulse code modulation

dpcmenco Encode using differential pulse code modulation

dpcmopt Optimize differential pulse code modulation parameters
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lloyds Optimize quantization parameters using the Lloyd 
algorithm

quantiz Produce a quantization index and a quantized output value

Table 3-4:  Error-Control Coding

Function Purpose

bchpoly Produce parameters or generator polynomial for binary 
BCH code

convenc Convolutionally encode binary data

cyclgen Produce parity-check and generator matrices for cyclic code

cyclpoly Produce generator polynomials for a cyclic code

decode Block decoder

encode Block encoder

gen2par Convert between parity-check and generator matrices

gfweight Calculate the minimum distance of a linear block code

hammgen Produce parity-check and generator matrices for Hamming 
code

rsdecof Decode an ASCII file that was encoded using Reed-Solomon 
code

rsencof Encode an ASCII file using Reed-Solomon code

rspoly Produce Reed-Solomon code generator polynomial

Table 3-3:  Source Coding (Continued)

Function Purpose
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syndtable Produce syndrome decoding table

vitdec Convolutionally decode binary data using the Viterbi 
algorithm

Table 3-5:  Lower-Level Functions for Error-Control Coding

Function Purpose

bchdeco BCH decoder

bchenco BCH encoder

rsdeco Reed-Solomon decoder

rsdecode Reed-Solomon decoding using the exponential format

rsenco Reed-Solomon encoder

rsencode Reed-Solomon encoding using the exponential format

Table 3-6:  Modulation and Demodulation

Function Purpose

ademod Analog passband demodulator

ademodce Analog baseband demodulator

amod Analog passband modulator

amodce Analog baseband modulator

apkconst Plot a combined circular ASK-PSK signal constellation

ddemod Digital passband demodulator

Table 3-4:  Error-Control Coding (Continued)

Function Purpose
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ddemodce Digital baseband demodulator

demodmap Demap a digital message from a demodulated signal

dmod Digital passband modulator

dmodce Digital baseband modulator

modmap Map a digital signal to an analog signal

qaskdeco Demap a message from a QASK square signal constellation

qaskenco Map a message to a QASK square signal constellation

Table 3-7:  Special Filters

Function Purpose

hank2sys Convert a Hankel matrix to a linear system model

hilbiir Design a Hilbert transform IIR filter

rcosflt Filter the input signal using a raised cosine filter

rcosine Design a raised cosine filter

Table 3-8:  Lower-Level Functions for Special Filters

Function Purpose

rcosfir Design a raised cosine FIR filter

rcosiir Design a raised cosine IIR filter

Table 3-6:  Modulation and Demodulation (Continued)

Function Purpose
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Table 3-9:  Channel Functions

Function Purpose

awgn Add white Gaussian noise to a signal

Table 3-10:  Galois Field Computation

Function Purpose

gfadd Add polynomials over a Galois field

gfconv Multiply polynomials over a Galois field

gfcosets Produce cyclotomic cosets for a Galois field

gfdeconv Divide polynomials over a Galois field

gfdiv Divide elements of a Galois field

gffilter Filter data using polynomials over a prime Galois field

gflineq Find a particular solution of A x = b over a prime Galois 
field

gfminpol Find the minimal polynomial of an element of a Galois field

gfmul Multiply elements of a Galois field

gfplus Add elements of a Galois field of characteristic two

gfpretty Display a polynomial in traditional format

gfprimck Check whether a polynomial over a Galois field is primitive

gfprimdf Provide default primitive polynomials for a Galois field

gfprimfd Find primitive polynomials for a Galois field

gfrank Compute the rank of a matrix over a Galois field
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gfrepcov Convert one GF(2) polynomial representation to another

gfroots Find the roots of a polynomial over a prime Galois field

gfsub Subtract polynomials over a Galois field

gftrunc Minimize the length of a polynomial representation

gftuple Simplify or convert the format of elements of a Galois field

Table 3-11:  Utilities

Function Purpose

bi2de Convert binary vectors to decimal numbers

de2bi Convert decimal numbers to binary vectors

erf Error function

erfc Complementary error function

istrellis Check if the input is a valid trellis structure

marcumq Generalized Marcum Q function

oct2dec Convert octal numbers to decimal numbers

poly2trellis Convert convolutional code polynomials to trellis 
description

vec2mat Convert a vector into a matrix

Table 3-10:  Galois Field Computation (Continued)

Function Purpose
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3ademodPurpose Analog passband demodulator

Syntax z = ademod(y,Fc,Fs,'amdsb-tc',offset,num,den);
z = ademod(y,Fc,Fs,'amdsb-tc/costas',offset,num,den);
z = ademod(y,Fc,Fs,'amdsb-sc',num,den);
z = ademod(y,Fc,Fs,'amdsb-sc/costas',num,den);
z = ademod(y,Fc,Fs,'amssb',num,den);
z = ademod(y,Fc,Fs,'qam',num,den);
z = ademod(y,Fc,Fs,'fm',num,den,vcoconst);
z = ademod(y,Fc,Fs,'pm',num,den,vcoconst);
z = ademod(y,Fc,[Fs phase],...);

Optional 
Inputs

Description The function ademod performs analog passband demodulation. The 
corresponding modulation function is amod. The table below lists the 
demodulation schemes that ademod supports.

Input Default Value

offset Appropriate value so that each output signal has zero mean

num, den [num,den] = butter(5,Fc*2/Fs);

vcoconst 1

Demodulation Scheme Fourth Input Argument

Amplitude demodulation 'amdsb-tc' or 
'amdsb-tc/costas'

Amplitude demodulation, double sideband 
suppressed carrier

'amdsb-sc' or 
'amdsb-sc/costas'

Amplitude demodulation, single sideband 
suppressed carrier

'amssb'

Quadrature amplitude demodulation 'qam'

Frequency demodulation 'fm'

Phase demodulation 'pm'
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For All Syntaxes
The generic syntax z = ademod(y,Fc,Fs,...) demodulates the received signal 
that y represents. Fc is the carrier frequency in Hertz, and Fs is the sampling 
rate in Hertz. The initial phase of the carrier signal is zero.

y and z are real matrices whose sizes depend on the demodulation method:

• (QAM method) If y is a length-n vector, then z is an n-by-2 matrix. 
Otherwise, if y is n-by-m, then z is n-by-2m and each column of y is processed 
separately. The odd-numbered columns in z represent in-phase components 
and the even-numbered columns represent quadrature components.

• (Other methods) y and z have the same dimensions. If y is a 
two-dimensional matrix, then each column of y is processed separately.

The generic syntax z = ademod(y,Fc,[Fs phase],...) is the same, except 
that the third input argument is a two-element vector instead of a scalar. The 
first entry, Fs, is the sampling rate. The second entry, phase, is the initial 
phase of the carrier signal, measured in radians.

ademod uses a lowpass filter with sample time 1/Fs while demodulating, in 
order to filter out the carrier signal. To specify the lowpass filter, include num 
and den in the list of input arguments. num and den are row vectors that give 
the coefficients, in descending order, of the numerator and denominator of the 
filter’s transfer function. If num is empty, zero, or absent, then the default filter 
is a Butterworth filter whose parameters come from the command below. 
butter is in the Signal Processing Toolbox.

[num,den] = butter(5,Fc*2/Fs);

For Specific Syntaxes

z = ademod(y,Fc,Fs,'amdsb-tc',offset,num,den) implements 
double-sideband amplitude demodulation. offset is a vector whose kth entry 
is subtracted from the kth signal after the demodulation. If offset is empty, 
then by default z will be adjusted so that each column has mean zero (or, so 
that z has mean zero in case z is a vector).

z = ademod(y,Fc,Fs,'amdsb-tc/costas',offset,num,den) is the same as 
the syntax above, except that the algorithm includes a Costas phase-locked 
loop.
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z = ademod(y,Fc,Fs,'amdsb-sc',num,den) implements double-sideband 
suppressed-carrier amplitude demodulation.

z = ademod(y,Fc,Fs,'amdsb-sc/costas',num,den) is the same as the syntax 
above, except that the algorithm includes a Costas phase-locked loop.

z = ademod(y,Fc,Fs,'amssb',num,den) implements single-sideband 
suppressed-carrier amplitude demodulation.

z = ademod(y,Fc,Fs,'qam',num,den) implements quadrature amplitude 
demodulation.

z = ademod(y,Fc,Fs,'fm',num,den,vcoconst) implements frequency 
demodulation. The spectrum of the demodulated signal is between 
min(y) + Fc and max(y) + Fc. The demodulation process uses a phase-locked 
loop composed of a multiplier (as a phase detector), a lowpass filter, and a 
voltage-controlled oscillator (VCO). If Fs is a two-element vector, then its 
second element is the initial phase of the VCO, in radians. The optional 
argument vcoconst is a scalar that represents the VCO constant in Hz/V.

z = ademod(y,Fc,Fs,'pm',num,den,vcoconst) implements phase 
demodulation. The demodulation process uses a phase-locked loop (which acts 
as an FM demodulator) cascaded with an integrator. The phase-locked loop 
consists of a multiplier (as a phase detector), a lowpass filter, and a 
voltage-controlled oscillator (VCO). If Fs is a two-element vector, then its 
second element is the initial phase of the VCO, in radians. The optional 
argument vcoconst is a scalar that represents the input signal’s sensitivity.

Examples This example illustrates the use of the offset argument. Since the first ademod 
command uses the same offset value of .3 that the amod command used, z1 is 
similar to the original message signal. Since the second ademod command omits 
offset, z2 has mean close to zero (not exactly zero because of roundoff error).

Fc = 25; % Carrier signal frequency
Fs = 100; % Sampling rate of signal
t = [0:1/Fs:5]'; % Times to sample the signals
x = [cos(t), sin(t)]; % Cosine signal and sine signal
y = amod(x,Fc,Fs,'amdsb-tc',.3); % Modulate
% and shift the values up by .3.
z1 = ademod(y,Fc,Fs,'amdsb-tc',.3); % Demodulate.
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z2 = ademod(y,Fc,Fs,'amdsb-tc'); % Demodulate.
plot(t,z1,'b',t,z2,'r--') % Plot recovered signal.

The plot shows z1 as a solid line and z2 as a dashed line.

Other examples using ademod are the Hilbert Filter Example on the reference 
page for amod, and in the section “Example: Varying the Filter’s Cutoff 
Frequency” on page 2-63.

See Also amod, dmod, ddemod, amodce, ademodce
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3ademodce Purpose Analog baseband demodulator

Syntax z = ademodce(y,Fs,'amdsb-tc',offset,num,den);
z = ademodce(y,Fs,'amdsb-tc/costas',offset,num,den);
z = ademodce(y,Fs,'amdsb-sc',num,den);
z = ademodce(y,Fs,'amdsb-sc/costas',num,den);
z = ademodce(y,Fs,'amssb',num,den);
z = ademodce(y,Fs,'qam',num,den);
z = ademodce(y,Fs,'fm',num,den,vcoconst);
z = ademodce(y,Fs,'pm',num,den,vcoconst);
z = ademodce(y,[Fs phase],...);

Optional 
Inputs

Description The function ademodce performs analog baseband demodulation. The 
corresponding modulation function is amodce. The table below lists the 
demodulation schemes that ademodce supports.

Input Default Value, or Default Behavior if Input is Omitted

offset Appropriate value so that each output signal has zero mean

num, den Omitting these arguments prevents ademodce from using a 
filter.

vcoconst 1

Demodulation Scheme Third Input Argument

Amplitude demodulation 'amdsb-tc'

Amplitude demodulation, double sideband 
suppressed carrier

'amdsb-sc' or 
'amdsb-sc/costas'

Amplitude demodulation, single sideband 
suppressed carrier

'amssb'

Quadrature amplitude demodulation 'qam'

Frequency demodulation 'fm'

Phase demodulation 'pm'
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For All Syntaxes
The generic syntax z = ademodce(y,Fs,...) demodulates the received signal 
that y represents. Fs is the sampling rate in Hertz. The initial phase of the 
carrier signal is zero. y is a complex matrix and z is a real matrix. Their sizes 
depend on the demodulation method:

• (QAM method) If y is a vector of length n, then z is an n-by-2 matrix. 
Otherwise, if y is n-by-m, then z is n-by-2m and each column of y is processed 
separately. The odd-numbered columns in z represent in-phase components 
and the even-numbered columns represent quadrature components.

• (Other methods) y and z have the same dimensions. If y is a 
two-dimensional matrix, then each column of y is processed separately.

The generic syntax z = ademodce(y,[Fs phase],...) is the same, except that 
the second input argument is a two-element vector instead of a scalar. The first 
entry, Fs, is the sampling rate as described in the paragraph above. The second 
entry, phase, is the initial phase of the carrier signal, measured in radians.

To use a lowpass filter in the demodulation, include num and den in the list of 
input arguments. num and den are row vectors that give the coefficients, in 
descending order, of the numerator and denominator of the filter’s transfer 
function. If num is empty, zero, or absent, then ademodce does not use a filter.

For Specific Syntaxes

z = ademodce(y,Fs,'amdsb-tc',offset,num,den) implements 
double-sideband amplitude demodulation. offset is a vector whose kth entry 
is subtracted from the kth column of demodulated data. If offset is empty, 
then by default z will be adjusted so that each column has mean zero (or, so 
that z has mean zero in case z is a vector).

z = ademodce(y,Fs,'amdsb-tc/costas',offset,num,den) is the same as the 
syntax above, except that the algorithm includes a Costas phase-locked loop.

z = ademodce(y,Fs,'amdsb-sc',num,den) implements double-sideband 
suppressed-carrier amplitude demodulation.

z = ademodce(y,Fs,'amdsb-sc/costas',num,den) is the same as the syntax 
above, except that the algorithm includes a Costas phase-locked loop.
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z = ademodce(y,Fs,'amssb',num,den) implements single-sideband 
suppressed-carrier amplitude demodulation.

z = ademodce(y,Fs,'qam',num,den) implements quadrature amplitude 
demodulation.

z = ademodce(y,Fs,'fm',num,den,vcoconst) implements frequency 
demodulation. The optional argument vcoconst is a scalar that represents the 
VCO constant in the demodulation.

z = ademodce(y,Fs,'pm',num,den,vcoconst) implements phase 
demodulation. The optional argument vcoconst specifies the VCO constant in 
the demodulation.

Examples The example below processes sine, cosine, and sawtooth signals 
simultaneously. All three signals have the same sampling rate and the same 
number of samples. The code also plots the original and demodulated signals.

Fs = 100; % Sampling rate of signal
t = [0:1/Fs:5]'; % Times to sample the signals
% Combine three signals into a three-column matrix.
% Each signal occupies one column.
x = [sin(2*pi*t), .5*cos(5*pi*t), sawtooth(4*t)];
y = amodce(x,Fs,'fm'); % Modulate.
z = ademodce(y,Fs,'fm'); % Demodulate.
plot(x); figure; plot(z); % Original and demodulated signals
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Other examples using ademodce are in the sections “Simple Analog Modulation 
Example” on page 2-61 and “Example: Time Lag From Filtering” on page 2-64.

See Also amodce, dmodce, ddemodce, amod, ademod
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3amodPurpose Analog passband modulator

Syntax y = amod(x,Fc,Fs,'amdsb-sc');
y = amod(x,Fc,Fs,'amdsb-tc',offset);
y = amod(x,Fc,Fs,'amssb/opt');
y = amod(x,Fc,Fs,'amssb/opt',num,den);
y = amod(x,Fc,Fs,'amssb/opt',hilbertflag);
y = amod(x,Fc,Fs,'qam');
y = amod(x,Fc,Fs,'fm',deviation);
y = amod(x,Fc,Fs,'pm',deviation);
y = amod(x,Fc,[Fs phase],...);
[y,t] = amod(...);

Optional 
Inputs

Description The function amod performs analog passband modulation. The corresponding 
demodulation function is ademod. The table below lists the modulation schemes 
that amod supports.

Input Default Value, or Default Behavior if Input is Omitted

offset -min(min(x))

opt Omitting this argument causes amod to produce the lower 
sideband instead of the upper sideband.

deviation 1

Modulation Scheme Fourth Input Argument

Amplitude modulation, double sideband with 
transmission carrier

'amdsb-tc'

Amplitude modulation, double sideband 
suppressed carrier

'amdsb-sc'

Amplitude modulation, single sideband 
suppressed carrier

'amssb' or 'amssb/up'

Quadrature amplitude modulation 'qam'
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For All Syntaxes
The generic syntax y = amod(x,Fc,Fs,...) modulates the message signal that 
x represents. Fc is the carrier frequency in Hertz, and Fs is the sampling rate 
in Hertz. (Thus 1/Fs represents the time interval between two consecutive 
samples in x.) The initial phase of the carrier signal is zero. By the Nyquist 
theorem, the sampling rate must be at least twice as large as the modulation 
carrier frequency. x and y are real matrices whose sizes depend on the 
demodulation method:

• (QAM method) x must have an even number of columns. The odd-numbered 
columns in x represent in-phase components and the even-numbered 
columns represent quadrature components. If x is n-by-2m, then y is n-by-m 
and each pair of columns of x is processed separately. 

• (Other methods) x and y have the same dimensions. If x is a 
two-dimensional matrix, then each column of x is processed separately.

The generic syntax y = amod(x,Fc,[Fs phase],...) is the same, except that 
the third input argument is a two-element vector instead of a scalar. The first 
entry, Fs, is the sampling rate as described in the paragraph above. The second 
entry, phase, is the initial phase of the carrier signal, measured in radians.

For Specific Syntaxes

y = amod(x,Fc,Fs,'amdsb-tc',offset) implements double-sideband 
amplitude modulation. offset is the value added to x prior to the modulation. 
If you omit offset, then its default value is -min(min(x)). This default value 
produces 100% modulation.

y = amod(x,Fc,Fs,'amdsb-sc') implements double-sideband 
suppressed-carrier amplitude modulation.

y = amod(x,Fc,Fs,'amssb/opt') implements single-sideband 
suppressed-carrier amplitude modulation. By default, it produces the lower 

Frequency modulation 'fm'

Phase modulation 'pm'

Modulation Scheme Fourth Input Argument
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sideband; if opt is up, then the function produces the upper sideband. This 
syntax does a Hilbert transform in the frequency domain.

y = amod(x,Fc,Fs,'amssb/opt',num,den) is the same as the syntax above, 
except that it specifies a time-domain Hilbert filter. num and den are row 
vectors that give the coefficients, in descending order, of the numerator and 
denominator of the filter’s transfer function. You can use the function hilbiir 
to design the Hilbert filter.

y = amod(x,Fc,Fs,'amssb/opt',hilbertflag) is the same as the syntax 
above, except that it uses a default time-domain Hilbert filter. The filter’s 
transfer function is defined by [num,den] = hilbiir(1/Fs), where num and 
den are as in the paragraph above. The input argument hilbertflag can have 
any value.

y = amod(x,Fc,Fs,'qam') implements quadrature amplitude modulation. x 
is a two-column matrix whose first column represents the in-phase signal and 
whose second column represents the quadrature signal. y is a column vector.

y = amod(x,Fc,Fs,'fm',deviation) implements frequency modulation. The 
spectrum of the modulated signal is between min(x) + Fc and max(x) + Fc. 
The optional argument deviation is a scalar that represents the frequency 
deviation constant of the modulation. The command y = 
amod(x,Fc,Fs,'fm',deviation) is equivalent to the command y = 
amod(x*deviation,Fc,Fs,'fm').

y = amod(x,Fc,Fs,'pm',deviation) implements phase modulation. The 
optional argument deviation is a scalar that represents the phase deviation 
constant of the modulation. The command y = 
amod(x,Fc,Fs,'pm',deviation) is equivalent to the command y = 
amod(x*deviation,Fc,Fs,'pm').

[y,t] = amod(...) returns the computation time in t.

Examples Double- and Single-Sideband Comparison Example
The first example compares the spectra of signals after modulation using the 
double-sideband and single-sideband techniques. The message signal is a 
frequency-one sine wave and the carrier signal is a 10 Hz sine wave. The script 
below uses the 'amdsb-sc' and 'amssb' arguments in the amod function to 
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produce modulated signals ydouble and ysingle, respectively. It then plots the 
spectra of both modulated signals.

% Sample the signal 100 times per second, for 2 seconds.
Fs = 100;
t = [0:2*Fs+1]'/Fs; 
Fc = 10; % Carrier frequency
x = sin(2*pi*t); % Sinusoidal signal
% Modulate x using single- and double-sideband AM.
ydouble = amod(x,Fc,Fs,'amdsb-sc');
ysingle = amod(x,Fc,Fs,'amssb');
% Plot spectra of both modulated signals.
zdouble = fft(ydouble);
zdouble = abs(zdouble(1:length(zdouble)/2+1));
frqdouble = [0:length(zdouble)-1]*Fs/length(zdouble)/2;
plot(frqdouble,zdouble); % The plot on the left-hand side below
figure;
zsingle = fft(ysingle);
zsingle = abs(zsingle(1:length(zsingle)/2+1));
frqsingle = [0:length(zsingle)-1]*Fs/length(zsingle)/2;
plot(frqsingle,zsingle); % The plot on the right-hand side below

Notice that the spectrum in the left plot has two peaks; these are the lower and 
the upper sidebands of the modulated signal. The two sidebands are 
symmetrical with respect to the 10 Hz carrier frequency, Fc. The spectrum of a 
DSB-SC AM modulated signal is twice as wide as the input signal bandwidth. 
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In the right plot, there is one peak because the SSB AM technique requires 
amod to transmit only one sideband.

Hilbert Filter Example
The next example uses a Hilbert filter in the time domain.

Fc = 25; % Carrier signal frequency
Fs = 100; % Sampling rate of signal
[numh,denh] = hilbiir(1/Fs,15/Fs,15); % Design Hilbert filter.
t = [0:1/Fs:5]'; % Times to sample the signal
x = cos(t); % Signal is a cosine wave.
y = amod(x,Fc,[Fs pi/4],'amssb',numh,denh); % Modulate, 
% using a Hilbert filter in the time domain.
z = ademod(y,Fc,[Fs pi/4],'amssb'); % Demodulate.
plot(t,z) % Plot recovered signal.

The resulting plot is on the left below. If you replace the sixth line above with

y = amod(x,Fc,[Fs pi/4],'amssb'); % Modulate, 

then modulation uses a Hilbert transform in the frequency domain. The result 
is the plot on the right below. The two plots differ slightly in their initial errors.

See Also ademod, dmod, ddemod, amodce, ademodce
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3amodcePurpose Analog baseband modulator

Syntax y = amodce(x,Fs,'amdsb-tc',offset);
y = amodce(x,Fs,'amdsb-sc');
y = amodce(x,Fs,'amssb');
y = amodce(x,Fs,'amssb/time',num,den);
y = amodce(x,Fs,'amssb/time');
y = amodce(x,Fs,'qam');
y = amodce(x,Fs,'fm',deviation);
y = amodce(x,Fs,'pm',deviation);
y = amodce(x,[Fs phase],...);

Optional 
Inputs

Description The function amodce performs analog baseband modulation. The corresponding 
demodulation function is ademodce. The table below lists the modulation 
schemes that amodce supports.

Input Default Value, or Default Behavior if Input is Omitted

offset -min(min(x))

deviation 1

Modulation Scheme Third Input Argument

Amplitude modulation, double sideband 'amdsb-tc'

Amplitude modulation, double sideband 
suppressed carrier

'amdsb-sc'

Amplitude modulation, single sideband 
suppressed carrier

'amssb' or 
'amssb/time'

Quadrature amplitude modulation 'qam'

Frequency modulation 'fm'

Phase modulation 'pm'
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For All Syntaxes
The generic syntax y = amodce(x,Fs,...) modulates the message signal that 
x represents, and returns the modulated signal’s complex envelope. The input 
and output signals share the same sampling rate Fs, measured in Hertz. (Thus 
1/Fs represents the time interval between two consecutive samples in x.) The 
initial phase of the carrier signal is zero. x is a real matrix and y is a complex 
matrix. Their sizes depend on the modulation method:

• (QAM method) x must have an even number of columns. The odd-numbered 
columns in x represent in-phase components and the even-numbered 
columns represent quadrature components. If x is n-by-2m, then y is n-by-m 
and each pair of columns of x is processed separately. 

• (Other methods) x and y have the same dimensions. If x is a 
two-dimensional matrix, then each column of x is processed separately.

The generic syntax y = amodce(x,[Fs phase],...) is the same, except that 
the second input argument is a two-element vector instead of a scalar. The first 
entry, Fs, is the sampling rate as described in the paragraph above. The second 
entry, phase, is the initial phase of the carrier signal, measured in radians.

For Specific Syntaxes

y = amodce(x,Fs,'amdsb-tc',offset) implements double-sideband 
amplitude modulation. offset is the value added to x prior to the modulation. 
If you omit offset, then its default value is -min(min(x)). This default value 
produces 100% modulation.

y = amodce(x,Fs,'amdsb-sc') implements double-sideband 
suppressed-carrier amplitude modulation.

y = amodce(x,Fs,'amssb') implements single-sideband suppressed-carrier 
amplitude modulation. By default, it produces the lower sideband. It does a 
Hilbert transform in the frequency domain.

y = amodce(x,Fs,'amssb/time',num,den) is the same as the syntax above, 
except that it specifies a time-domain Hilbert filter. num and den are row 
vectors that give the coefficients, in descending order, of the numerator and 
denominator of the filter’s transfer function. You can use the function hilbiir 
to design the Hilbert filter.
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y = amodce(x,Fs,'amssb/time') is the same as the syntax above, except that 
it uses a default time-domain Hilbert filter. The filter’s transfer function is 
defined by [num,den] = hilbiir(1/Fs), where num and den are as in the 
paragraph above.

y = amodce(x,Fs,'qam') implements quadrature amplitude modulation. x is 
a two-column matrix whose first column represents the in-phase signal and 
whose second column represents the quadrature signal. y is a column vector.

y = amodce(x,Fs,'fm',deviation) implements frequency modulation. The 
bandwidth of the modulated signal is max(x)-min(x). The optional argument 
deviation is a scalar that represents the frequency deviation constant of the 
modulation.

y = amodce(x,Fs,'pm',deviation) implements phase modulation. The 
optional argument deviation is a scalar that represents the phase deviation 
constant of the modulation.

Examples This example is similar to the one under the heading “Hilbert Filter Example” 
on the amod reference page, except that it uses baseband simulation. The plots 
in the passband (amod) example show far more obvious errors in the recovered 
signal. The output from this example shows that the average difference 
between the original and recovered signals is smaller than 10-16.

Fs = 100; % Sampling rate of signal
[numh,denh] = hilbiir(1/Fs,15/Fs,15); % Design Hilbert filter.
t = [0:1/Fs:5]'; % Times to sample the signal
x = cos(t); % Signal is a cosine wave.
y = amodce(x,[Fs pi/4],'amssb/time',numh,denh); % Modulate, 
% using a Hilbert filter in the time domain.
z = ademodce(y,[Fs pi/4],'amssb'); % Demodulate.
d = ceil(log10(sum(abs(x-z))/length(x)))

d =

   -16

Other examples using amodce are in the sections “Representing Analog 
Signals” on page 2-59 and “Simple Analog Modulation Example” on page 2-61.

See Also ademodce, dmodce, ddemodce, amod, ademod
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3apkconstPurpose Plot a combined circular ASK-PSK signal constellation

Syntax apkconst(numsig);
apkconst(numsig,amp);
apkconst(numsig,amp,phs);
apkconst(numsig,amp,'n');
apkconst(numsig,amp,phs,plotspec);
y = apkconst(...);

Description APK refers to a hybrid of amplitude- and phase-keying modulation. See the 
reference listed below for more details.

apkconst(numsig) plots a circular signal constellation. numsig is a vector of 
positive integers. The plot contains length(numsig) circles. The kth circle has 
radius k and contains numsig(k) evenly spaced constellation points. One point 
on each circle has zero phase.

apkconst(numsig,amp) is the same as the previous syntax, except that amp(k) 
is the radius of the kth circle. amp is a vector of positive real numbers. The 
lengths of amp and numsig must be the same.

apkconst(numsig,amp,phs) is the same as the previous syntax, except that it 
is not necessarily true that one point on each circle has zero phase. However, 
one point on the kth circle has phase phs(k). The lengths of phs, amp and numsig 
must all be the same.

apkconst(numsig,amp,phs,'n') is the same as the previous syntax, except 
that the plot includes a number next to each constellation point. The number 
indicates how symbols would be mapped to constellation points if you were 
using numsig, amp, and phs in modulation and demodulation functions such as 
dmodce/ddemodce or modmap/demodmap.

apkconst(numsig,amp,phs,plotspec) is the same as 
apkconst(numsig,amp,phs), except that plotspec influences the appearance 
of the constellation points via MATLAB’s plot function. plotspec is a 
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two-character string made up of one character from each odd-numbered 
column in the table below.

y = apkconst(...) does not produce a plot, but instead returns a complex 
vector y that represents the coordinates of the points in the constellation. The 
real part of y gives the in-phase component of each point and the imaginary 
part of y gives the quadrature component of each point.

Examples The command below produces a plot having three circles. One circle has radius 
1 and four points, one of which has zero phase. Another circle has radius 4 and 
five points, one of which has phase π. The outermost circle has radius 5 and two 
points, one of which has phase π/4. The plot follows.

apkconst([4 5 2],[1 4 5],[0 pi pi/4])

Color Character Meaning Marker-Type 
Character

Meaning

y yellow . point

m magenta o circle

c cyan x cross

r red + plus sign

g green * asterisk

b blue s square

w white d diamond

k black v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p five-pointed star

h six-pointed star
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The command below produces a vector containing the coordinates in the 
complex plane of the points in the figure above.

y = apkconst([4 5 2],[1 4 5],[0 pi pi/4])

y =

  Columns 1 through 4 

   1.0000             0.0000 + 1.0000i  -1.0000 + 0.0000i  -0.0000 - 1.0000i

  Columns 5 through 8 

  -4.0000 + 0.0000i  -1.2361 - 3.8042i   3.2361 - 2.3511i   3.2361 + 2.3511i

  Columns 9 through 11 

  -1.2361 + 3.8042i   3.5355 + 3.5355i  -3.5355 - 3.5355i

See Also dmod, modmap, ddemod, demodmap
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References Thomas, C. Melvil, Michaeil Y. Weidner, and S. H. Durrani. “Digital 
Amplitude-Phase Keying with M-ary Alphabets.” IEEE Transactions on 
Communications. Vol Com-22, No. 2, Feb. 1974, 168-180.
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3awgnPurpose Add white Gaussian noise to a signal

Syntax y = awgn(x,snr);
y = awgn(x,snr,sigpower);
y = awgn(x,snr,'measured');
y = awgn(x,snr,sigpower,state);
y = awgn(x,snr,'measured',state);
y = awgn(...,powertype);

Description y = awgn(x,snr) adds white Gaussian noise to the vector signal x. The scalar 
snr specifies the signal-to-noise ratio in decibels. If x is complex, then awgn 
adds complex noise. This syntax assumes that the power of x is 0 dB. 

y = awgn(x,snr,sigpower) is the same as the syntax above, except that 
sigpower is the power of x in dB.

y = awgn(x,snr,'measured') is the same as y = awgn(x,snr), except that 
awgn measures the power of x before adding noise.

y = awgn(x,snr,sigpower,state) is the same as y = 
awgn(x,snr,sigpower), except that awgn first resets the state of MATLAB’s 
normal random number generator randn to the integer state.

y = awgn(x,snr,'measured',state) is the same as y = 
awgn(x,snr,'measured'), except that awgn first resets the state of MATLAB’s 
normal random number generator randn to the integer state.

y = awgn(...,powertype) is the same as the previous syntaxes, except that 
the string powertype specifies the units of snr and sigpower. Choices for 
powertype are 'db' and 'linear'. Linear power is measured in Watts.

Examples The commands below add white Gaussian noise to a sawtooth signal. It then 
plots the original and noisy signals.

t = 0:.1:10;
x = sawtooth(t); % Create sawtooth signal.
y = awgn(x,10,'measured'); % Add white Gaussian noise.
plot(t,x,t,y) % Plot both signals.
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See Also wgn, randn
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3bchdecoPurpose BCH decoder

Syntax msg = bchdeco(code,k,t);
msg = bchdeco(code,k,t,primpoly); 
[msg,err] = bchdeco(...);
[msg,err,ccode] = bchdeco(...);

Description msg = bchdeco(code,k,t) decodes code using the BCH method. k is the 
message length. The codeword length n must have the form 2m-1 for some 
integer m greater than or equal to 3. code is a binary matrix with n columns, 
each row of which represents one codeword. msg is a binary matrix with k 
columns, each row of which represents one message. t is the error-correction 
capability. BCH decoding requires a primitive polynomial for GF(2m); this 
syntax uses MATLAB’s default primitive polynomial, gfprimdf(m).

msg = bchdeco(code,k,t,primpoly) is the same as the first syntax, except 
that primpoly is a row vector that gives the coefficients, in order of ascending 
powers, of the primitive polynomial for GF(2m) that will be used during 
processing.

[msg,err] = bchdeco(...) returns a column vector err that gives 
information about error correction. A nonnegative integer in err(r) indicates 
the number of errors corrected in the rth codeword; a negative integer indicates 
that there are more errors in the rth codeword than can be corrected.

[msg,err,ccode] = bchdeco(...) returns the corrected code in ccode.

Examples The script below encodes a (random) message, simulates the addition of noise 
to the code, and then decodes the message.

m = 4; n = 2^m-1; % Codeword length
params = bchpoly(n); 
% Arbitrarily focus on 3rd row of params.
k = params(3,2); % Codeword length
t = params(3,3); % Error-correction capability
msg = randint(100,k);
code = bchenco(msg,n,k); % Encode the message.
% Corrupt up to t bits in each codeword.
noisycode = rem(code + randerr(100,n,1:t),2);
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% Decode the noisy code.
[newmsg,err,ccode] = bchdeco(noisycode,k,t); 
if ccode==code
   disp('All errors were corrected.')
end
if newmsg==msg
   disp('The message was recovered perfectly.')
end

In this case, all errors are corrected and the message is recovered perfectly. 
However, if the ninth line is changed to

noisycode = rem(code + randerr(100,n,1:(t+1)),2);

then some codewords will contain more than t errors. This is too many errors, 
and some will go uncorrected.

See Also bchenco, bchpoly



bchenco

3-36

3bchencoPurpose BCH encoder

Syntax code = bchenco(msg,n,k);
code = bchenco(msg,n,k,genpoly);

Description code = bchenco(msg,n,k) encodes msg using the BCH technique and the 
generator polynomial genpoly = bchpoly(n,k). n is the codeword length and 
k is the message length. msg is a binary matrix with k columns. Each row of msg 
represents a message. code is a binary matrix with n columns. Each row of code 
represents a codeword.

code = bchenco(msg,n,k,genpoly) is the same as the first syntax, except 
that genpoly is a row vector that gives the coefficients of the generator 
polynomial in order of ascending powers.

Examples See the example on the reference page for the function bchdeco.

See Also bchdeco, encode, decode, bchpoly, cyclgen
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3bchpolyPurpose Produce parameters or generator polynomial for binary BCH code

Syntax bchpoly
params = bchpoly
params = bchpoly(n);
genpoly = bchpoly(n,k);
genpoly = bchpoly(primpoly,k);
[genpoly,factors] = bchpoly(...,k);
[genpoly,factors,cosets] = bchpoly(...,k);
[genpoly,factors,cosets,parmat] = bchpoly(...,k);
[genpoly,factors,cosets,parmat,errorcorr] = bchpoly(...,k);

Description bchpoly produces a figure window containing a table that lists valid codeword 
and message lengths of binary BCH codes, as well as the corresponding 
error-correction capabilities. The codeword lengths listed are 7, 15, 31, 63, 127, 
255, and 511. The codeword lengths, message length, and error-correction 
capabilities are denoted by N, K, and T, respectively.

params = bchpoly produces a three-column matrix containing the same 
information that is in the table mentioned in the syntax above. The first 
column of params gives the codeword length, the second column gives the 
message length, and the third column gives the error-correction capability.

params = bchpoly(n) produces a matrix params containing valid codeword 
and message lengths of binary BCH codes in its first and second columns, 
respectively. If n < 1024, then params has a third column that lists the 
corresponding error-correction capabilities. The codeword lengths listed in 
params are all equal to the smallest number of the form 2m-1 that is at least as 
big as n, where m is an integer greater than or equal to 3.

genpoly = bchpoly(n,k) produces a generator polynomial for a binary BCH 
code having codeword length n and message length k. genpoly is a row vector 
that gives the coefficients, in order of ascending powers, of the generator 
polynomial. n must have the form 2m-1 for some integer m greater than or 
equal to 3. k must be a valid message length, as reported in the second column 
of the output of the command genpoly = bchpoly(n). The primitive 
polynomial used for the GF(2m) calculations is MATLAB’s default primitive 
polynomial, gfprimdf(m).
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genpoly = bchpoly(primpoly,k) produces a generator polynomial for a 
binary BCH code having codeword length n and message length k. primpoly 
represents a degree-m primitive polynomial for the field GF(2m). Both 
primpoly and genpoly are row vectors that represent polynomials by giving 
the coefficients in order of ascending powers. Given the degree m of the 
primitive polynomial, the message length n is 2m-1. k must be a valid message 
length, as reported in the second column of the output of the command genpoly 
= bchpoly(n).

The remaining syntaxes, of the form

[genpoly,...] = bchpoly(...,k)

return some or all of the output variables listed in the table below.

Examples The script below uses bchpoly to find out what message lengths are valid for a 
BCH code with codeword length 24-1. It then chooses one of the possible 
message lengths and uses bchpoly to find the generator polynomial and 
parity-check matrix for such a code.

m = 4;
n = 2^m-1; % Codeword length is 15.
% Want to find out possible valid message lengths.

Table 3-12:  Additional Output Variables for bchpoly(...,k)

Output 
Variable

Significance Format

factors Irreducible factors of 
the generator 
polynomial

Binary matrix, each row of which 
gives the coefficients of a factor 
polynomial in order of ascending 
powers

cosets Cyclotomic cosets of 
the field GF(2m)

Same as gfcosets(m)

parmat Parity-check matrix 
of the code

(n-k)-by-n binary matrix

errorcorr Error-correction 
capability of the code

Positive integer
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params = bchpoly(n);
disp(['Possible message lengths are ',num2str(params(:,2)')])
disp(' ')

ii = 1; % Arbitrarily choose first row.
k = params(ii,2); % Message lengths are in 2nd column.
% Get generator polynomial and other facts.
[genpoly,factors,cosets,parmat,errorcorr] = bchpoly(n,k);
disp(['For k = ',num2str(k),' the generator polynomial is'])
gfpretty(genpoly)
disp('and the parity-check matrix is')
parmat

The full output is below.

Possible message lengths are 11   7   5
 
For k = 11 the generator polynomial is
 
                                           4
                                  1 + X + X 
and the parity-check matrix is

parmat =

  Columns 1 through 12 

     1     0     0     0     1     0     0     1     1     0     1     0
     0     1     0     0     1     1     0     1     0     1     1     1
     0     0     1     0     0     1     1     0     1     0     1     1
     0     0     0     1     0     0     1     1     0     1     0     1

  Columns 13 through 15 

     1     1     1
     1     0     0
     1     1     0
     1     1     1

See Also cyclpoly, encode, decode
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References Peterson, W. Wesley and E. J. Weldon, Jr. Error-correcting Codes, 2nd ed. 
Cambridge, Mass.: MIT Press, 1972.
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3bi2dePurpose Convert binary vectors to decimal numbers

Syntax d = bi2de(b);
d = bi2de(b,flg)
d = bi2de(b,p);
d = bi2de(b,p,flg);

Description d = bi2de(b) converts a binary row vector b to a nonnegative decimal integer. 
If b is a matrix, then each row is interpreted separately as a binary number. In 
this case, the output d is a column vector, each element of which is the decimal 
representation of the corresponding row of b.

Note  By default, bi2de interprets the first column of b as the lowest-order 
digit.

d = bi2de(b,flg) is the same as the syntax above, except that flg is a string 
that determines whether the first column of b contains the lowest-order or 
highest-order digits. Possible values for flg are ’right-msb’ and ’left-msb’. 
The value ’right-msb’ produces the default behavior.

d = bi2de(b,p) converts a base-p row vector b to a nonnegative decimal 
integer , where p is an integer greater than or equal to two. The first column of 
b is the lowest base-p digit. If b is a matrix, then the output d is a nonnegative 
decimal vector, each row of which is the decimal form of the corresponding row 
of b.

d = bi2de(b,p,flg) is the same as the syntax above, except that flg is a 
string that determines whether the first column of b contains the lowest-order 
or highest-order digits. Possible values for flg are ’right-msb’ and ’left-msb’. 
The value ’right-msb’ produces the default behavior.

Examples The code below generates a matrix that contains binary representations of five 
random numbers between 0 and 15. It then converts all five numbers to 
decimal integers.

b = randint(5,4); % Generate a 5-by-4 random binary matrix.
de = bi2de(b);
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disp('    Dec          Binary')
disp('   -----   -------------------')
disp([de, b])

Sample output is below. Your results may vary since the numbers are random.

    Dec          Binary
   -----   -------------------
    13     1     0     1     1
     7     1     1     1     0
    15     1     1     1     1
     4     0     0     1     0
     9     1     0     0     1

The command below converts a base-five number into its decimal counterpart, 
using the leftmost base-five digit (4 in this case) as the most significant digit.  
The example reflects the fact that 4(53) + 2(52) +50 = 551.

d = bi2de([4 2 0 1],5,'left-msb')

d =

   551

See Also de2bi
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3biterrPurpose Compute number of bit errors and bit error rate

Syntax [number,ratio] = biterr(x,y);
[number,ratio] = biterr(x,y,k);
[number,ratio] = biterr(...,flg);
[number,ratio,individual] = biterr(...)

Description For All Syntaxes
The biterr function compares unsigned binary representations of elements in 
x with those in y. The schematics below illustrate how the shapes of x and y 
determine which elements biterr compares.

Each element of x and y must be a nonnegative decimal integer; biterr 
converts each element into its natural unsigned binary representation. number 
is a scalar or vector that indicates the number of bits that differ. ratio is 
number divided by the total number of bits. The total number of bits, the size of 
number, and the elements that biterr compares are determined by the 
dimensions of x and y and by the optional parameters.

For Specific Syntaxes

[number,ratio] = biterr(x,y) compares the elements in x and y. If the 
largest among all elements of x and y has exactly k bits in its simplest binary 
representation, then the total number of bits is k times the number of entries 
in the smaller input. The sizes of x and y determine which elements are 
compared:

y

y

(b) Compares column vector y with
each column of matrix x

(c) Compares row vector y with
each row of matrix x

x x

y1 y4

y2 y5

y3 y6

(a) Compares x1 with y1,
x2 with y2, and so on.

x1 x4

x2 x5

x3 x6

x1 x4

x2 x5

x3 x6
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• If x and y are matrices of the same dimensions, then biterr compares x and 
y element-by-element. number is a scalar. See schematic (a) in the figure.

• If one is a row (respectively, column) vector and the other is a 
two-dimensional matrix, then biterr compares the vector 
element-by-element with each row (resp., column) of the matrix. The length 
of the vector must equal the number of columns (resp., rows) in the matrix. 
number is a column (resp., row) vector whose mth entry indicates the number 
of bits that differ when comparing the vector with the mth row (resp., 
column) of the matrix. See schematics (b) and (c) in the figure.

[number,ratio] = biterr(x,y,k) is the same as the first syntax, except that 
it considers each entry in x and y to have k bits. The total number of bits is k 
times the number of entries of the smaller of x and y. An error occurs if the 
binary representation of an element of x or y would require more than k digits.

[number,ratio] = biterr(x,y,k,flg) is similar to the previous syntaxes, 
except that flg can override the defaults that govern which elements biterr 
compares and how biterr computes the outputs. The possible values of flg are 
’row-wise’, ’column-wise’, and ’overall’. The table below describes the 
differences that result from various combinations of inputs. As always, ratio 
is number divided by the total number of bits. If you do not provide k as  an input 
argument, then the function defines it internally as the number of bits in the 
simplest binary representation of the largest among all elements of x and y.
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[number,ratio,individual] = biterr(...) returns a matrix individual 
whose dimensions are those of the larger of x and y. Each entry of individual 
corresponds to a comparison between a pair of elements of x and y, and 
specifies the number of bits by which the elements in the pair differ.

Table 3-13:  Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of Comparison number Total Number 
of Bits

Two-
dimensional 
matrix

’overall’ 
(default)

Element-by-element Total number of 
bit errors

k times number 
of entries of y

'row-wise' mth row of x vs. mth 
row of y

Column vector 
whose entries 
count bit errors in 
each row

k times number 
of entries of y

'column-wise' mth column of x vs. 
mth column of y

Row vector whose 
entries count bit 
errors in each 
column

k times number 
of entries of y

Row vector 'overall' y vs. each row of x Total number of 
bit errors

k times number 
of entries of x

’row-wise’ 
(default)

y vs. each row of x Column vector 
whose entries 
count bit errors in 
each row of x

k times size of y

Column 
vector

'overall' y vs. each column of x Total number of 
bit errors

k times number 
of entries of x

'column-wise' 
(default)

y vs. each column of x Row vector whose 
entries count bit 
errors in each 
column of x

k times size of y
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Examples Example 1
The commands below compare the column vector [0; 0; 0] to each column of a 
random binary matrix. The output is the number, proportion, and locations of 
ones in the matrix. In this case, individual is the same as the random matrix.

format rat;
[number,ratio,individual] = biterr([0;0;0],randint(3,5))

number =

      2            0            0            3            1      

ratio =

     2/3           0            0            1           1/3     

individual =

      1            0            0            1            0      
      1            0            0            1            0      
      0            0            0            1            1      

Example 2
The commands below illustrate the use of flg to override the default 
row-by-row comparison. Notice that number and ratio are scalars, while 
individual has the same dimensions as the larger of the first two arguments 
of biterr.

format rat;
[number,ratio,individual] = biterr([1 2; 3 4],[1 3],3,'overall')

number =

      5      
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ratio =

     5/12    

individual =

      0            1      
      1            3      

Example 3
The script below adds errors to 10% of the elements in a matrix. Each entry in 
the matrix is a two-bit number in decimal form. The script computes the bit 
error rate using biterr and the symbol error rate using symerr.

x = randint(100,100,4); % Original signal
% Create errors to add to ten percent of the elements of x.
% Errors can be either 1, 2, or 3 (not zero). 
errorplace = (rand(100,100) > .9); % Where to put errors
errorvalue = randint(100,100,[1,3]); % Value of the errors
errors = errorplace.*errorvalue;
y = rem(x+errors,4); % Signal with errors added, mod 4
format short
[num_bit,ratio_bit] = biterr(x,y,2)
[num_sym,ratio_sym] = symerr(x,y)

Sample output is below. Notice that ratio_sym is close to the target value of 
0.10. Your results might vary because the example uses random numbers.

num_bit =

        1304

ratio_bit =

    0.0652
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num_sym =

   981

ratio_sym =

    0.0981

See Also symerr
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3compandPurpose Source code mu-law or A-law compressor or expander

Syntax out = compand(in,Mu,maxim);
out = compand(in,Mu,maxim,'mu/compressor');
out = compand(in,Mu,maxim,'mu/expander');
out = compand(in,A,maxim,'A/compressor');
out = compand(in,A,maxim,'A/expander');

Description out = compand(in,param,maxim) implements a µ-law compressor for the 
input vector in. Mu specifies µ and maxim is the input signal’s maximum 
magnitude. out has the same dimensions and maximum magnitude as in.

out = compand(in,Mu,maxim,'mu/compressor') is the same as the syntax 
above.

out = compand(in,Mu,maxim,'mu/expander') implements a µ-law expander 
for the input vector in. Mu specifies µ and maxim is the input signal’s maximum 
magnitude. out has the same dimensions and maximum magnitude as in.

out = compand(in,A,maxim,'A/compressor') implements an A-law 
compressor for the input vector in. The scalar A is the A-law parameter, and 
maxim is the input signal’s maximum magnitude. out is a vector of the same 
length and maximum magnitude as in.

out = compand(in,A,maxim,'A/expander') implements an A-law expander 
for the input vector in. The scalar A is the A-law parameter, and maxim is the 
input signal’s maximum magnitude. out is a vector of the same length and 
maximum magnitude as in.

Note  The prevailing parameters used in practice are µ = 255 and A = 87.6.

Examples The examples below illustrate the fact that compressors and expanders 
perform inverse operations.

compressed = compand(1:5,87.6,5,'a/compressor')
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compressed =

    3.5296    4.1629    4.5333    4.7961    5.0000

expanded = compand(compressed,87.6,5,'a/expander')

expanded =

    1.0000    2.0000    3.0000    4.0000    5.0000

Algorithm For a given signal x, the output of the µ-law compressor is

where V is the maximum value of the signal x, µ is the µ-law parameter of the 
compander, log is the natural logarithm and sgn is the signum function (sign 
in MATLAB).

The output of the A-law compressor is

where A is the A-law parameter of the compander and the other elements are 
as in the µ-law case. 

See Also quantiz, dpcmenco, dpcmdeco

References Sklar, Bernard. Digital Communications: Fundamentals and Applications. 
Englewood Cliffs, N.J.: Prentice-Hall, 1988.
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3convencPurpose Convolutionally encode binary data

Syntax code = convenc(msg,trellis);
code = convenc(msg,trellis,initstate);
[code,finalstate] = convenc(...);

Description code = convenc(msg,trellis) encodes the binary vector msg using the 
convolutional encoder whose MATLAB trellis structure is trellis. For details 
about MATLAB trellis structures, see “Trellis Description of a Convolutional 
Encoder” on page 2-46. Each symbol in msg consists of 
log2(trellis.numInputSymbols) bits. The vector msg contains one or more 
symbols. The output vector code contains one or more symbols, each of which 
consists of log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,initstate) is the same as the syntax above, 
except that initstate specifies the starting state of the encoder registers. The 
scalar initstate is an integer between 0 and trellis.numStates-1. If the 
encoder schematic has more than one input stream, then the shift register that 
receives the first input stream provides the least significant bits in initstate, 
while the shift register that receives the last input stream provides the most 
significant bits in initstate. To use the default value for initstate, specify 
initstate as 0 or [].

[code,finalstate] = convenc(...) encodes the input message and also 
returns in finalstate the encoder’s state. finalstate has the same format as 
initstate.

Examples The command below encodes five two-bit symbols using a rate 2/3 convolutional 
code. A schematic of this encoder is on the reference page for the poly2trellis 
function.

code1 = convenc(randint(10,1,2,123),...
poly2trellis([5 4],[27 33 0; 0 5 13]));

The commands below define the encoder’s trellis structure explicitly and then 
use convenc to encode ten one-bit symbols. A schematic of this encoder is in the 
section, “Trellis Description of a Convolutional Encoder” on page 2-46.

trel = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
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'outputs',[0 3;1 2;3 0;2 1]);
code2 = convenc(randint(10,1),trel);

The commands below illustrate how to use the final state and initial state 
arguments when invoking convenc repeatedly. Notice that [code3; code4] is 
the same as the earlier example’s output, code1.

trel = poly2trellis([5 4],[27 33 0; 0 5 13]);
msg = randint(10,1,2,123);
% Encode part of msg, recording final state for later use.
[code3,fstate] = convenc(msg(1:6),trel);
% Encode the rest of msg, using state as an input argument.
code4 = convenc(msg(7:10),trel,fstate); 

See Also vitdec, poly2trellis, istrellis

References Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data 
Communications Principles. New York: Plenum, 1992.
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3cyclgenPurpose Produce parity-check and generator matrices for cyclic code

Syntax parmat = cyclgen(n,pol);
parmat = cyclgen(n,pol,opt);
[parmat,genmat] = cyclgen(...);
[parmat,genmat,k] = cyclgen(...);

Description For all syntaxes, the codeword length is n and the message length is k. A 
polynomial can generate a cyclic code with codeword length n and message 
length k if and only if the polynomial is a degree-(n-k) divisor of xn-1. (Over the 
binary field GF(2), xn-1 is the same as xn+1.) This implies that k equals n minus 
the degree of the generator polynomial.

parmat = cyclgen(n,pol) produces an (n-k)-by-n parity-check matrix for a 
systematic binary cyclic code having codeword length n. The row vector pol 
gives the binary coefficients, in order of ascending powers, of the degree-(n-k) 
generator polynomial.

parmat = cyclgen(n,pol,opt) is the same as the syntax above, except that 
the argument opt determines whether the matrix should be associated with a 
systematic or nonsystematic code. The values for opt are 'system' and 
'nonsys'.

[parmat,genmat] = cyclgen(...) is the same as parmat = cyclgen(...) 
except that it also produces the k-by-n generator matrix genmat that 
corresponds to the parity-check matrix parmat.

[parmat,genmat,k] = cyclgen(...) is the same as [parmat,genmat] = 
cyclgen(...) except that it also returns the message length k.

Examples The code below produces parity-check and generator matrices for a binary 
cyclic code with codeword length 7 and message length 4.

pol = cyclpoly(7,4);
[parmat,genmat,k] = cyclgen(7,pol)
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parmat =

     1     0     0     1     1     1     0
     0     1     0     0     1     1     1
     0     0     1     1     1     0     1

genmat =

     1     0     1     1     0     0     0
     1     1     1     0     1     0     0
     1     1     0     0     0     1     0
     0     1     1     0     0     0     1

k =

     4

In the output below, notice that the parity-check matrix is different from 
parmat above, since it corresponds to a nonsystematic cyclic code. In particular, 
parmatn does not have a 3-by-3 identity matrix in its leftmost three columns, 
as parmat does.

parmatn = cyclgen(7,cyclpoly(7,4),'nonsys')

parmatn =

     1     1     1     0     1     0     0
     0     1     1     1     0     1     0
     0     0     1     1     1     0     1

See Also encode, decode, bchpoly, cyclpoly, 
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3cyclpolyPurpose Produce generator polynomials for a cyclic code

Syntax pol = cyclpoly(n,k);
pol = cyclpoly(n,k,opt);

Description For all syntaxes, a polynomial is represented as a row containing the 
coefficients in order of ascending powers.

pol = cyclpoly(n,k) returns the row vector representing one nontrivial 
generator polynomial for a cyclic code having codeword length n and message 
length k.

pol = cyclpoly(n,k,opt) searches for one or more nontrivial generator 
polynomials for cyclic codes having codeword length n and message length k. 
The output pol depends on the argument opt as shown in the table below.

The weight of a binary polynomial is the number of nonzero terms it has. If no 
generator polynomial satisfies the given conditions, then the output pol is 
empty and an error message is displayed.

Examples The first command below produces representations of three generator 
polynomials for a [15,4] cyclic code. The second command shows that 

1 + x + x2 + x3+ x5+ x7+ x8+ x11 is one such polynomial having the largest 
number of nonzero terms. The third command shows that no generator 
polynomial for a [15,4] cyclic code has exactly three nonzero terms.

opt Significance of pol Format of pol

'min' One generator polynomial having the 
smallest possible weight

The row vector representing the 
polynomial

'max' One generator polynomial having the 
greatest possible weight

The row vector representing the 
polynomial

'all' All generator polynomials A matrix, each row of which represents 
one such polynomial

a positive 
integer

All generator polynomials having 
weight opt

A matrix, each row of which represents 
one such polynomial
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c1 = cyclpoly(15,4,'all')

c1 =

     1     1     0     0     0     1     1     0     0     0     1     1
     1     0     0     1     1     0     1     0     1     1     1     1
     1     1     1     1     0     1     0     1     1     0     0     1

c2 = cyclpoly(15,4,'max')

c2 =

     1     1     1     1     0     1     0     1     1     0     0     1

c3 = cyclpoly(15,4,3)

No generator polynomial satisfies the given constraints.

c3 =

     []

Algorithm If opt is 'min', 'max', or omitted, then polynomials are constructed by 
converting decimal integers to base p. Based on the decimal ordering, gfprimfd 
returns the first polynomial it finds that satisfies the appropriate conditions. 
This algorithm is similar to the one used in gfprimfd.

See Also cyclgen, encode
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3ddemod Purpose Digital passband demodulator

Syntax z = ddemod(y,Fc,Fd,Fs,'ask/opt',M,num,den);
z = ddemod(y,Fc,Fd,Fs,'fsk/opt',M);
z = ddemod(y,Fc,Fd,Fs,'msk');
z = ddemod(y,Fc,Fd,Fs,'psk/opt',M,num,den);
z = ddemod(y,Fc,Fd,Fs,'qask/opt',M,num,den);
z = ddemod(y,Fc,Fd,Fs,'qask/arb/opt',inphase,quadr,num,den);
z = ddemod(y,Fc,Fd,Fs,'qask/cir/opt',numsig,amp,phs,num,den);
z = ddemod(y,Fc,Fd,[Fs phase],...);

Optional 
Inputs

Description The function ddemod performs digital passband demodulation. The 
corresponding modulation function is dmod. The table below lists the 
demodulation schemes that ddemod supports.

The second column of the table indicates in bold type the required portion of 
the fifth input argument for ddemod. The third column indicates optional flags 

Input Default Value, or Default Behavior if Input is Omitted

opt ddemod demaps after demodulating. If the method is ASK, then 
the algorithm does not use a Costas loop. If the method is FSK, 
then demodulation is coherent.

num, den Omitting these arguments prevents ddemod from using a filter.

amp [1:length(numsig)]

phs numsig*0

Demodulation Scheme Fifth Input Argument Where /opt can contain

M-ary amplitude shift keying 'ask/opt' /nomap; /costas

M-ary frequency shift keying 'fsk/opt' /noncoherence

M-ary phase shift keying 'psk/opt' /nomap

Quadrature amplitude shift 
keying

'qask/opt', 'qask/cir/opt', or 
'qask/arb/opt'

/nomap
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that you can append to the fifth argument. The order of optional flags does not 
matter.

To Demodulate Without Demapping (ASK, PSK, QASK only)
Ordinarily, the ddemod function first demodulates the analog signal it receives 
and then demaps the demodulated signal in order to recover the digital 
message signal. The optional /nomap flag, appended to the fifth input 
argument, prevents ddemod from demapping. The output is then an analog 
signal x whose sampling rate is Fs. You can use the demodmap function to 
perform the demapping step. The /nomap option is not available for FSK or 
MSK demodulation.

To Demodulate a Digital Signal (General Information)
The generic syntax z = ddemod(y,Fc,Fd,Fs,...) demodulates the digital 
message signal z from a received analog signal y. After measuring the distance 
from the received signal to all possible digits in the coding scheme, ddemod 
returns the nearest digit.

y and z are real matrices whose sizes depend on the demodulation method:

• (ASK, FSK, MSK methods) If y is a vector of length n*Fs/Fd, then z is a 
column vector of length n. Otherwise, if y is (n*Fs/Fd)-by-m, then z is n-by-m 
and each column of y is processed separately.

• (PSK, QASK methods) If y is (n*Fs/Fd)-by-m, then z is n-by-2m. The 
odd-numbered columns in z represent in-phase components and the 
even-numbered columns represent quadrature components. Each column of 
y is processed separately.

The carrier frequency in Hertz is Fc. The sampling rates in Hertz of y and z, 
respectively, are Fs and Fd. (Thus 1/Fs represents the time interval between 
two consecutive samples in y, and similarly for z.) The ratio Fs/Fd must be a 
positive integer. The time interval between two decision points is 1/Fd.

The generic syntax z = ddemod(y,Fc,Fd,[Fs phase],...) is the same, except 
that the fourth input argument is a two-element vector instead of a scalar. The 
first entry, Fs, is the sampling rate as described in the paragraph above. The 
second entry, phase, is the initial phase of the carrier signal, measured in 
radians.
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ddemod can use a lowpass filter with sample time 1/Fs while demodulating, in 
order to filter out the carrier signal. To specify the lowpass filter, include num 
and den in the list of input arguments. num and den are row vectors that give 
the coefficients, in descending order, of the numerator and denominator of the 
filter’s transfer function. If num is empty, zero, or absent, then the function does 
not use a filter.

To Demodulate a Digital Signal (Specific Syntax Information)

z = ddemod(y,Fc,Fd,Fs,'ask',M) implements M-ary amplitude shift keying 
demodulation. Each entry of z is in the range [0, M-1].

z = ddemod(y,Fc,Fd,Fs,'ask/costas',M) is the same as the syntax above, 
except that the algorithm includes a Costas loop

z = ddemod(y,Fc,Fd,Fs,'fsk',M,tone) implements coherent M-ary 
frequency shift keying demodulation. The optional argument tone is the 
separation between successive frequencies in the modulated signal z. The 
default value of tone is Fd. Each entry of z is in the range [0, M-1].

z = ddemod(y,Fc,Fd,Fs,'fsk/noncoherence',M,tone) is the same as the 
syntax above, except that it uses noncoherent demodulation. 

z = ddemod(y,Fc,Fd,Fs,'msk') implements minimum shift keying 
demodulation. Each entry of z is either 0 or 1. The separation between the two 
frequencies is Fd/2.

z = ddemod(y,Fc,Fd,Fs,'psk',M) implements M-ary correlation phase shift 
keying demodulation. Each entry of z is in the range [0, M-1]. 

z = ddemod(y,Fc,Fd,Fs,'qask',M) implements M-ary quadrature amplitude 
shift keying demodulation with a square signal constellation. The table below 
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shows the maximum among in-phase and quadrature coordinates of 
constellation points, for several small values of M.

Note  To see how symbols are mapped to the constellation points, generate a 
square constellation plot using qaskenco(M).

z = ddemod(y,Fc,Fd,Fs,'qask/arb',inphase,quadr) implements 
quadrature amplitude shift keying demodulation, with a signal constellation 
that you define using the vectors inphase and quadr. The signal constellation 
point for the kth message has in-phase component inphase(k+1) and 
quadrature component quadr(k+1). 

z = ddemod(y,Fc,Fd,Fs,'qask/cir',numsig,amp,phs) implements 
quadrature amplitude shift keying demodulation with a circular signal 
constellation. numsig, amp, and phs are vectors of the same length. The entries 
in numsig and amp must be positive. If k is an integer in the range 
[1, length(numsig)], then amp(k) is the radius of the kth circle, numsig(k) is the 
number of constellation points on the kth circle, and phs(k) is the phase of the 
first constellation point plotted on the kth circle. All points on the kth circle are 
evenly spaced. If you omit phs, then its default value is numsig*0. If you omit 
amp, then its default value is [1:length(numsig)].

M Maximum of Coordinates 
of Constellation Points

M Maximum of Coordinates 
of Constellation Points

2 1 32 5

4 1 64 7

8 3 (quadrature maximum is 
1)

128 11

16 3 256 15
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Note  To see how symbols are mapped to the constellation points, generate a 
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples This example mimics the one in the section “Simple Digital Modulation 
Example” on page 2-74 but uses passband simulation. It generates a random 
digital signal, modulates it using dmod, and adds noise. Then it demodulates 
the noisy signal and computes the symbol error rate. The ddemod function 
demodulates the analog signal y and then demaps to produce the digital signal 
z.

Important differences between this example and the original baseband 
example are the explicit reference to the carrier signal frequency Fc and the 
fact that y and ynoisy are real, not complex. For variety, this example uses 
ASK instead of PSK, as well as a different sampling rate Fd.

M = 16; % Use 16-ary modulation.
Fc = 10; % Carrier signal frequency is 10 Hz.
Fd = 1; % Sampling rates of original and modulated signals
Fs = 50; % are 1 and 50, respectively (samples per second).
x = randint(100,1,M); % Random digital message
% Use M-ary PSK modulation to produce y.
y = dmod(x,Fc,Fd,Fs,'ask',M);
% Add some Gaussian noise.
ynoisy = y + .01*randn(Fs/Fd*100,1);
% Demodulate y to recover the message.
z = ddemod(ynoisy,Fc,Fd,Fs,'ask',M);
s = symerr(x,z) % Check symbol error rate.

s =

     0

See Also dmod, amod, ademod, dmodce, ddemodce, demodmap, modmap, eyediagram, 
scatterplot



ddemodce

3-62

3ddemodcePurpose Digital baseband demodulator

Syntax z = ddemodce(y,Fd,Fs,'ask/opt',M,num,den);
z = ddemodce(y,Fd,Fs,'fsk/opt',M);
z = ddemodce(y,Fd,Fs,'msk');
z = ddemodce(y,Fd,Fs,'psk/opt',M,num,den);
z = ddemodce(y,Fd,Fs,'qask/opt',M,num,den);
z = ddemodce(y,Fd,Fs,'qask/arb/opt',inphase,quadr,num,den);
z = ddemodce(y,Fd,Fs,'qask/cir/opt',numsig,amp,phs,num,den);
z = ddemodce(y,Fd,[Fs phase],...);

Optional 
Inputs

Description The function ddemodce performs digital baseband demodulation. The 
corresponding modulation function is dmodce. The table below lists the 
demodulation schemes that ddemodce supports.

The second column of the table indicates in bold type the required portion of 
the fourth input argument for ddemodce. The third column indicates optional 

Input Default Value, or Default Behavior if Input is Omitted

opt ddemodce demaps after demodulating. If the method is ASK, 
then the algorithm does not use a Costas loop. If the method is 
FSK, then demodulation is coherent.

num, den Omitting these arguments prevents ddemodce from using a 
filter.

amp [1:length(numsig)]

phs numsig*0

Demodulation Scheme Fourth Input Argument Where /opt can contain

M-ary amplitude shift keying 'ask/opt' /nomap; /costas

M-ary frequency shift keying 'fsk/opt' /noncoherence

M-ary phase shift keying 'psk/opt' /nomap

Quadrature amplitude shift 
keying

'qask/opt', 'qask/cir/opt', or 
'qask/arb/opt'

/nomap
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flags that you can append to the fourth argument. The order of optional flags 
does not matter.

To Demodulate Without Demapping (ASK, PSK, QASK only)
Ordinarily, the ddemodce function first demodulates the analog signal it 
receives and then demaps the demodulated signal in order to recover the 
digital message signal. The optional /nomap flag, appended to the fourth input 
argument, prevents ddemodce from demapping. The output is then an analog 
signal z whose sampling rate is Fs. The size of z depends on the size of y and 
the demodulation method:

• (ASK method) z has the same size as y.

• (PSK and QASK methods) If y is a vector of length n, then z is an n-by-2 
matrix. Otherwise, if y is n-by-m, then z is n-by-2m and each column of y is 
processed separately. In either case, the odd-numbered columns in z 
represent in-phase components and the even-numbered columns represent 
quadrature components. 

You can use the demodmap function to perform the demapping step. The /nomap 
option is not available for FSK or MSK demodulation.

To Demodulate a Digital Signal (General Information)
The generic syntax z = ddemodce(y,Fd,Fs,...) demodulates the digital 
message signal z from a received analog signal y. After measuring the distance 
from the received signal to all possible digits in the coding scheme, ddemodce 
returns the nearest digit.

y is a complex matrix and z is a real matrix. The sizes of y and z depend on the 
demodulation method:

• (ASK, FSK, MSK methods) If y is a vector of length n*Fs/Fd, then z is a 
column vector of length n. Otherwise, if y is (n*Fs/Fd)-by-m, then z is n-by-m 
and each column of y is processed separately.

• (PSK, QASK methods) If y is (n*Fs/Fd)-by-m, then z is n-by-2m. The 
odd-numbered columns in z represent in-phase components and the 
even-numbered columns represent quadrature components. Each column of 
y is processed separately.

The sampling rates in Hertz of y and z, respectively, are Fs and Fd. (Thus 1/Fs 
represents the time interval between two consecutive samples in y, and 
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similarly for z.) The ratio Fs/Fd must be a positive integer. The time interval 
between two decision points is 1/Fd.

The generic syntax z = ddemodce(y,Fd,[Fs phase],...) is the same, except 
that the third input argument is a two-element vector instead of a scalar. The 
first entry, Fs, is the sampling rate as described in the paragraph above. The 
second entry, phase, is the initial phase of the carrier signal, measured in 
radians.

To use a lowpass filter in conjunction with ASK, PSK, or QASK demodulation, 
include num and den in the list of input arguments. num and den are row vectors 
that give the coefficients, in descending order, of the numerator and 
denominator of the filter’s transfer function. If num is empty, zero, or absent, 
then ddemodce does not use a filter.

To Demodulate a Digital Signal (Specific Syntax Information)

z = ddemodce(y,Fd,Fs,'ask',M) implements M-ary amplitude shift keying 
demodulation. Each entry of z is in the range [0, M-1].

z = ddemodce(y,Fd,Fs,'ask/costas',M) is the same as the syntax above, 
except that the algorithm includes a Costas loop

z = ddemodce(y,Fd,Fs,'fsk',M,tone) implements coherent M-ary frequency 
shift keying demodulation. The optional argument tone is the separation 
between successive frequencies in the modulated signal z. The default value of 
tone is Fd. Each entry of z is in the range [0, M-1].

z = ddemodce(y,Fd,Fs,'fsk/noncoherence',M,tone) is the same as the 
syntax above, except that it uses noncoherent demodulation. 

z = ddemodce(y,Fd,Fs,'msk') implements minimum shift keying 
demodulation. Each entry of z is either 0 or 1. The separation between the two 
frequencies is Fd/2.

z = ddemodce(y,Fd,Fs,'psk',M) implements M-ary correlation phase shift 
keying demodulation. Each entry of z is in the range [0, M-1]. 

z = ddemodce(y,Fd,Fs,'qask',M) implements M-ary quadrature amplitude 
shift keying demodulation with a square signal constellation. The table below 
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shows the maximum among in-phase and quadrature coordinates of 
constellation points, for several small values of M.

Note  To see how symbols are mapped to the constellation points, generate a 
square constellation plot using qaskenco(M).

z = ddemodce(y,Fd,Fs,'qask/arb',inphase,quadr) implements 
quadrature amplitude shift keying demodulation, with a signal constellation 
that you define using the vectors inphase and quadr. The signal constellation 
point for the kth message has in-phase component inphase(k+1) and 
quadrature component quadr(k+1). 

z = ddemodce(y,Fd,Fs,'qask/cir',numsig,amp,phs) implements 
quadrature amplitude shift keying demodulation with a circular signal 
constellation. numsig, amp, and phs are vectors of the same length. The entries 
in numsig and amp must be positive. If k is an integer in the range 
[1, length(numsig)], then amp(k) is the radius of the kth circle, numsig(k) is the 
number of constellation points on the kth circle, and phs(k) is the phase of the 
first constellation point plotted on the kth circle. All points on the kth circle are 
evenly spaced. If you omit phs, then its default value is numsig*0. If you omit 
amp, then its default value is [1:length(numsig)].

M Maximum of Coordinates 
of Constellation Points

M Maximum of Coordinates of 
Constellation Points

2 1 32 5

4 1 64 7

8 3 (quadrature maximum 
is 1)

128 11

16 3 256 15
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Note  To see how symbols are mapped to the constellation points, generate a 
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

See Also dmodce, amodce, ademodce, dmod, ddemod, demodmap, modmap, eyediagram, 
scatterplot
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3de2biPurpose Convert decimal numbers to binary vectors

Syntax b = de2bi(d);
b = de2bi(d,n);
b = de2bi(d,n,p);
b = de2bi(d,[],p);
b = de2bi(d,...,flg)

Description b = de2bi(d) converts a nonnegative decimal integer d to a binary row vector. 
If d is a vector, then the output b is a matrix, each row of which is the binary 
form of the corresponding element in d. If d is a matrix, then de2bi treats it like 
the vector d(:).

Note  By default, de2bi uses the first column of b as the lowest-order digit.

b = de2bi(d,n) is the same as b = de2bi(d), except that its output has n 
columns, where n is a positive integer. An error occurs if the binary 
representations would require more than n digits. If necessary, the binary 
representation of d is padded with extra zeros.

b = de2bi(d,n,p) converts a nonnegative decimal integer d to a base-p row 
vector, where p is an integer greater than or equal to two. The first column of 
b is the lowest base-p digit. b is padded with extra zeros if necessary, so that it 
has n columns, where n is a positive integer. An error occurs if the base-p 
representations would require more than n digits. If d is a nonnegative decimal 
vector, then the output b is a matrix, each row of which is the (possibly 
zero-padded) base-p form of the corresponding element in d. If d is a matrix, 
then de2bi treats it like the vector d(:).

b = de2bi(d,[],p) specifies the base p but not the number of columns.

b = de2bi(d,...,flg) uses the string flg to determine whether the first 
column of b contains the lowest-order or highest-order digits. Values for flg are 
’right-msb’ and ’left-msb’. The value ’right-msb’ produces the default 
behavior.
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Examples The code below counts to ten in decimal and binary.

d = (1:10)';
b = de2bi(d);
disp('    Dec          Binary       ')
disp('   -----   -------------------')
disp([d, b])

The output is below.

    Dec          Binary       
   -----   -------------------
     1     1     0     0     0
     2     0     1     0     0
     3     1     1     0     0
     4     0     0     1     0
     5     1     0     1     0
     6     0     1     1     0
     7     1     1     1     0
     8     0     0     0     1
     9     1     0     0     1
    10     0     1     0     1

The command below shows how de2bi pads its output with zeros.

bb = de2bi([3 9],5) % Zero-padding the output

bb =

     1     1     0     0     0
     1     0     0     1     0

The command below shows how to convert a decimal integer to base three 
without specifying the number of columns in the output matrix.

t = de2bi(12,[],3) % Convert 12 to base 3.

t =

     0     1     1

See Also bi2de
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3decodePurpose Block decoder

Syntax msg = decode(code,n,k,'hamming/fmt',primpoly);
msg = decode(code,n,k,'linear/fmt',genmat,trt);
msg = decode(code,n,k,'cyclic/fmt',genpoly,trt);
msg = decode(code,n,k,'bch/fmt',errorcorr,primpoly);
msg = decode(code,n,k,'rs/fmt',field);
msg = decode(code,n,k);
[msg,err] = decode(...);
[msg,err,ccode] = decode(...);
[msg,err,ccode,cerr] = decode(...);

Optional 
Inputs

Description For All Syntaxes
The decode function aims to recover messages that were encoded using an 
error-correction coding technique. The technique and the defining parameters 
must match those that were used to encode the original signal.

The “For All Syntaxes” section on the reference page for the encode function 
explains the meanings of n and k, the possible values of fmt, and the possible 
formats for code and msg. You should be familiar with the conventions 
described there before reading the rest of this section. Using the decode 
function with an input argument code that was not created by the encode 
function may cause errors.

For Specific Syntaxes

msg = decode(code,n,k,'hamming/fmt',primpoly) decodes code using the 
Hamming method. For this syntax, n must have the form 2m-1 for some integer 
m greater than or equal to 3, and k must equal n-m. primpoly is a row vector 

Input Default Value

fmt binary

primpoly gfprimdf(m) where n = 2m-1

genpoly cyclpoly(n,k)

trt Uses syndtable to create the syndrome decoding table 
associated with the method’s parity-check matrix.
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that gives the binary coefficients, in order of ascending powers, of the primitive 
polynomial for GF(2m) that is used in the encoding process. The default value 
of primpoly is gfprimdf(m). The decoding table that the function uses to 
correct a single error in each codeword is syndtable(hammgen(m)).

msg = decode(code,n,k,'linear/fmt',genmat,trt) decodes code, which is 
a linear block code determined by the k-by-n generator matrix genmat. genmat, 
a k-by-n matrix, is required as input. decode tries to correct errors using the 
decoding table trt, where trt is a 2n-k-by-n matrix.

msg = decode(code,n,k,'cyclic/fmt',genpoly,trt) decodes the cyclic code 
code and tries to correct errors using the decoding table trt, where trt is a 
2n-k-by-n matrix. genpoly is a row vector that gives the coefficients, in order of 
ascending powers, of the binary generator polynomial of the code. The default 
value of genpoly is cyclpoly(n,k). By definition, the generator polynomial for 
an [n,k] cyclic code must have degree n-k and must divide xn-1.

msg = decode(code,n,k,'bch/fmt',errorcorr,primpoly) decodes code 
using the BCH method. primpoly is a row vector that gives the coefficients, in 
order of ascending powers, of the primitive polynomial for GF(2m) that will be 
used during processing. The default value of primpoly is gfprimdf(m). For 
this syntax, n must have the form 2m-1 for some integer m greater than or 
equal to 3. k and errorcorr must be a valid message length and 
error-correction capability, respectively, as reported in the second and third 
columns of a row of params in the command

params = bchpoly(n)

msg = decode(code,n,k,'rs/fmt',field) decodes code using the 
Reed-Solomon method. n must have the form 2m-1 for some integer m greater 
than or equal to 3. field is a matrix that lists all elements of GF(2m) in the 
format described in “List of All Elements of a Galois Field” on page 2-91. The 
default value of field is gftuple([-1:2^m-2]',m).

msg = decode(code,n,k) is the same as 
msg = decode(code,n,k,'hamming/binary').

[msg,err] = decode(...) returns a column vector err that gives information 
about error correction. If the code is a convolutional code, then err contains the 
metric calculations used in the decoding decision process. For other types of 
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codes, a nonnegative integer in the rth row of err (or the rth row of 
vec2mat(err,k) if code is a column vector) indicates the number of errors 
corrected in the rth message word; a negative integer indicates that there are 
more errors in the rth word than can be corrected.

[msg,err,ccode] = decode(...) returns the corrected code in ccode.

[msg,err,ccode,cerr] = decode(...) returns a column vector cerr whose 
meaning depends on the format of code:

• If code is a binary vector, then a nonnegative integer in the rth row of 
vec2mat(cerr,n) indicates the number of errors corrected in the rth 
codeword; a negative integer indicates that there are more errors in the rth 
codeword than can be corrected.

• If code is not a binary vector, then cerr = err.

Examples On the reference page for encode, some of the example code illustrates the use 
of the decode function.

The example below illustrates the use of err and cerr when the coding method 
is not convolutional code and the code is a binary vector. The script encodes two 
five-bit messages using BCH code. Each codeword has fifteen bits. Errors are 
added to the first two bits of the first codeword and the first bit of the second 
codeword. Then decode is used to recover the original message. As a result, the 
errors are corrected. err is the same size as msg and cerr is the same size as 
code. err reflects the fact that the first message was recovered after correcting 
two errors, while the second message was recovered after correcting one error. 
cerr reflects the fact that the first codeword was decoded after correcting two 
errors, while the second codeword was decoded after correcting one error.

m = 4; n = 2^m-1; % Codeword length is 15.
k = 5; % Valid message length for BCH code when n = 15
t = 3; % Corresponding error-correction capability
msg = ones(10,1); % Two messages, five bits each
code = encode(msg,n,k,'bch');  % Encode the message.
% Now place two errors in first word and one error
% in the second word.  Create errors by reversing bits.
noisycode = code;
noisycode(1:2) = bitxor(noisycode(1:2),[1 1]');
noisycode(16) = bitxor(noisycode(16),1);



decode

3-72

% Decode and try to correct the errors.
[newmsg,err,ccode,cerr] = decode(noisycode,n,k,'bch',t);
disp('Transpose of err is'); disp(err')
disp('Transpose of cerr is'); disp(cerr')

The output is below.

Transpose of err is
     2     2     2     2     2     1     1     1     1     1

Transpose of cerr is
  Columns 1 through 12 

     2     2     2     2     2     2     2     2     2     2     2     2

  Columns 13 through 24 

     2     2     2     1     1     1     1     1     1     1     1     1

  Columns 25 through 30 

     1     1     1     1     1     1

Algorithm Depending on the decoding method, decode relies on such lower-level functions 
as hammgen, syndtable, cyclgen, bchdeco, and rsdeco.

See Also encode, bchpoly, cyclpoly, syndtable, gen2par, bchdeco, rsdeco
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3demodmap Purpose Demap a digital message from a demodulated signal

Syntax z = demodmap(x,Fd,Fs,'ask',M);
z = demodmap(x,Fd,Fs,'fsk',M,tone);
z = demodmap(x,Fd,Fs,'msk');
z = demodmap(x,Fd,Fs,'psk',M);
z = demodmap(x,Fd,Fs,'qask',M);
z = demodmap(x,Fd,Fs,'qask/arb',inphase,quadr);
z = demodmap(x,Fd,Fs,'qask/cir',numsig,amp,phs);
z = demodmap(x,[Fd offset],Fs,...)

Optional 
Inputs

Description The digital demodulation process consists of two steps: demodulating an analog 
signal and demapping the demodulated signal to a digital signal. You can 
perform the first step using ademod, ademodce, or your own custom 
demodulator. The function demodmap performs the second step. The table below 
lists the demodulation schemes that demodmap supports.

To Demap a Digital Signal (General Information)
The generic syntax z = demodmap(x,Fd,Fs,...) demaps the digital message 
signal z from a received analog signal x. After measuring the distance from the 

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Demodulation Scheme Fourth Input Argument

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'
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received signal to all possible digits in the coding scheme, the demapper 
returns the nearest digit.

x is a matrix. The sizes of x and z depend on the demodulation method:

• (ASK, FSK, MSK methods) If x is a vector of length n*Fs/Fd, then z is a 
column vector of length n. Otherwise, if x is (n*Fs/Fd)-by-m, then z is n-by-m 
and each column of x is processed separately.

• (PSK, QASK methods) x must have an even number of columns. The 
odd-numbered columns in x represent in-phase components and the 
even-numbered columns represent quadrature components. Each pair of 
columns of x is processed separately. If x is (n*Fs/Fd)-by-2m, then z is 
n-by-m.

The sampling rates in Hertz of x and z, respectively, are Fs and Fd. (Thus 1/Fs 
represents the time interval between two consecutive samples in x, and 
similarly for z.) The ratio Fs/Fd must be a positive integer. The time interval 
between two decision points is 1/Fd.

To shift the decision times ahead by the integer offset, use the alternative 
syntax

z = demodmap(x,[Fd offset],...)

instead of the demapping syntaxes listed in this section and the next. The 
default decision offset is 0.

To Demap a Digital Signal (Specific Syntax Information)

z = demodmap(x,Fd,Fs,'ask',M) demaps from an M-ary amplitude shift 
keying signal constellation. Each entry of z is in the range [0, M-1].

z = demodmap(x,Fd,Fs,'fsk',M,tone) demaps using the coherent M-ary 
frequency shift keying method. The optional argument tone is the separation 
between successive frequencies in the modulated signal x. The default value of 
tone is Fd. Each entry of z is in the range [0, M-1].

z = demodmap(x,Fd,Fs,'msk') demaps using the minimum shift keying 
method. Each entry of z is either 0 or 1. The separation between the two 
frequencies is Fd/2.
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z = demodmap(x,Fd,Fs,'psk',M) demaps from an M-ary phase shift keying 
signal constellation. Each entry of z is in the range [0, M-1]. 

z = demodmap(x,Fd,Fs,'qask',M) demaps from an M-ary quadrature 
amplitude shift keying square signal constellation. The table below shows the 
maximum among in-phase and quadrature coordinates of constellation points, 
for several small values of M.

Note  To see how symbols are mapped to the constellation points, generate a 
square constellation plot using qaskenco(M).

z = demodmap(x,Fd,Fs,'qask/arb',inphase,quadr) demaps from a 
quadrature amplitude shift keying signal constellation that you define using 
the vectors inphase and quadr. The signal constellation point for the kth 
message has in-phase component inphase(k+1) and quadrature component 
quadr(k+1). 

z = demodmap(x,Fd,Fs,'qask/cir',numsig,amp,phs) demaps from a 
quadrature amplitude shift keying circular signal constellation. numsig, amp, 
and phs are vectors of the same length. The entries in numsig and amp must be 
positive. If k is an integer in the range [1, length(numsig)], then amp(k) is the 
radius of the kth circle, numsig(k) is the number of constellation points on the 
kth circle, and phs(k) is the phase of the first constellation point plotted on the 
kth circle. All points on the kth circle are evenly spaced. If you omit phs, then 

M Maximum of Coordinates 
of Constellation Points

M Maximum of Coordinates 
of Constellation Points

2 1 32 5

4 1 64 7

8 3 (quadrature 
maximum = 1)

128 11

16 3 256 15
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its default value is numsig*0. If you omit amp, then its default value is 
[1:length(numsig)].

Note  To see how symbols are mapped to the constellation points, generate a 
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples The script below suggests which regions in the in-phase/quadrature plane are 
associated with different digits. It demaps random points, looks for points that 
were demapped to the digits 0 and 2, and plots those points in red and blue, 
respectively. The horizontal axis shows in-phase components and the vertical 
axis shows quadrature components.

% Construct [in-phase, quadrature] for random points.
x = 4*(rand(1000,2)-1/2); 
% Demap to a digital signal, using 4-PSK method. 
y = demodmap(x,1,1,'psk',4); 
red = find(y==0); % Indices of points that mapped to the digit 0
h = scatterplot(x(red,:),1,0,'r.'); hold on  % Plot in red.
blue = find(y==2); % Indices of points that mapped to the digit 2
scatterplot(x(blue,:),1,0,'b.',h); hold off % Plot in blue.
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See Also modmap, ddemod, ddemodce, ademod, ademodce, eyediagram, scatterplot
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3dmodPurpose Digital passband modulator

Syntax y = dmod(x,Fc,Fd,Fs,'method/nomap'...);
y = dmod(x,Fc,Fd,Fs,'ask',M);
y = dmod(x,Fc,Fd,Fs,'fsk',M,tone);
y = dmod(x,Fc,Fd,Fs,'msk');
y = dmod(x,Fc,Fd,Fs,'psk',M);
y = dmod(x,Fc,Fd,Fs,'qask',M);
y = dmod(x,Fc,Fd,Fs,'qask/arb',inphase,quadr);
y = dmod(x,Fc,Fd,Fs,'qask/cir',numsig,amp,phs);
y = dmod(x,Fc,Fd,[Fs phase],...);
[y,t] = dmod(...);

Optional 
Inputs

Description The function dmod performs digital passband modulation and some related 
tasks. The corresponding demodulation function is ddemod. The table below 
lists the modulation schemes that dmod supports.

To Avoid the Mapping Process
Ordinarily, the dmod function first maps the digital message signal to an analog 
signal and then modulates the analog signal. The generic syntax

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Modulation Scheme Fifth Input Argument

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'
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y = dmod(x,Fc,Fd,Fs,'method/nomap'...)

uses the nomap flag to tell dmod that the digital message has already been 
mapped to an analog signal x whose sampling rate is Fs. As a result, dmod skips 
its usual mapping step. You can use the modmap function to perform the 
mapping step. In this generic syntax, method is one of the seven values listed 
in the table above and the other variables are as in the next section.

To Modulate a Digital Signal (General Information)
The generic syntax y = dmod(x,Fc,Fd,Fs,...) modulates the digital message 
signal that x represents. x is a matrix of nonnegative integers. If x is a vector 
of length n, then y is a vector of length n*Fs/Fd. Otherwise, if x is n-by-m, then 
y is (n*Fs/Fd)-by-m and each column of x is processed separately.

Fc is the carrier frequency in Hertz. The sampling rates in Hertz of x and y, 
respectively, are Fd and Fs. (Thus 1/Fd represents the time interval between 
two consecutive samples in x, and similarly for y.) The ratio Fs/Fd must be a 
positive integer. For best results, use values such that Fs > Fc > Fd. The initial 
phase of the carrier signal is zero. 

The generic syntax y = dmod(x,Fc,Fd,[Fs phase],...) is the same, except 
that the fourth input argument is a two-element vector instead of a scalar. The 
first entry, Fs, is the sampling rate as described in the paragraph above. The 
second entry, phase, is the initial phase of the carrier signal, measured in 
radians.

To Modulate a Digital Signal (Specific Syntax Information)

y = dmod(x,Fc,Fd,Fs,'ask',M) performs M-ary amplitude shift keying 
modulation. Each entry of x must be in the range [0, M-1]. The maximum value 
of the modulated signal is 1.

y = dmod(x,Fc,Fd,Fs,'fsk',M,tone) performs M-ary frequency shift keying 
modulation. Each entry of x must be in the range [0, M-1]. The optional 
argument tone is the separation between successive frequencies in the 
modulated signal y. The default value of tone is Fd. The maximum value of y is 
1.

y = dmod(x,Fc,Fd,Fs,'msk') performs minimum shift keying modulation. 
Each entry of x is either 0 or 1. The maximum value of y is 1.
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y = dmod(x,Fc,Fd,Fs,'psk',M) performs M-ary phase shift keying 
modulation. Each entry of x must be in the range [0, M-1]. The maximum value 
of y is 1.

y = dmod(x,Fc,Fd,Fs,'qask',M) performs M-ary quadrature amplitude shift 
keying modulation with a square signal constellation. The table below shows 
the maximum value of y, for several small values of M.

Note  To see how symbols are mapped to the constellation points, generate a 
square constellation plot using qaskenco(M).

y = dmod(x,Fc,Fd,Fs,'qask/arb',inphase,quadr) performs quadrature 
amplitude shift keying modulation, with a signal constellation that you define 
using the vectors inphase and quadr. The constellation point for the kth 
message has in-phase component inphase(k+1) and quadrature component 
quadr(k+1).

y = dmod(x,Fc,Fd,Fs,'qask/cir',numsig,amp,phs) performs quadrature 
amplitude shift keying modulation with a circular signal constellation. numsig, 
amp, and phs are vectors of the same length. The entries in numsig and amp 
must be positive. If k is an integer in the range [1, length(numsig)], then 
amp(k) is the radius of the kth circle, numsig(k) is the number of constellation 
points on the kth circle, and phs(k) is the phase of the first constellation point 
plotted on the kth circle. All points on the kth circle are evenly spaced. If you 
omit phs, then its default value is numsig*0. If you omit amp, then its default 
value is [1:length(numsig)].

M Maximum Value of y M Maximum Value of y

2 1 32 5

4 1 64 7

8 3 128 11

16 3 256 15
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Note  To see how symbols are mapped to the constellation points, generate a 
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

[y,t] = dmod(...) returns the computation time in t. t is a vector whose 
length is the number of rows of y.

Examples An example on the reference page for ddemod uses dmod. Also, the code below 
shows the waveforms used to communicate the digits 0 and 1 using 4-ASK 
modulation. Notice that the dmod command has two output arguments. The 
second output, t, is used to scale the horizontal axis in the plot.

Fc = 20; Fd = 10; Fs = 50;
M = 4; % Use 4-ASK modulation.
x = ones(Fd,1)*[0 1]; x=x(:);
% Modulate, keeping track of time.
[y,t] = dmod(x,Fc,Fd,Fs,'ask',M);
plot(t,y) % Plot signal versus time.

See Also ddemod, dmodce, ddemodce, amod, amodce
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3dmodcePurpose Digital baseband modulator

Syntax y = dmodce(x,Fd,Fs,'method/nomap'...);
y = dmodce(x,Fd,Fs,'ask',M);
y = dmodce(x,Fd,Fs,'fsk',M,tone);
y = dmodce(x,Fd,Fs,'msk');
y = dmodce(x,Fd,Fs,'psk',M);
y = dmodce(x,Fd,Fs,'qask',M);
y = dmodce(x,Fd,Fs,'qask/arb',inphase,quadr);
y = dmodce(x,Fd,Fs,'qask/cir',numsig,amp,phs);
y = dmodce(x,Fd,[Fs phase],...);

Optional 
Inputs

Description The function dmodce performs digital baseband modulation and some related 
tasks. The corresponding demodulation function is ddemodce. The table below 
lists the modulation schemes that dmodce supports.

To Modulate Without Mapping
Ordinarily, the dmodce function first maps the digital message signal to an 
analog signal and then modulates the analog signal. The generic syntax

y = dmodce(x,Fd,Fs,'method/nomap'...)

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Modulation Scheme Fourth Input Argument

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'
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uses the /nomap flag to tell dmodce that the digital message has already been 
mapped to an analog signal x whose sampling rate is Fs. As a result, dmodce 
skips its usual mapping step. You can use the modmap function to perform the 
mapping step. In this generic syntax, method is one of the seven values listed 
in the table above, and the other variables are as in the next section.

To Modulate a Digital Signal (General Information)
The generic syntax y = dmodce(x,Fd,Fs,...) modulates the digital message 
signal that x represents. x is a matrix of nonnegative integers. If x is a vector 
of length n, then y is a vector of length n*Fs/Fd. Otherwise, if x is n-by-m, then 
y is (n*Fs/Fd)-by-m and each column of x is processed separately. Since dmodce 
implements baseband simulation, the entries of y are complex.

The sampling rates in Hertz of x and y, respectively, are Fd and Fs. (Thus 1/Fd 
represents the time interval between two consecutive samples in x, and 
similarly for y.) The ratio Fs/Fd must be a positive integer. The initial phase in 
the modulation is zero. 

The generic syntax y = dmodce(x,Fd,[Fs phase],...) is the same, except 
that the third input argument is a two-element vector instead of a scalar. The 
first entry, Fs, is the sampling rate as described in the paragraph above. The 
second entry, phase, is the initial phase in the modulation, measured in 
radians.

To Modulate a Digital Signal (Specific Syntax Information)

y = dmodce(x,Fd,Fs,'ask',M) performs M-ary amplitude shift keying 
modulation. Each entry of x must be in the range [0, M-1]. The maximum value 
of the modulated signal is 1.

y = dmodce(x,Fd,Fs,'fsk',M,tone) performs M-ary frequency shift keying 
modulation. Each entry of x must be in the range [0, M-1]. The optional 
argument tone is the separation between successive frequencies in the 
modulated signal y. The default value of tone is Fd. The maximum value of y is 
1.

y = dmodce(x,Fd,Fs,'msk') performs minimum shift keying modulation. 
Each entry of x is either 0 or 1. The maximum value of y is 1. The separation 
between the two frequencies is Fd/2.



dmodce

3-84

y = dmodce(x,Fd,Fs,'psk',M) performs M-ary phase shift keying modulation. 
Each entry of x must be in the range [0, M-1]. The maximum value of y is 1.

y = dmodce(x,Fd,Fs,'qask',M) performs M-ary quadrature amplitude shift 
keying modulation with a square signal constellation. The table below shows 
the maximum value of y, for several small values of M.

Note  To see how symbols are mapped to the constellation points, generate a 
square constellation plot using qaskenco(M).

y = dmodce(x,Fd,Fs,'qask/arb',inphase,quadr) performs quadrature 
amplitude shift keying modulation, with a signal constellation that you define 
using the vectors inphase and quadr. The constellation point for the kth 
message has in-phase component inphase(k+1) and quadrature component 
quadr(k+1). 

y = dmodce(x,Fd,Fs,'qask/cir',numsig,amp,phs) performs quadrature 
amplitude shift keying modulation with a circular signal constellation. numsig, 
amp, and phs are vectors of the same length. The entries in numsig and amp 
must be positive. If k is an integer in the range [1, length(numsig)], then 
amp(k) is the radius of the kth circle, numsig(k) is the number of constellation 
points on the kth circle, and phs(k) is the phase of the first constellation point 
plotted on the kth circle. All points on the kth circle are evenly spaced. If you 
omit phs, then its default value is numsig*0. If you omit amp, then its default 
value is [1:length(numsig)].

M Maximum Value of y M Maximum Value of y

2 1 32 5

4 1 64 7

8 3 128 11

16 3 256 15
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Note  To see how symbols are mapped to the constellation points, generate a 
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples This example uses FSK modulation and demodulation with different frequency 
separations tone. The output indicates that the symbol error rate varies 
depending on the value of tone. Your results might be different from those 
shown below, because the example uses random numbers.

M = 4; Fd = 1; Fs = 32; 
SNRperBit = 5;
adjSNR = SNRperBit-10*log10(Fs/Fd)+10*log10(log2(M));
x = randint(5000,1,M); % Original signal
% Modulate using FSK with orthogonal tone spacing.
tone = .5;
randn('state',1945724); % Seed the Gaussian generator.
w1 = dmodce(x,Fd,Fs,'fsk',M,tone); 
y1  = awgn(w1, adjSNR, 'measured', [], 'dB');
z1 = ddemodce(y1,Fd,Fs,'fsk',M,tone); 
ser1 = symerr(x,z1)

ser1 =

    67

% Modulate using FSK with nonorthogonal tone spacing.
tone = .25;   
randn('state',1945724); % Reseed the Gaussian generator.
w2 = dmodce(x,Fd,Fs,'fsk',M,tone); 
y2  = awgn(w2, adjSNR, 'measured', [], 'dB');
z2 = ddemodce(y2,Fd,Fs,'fsk',M,tone); 
ser2 = symerr(x,z2)

ser2 =

   258

See Also ddemodce, dmod, ddemod, amod, amodce, modmap, apkconst
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3dpcmdecoPurpose Decode using differential pulse code modulation

Syntax sig = dpcmdeco(indx,codebook,predictor);
[sig,quanterror] = dpcmdeco(indx,codebook,predictor);

Description sig = dpcmdeco(indx,codebook,predictor) implements differential pulse 
code demodulation to decode the vector indx. The vector codebook represents 
the predictive-error quantization codebook. The vector predictor specifies the 
predictive transfer function. If the transfer function has predictive order M, 
then predictor has length M+1 and an initial entry of 0. To decode correctly, 
use the same codebook and predictor in dpcmenco and dpcmdeco.

See either “Representing Quantization Parameters” on page 2-14 or the 
reference page for quantiz in this chapter, for a description of the formats of 
partition and codebook. 

[sig,quanterror] = dpcmdeco(indx,codebook,predictor) is the same as 
the syntax above, except that the vector quanterror is the quantization of the 
predictive error based on the quantization parameters. quanterror is the same 
size as sig.

Note  You can estimate the input parameters codebook, partition, and 
predictor using the function dpcmopt.

Examples See the sections “Example: DPCM Encoding and Decoding” on page 2-20 and 
“Example: Comparing Optimized and Nonoptimized DPCM Parameters” on 
page 2-21 for examples that use dpcmdeco.

See Also quantiz, dpcmopt, dpcmenco

References Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons, 1994.
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3dpcmencoPurpose Encode using differential pulse code modulation

Syntax indx = dpcmenco(sig,codebook,partition,predictor)
[indx,quants] = dpcmenco(sig,codebook,partition,predictor)

Description indx = dpcmenco(sig,codebook,partition,predictor) implements 
differential pulse code modulation to encode the vector sig. partition is a 
vector whose entries give the endpoints of the partition intervals. codebook, a 
vector whose length exceeds the length of partition by one, prescribes a value 
for each partition in the quantization. predictor specifies the predictive 
transfer function. If the transfer function has predictive order M, then 
predictor has length M+1 and an initial entry of 0. The output vector indx is 
the quantization index.

See “Implementing Differential Pulse Code Modulation” on page 2-19 for more 
about the format of predictor. See either “Representing Quantization 
Parameters” on page 2-14 or the reference page for quantiz in this chapter, for 
a description of the formats of partition and codebook.

[indx,quants] = dpcmenco(sig,codebook,partition,predictor) is the 
same as the syntax above, except that quants contains the quantization of sig 
based on the quantization parameters. quants is a vector the same size as sig.

Note  If predictor is an order-one transfer function, then the modulation is 
called a delta-modulation. 

Examples See the sections “Example: DPCM Encoding and Decoding” on page 2-20 and 
“Example: Comparing Optimized and Nonoptimized DPCM Parameters” on 
page 2-21 for examples that use dpcmenco.

See Also quantiz, dpcmopt,dpcmdeco

References Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons, 1994.
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3dpcmoptPurpose Optimize differential pulse code modulation parameters

Syntax predictor = dpcmopt(trainingset,ord);
[predictor,codebook,partition] = dpcmopt(trainingset,ord,len);
[predictor,codebook,partition] =

dpcmopt(trainingset,ord,initcodebook);

Description predictor = dpcmopt(trainingset,ord) returns a vector representing a 
predictive transfer function of order ord that is appropriate for the training 
data in the vector trainingset. predictor is a row vector of length ord+1. See 
“Representing Quantization Parameters” on page 2-14 for more about its 
format.

Note  dpcmopt optimizes for the data in trainingset. For best results, 
trainingset should be similar to the data that you plan to quantize.

[predictor,codebook,partition] = dpcmopt(trainingset,ord,len) is the 
same as the syntax above, except that it also returns corresponding optimized 
codebook and partition vectors codebook and partition. len is an integer that 
prescribes the length of codebook. partition is a vector of length len-1. See 
either “Representing Quantization Parameters” on page 2-14 or the reference 
page for quantiz in this chapter, for a description of the formats of partition 
and codebook.

[predictor,codebook,partition] =
dpcmopt(trainingset,ord,initcodebook) is the same as the first syntax, 
except that it also returns corresponding optimized codebook and partition 
vectors codebook and partition. initcodebook, a vector of length at least 2, 
is the initial guess of the codebook values. The output codebook is a vector of 
the same length as initcodebook. The output partition is a vector whose 
length is one less than the length of codebook.

Examples See the section “Example: Comparing Optimized and Nonoptimized DPCM 
Parameters” on page 2-21 for an example that uses dpcmopt.

See Also dpcmenco, dpcmdeco, quantiz, lloyds
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3encodePurpose Block encoder

Syntax code = encode(msg,n,k,'linear/fmt',genmat);
code = encode(msg,n,k,'cyclic/fmt',genpoly);
code = encode(msg,n,k,'bch/fmt',genpoly);
code = encode(msg,n,k,'hamming/fmt',primpoly);
code = encode(msg,n,k,'rs/fmt',genpoly);
code = encode(msg,field,k,'rs/fmt',genpoly);
code = encode(msg,n,k);
[code,added] = encode(...);

Optional 
Inputs

Description For All Syntaxes
The encode function encodes messages using one of the following 
error-correction coding methods:

• Linear block

• Cyclic

• BCH (Bose, Ray-Chaudhuri, Hocquenghem)

• Hamming

• Reed-Solomon

For all of these methods, the codeword length is n and the message length is k.

msg, which represents the messages, can have one of several formats. 
Table 3-14, Information Formats for Encoding Methods Other than 
Reed-Solomon, below, which applies to all coding methods supported by encode 
except the Reed-Solomon method, shows which formats are allowed for msg, 
how the argument fmt should reflect the format of msg, and how the format of 
the output code depends on these choices. Table 3-15, Information Formats for 

Input Default Value

fmt binary

genpoly cyclpoly(n,k) for cyclic codes;
bchpoly(n,k) for BCH codes;
rspoly(n,k) or rspoly(n,k,field) for Reed-Solomon codes

primpoly gfprimdf(n-k)
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the Reed-Solomon Encoding Method, gives the corresponding information for 
the Reed-Solomon method. The examples in the tables are for k = 4 and, in 
Table 3-15, Information Formats for the Reed-Solomon Encoding Method, 
m = 3. If fmt is not specified as input, then its default value is binary.

Note  If 2n or 2k is large, then you should use the default binary format 
instead of the decimal format. This is because the function uses a binary 
format internally, while the round-off error associated with converting many 
bits to large decimal numbers and back might be substantial.

.

Table 3-14:  Information Formats for Encoding Methods Other than Reed-Solomon

Format of msg Value of “fmt” Argument Format of code

Binary column vector binary Binary column vector

Example: msg = [0 1 1 0, 0 1 0 1, 1 0 0 1]'

Binary matrix with k columns binary Binary matrix with n 
columns

Example: msg = [0 1 1 0; 0 1 0 1; 1 0 0 1]

Column vector of integers in the 
range [0, 2k-1]

decimal Column vector of integers 
in the range [0, 2n-1]

Example: msg = [6, 10, 9]'

Table 3-15:  Information Formats for the Reed-Solomon Encoding Method

Format of msg
(where n = 2m-1, m = integer 
greater than or equal to 3)

Value of “fmt” Argument Format of code

 Binary matrix with m columns binary Binary matrix with m columns

Example: msg = [1 1 0; 1 0 1; 1 0 0; 0 1 1; 1 1 0; 1 0 1; 1 0 0; 0 1 1]
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For Specific Syntaxes

code = encode(msg,n,k,'linear/fmt',genmat) encodes msg using genmat as 
the generator matrix for the linear block encoding method. genmat, a k-by-n 
matrix, is required as input.

code = encode(msg,n,k,'cyclic/fmt',genpoly) encodes msg and creates a 
systematic cyclic encode. genpoly is a row vector that gives the coefficients, in 
order of ascending powers, of the binary generator polynomial. The default 
value of genpoly is cyclpoly(n,k). By definition, the generator polynomial for 
an [n,k] cyclic code must have degree n-k and must divide xn-1.

code = encode(msg,n,k,'bch/fmt',genpoly) encodes msg using the BCH 
encoding method. genpoly is a row vector that gives the coefficients, in order of 
ascending powers, of the degree-(n-k) binary BCH generator polynomial. The 
default value of genpoly is bchpoly(n,k). For this syntax, n must have the 
form 2m-1 for some integer m greater than or equal to 3. k must be a valid 
message length as reported in the second column of params in the command

params = bchpoly(n)

Binary column vector binary Binary column vector

Example: msg = [1 1 0, 1 0 1, 1 0 0, 0 1 1, 1 1 0, 1 0 1, 1 0 0, 0 1 1]'

Matrix of integers in the range 
[0, 2m-1], with k columns

decimal Matrix of integers in the range 
[0, 2m-1], with n columns

Example: msg = [3, 5, 1, 6; 3, 5, 1, 6]

Matrix of integers in the range 
[-1, 2m-2], with k columns

power Matrix of integers in the range 
[-1, 2m-2], with n columns

Example: msg = [2, 4, 0, 5; 2, 4, 0, 5]

Table 3-15:  Information Formats for the Reed-Solomon Encoding Method (Continued)

Format of msg
(where n = 2m-1, m = integer 
greater than or equal to 3)

Value of “fmt” Argument Format of code
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code = encode(msg,n,k,'hamming/fmt',primpoly) encodes msg using the 
Hamming encoding method. For this syntax, n must have the form 2m-1 for 
some integer m greater than or equal to 3, and k must equal n-m. primpoly is 
a row vector that gives the binary coefficients, in order of ascending powers, of 
the primitive polynomial for GF(2m) that is used in the encoding process. The 
default value of primpoly is the default primitive polynomial gfprimdf(m).

code = encode(msg,n,k,'rs/fmt',genpoly) encodes msg using the 
Reed-Solomon encoding method. n must have the form 2m-1 for some integer m 
greater than or equal to 3. genpoly is a row vector that gives the coefficients, 
in order of ascending powers, of the generator polynomial for the code. Each 
coefficient is an element of GF(2m) expressed in exponential format. For a 
description of exponential format, see “Exponential Format” on page 2-90. For 
information about the conversions among formats, see “Reed-Solomon Coding 
Using Decimal Format” on page 2-29 and “Exponential Format (Reed-Solomon 
Code Only)” on page 2-30. The default value of genpoly is the output of the 
function rspoly.

code = encode(msg,field,k,'rs/fmt',genpoly) is the same as the syntax 
above, except that field is a matrix that lists all elements of GF(2m) in the 
format described in “List of All Elements of a Galois Field” on page 2-91. The 
size of field determines n. This syntax is faster than the one above.

code = encode(msg,n,k) is the same as code = 
encode(msg,n,k,'hamming/binary').

[code,added] = encode(...) returns the additional variable added. added is 
the number of zeros that were placed at the end of the message matrix before 
encoding, in order for the matrix to have the appropriate shape. “Appropriate” 
depends on n, k, the shape of msg, and the encoding method.

Examples The example below illustrates the three different information formats (binary 
vector, binary matrix, and decimal vector) for Hamming code. The three 
messages have identical content in different formats; as a result, the three 
codes that encode creates have identical content in correspondingly different 
formats.

m = 4; n = 2^m-1; % Codeword length = 15
k = 11; % Message length
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% Create 100 messages, k bits each.
msg1 = randint(100*k,1,[0,1]); % As a column vector
msg2 = vec2mat(msg1,k); % As a k-column matrix
msg3 = bi2de(msg2); % As a column of decimal integers

% Create 100 codewords, n bits each.
code1 = encode(msg1,n,k,'hamming/binary');
code2 = encode(msg2,n,k,'hamming/binary');
code3 = encode(msg3,n,k,'hamming/decimal');
if ( vec2mat(code1,n)==code2 & de2bi(code3,n)==code2 )
   disp('All three formats produced the same content.')
end

The next example creates a cyclic code, adds noise, and then decodes the noisy 
code. It uses the decode function. Your error rate results might vary because 
the noise is random.

n = 3; k = 2; % A (3,2) cyclic code
msg = randint(100,k,[0,1]); % 100 messages, k bits each
code = encode(msg,n,k,'cyclic/binary');
% Add noise.
noisycode = rem(code + randerr(100,n,[0 1;.7 .3]), 2); 
newmsg = decode(noisycode,n,k,'cyclic'); % Try to decode.
% Compute error rate for decoding the noisy code.
[number,ratio] = biterr(newmsg,msg); 
disp(['The bit error rate is ',num2str(ratio)])

The bit error rate is 0.08

The next example encodes the same message using Hamming, BCH, and cyclic 
methods. Before creating BCH code, it uses the bchpoly command to find out 
what codeword and message lengths are valid. This example also creates 
Hamming code with the 'linear' option of the encode command. It then 
decodes each code and recovers the original message.

n = 6; % Try codeword length = 6.
% Find any valid message length for BCH code.
params = bchpoly(n);
n = params(1,1); % Redefine codeword length in case earlier one
% was invalid.
k = params(1,2); % Message length
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m = log2(n+1); % Express n as 2^m-1.
msg = randint(100,1,[0,2^k-1]); % Column of decimal integers

% Create various codes.
codehamming = encode(msg,n,k,'hamming/decimal');
[parmat,genmat] = hammgen(m);
codehamming2 = encode(msg,n,k,'linear/decimal',genmat);
if codehamming==codehamming2
   disp('The ''linear'' method can create Hamming code.')
end
codebch = encode(msg,n,k,'bch/decimal');
codecyclic = encode(msg,n,k,'cyclic/decimal');

% Decode to recover the original message.
decodedhamming = decode(codehamming,n,k,'hamming/decimal');
decodedbch = decode(codebch,n,k,'bch/decimal');
decodedcyclic = decode(codecyclic,n,k,'cyclic/decimal');
if (decodedhamming==msg & decodedbch==msg & decodedcyclic==msg)
   disp('All decoding worked flawlessly in this noiseless world.')
end

Algorithm Depending on the encoding method, encode relies on such lower-level functions 
as hammgen, cyclgen, bchenco, and rsenco.

See Also decode, bchpoly, rspoly, cyclpoly, cyclgen, hammgen, bchenco, rsenco
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3eyediagram Purpose Generate an eye diagram

Syntax eyediagram(x,n);
eyediagram(x,n,period);
eyediagram(x,n,period,offset);
eyediagram(x,n,period,offset,plotstring);
eyediagram(x,n,period,offset,plotstring,h);
h = eyediagram(...);

Description eyediagram(x,n) creates an eye diagram for the signal x, plotting n samples in 
each trace. n must be an integer greater than 1. The labels on the horizontal 
axis of the diagram range between -1/2 and 1/2. The function assumes that the 
first value of the signal and every nth value thereafter, occur at integer times. 
The interpretation of x and the number of plots depend on the shape and 
complexity of x:

• If x is a real two-column matrix, then eyediagram interprets the first column 
as in-phase components and the second column as quadrature components. 
The two components appear in different subplots of a single figure window.

• If x is a complex vector, then eyediagram interprets the real part as in-phase 
components and the imaginary part as quadrature components. The two 
components appear in different subplots of a single figure window.

• If x is a real vector, then eyediagram interprets it as a real signal. The figure 
window contains a single plot.

eyediagram(x,n,period) is the same as the syntax above, except that the 
labels on the horizontal axis range between -period/2 and period/2.

eyediagram(x,n,period,offset) is the same as the syntax above, except that 
the function assumes that the (offset+1)st value of the signal, and every nth 
value thereafter, occur at times that are integer multiples of period. The 
variable offset must be a nonnegative integer between 0 and n-1.

eyediagram(x,n,period,offset,plotstring) is the same as the syntax 
above, except that plotstring determines the plotting symbol, line type, and 
color for the plot. plotstring is a string whose format and meaning are the 
same as in the plot function.
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eyediagram(x,n,period,offset,plotstring,h) is the same as the syntax 
above, except that the eye diagram is in the figure whose handle is h, rather 
than a new figure. h must be a handle to a figure that eyediagram previously 
generated.

Note  You cannot use hold on to plot multiple signals in the same figure.

h = eyediagram(...) is the same as the earlier syntaxes, except that h is the 
handle to the figure that contains the eye diagram.

Examples See “Example: Eye Diagrams” on page 2-9 for an example. For an online 
demonstration, use scattereyedemo.

See Also scatterplot, plot, scattereyedemo
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3gen2parPurpose Convert between parity-check and generator matrices

Syntax parmat = gen2par(genmat);
genmat = gen2par(parmat);

Description parmat = gen2par(genmat) converts the standard-form binary generator 
matrix genmat into the corresponding parity-check matrix parmat.

genmat = gen2par(parmat) converts the standard-form binary parity-check 
matrix parmat into the corresponding generator matrix genmat.

The standard forms of the generator and parity-check matrices for an [n,k] 
binary linear block code are shown in the table below.

where Ik is the identity matrix of size k and the ' symbol indicates matrix 
transpose. Two standard forms are listed for each type, since different authors 
use different conventions. For binary codes, the minus signs in the parity-check 
form listed above are irrelevant; that is, -1 = 1 in the binary field.

Examples The commands below convert the parity-check matrix for a Hamming code into 
the corresponding generator matrix and back again.

parmat = hammgen(3)

parmat =

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

genmat = gen2par(parmat)

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n

Parity-check [-P' In-k] or [In-k -P' ] (n-k)-by-n
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genmat =

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1

parmat2 = gen2par(genmat) % Ans should be the same as parmat above

parmat2 =

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

See Also cyclgen, hammgen
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3gfaddPurpose Add polynomials over a Galois field

Syntax c = gfadd(a,b);
c = gfadd(a,b,p);
c = gfadd(a,b,p,len);
c = gfadd(a,b,field);

Description c = gfadd(a,b) adds two GF(2) polynomials. The inputs and output are row 
vectors that give the coefficients of the corresponding polynomials in order of 
ascending powers. Each coefficient is either 0 or 1, since the field is GF(2). If a 
and b are matrices of the same size, then the function treats each row 
independently.

c = gfadd(a,b,p) adds two GF(p) polynomials, where p is a prime number. a, 
b, and c are row vectors that give the coefficients of the corresponding 
polynomials in order of ascending powers. Each coefficient is between 0 and 
p-1. If a and b are matrices of the same size, then the function treats each row 
independently.

c = gfadd(a,b,p,len) adds row vectors a and b as in the previous syntax, 
except that it returns a row vector of length len. The output c is a truncated or 
extended representation of the sum. If the row vector corresponding to the sum 
has fewer than len entries (including zeros), then extra zeros are added at the 
end; if it has more than len entries, then entries from the end are removed.

c = gfadd(a,b,field) adds two GF(pm) elements, where m is a positive 
integer. a and b are the exponential format of the two elements, relative to 
some primitive element of GF(pm). field is the matrix listing all elements of 
GF(pm), arranged relative to the same primitive element. c is the exponential 
format of the sum, relative to the same primitive element. See “Representing 
Elements of Galois Fields” on page 2-90 for an explanation of these formats. If 
a and b are matrices of the same size, then the function treats each element 
independently.

Examples In the code below, sum5 is the sum of 2 + 3x + x2 and 4 + 2x + 3x2 over GF(5), 
and linpart is the degree-one part of sum5.

sum5 = gfadd([2 3 1],[4 2 3],5)
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sum5 =

     1     0     4

linpart = gfadd([2 3 1],[4 2 3],5,2)

linpart =

     1     0

The code below shows that , where  is a root of the primitive 
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);
g = gfadd(2,4,field)

g =

     1

Other examples are in the section, “Arithmetic in Galois Fields” on page 2-97.

See Also gfsub, gfconv, gfmul, gfdeconv, gfdiv, gftuple, gfplus

α2 α4
+ α1

= α
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3gfconvPurpose Multiply polynomials over a Galois field

Syntax c = gfconv(a,b);
c = gfconv(a,b,p);
c = gfconv(a,b,field);

Description The gfconv function multiplies polynomials over a Galois field. (To multiply 
elements of a Galois field, use gfmul instead.) Algebraically, multiplying 
polynomials over a Galois field is equivalent to convolving vectors containing 
the polynomials’ coefficients, where the convolution operation uses arithmetic 
over the same Galois field.

c = gfconv(a,b) multiplies two GF(2) polynomials. The inputs and output are 
row vectors that give the coefficients of the corresponding polynomials in order 
of ascending powers. Each coefficient is either 0 or 1, since the field is GF(2).

c = gfconv(a,b,p) multiplies two GF(p) polynomials, where p is a prime 
number. a, b, and c are row vectors that give the coefficients of the 
corresponding polynomials in order of ascending powers. Each coefficient is 
between 0 and p-1.

c = gfconv(a,b,field) multiplies two GF(pm) polynomials, where p is a 
prime number and m is a positive integer. a, b, and c are row vectors that list 
the exponential formats of the coefficients of the corresponding polynomials, in 
order of ascending powers. The exponential format is relative to some primitive 
element of GF(pm). field is the matrix listing all elements of GF(pm), arranged 
relative to the same primitive element. See “Representing Elements of Galois 
Fields” on page 2-90 for an explanation of these formats.

Examples The command below shows that  over 
GF(2).

gfc = gfconv([1 1 0 0 1],[0 1 1])

gfc =

     0     1     0     1     0     1     1

The code below illustrates the identity

1 x x4+ +( ) x x2+( ) x x3 x5 x6+ + +=
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 in GF(p)

for the case in which p = 7, r = 5, and s = 3. (The identity holds when p is any 
prime number, and r and s are positive integers.)

p = 7; r = 5; s = 3;
a = gfrepcov([r s]); % x^r + x^s

% Compute a^p over GF(p).
c = 1;
for ii = 1:p
   c = gfconv(c,a,p);
end;

% Check whether c = x^(rp) + x^(sp).
powers = [];
for ii = 1:length(c)
   if c(ii)~=0
      powers = [powers, ii];
   end;
end;
if (powers==[r*p+1 s*p+1] | powers==[s*p+1 r*p+1])
   disp('The identity is proved for this case of r, s, and p.')
end

See Also gfdeconv, gfadd, gfsub, gfmul, gftuple

xr xs+( )p xrp xsp+=
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3gfcosetsPurpose Produce cyclotomic cosets for a Galois field

Syntax c = gfcosets(m);
c = gfcosets(m,p);

Description c = gfcosets(m) produces the cyclotomic cosets for GF(2m), where m is a 
positive integer.

c = gfcosets(m,p) produces the cyclotomic cosets for GF(pm), where m is a 
positive integer and p is a prime number.

In both cases, the output matrix c is structured so that each row represents one 
coset. The row represents the coset by giving the exponential format of the 
elements of the coset, relative to the default primitive polynomial for the field. 
For a description of exponential formats, see “Representing Elements of Galois 
Fields” on page 2-90.

The first column contains the coset leaders. Because the lengths of cosets may 
vary, entries of NaN are used to fill the extra spaces when necessary to make c 
rectangular.

A cyclotomic coset is a set of elements that all satisfy the same minimal 
polynomial. For more details on cyclotomic cosets, see the works listed in 
“References” below.

Examples The command below finds the cyclotomic cosets for GF(9).

c = gfcosets(2,3)

c =

     0   NaN
     1     3
     2     6
     4   NaN
     5     7

The gfminpol function can check that the elements of, for example, the third 
row of c indeed belong in the same coset.
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m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.

m =

     2     0     1
     2     0     1

See Also gfminpol, gfprimdf, gfroots

References Blahut, Richard E. Theory and Practice of Error Control Codes. Reading, 
Mass.: Addison-Wesley, 1983, p.105.

Lin, Shu and Daniel J. Costello, Jr. Error Control Coding: Fundamentals and 
Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1983.
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3gfdeconvPurpose Divide polynomials over a Galois field

Syntax [quot,remd] = gfdeconv(b,a);
[quot,remd] = gfdeconv(b,a,p);
[quot,remd] = gfdeconv(b,a,field);

Description The gfdeconv function divides polynomials over a Galois field. (To divide 
elements of a Galois field, use gfdiv instead.) Algebraically, dividing 
polynomials over a Galois field is equivalent to deconvolving vectors containing 
the polynomials’ coefficients, where the deconvolution operation uses 
arithmetic over the same Galois field.

[quot,remd] = gfdeconv(b,a) divides the polynomial b by the polynomial a 
over GF(2) and returns the quotient in quot and the remainder in remd. All 
inputs and outputs are row vectors that give the coefficients of the 
corresponding polynomials in order of ascending powers. Each coefficient is 
either 0 or 1, since the field is GF(2).

[quot,remd] = gfdeconv(b,a,p) divides the polynomial b by the polynomial 
a over GF(p) and returns the quotient in quot and the remainder in remd. p is 
a prime number. b, a, quot, and remd are row vectors that give the coefficients 
of the corresponding polynomials in order of ascending powers. Each coefficient 
is between 0 and p-1.

[quot,remd] = gfdeconv(b,a,field) divides the polynomial b by the 
polynomial a over GF(pm) and returns the quotient in quot and the remainder 
in remd. Here p is a prime number and m is a positive integer. b, a, quot, and 
remd are row vectors that list the exponential formats of the coefficients of the 
corresponding polynomials, in order of ascending powers. The exponential 
format is relative to some primitive element of GF(pm). field is the matrix 
listing all elements of GF(pm), arranged relative to the same primitive element. 
See “Representing Elements of Galois Fields” on page 2-90 for an explanation 
of these formats.

Examples The code below shows that

 

in GF(2). It also checks the results of the division.

x x3 x4+ +( ) 1 x+( )÷ 1 x+ 3 Remainder 1=
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p = 2; 
b = [0 1 0 1 1]; a = [1 1];
[quot, remd] = gfdeconv(b,a,p)
% Check the result.
bnew = gfadd(gfconv(quot,a,p),remd,p);
if isequal(bnew,b)
   disp('Correct.')
end;

The output is below.

quot =

     1     0     0     1

remd =

     1

Correct.

Working over GF(3), the code below outputs those polynomials of the form 
xk - 1 (k = 2, 3, 4,..., 8) that 1 + x2 divides evenly.

p = 3; m = 2;
a = [1 0 1]; % 1+x^2
for ii = 2:p^m-1
   b = gfrepcov(ii); % x^ii
   b(1) = p-1; % -1+x^ii
   [quot, remd] = gfdeconv(b,a,p);
   % Display -1+x^ii if a divides it evenly.
   if remd==0 
      gfpretty(b)
   end
end

The output is below.

                                         4
                                    2 + X 
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                                         8
                                    2 + X 

In light of the discussion in “Algorithm” on the reference page for gfprimck 
along with the irreducibility of 1 + x2 over GF(3), this output indicates that 
1 + x2 is not primitive for GF(9). 

Algorithm The algorithm of gfdeconv is similar to that of the MATLAB function deconv.

See Also gfconv, gfadd, gfsub, gfdiv, gftuple
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3gfdivPurpose Divide elements of a Galois field

Syntax quot = gfdiv(b,a);
quot = gfdiv(b,a,p);
quot = gfdiv(b,a,field);

Description The gfdiv function divides elements of a Galois field. (To divide polynomials 
over a Galois field, use gfdeconv instead.)

quot = gfdiv(b,a) divides b by a in GF(2) and returns the quotient. If a and 
b are matrices of the same size, then the function treats each element 
independently. All entries of b, a, and quot are either 0 or 1, since the field is 
GF(2).

quot = gfdiv(b,a,p) divides b by a in GF(p) and returns the quotient. p is a 
prime number. If a and b are matrices of the same size, then the function treats 
each element independently. All entries of b, a, and quot are between 0 and p-1.

quot = gfdiv(b,a,field) divides b by a in GF(pm) and returns the quotient. 
p is a prime number and m is a positive integer. If a and b are matrices of the 
same size, then the function treats each element independently. All entries of 
b, a, and quot are the exponential formats of elements of GF(pm) relative to 
some primitive element of GF(pm). field is the matrix listing all elements of 
GF(pm), arranged relative to the same primitive element. See “Representing 
Elements of Galois Fields” on page 2-90 for an explanation of these formats.

In all cases, an attempt to divide by the zero element of the field results in a 
“quotient” of NaN.

Examples The code below displays lists of multiplicative inverses in GF(5) and GF(25). It 
uses column vectors as inputs to gfdiv.

% Find inverses of nonzero elements of GF(5).
p = 5;
b = ones(p-1,1);
a = [1:p-1]';
quot1 = gfdiv(b,a,p);
disp('Inverses in GF(5):')
disp('element  inverse')
disp([a, quot1])
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% Find inverses of nonzero elements of GF(25).
m = 2;
field = gftuple([-1:p^m-2]',m,p);
b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.
a = [0:p^m-2]';
quot2 = gfdiv(b,a,field);
disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')
disp('respect to a root of the default primitive polynomial:')
disp('element  inverse')
disp([a, quot2])

See Also gfmul, gfdeconv, gfconv, gftuple
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3gffilterPurpose Filter data using polynomials over a prime Galois field

Syntax y = gffilter(b,a,x);
y = gffilter(b,a,x,p);

Description y = gffilter(b,a,x) filters the data x using the filter described by vectors a 
and b. y is the filtered data in GF(2).

y = gffilter(b,a,x,p) filters the data x using the filter described by vectors 
a and b. y is the filtered data in GF(p). p is a prime number, and all entries of 
a and b are between 0 and p-1.

By definition of the filter, y solves the difference equation below

a(1)y(n) = b(1)x(n)+b(2)x(n-1)+b(3)x(n-2)+...+b(B+1)x(n-B)
-a(2)y(n-1)-a(3)y(n-2)-...-a(A+1)y(n-A)

where:

• A+1 is the length of the vector a

• B+1 is the length of the vector b

• n varies between 1 and the length of the vector x.

The vector a represents the degree-na polynomial

a(1)+a(2)x+a(3)x2+...+a(A+1)xA

Examples The impulse response of a particular filter is given in the code and diagram 
below.

b = [1 0 0 1 0 1 0 1];
a = [1 0 1 1];
y = gffilter(b,a,[1,zeros(1,19)]);
stem(y);
axis([0 20 -.1 1.1])
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Algorithm For filters over GF(2) only, gffilter uses an algorithm similar to that used by 
the MATLAB function filter. You can use filter for filters over GF(2) by 
using the command below.

y = abs(rem(filter(b,a,x),2));

However, this may produce an error if a is not stable in the regular 
discrete-time system analysis and the vector x is too long, or for a high order 
filter. gffilter produces an accurate result in all cases.

See Also gfconv, gfadd, filter
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3gflineqPurpose Find a particular solution of A x = b over a prime Galois field

Syntax x = gflineq(A,b);
x = gflineq(A,b,p);
[x,vld] = gflineq(...);

Description x = gflineq(A,b) returns a particular solution of the linear equation A x = b 
over GF(2). If A is a k-by-n matrix and b is a vector of length k, then x is a vector 
of length n. Each entry of A, x, and b is either 0 or 1. If no solution exists, then 
x is empty.

x = gflineq(A,b,p) returns a particular solution of the linear equation A x = 
b over GF(p), where p is a prime number. If A is a k-by-n matrix and b is a vector 
of length k, then x is a vector of length n. Each entry of A, x, and b is an integer 
between 0 and p-1.

[x,vld] = gflineq(...) returns a flag vld that indicates the existence of a 
solution. If vld = 1, then the solution x exists and is valid; if vld = 0, then no 
solution exists.

Examples The code below produces some valid solutions of a linear equation over GF(2).

A=[1 0 1;
   1 1 0;
   1 1 1];
% An example in which the solutions are valid
[x,vld] = gflineq(A,[1;0;0])

x =

     1
     1
     0

vld =

     1
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By contrast, the command below finds that the linear equation has no 
solutions.

[x2,vld2] = gflineq(zeros(3,3),[1;0;0])
This linear equation has no solution.

x2 =

     []

vld2 =

     0

Algorithm gflineq uses Gaussian elimination.

See Also gfadd, gfdiv, gfroots, gfrank, gfconv, conv
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3gfminpolPurpose Find the minimal polynomial of an element of a Galois field

Syntax pol = gfminpol(k,m);
pol = gfminpol(k,primpoly);
pol = gfminpol(k,m,p);
pol = gfminpol(k,primpoly,p);

Description pol = gfminpol(k,m) finds the minimal polynomial of  over GF(2), where 
 is a root of the default primitive polynomial for GF(2m). m is an integer 

greater than one. The format of the output is listed below:

• If k is a nonnegative integer, then pol is a row vector that gives the 
coefficients of the minimal polynomial in order of ascending powers.

• If k is a vector of length len all of whose entries are nonnegative integers, 
then pol is a matrix having len rows; the rth row of pol gives the coefficients 

of the minimal polynomial of  in order of ascending powers.

pol = gfminpol(k,primpoly) is the same as the first syntax listed, except 
that  is a root of the primitive polynomial for GF(2m) specified by primpoly. 
primpoly is a row vector that gives the coefficients of the degree-m primitive 
polynomial in order of ascending powers.

pol = gfminpol(k,m,p) is the same as the first syntax listed, except that 2 is 
replaced by a prime number p.

pol = gfminpol(k,primpoly,p) is the same as the first syntax listed, except 
that 2 is replaced by a prime number p, and that  is a root of the primitive 
polynomial for GF(pm) specified by primpoly. primpoly is a row vector that 
gives the coefficients of the degree-m primitive polynomial in order of 
ascending powers.

Examples The syntax gfminpol(k,m,p) is used in the sample code in the section 
“Characterization of Polynomials” on page 2-101.

As another example, the code below determines which elements of GF(24) are 
also in GF(22), by considering the degrees of their minimal polynomials.

p = 2; m = 4; % Consider elements of GF(16).
primpoly = gfprimdf(4);

αk

α

αk r( )

α

α
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% Get minimal polys for all elements except 0 and 1.
k = [1:p^m-2];
minpolys = gfminpol(k,primpoly); 

% Check which minimal polys have degree 2.
gf4=[];
for ii = 1:p^m-2
   if length(gftrunc(minpolys(ii,:)))==3 % A degree-2 polynomial
      gf4=[gf4, ii];
   end
end

disp(['The elements of GF(4) are 0, 1, alpha^',...
   int2str(gf4(1)),' and alpha^',int2str(gf4(2))])
disp('where alpha is a root in GF(16) of the polynomial')
gfpretty(primpoly)

The output is below.

The elements of GF(4) are 0, 1, alpha^5 and alpha^10
where alpha is a root in GF(16) of the polynomial
 
                                           4
                                  1 + X + X 

See Also gfprimdf, gfcosets, gfroots



gfmul

3-116

3gfmulPurpose Multiply elements of a Galois field

Syntax c = gfmul(a,b);
c = gfmul(a,b,p);
c = gfmul(a,b,field);

Description The gfmul function multiplies elements of a Galois field. (To multiply 
polynomials over a Galois field, use gfconv instead.)

c = gfmul(a,b) multiplies a and b in GF(2). Each entry of a and b is either 0 
or 1. If a and b are matrices of the same size, then the function treats each 
element independently.

c = gfmul(a,b,p) multiplies a and b in GF(p). Each entry of a and b is 
between 0 and p-1. p is a prime number. If a and b are matrices of the same size, 
then the function treats each element independently.

c = gfmul(a,b,field) multiplies a and b in GF(pm), where p is a prime 
number and m is a positive integer. a and b represent elements of GF(pm) in 
exponential format relative to some primitive element of GF(pm). field is the 
matrix listing all elements of GF(pm), arranged relative to the same primitive 
element. c is the exponential format of the product, relative to the same 
primitive element. See “Representing Elements of Galois Fields” on page 2-90 
for an explanation of these formats. If a and b are matrices of the same size, 
then the function treats each element independently.

Examples The section “Arithmetic in Galois Fields” on page 2-97 contains examples. Also, 
the code below shows that , where  is a root of the primitive 
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);
a = gfmul(2,4,field)

a =

     6

See Also gfdiv, gfdeconv, gfadd, gfsub, gftuple

α2 α4⋅ α6
= α
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3gfplusPurpose Add elements of a Galois field of characteristic two

Syntax k = gfplus(a,b,fvec,ivec);

Description k = gfplus(a,b,fvec,ivec) adds a and b in GF(2m), using the exponential 
format to represent inputs and outputs. If a and b are matrices, then they must 
have the same dimensions, and gfplus adds them element-by-element. See 
“Representing Elements of Galois Fields” on page 2-90 for an explanation of the 
exponential format.

fvec and ivec are vectors of length 2m.  The entries in both are integers 
between 0 and 2m-1. fvec contains the same information as the field 
parameter as used by gfadd, except that fvec has been condensed into a vector. 
To compute fvec and ivec, define m and then use the commands below.

fvec = gftuple([−1 : 2^m−2]',m) ∗ 2.^[0 : m−1]';
ivec(fvec + 1) = 0 : 2^m - 1;

Alternatively, define a primitive polynomial vector pol and then use the 
commands below. See gfprimfd for information about defining pol.

fvec = gftuple([−1 : 2^m−2]',pol) ∗ 2.^[0 : m−1]';
ivec(fvec + 1) = 0 : 2^m - 1;

Examples This example adds two matrices, each of which contains random nonzero 
elements of GF(25).

m = 5;
a = randint(3,6,2^m-1,1234); % Create a 3-by-6 matrix in GF(2^5).
b = randint(3,6,2^m-1);
fvec = gftuple([-1 : 2^m - 2]',m)*2.^[0 : m-1]';
ivec(fvec + 1) = 0 : 2^m - 1;
aplusb = gfplus(a,b,fvec,ivec) % Add.

aplusb =

    22    25     4    23     9    29
     9    30    24    23  -Inf    19
    15    17    10    12    25    30

See Also gfadd, gfsub
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3gfprettyPurpose Display a polynomial in traditional format

Syntax gfpretty(a)
gfpretty(a,st)
gfpretty(a,st,n)

Description gfpretty(a) displays a polynomial in a traditional format, using X as the 
variable and the entries of the row vector a as the coefficients in order of 
ascending powers. The polynomial is displayed in order of ascending powers. 
Terms having a zero coefficient are not displayed.

gfpretty(a,st) is the same as the first syntax listed, except that the content 
of the string st is used as the variable instead of X.

gfpretty(a,st,n) is the same as the first syntax listed, except that the 
content of the string st is used as the variable instead of X, and each line of the 
display has width n instead of the default value of 79.

Note  For all syntaxes: If you do not use a fixed-width font, then the spacing 
in the display might not look correct.

Examples The code below displays statements about the elements of GF(16).

p = 2; m = 4;
ii = randint(1,1,[1,p^m-2]); % Random exponent for prim element
primpolys = gfprimfd(m,'all');
[rows, cols] = size(primpolys);
jj = randint(1,1,[1,rows]); % Random primitive polynomial

disp('If A is a root of the primitive polynomial')
gfpretty(primpolys(jj,:)) % Polynomial in X
disp('then the element')
gfpretty([zeros(1,ii),1],'A') % The polynomial A^ii
disp('can also be expressed as')
gfpretty(gftuple(ii,m,p),'A') % Polynomial in A

Below is a sample of the output.
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If A is a root of the primitive polynomial
 
                                       3    4
                                  1 + X  + X 
then the element
 
                                       5
                                      A 
can also be expressed as
 
                                         2
                                    A + A 

See Also gftuple, gfprimdf
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3gfprimckPurpose Check whether a polynomial over a Galois field is primitive

Syntax ck = gfprimck(a);
ck = gfprimck(a,p);

Description ck = gfprimck(a) returns a flag ck that indicates whether a polynomial over 
GF(2) is irreducible or primitive. a is a row vector that gives the coefficients of 
the polynomial in order of ascending powers. Each coefficient is either 0 or 1, 
since the field is GF(2). If m is the degree of the polynomial, then the output ck 
is:

• -1 if a is not an irreducible polynomial

• 0 if a is irreducible but not a primitive polynomial for GF(2m)

• 1 if a is a primitive polynomial for GF(2m)

This function considers the zero polynomial to be “not irreducible” and 
considers all polynomials of degree zero or one to be primitive.

ck = gfprimck(a,p) is the same as the syntax listed above, except that 2 is 
replaced by a prime number p.

Examples The section “Characterization of Polynomials” on page 2-101 contains 
examples.

Algorithm An irreducible polynomial over GF(p) of degree at least 2 is primitive if and 
only if it does not divide -1 + xk for any positive integer k smaller than pm-1.

See Also gfprimfd, gfprimdf, gftuple, gfminpol, gfadd

References Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital 
Communications. New York: Plenum Press, 1981.
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3gfprimdfPurpose Provide default primitive polynomials for a Galois field

Syntax pol = gfprimdf(m);
pol = gfprimdf(m,p);

Description pol = gfprimdf(m) returns the row vector that gives the coefficients, in order 
of ascending powers, of MATLAB’s default primitive polynomial for GF(2m). m 
is a positive integer.

pol = gfprimdf(m,p) returns the row vector that gives the coefficients, in 
order of ascending powers, of MATLAB’s default primitive polynomial for 
GF(pm). m is a positive integer and p is a prime number.

Examples The command below shows that 2 + x + x2  is the default primitive polynomial 
for GF(52).

pol = gfprimdf(2,5)

pol =

     2     1     1

The code below displays the default primitive polynomial for each of the fields 
GF(2m), where m ranges between 3 and 5.

for m = 3:5
   gfpretty(gfprimdf(m))
end
 
                                           3
                                  1 + X + X 
 
                                           4
                                  1 + X + X 
 
                                       2    5
                                  1 + X  + X 

See Also gfprimck, gfprimfd, gftuple, gfminpol
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3gfprimfdPurpose Find primitive polynomials for a Galois field

Syntax pol = gfprimfd(m);
pol = gfprimfd(m,opt);
pol = gfprimfd(m,opt,p);

Description For all syntaxes:

• If m = 1, then pol = [1 1].

• A polynomial is represented as a row containing the coefficients in order of 
ascending powers.

pol = gfprimfd(m) returns the row vector representing one primitive 
polynomial for GF(2m). m is a positive integer.

pol = gfprimfd(m,opt) searches for one or more primitive polynomials for 
GF(2m), where m is a positive integer. If m > 1, then the output pol depends on 
the argument opt as shown in the table below.

pol = gfprimfd(m,opt,p) is the same as pol = gfprimfd(m,opt) except that 
2 is replaced by a prime number p.

opt Significance of pol Format of pol

'min' One primitive polynomial for GF(2m) 
having the smallest possible number 
of nonzero terms

The row vector representing the 
polynomial

'max' One primitive polynomial for GF(2m) 
having the greatest possible number 
of nonzero terms

The row vector representing the 
polynomial

'all' All primitive polynomials for GF(2m) A matrix, each row of which represents 
one such polynomial

A positive 
integer

All primitive polynomials for GF(2m) 
that have opt nonzero terms

A matrix, each row of which represents 
one such polynomial
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Examples The code below seeks primitive polynomials for GF(32) having various other 
properties. Notice that fourterms is empty because no primitive polynomial for 
GF(32) has exactly four nonzero terms. Also notice that manyterms represents 
a single polynomial having five terms, while fiveterms represents all of the 
five-term primitive polynomials for GF(32).

p = 2; m = 5; % Work in GF(32).
manyterms = gfprimfd(5,'max')
fiveterms = gfprimfd(5,5)
fourterms = gfprimfd(5,4)

The output is below.

manyterms =

     1     1     1     1     0     1

fiveterms =

     1     1     1     1     0     1
     1     1     1     0     1     1
     1     1     0     1     1     1
     1     0     1     1     1     1

No primitive polynomial satisfies the given constraints.

fourterms =

     []

Algorithm gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max', or 
omitted, then polynomials are constructed by converting decimal integers to 
base p. Based on the decimal ordering, gfprimfd returns the first polynomial it 
finds that satisfies the appropriate conditions.

See Also gfprimck, gfprimdf, gftuple, gfminpol
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3gfrankPurpose Compute the rank of a matrix over a Galois field

Syntax rk = gfrank(A);
rk = gfrank(A,p);

Description rk = gfrank(A) calculates the rank of the matrix A in GF(2).

rk = gfrank(A,p) calculates the rank of the matrix A in GF(p), where p is a 
prime number.

Algorithm gfrank uses an algorithm similar to Gaussian elimination.

Examples In the code below, gfrank says that the matrix A has less than full rank. This 
conclusion makes sense because the determinant of A is zero mod 2.

A=[1 0 1;
   1 1 0;
   0 1 1];
det_a = det(A); % Ordinary determinant of A
detmod2 = rem(det(A),2); % Determinant mod 2
rank2 = gfrank(A);
disp(['determinant = ',num2str(det_a)])
disp(['determinant mod 2 is ',num2str(detmod2)])
disp(['rank over GF(2) is ',num2str(rank2)])

The output is below.

determinant = 2
determinant mod 2 is 0
rank over GF(2) is 2

Notice that gflineq finds only the trivial solution to the equation Ax = 0, even 
though the output above implies that there are infinitely many other solutions.

sol = gflineq(A,[0;0;0])'

sol =

     0     0     0

See Also gflineq
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3gfrepcovPurpose Convert one GF(2) polynomial representation to another

Syntax polystandard = gfrepcov(poly2)

Description Two logical ways to represent polynomials over GF(2) are listed below:

1 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

.

Each entry A_k is either one or zero.

2 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

.

Each entry A_k is a nonnegative integer. All entries must be distinct.

Format 1 is the standard form used by the Galois field functions in this toolbox, 
but there are some cases in which format 2 is more convenient.

polystandard = gfrepcov(poly2) converts from the second format to the 
first, for polynomials of degree at least 2. poly2 and polystandard are row 
vectors. The entries of poly2 are distinct integers, and at least one entry must 
exceed 1. Each entry of polystandard is either 0 or 1.

Note  If poly2 is a binary row vector, then gfrepcov assumes that it is 
already in Format 1 above and returns it unaltered.

Examples The command below converts the representation format of the polynomial 
1 + x2 + x5.

polystandard = gfrepcov([0 2 5])

polystandard =

     1     0     1     0     0     1

See Also gfpretty

A_0 A_1x A_2x2 … A_(m-1)xm 1–+ + + +

xA_0 xA_1 xA_2 … xA_(m-1)+ + + +
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3gfrootsPurpose Find the roots of a polynomial over a prime Galois field

Syntax rt = gfroots(f);
rt = gfroots(f,m);
rt = gfroots(f,primpoly);
rt = gfroots(f,m,p);
rt = gfroots(f,primpoly,p);
[rt,rt_tuple] = gfroots(...);
[rt,rt_tuple,field] = gfroots(...);

Description For all syntaxes, f is a row vector that gives the coefficients, in order of 
ascending powers, of a degree-d polynomial.

Note  gfroots lists each root exactly once, ignoring multiplicities of roots.

rt = gfroots(f) finds roots in GF(2d) of the polynomial that f represents. rt 
is a column vector each of whose entries is the exponential format of a root. The 
exponential format is relative to a root of the default primitive polynomial for 
GF(2d).

rt = gfroots(f,m) finds roots in GF(2m) of the polynomial that f represents. 
m is an integer greater than or equal to d. rt is a column vector each of whose 
entries is the exponential format of a root. The exponential format is relative 
to a root of the default primitive polynomial for GF(2m).

rt = gfroots(f,primpoly) finds roots in GF(2m) of the polynomial that f 
represents. rt is a column vector each of whose entries is the exponential 
format of a root. The exponential format is relative to a root of the degree-m 
primitive polynomial for GF(2m) that primpoly represents. m is an integer 
greater than or equal to d.

rt = gfroots(f,m,p) is the same as rt = gfroots(f,m) except that 2 is 
replaced by a prime number p.

rt = gfroots(f,primpoly,p) is the same as rt = gfroots(f,primpoly) 
except that 2 is replaced by a prime number p.
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[rt,rt_tuple] = gfroots(...) returns an additional matrix rt_tuple, 
whose kth row is the polynomial format of the root rt(k). The polynomial and 
exponential formats are both relative to the same primitive element.

[rt,rt_tuple,field] = gfroots(...) returns additional matrices rt_tuple 
and field. rt_tuple is described in the paragraph above. field gives the list 
of elements of the extension field. The list of elements, the polynomial format, 
and the exponential format are all relative to the same primitive element.

Note  For a description of the various formats that gfroots uses, see 
“Representing Elements of Galois Fields” on page 2-90.

Examples The section, “Roots of Polynomials” on page 2-102, contains a description and 
example of the use of gfroots.

As another example, the code below finds the polynomial format of the roots of 
the primitive polynomial 1 + x3 + x4 for GF(16). It then displays the roots in 
traditional form as polynomials in alpha. Since primpoly is both the primitive 
polynomial and the polynomial whose roots are sought, alpha itself is a root.

p = 2; m = 4;
primpoly = [1 0 0 1 1]; % A primitive polynomial for GF(16)
f = primpoly; % Find roots of the primitive polynomial.
[rt,rt_tuple] = gfroots(f,primpoly,p);
% Display roots as polynomials in alpha.
for ii = 1:length(rt_tuple)
   gfpretty(rt_tuple(ii,:),'alpha')
end

See Also gfprimdf, gflineq
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3gfsubPurpose Subtract polynomials over a Galois field

Syntax c = gfsub(a,b);
c = gfsub(a,b,p);
c = gfsub(a,b,p,len);
c = gfsub(a,b,field);

Description c = gfsub(a,b) calculates a minus b, where a and b represent polynomials 
over GF(2). The inputs and output are row vectors that give the coefficients of 
the corresponding polynomials in order of ascending powers. Each coefficient is 
either 0 or 1, since the field is GF(2). If a and b are matrices of the same size, 
then the function treats each row independently.

c = gfsub(a,b,p) calculates a minus b, where a and b represent polynomials 
over GF(p) and p is a prime number. a, b, and c are row vectors that give the 
coefficients of the corresponding polynomials in order of ascending powers. 
Each coefficient is between 0 and p-1. If a and b are matrices of the same size, 
then the function treats each row independently.

c = gfsub(a,b,p,len) subtracts row vectors as in the syntax above, except 
that it returns a row vector of length len. The output c is a truncated or 
extended representation of the answer. If the row vector corresponding to the 
answer has fewer than len entries (including zeros), then extra zeros are added 
at the end; if it has more than len entries, then entries from the end are 
removed.

c = gfsub(a,b,field) calculates a minus b, where a and b are the 
exponential format of two elements of GF(pm), relative to some primitive 
element of GF(pm). p is a prime number and m is a positive integer. field is 
the matrix listing all elements of GF(pm), arranged relative to the same 
primitive element. c is the exponential format of the answer, relative to the 
same primitive element. See “Representing Elements of Galois Fields” on page 
2-90 for an explanation of these formats. If a and b are matrices of the same 
size, then the function treats each element independently.

Examples In the code below, differ is the difference of 2 + 3x + x2 and 4 + 2x + 3x2 over 
GF(5), and linpart is the degree-one part of differ.

differ = gfsub([2 3 1],[4 2 3],5)
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differ =

     3     1     3

linpart = gfsub([2 3 1],[4 2 3],5,2)

linpart =

     3     1

The code below shows that , where  is a root of the primitive 
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);
d = gfsub(2,4,field)

d =

     7

See Also gfadd, gfconv, gfmul, gfdeconv, gfdiv, gftuple

α2 α4
– α7

= α
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3gftruncPurpose Minimize the length of a polynomial representation

Syntax c = gftrunc(a);

Description c = gftrunc(a) truncates a row vector, a, that gives the coefficients of a GF(p) 
polynomial in order of ascending powers. If a(k) = 0 whenever k > d + 1, then 
the polynomial has degree d. The row vector c omits these high-order zeros and 
thus has length d + 1.

Examples In the code below, zeros are removed from the end, but not from the beginning 
or middle, of the row-vector representation of x2 + 2x3 + 3x4 + 4x7 + 5x8.

c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])

c =

     0     0     1     2     3     0     0     4     5

See Also gfadd, gfsub, gfconv, gfdeconv, gftuple
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3gftuplePurpose Simplify or convert the format of elements of a Galois field

Syntax tp = gftuple(a,m);
tp = gftuple(a,primpoly);
tp = gftuple(a,m,p);
tp = gftuple(a,primpoly,p);
tp = gftuple(a,primpoly,p,prim_ck);
[tp,expform] = gftuple(...);

Description For All Syntaxes
gftuple serves to simplify the polynomial or exponential format of Galois field 
elements, or to convert from one format to another. For an explanation of the 
formats that gftuple uses, see “Representing Elements of Galois Fields” on 
page 2-90.

In this discussion, the format of an element of GF(pm) is called “simplest” if all 
exponents of the primitive element are:

• Between 0 and m-1 for the polynomial format

• Either -Inf, or between 0 and pm-2 for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element of a 
Galois field. The format of a determines how MATLAB interprets it:

• If a is a column of integers, then MATLAB interprets each row as an 
exponential format of an element. Negative integers are equivalent to -Inf 
in that they all represent the zero element of the field.

• If a has more than one column, then MATLAB interprets each row as a 
polynomial format of an element. (Each entry of a must be an integer 
between 0 and p-1, where p is 2 if not specified as an input.)

The exponential or polynomial formats mentioned above are all relative to a 
primitive element specified by the second input argument. The second 
argument is described below.

For Specific Syntaxes

tp = gftuple(a,m) returns the simplest polynomial format of the elements 
that a represents, where the kth row of tp corresponds to the kth row of a. The 
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formats are relative to a root of the default primitive polynomial for GF(2m). m 
is a positive integer. If possible, the default primitive polynomial is used to 
simplify the polynomial formats.

tp = gftuple(a,primpoly) returns the simplest polynomial format of the 
element that a represents, where the kth row of tp corresponds to the kth row 
of a. The formats are relative to a root of the primitive polynomial whose 
coefficients are given, in order of ascending powers, by the row vector 
primpoly. If possible, this primitive polynomial is used to simplify the 
polynomial formats.

tp = gftuple(a,m,p) is the same as tp = gftuple(a,m) except that 2 is 
replaced by a prime number p.

tp = gftuple(a,primpoly,p) is the same as tp = gftuple(a,primpoly) 
except that 2 is replaced by a prime number p.

tp = gftuple(a,primpoly,p,prim_ck) is the same as tp = 
gftuple(a,primpoly,p) except that gftuple checks whether primpoly 
represents a polynomial that is indeed primitive. If not, then gftuple 
generates an error and tp is not returned. The input argument prim_ck can be 
any number or string; only its existence matters.

[tp,expform] = gftuple(...) returns the additional matrix expform. The 
kth row of expform is the simplest exponential format of the element that the 
kth row of a represents. All other features are as described in earlier parts of 
this “Description” section, depending on the input arguments.

Examples Some examples are in these subsections of “Galois Field Computations” on 
page 2-89:

• “List of All Elements of a Galois Field” on page 2-91 (end of section)

• “Converting to Simplest Polynomial Format” on page 2-94

• “Converting to Simplest Exponential Format” on page 2-96

As another example, the gftuple command below generates a list of elements 
of GF(pm), arranged relative to a root of the default primitive polynomial. Some 
functions in this toolbox use such a list as an input argument.
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p = 5; % Or any prime number
m = 4; % Or any positive integer
field = gftuple([-1:p^m-2]',m,p);

Finally, the two commands below illustrate the influence of the shape of the 
input matrix. In the first command, a column vector is treated as a sequence of 
elements expressed in exponential format. In the second command, a row 
vector is treated as a single element expressed in polynomial format.

tp1 = gftuple([0; 1],3)

tp1 =

     1     0     0
     0     1     0

tp2 = gftuple([0, 0, 0, 1],3)

tp2 =

     1     1     0

The outputs reflect that, according to the default primitive polynomial for 
GF(8), the relations below are true.

Algorithm gftuple uses recursive callbacks to determine the exponential format.

See Also gfadd, gfmul, gfconv, gfdiv, gfdeconv, gfprimdf

α0 1 0α 0α2
+ +=

α1 0 1α 0α2
+ +=

0 0α 0α2 α3
+ + + 1 α 0α2

+ +=
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3gfweightPurpose Calculate the minimum distance of a linear block code

Syntax wt = gfweight(genmat);
wt = gfweight(genmat,'gen');
wt = gfweight(parmat,'par');
wt = gfweight(genpoly,n);

Description The minimum distance, or minimum weight, of a linear block code is defined 
as the smallest positive number of nonzero entries in any n-tuple that is a 
codeword.

wt = gfweight(genmat) returns the minimum distance of the linear block 
code whose generator matrix is genmat.

wt = gfweight(genmat,'gen') returns the minimum distance of the linear 
block code whose generator matrix is genmat.

wt = gfweight(parmat,'par') returns the minimum distance of the linear 
block code whose parity-check matrix is parmat.

wt = gfweight(genpoly,n) returns the minimum distance of the cyclic code 
whose codeword length is n and whose generator polynomial is represented by 
genpoly. genpoly is a row vector that gives the coefficients of the generator 
polynomial in order of ascending powers.

Examples The commands below illustrate three different ways to compute the minimum 
distance of a (7,4) cyclic code.

n = 7;
% Generator polynomial of (7,4) cyclic code
genpoly = cyclpoly(n,4);
[parmat, genmat] = cyclgen(n,genpoly);
wts = [gfweight(genmat,'gen'),gfweight(parmat,'par'),...
    gfweight(genpoly,n)]

wts =

     3     3     3

See Also hammgen, cyclpoly, bchpoly
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3hammgenPurpose Produce parity-check and generator matrices for Hamming code

Syntax h = hammgen(m);
h = hammgen(m,pol);
[h,g] = hammgen(...);
[h,g,n,k] = hammgen(...);

Description For all syntaxes, the codeword length is n. n has the form 2m-1 for some positive 
integer m greater than or equal to 3. The message length, k, has the form n-m.

h = hammgen(m) produces an m-by-n parity-check matrix for a Hamming code 
having codeword length n = 2m-1. m is a positive integer greater than or equal 
to 3. The message length of the code is n-m. The binary primitive polynomial 
used to produce the Hamming code is MATLAB’s default primitive polynomial 
for GF(2m), represented by gfprimdf(m).

h = hammgen(m,pol) produces an m-by-n parity-check matrix for a Hamming 
code having codeword length n = 2m-1. m is a positive integer greater than or 
equal to 3. The message length of the code is n-m. pol is a row vector that gives 
the coefficients, in order of ascending powers, of the binary primitive 
polynomial for GF(2m) that is used to produce the Hamming code. hammgen 
produces an error if pol represents a polynomial that is not, in fact, primitive.

[h,g] = hammgen(...) is the same as h = hammgen(...) except that it also 
produces the k-by-n generator matrix g that corresponds to the parity-check 
matrix h. k, the message length, equals n-m, or, 2m-1-m.

[h,g,n,k] = hammgen(...) is the same as [h,g] = hammgen(...) except that 
it also returns the codeword length n and the message length k.

Note  If your value of m is less than 25 and if your primitive polynomial is 
MATLAB’s default primitive polynomial for GF(2m), then the syntax 
hammgen(m) is likely to be faster than the syntax hammgen(m,pol).

Examples The command below exhibits the parity-check and generator matrices for a 
Hamming code with codeword length 7 = 23-1 and message length 4 = 7-3.
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[h,g,n,k] = hammgen(3)

h =

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

g =

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1

n =

     7

k =

     4

The command below, which uses 1 + x2 + x3 as the primitive polynomial for 
GF(23), shows that the parity-check matrix depends on the choice of primitive 
polynomial. Notice that h1 below is different from h in the example above.

h1 = hammgen(3,[1 0 1 1])

h1 =

     1     0     0     1     1     1     0
     0     1     0     0     1     1     1
     0     0     1     1     1     0     1
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Algorithm Unlike gftuple which processes one m-tuple at a time, hammgen generates the 
entire sequence from 0 to 2m−1. The computation algorithm uses all previously 
computed values to produce the computation result.

See Also gftuple, gfrepcov, gfprimck, gfprimfd, gfprimdf
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3hank2sysPurpose Convert a Hankel matrix to a linear system model

Syntax [num,den] = hank2sys(h,ini,tol)
[num,den,sv] = hank2sys(h,ini,tol)
[a,b,c,d] = hank2sys(h,ini,tol)
[a,b,c,d,sv] = hank2sys(h,ini,tol)

Description [num,den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a linear 
system transfer function with numerator num and denominator den. The 
vectors num and den list the coefficients of their respective polynomials in order 
of ascending exponents. ini is the system impulse at time zero. If tol > 1, then 
tol is the order of the conversion. If tol < 1, then tol is the tolerance in 
selecting the conversion order based on the singular values. If you omit tol, 
then its default value is 0.01. This conversion uses the singular value 
decomposition method.

[num,den,sv] = hank2sys(h,ini,tol) returns a vector sv that lists the 
singular values of h.

[a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to a 
corresponding linear system state-space model. a, b, c, and d are matrices. The 
input parameters are the same as in the first syntax above.

[a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax above, 
except that sv is a vector that lists the singular values of h.

Examples h = hankel([1 0 1]);
[num,den,sv] = hank2sys(h,0,.01)

num =

         0    1.0000    0.0000    1.0000

den =

    1.0000    0.0000    0.0000    0.0000
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sv =

    1.6180
    1.0000
    0.6180

See Also hilbiir, hankel, rcosflt
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3hilbiirPurpose Design a Hilbert transform IIR filter

Syntax hilbiir;
hilbiir(ts);
hilbiir(ts,dly);
hilbiir(ts,dly,bandwidth);
hilbiir(ts,dly,bandwidth,tol);
[num,den] = hilbiir(...);
[num,den,sv] = hilbiir(...);
[a,b,c,d] = hilbiir(...);
[a,b,c,d,sv] = hilbiir(...);

Description The function hilbiir designs a Hilbert transform filter. The output is either:

• A plot of the filter’s impulse response, or

• A quantitative characterization of the filter, using either a transfer function 
model or a state-space model

Background Information
An ideal Hilbert transform filter has the transfer function H(s) = -j sgn(s), 
where sgn(.) is the signum function (sign in MATLAB). The impulse response 
of the Hilbert transform filter is

Since the Hilbert transform filter is a noncausal filter, the hilbiir function 
introduces a group delay, dly. A Hilbert transform filter with this delay has the 
impulse response

Choosing a Group Delay Parameter
The filter design is an approximation. If you provide the filter’s group delay as 
an input argument, then these two suggestions can help improve the accuracy 
of the results:

h t( ) 1
πt
-----=

h t( ) 1
π t dly–( )
---------------------------=
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• Choose the sample time ts and the filter’s group delay dly so that dly is at 
least a few times larger than ts and rem(dly,ts) = ts/2. For example, you 
can set ts to 2*dly/N, where N is a positive integer.

• At the point t = dly, the impulse response of the Hilbert transform filter can 
be interpreted as 0, −Inf, or Inf. If hilbiir encounters this point, then it sets 
the impulse response there to zero. To improve accuracy, avoid the point 
t = dly. 

Syntaxes for Plots
Each of these syntaxes produces a plot of the impulse response of the filter that 
the hilbiir function designs, as well as the impulse response of a 
corresponding ideal Hilbert transform filter.

hilbiir plots the impulse response of a fourth-order digital Hilbert transform 
filter with a 1-second group delay. The sample time is 2/7 seconds. In this 
particular design, the tolerance index is 0.05. The plot also displays the 
impulse response of the ideal Hilbert transform filter with a 1-second group 
delay.

hilbiir(ts) plots the impulse response of a fourth-order Hilbert transform 
filter with a sample time of ts seconds and a group delay of ts*7/2 seconds. 
The tolerance index is 0.05. The plot also displays the impulse response of the 
ideal Hilbert transform filter having a sample time of ts seconds and a group 
delay of ts*7/2 seconds.

hilbiir(ts,dly) is the same as the syntax above, except that the filter’s group 
delay is dly for both the ideal filter and the filter that hilbiir designs. See 
“Choosing a Group Delay Parameter” above for guidelines on choosing dly.

hilbiir(ts,dly,bandwidth) is the same as the syntax above, except that 
bandwidth specifies the assumed bandwidth of the input signal and that the 
filter design might use a compensator for the input signal. If bandwidth = 0 or 
bandwidth > 1/(2*ts), then hilbiir does not use a compensator.

hilbiir(ts,dly,bandwidth,tol) is the same as the syntax above, except that 
tol is the tolerance index. If tol < 1, then the order of the filter is determined 
by
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If tol > 1, then the order of the filter is tol.

Syntaxes for Transfer Function and State-Space Quantities
Each of these syntaxes produces quantitative information about the filter that 
hilbiir designs, but does not produce a plot. The input arguments for these 
syntaxes (if you provide any) are the same as those described in the “Syntaxes 
for Plots” section above.

[num,den] = hilbiir(...) outputs the numerator and denominator of the 
IIR filter’s transfer function.

[num,den,sv] = hilbiir(...) outputs the numerator and denominator of 
the IIR filter’s transfer function, and the singular values of the Hankel matrix 
that hilbiir uses in the computation.

[a,b,c,d] = hilbiir(...) outputs the discrete-time state-space model of the 
designed Hilbert transform filter. a, b, c, and d are matrices.

[a,b,c,d,sv] = hilbiir(...) outputs the discrete-time state-space model of 
the designed Hilbert transform filter, and the singular values of the Hankel 
matrix that hilbiir uses in the computation.

Algorithm The hilbiir function calculates the impulse response of the ideal Hilbert 
transform filter response with a group delay. It fits the response curve using a 
singular-value decomposition method. See the book by Kailath listed below.

Examples At the MATLAB prompt, type hilbiir or [num,den] = hilbiir for an example 
using the function’s default values.

See Also grpdelay

References Kailath, Thomas. Linear Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1980.

truncated-singular-value
maximum-singular-value
---------------------------------------------------------------------- tol<
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3istrellisPurpose Check if the input is a valid trellis structure

Syntax [isok,status] = istrellis(s);

Description [isok,status] = istrellis(s) checks if the input s is a valid trellis 
structure.  If the input is a valid trellis structure, then isok is 1 and status is 
an empty string. Otherwise, isok is 0 and status is a string that indicates why 
s is not a valid trellis structure.

A valid trellis structure is a MATLAB structure whose fields are as in the table 
below.

In the nextStates matrix, each entry is an integer between 0 and numStates-1. 
The element in the sth row and uth column denotes the next state when the 
starting state is s-1 and the input bits have decimal representation u-1.  To 
convert the input bits to a decimal value, use the first input bit as the most 
significant bit (MSB).  For example, the second column of the nextStates 
matrix stores the next states when the current set of input values is {0,...,0,1}.

To convert the state to a decimal value, use this rule: If k exceeds 1, then the 
shift register that receives the first input stream in the encoder provides the 
least significant bits in the state number, while the shift register that receives 
the last input stream in the encoder provides the most significant bits in the 
state number.

Table 3-16:  Fields of a Valid Trellis Structure for a Rate k/n Code

Field in Trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to the encoder: 2k

numOutputsymbols Scalar Number of output symbols from the encoder: 2n

numStates Scalar Number of states in the encoder

nextStates numStates-by-2k 
matrix

Next states for all combinations of current state 
and current input

outputs numStates-by-2k 
matrix

Outputs (in octal) for all combinations of 
current state and current input
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In the outputs matrix, the element in the sth row and uth column denotes the 
encoder’s output when the starting state is s-1 and the input bits have decimal 
representation u-1. To convert to decimal value, use the first output bit as the 
MSB.

Examples These commands assemble the fields into a very simple trellis structure, and 
then verify the validity of the trellis structure.

trellis.numInputSymbols = 2;
trellis.numOutputSymbols = 2;
trellis.numStates = 2;
trellis.nextStates = [0 1;0 1];
trellis.outputs = [0 0;1 1];
[isok,status] = istrellis(trellis)

isok =

     1

status =

     ''

See Also poly2trellis, struct, convenc, vitdec
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3lloydsPurpose Optimize quantization parameters using the Lloyd algorithm

Syntax [partition,codebook] = lloyds(trainingset,initcodebook);
[partition,codebook] = lloyds(trainingset,len);
[partition,codebook] = lloyds(trainingset,...,tol);
[partition,codebook,distor] = lloyds(...);
[partition,codebook,distor,reldistor] = lloyds(...);

Description [partition,codebook] = lloyds(trainingset,initcodebook) optimizes 
the scalar quantization parameters partition and codebook for the training 
data in the vector trainingset. initcodebook, a vector of length at least 2, is 
the initial guess of the codebook values. The output codebook is a vector of the 
same length as initcodebook. The output partition is a vector whose length 
is one less than the length of codebook.

See either “Representing Quantization Parameters” on page 2-14 or the 
reference page for quantiz in this chapter, for a description of the formats of 
partition and codebook. 

Note  lloyds optimizes for the data in trainingset. For best results, 
trainingset should be similar to the data that you plan to quantize.

[partition,codebook] = lloyds(trainingset,len) is the same as the first 
syntax, except that the scalar argument len indicates the size of the vector 
codebook. This syntax does not include an initial codebook guess.

[partition,codebook] = lloyds(trainingset,...,tol) is the same as the 
two syntaxes above, except that tol replaces 10-7 in condition 1 of the algorithm 
description below.

[partition,codebook,distor] = lloyds(...) returns the final mean 
square distortion in the variable distor.

[partition,codebook,distor,reldistor] = lloyds(...) returns a value 
reldistor that is related to the algorithm’s termination. In case 1 of “Algorithm” 
below, reldistor is the relative change in distortion between the last two 
iterations. In case 2 , reldistor is the same as distor.
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Examples The code below optimizes the quantization parameters for a sinusoidal 
transmission via a 3-bit channel. Since the typical data is sinusoidal, 
trainingset is a sampled sine wave. Since the channel can transmit 3 bits at 
a time, lloyds prepares a codebook of length 23.

% Generate a complete period of a sinusoidal signal.
x = sin([0:1000]∗pi/500);
[partition,codebook] = lloyds(x,2^3)

partition =

   -0.8540   -0.5973   -0.3017    0.0031    0.3077    0.6023    0.8572

codebook =

  Columns 1 through 7 

   -0.9504   -0.7330   -0.4519   -0.1481    0.1558    0.4575    0.7372

  Column 8 

    0.9515

Algorithm lloyds uses an iterative process to try to minimize the mean square distortion. 
The optimization processing ends when either:

1 The relative change in distortion between iterations is less than 10-7, or

2 The distortion is less than eps*max(trainingset), where eps is MATLAB’s 
floating-point relative accuracy

See Also quantiz, dpcmopt

References S. P. Lloyd. “Least Squares Quantization in PCM.” IEEE Transactions on 
Information Theory. Vol IT-28, March 1982, 129-137.

J. Max. “Quantizing for Minimum Distortion.” IRE Transactions on 
Information Theory. Vol. IT-6, March 1960, 7-12.
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3marcumqPurpose Generalized Marcum Q function

Syntax Q = marcumq(a,b);
Q = marcumq(a,b,m);

Description Q = marcumq(a,b) computes the Marcum Q function of a and b, defined by

where a and b are nonnegative real numbers. In this expression, I0 is the 
modified Bessel function of the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by

where a and b are nonnegative real numbers, and m is a nonnegative integer. 
In this expression, Im-1 is the modified Bessel function of the first kind of order 
m-1.

See Also besseli; ncx2cdf (Statistics Toolbox)

References Cantrell, P. E. and A. K. Ojha, “Comparison of Generalized Q-Function 
Algorithms.” IEEE Transactions on Information Theory, vol. IT-33, July 1987, 
591-596.

Marcum, J. I. “A Statistical Theory of Target Detection by Pulsed Radar:  
Mathematical Appendix.” RAND Corporation, Santa Monica, CA, Research 
Memorandum RM-753, July 1, 1948. Reprinted in IRE Transactions on 
Information Theory, vol. IT-6, April 1960, 59-267.

McGee, W. F. “Another Recursive Method of Computing the Q Function.” IEEE 
Transactions on Information Theory, vol. IT-16, July 1970, 500-501.
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3modmap Purpose Map a digital signal to an analog signal

Syntax modmap('method',...);
y = modmap(x,Fd,Fs,'ask',M);
y = modmap(x,Fd,Fs,'fsk',M,tone);
y = modmap(x,Fd,Fs,'msk');
y = modmap(x,Fd,Fs,'psk',M);
y = modmap(x,Fd,Fs,'qask',M);
y = modmap(x,Fd,Fs,'qask/arb',inphase,quadr);
y = modmap(x,Fd,Fs,'qask/cir',numsig,amp,phs);

Optional 
Inputs

Description The digital modulation process consists of two steps: mapping the digital signal 
to an analog signal and modulating this analog signal. The function modmap 
performs the first step. You can perform the second step using amod, amodce, or 
your own custom modulator. The table below lists the digital modulation 
schemes that modmap supports.

To Plot a Signal Constellation

modmap('method',...) creates a plot that characterizes the M-ary modulation 
method that ’method’ specifies. ’method’ is one of the entries in the 

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Modulation Scheme Value of ’method’

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'
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right-hand column of the table above. If ’method’ is a value other than ’fsk’ or 
’msk’, then the plot shows the signal constellation; otherwise, it shows the 
spectrum.

For most methods, the input parameters that follow ’method’ in this syntax 
are the same as those that follow ’method’ in the corresponding mapping 
syntax. For more information about them, see the section “To Map a Digital 
Signal (Specific Syntax Information)” below.

However, if ’method’ is 'msk', then the syntax is

modmap('msk',Fd)

where Fd is the sampling rate of the message signal.

To Map a Digital Signal (General Information)
The generic syntax y = modmap(x,Fd,Fs,...) maps the digital message signal 
x onto an analog signal. x is a matrix of nonnegative integers. The sizes of x and 
y depend on the modulation method:

• (ASK, FSK, MSK methods) If x is a vector of length n, then y is a column 
vector of length n*Fs/Fd. Otherwise, if x is n-by-m, then y is (n*Fs/Fd)-by-m 
and each column of x is processed separately.

• (PSK, QASK methods) If x is a vector of length n, then y is an n*Fs/Fd-by-2 
matrix. Otherwise, if x is n-by-m, then y is (n*Fs/Fd)-by-2m and each column 
of x is processed separately. The odd-numbered columns in y represent 
in-phase components and the even-numbered columns represent quadrature 
components.

The sampling rates in Hertz of x and y, respectively, are Fd and Fs. (Thus 1/Fd 
represents the time interval between two consecutive samples in x, and 
similarly for y.) The ratio Fs/Fd must be a positive integer.

To Map a Digital Signal (Specific Syntax Information)

y = modmap(x,Fd,Fs,'ask',M) maps to an M-ary amplitude shift keying 
signal constellation. Each entry of x must be in the range [0, M-1]. Each entry 
of y is in the range [-1, 1].

y = modmap(x,Fd,Fs,'fsk',M,tone) maps to frequencies in an M-ary 
frequency shift keying set. Each entry of x must be in the range [0, M-1]. The 
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optional argument tone is the separation between successive frequencies in the 
FSK set. The default value of tone is Fd.

y = modmap(x,Fd,Fs,'msk') maps to frequencies in a minimum shift keying 
set. Each entry of x is either 0 or 1. The separation between the two frequencies 
is Fd/2.

y = modmap(x,Fd,Fs,'psk',M) maps to an M-ary phase shift keying signal 
constellation. Each entry of x must be in the range [0, M-1]. 

y = modmap(x,Fd,Fs,'qask',M) maps to an M-ary quadrature amplitude shift 
keying square signal constellation. The table below shows the maximum value 
of the in-phase and quadrature components in y, for several small values of M.

Note  To see how symbols are mapped to the constellation points, generate a 
square constellation plot using qaskenco(M) or modmap('qask',M).

y = modmap(x,Fd,Fs,'qask/arb',inphase,quadr) maps to a quadrature 
amplitude shift keying signal constellation that you define using the vectors 
inphase and quadr. The signal constellation point for the kth message has 
in-phase component inphase(k+1) and quadrature component quadr(k+1).

y = modmap(x,Fd,Fs,'qask/cir',numsig,amp,phs) maps to a quadrature 
amplitude shift keying circular signal constellation. numsig, amp, and phs are 
vectors of the same length. The entries in numsig and amp must be positive. If 
k is an integer in the range [1, length(numsig)], then amp(k) is the radius of 

M Maximum of y M Maximum of y

2 1 32 5

4 1 64 7

8 3 (quadrature 
maximum is 1)

128 11

16 3 256 15



modmap

3-151

the kth circle, numsig(k) is the number of constellation points on the kth circle, 
and phs(k) is the phase of the first constellation point plotted on the kth circle. 
All points on the kth circle are evenly spaced. If you omit phs, then its default 
value is numsig*0. If you omit amp, then its default value is 
[1:length(numsig)].

Note  To see how symbols are mapped to the constellation points, generate a 
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples The command below plots a phase shift keying (PSK) signal constellation with 
32 points.

modmap('psk',32);

The script below maps a digital signal using the 32-point PSK constellation. It 
then adds noise and computes the resulting error rate while demapping. Your 
results might vary because the example uses random numbers.

M = 32; Fd = 1; Fs = 3;
x = randint(100,1,M); % Original signal
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y = modmap(x,Fd,Fs,'psk',M); % Mapped signal, using 32-ary PSK
ynoisy = y+.1*rand(100*Fs,2); % Mapped signal with noise added
z = demodmap(ynoisy,Fd,Fs,'psk',M); % Demapped noisy signal
s = symerr(x,z) % Number of errors after demapping noisy signal

s =

     8

See Also demodmap, dmod, dmodce, amod, amodce, apkconst
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3oct2decPurpose Convert octal numbers to decimal numbers

Syntax d = oct2dec(c)

Description d = oct2dec(c) converts an octal matrix c to a decimal matrix d, element by 
element. In both octal and decimal representations, the rightmost digit is the 
least significant.

Examples The command below converts a 2-by-2 octal matrix.

d = oct2dec([12 144;0 25])

d =

    10   100
     0    21

For instance, the octal number 144 is equivalent to the decimal number 100 
because 144 (octal) = 1*82 + 4*81 + 4*80 = 64 + 32 + 4 = 100.

See Also bi2de
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3poly2trellisPurpose Convert convolutional code polynomials to trellis description

Syntax trellis = poly2trellis(ConstraintLength,CodeGenerator);
trellis = poly2trellis(ConstraintLength,CodeGenerator,...

FeedbackConnection);

Description The poly2trellis function accepts a polynomial description of a convolutional 
encoder and returns the corresponding trellis structure description. The output 
of poly2trellis is suitable as an input to the convenc and vitdec functions, 
and as a mask parameter for the Convolutional Encoder, Viterbi Decoder, and 
APP Decoder blocks in the Communications Blockset.

trellis = poly2trellis(ConstraintLength,CodeGenerator) performs the 
conversion for a rate k/n feedforward encoder. ConstraintLength is a 1-by-k 
vector that specifies the delay for the encoder’s k input bit streams. 
CodeGenerator is a k-by-n matrix of octal numbers that specifies the n output 
connections for each of the encoder’s k input bit streams.

trellis = poly2trellis(ConstraintLength,CodeGenerator,...
FeedbackConnection) is the same as the syntax above, except that it applies 
to a feedback, not feedforward, encoder. FeedbackConnection is a 1-by-k vector 
of octal numbers that specifies the feedback connections for the encoder’s k 
input bit streams.

For both syntaxes, the output is a MATLAB structure whose fields are as in the 
table below.

Table 3-17:  Fields of the Output Structure trellis for a Rate k/n Code

Field in trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to the encoder: 2k

numOutputsymbols Scalar Number of output symbols from the encoder: 2n

numStates Scalar Number of states in the encoder
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For more about this structure, see the reference page for the istrellis 
function.

Examples Consider the rate 2/3 feedforward convolutional encoder depicted in the figure 
below. The reference page for the convenc function includes an example that 
uses this encoder.

For this encoder, the ConstraintLength vector is [5,4] and the CodeGenerator 
matrix is [27,33,0; 0,5,13]. The output below reveals part of the corresponding 
trellis structure description of this encoder.

trellis = poly2trellis([5 4],[27 33 0; 0 5 13])

nextStates numStates-by-2k 
matrix

Next states for all combinations of current state 
and current input.

outputs numStates-by-2k 
matrix

Outputs (in octal) for all combinations of 
current state and current input

Table 3-17:  Fields of the Output Structure trellis for a Rate k/n Code (Continued)

Field in trellis Structure Dimensions Meaning

z-1

z-1 z-1 z-1

z-1z-1z-1

+

+

+
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trellis =

     numInputSymbols: 4
    numOutputSymbols: 8
           numStates: 128
          nextStates: [128x4 double]
             outputs: [128x4 double]

The scalar field trellis.numInputSymbols has the value 4 because the 
combination of two input bit streams can produce four different input symbols. 
Similarly, trellis.numOutputSymbols is 8 because the three output bit 
streams can produce eight different output symbols.

The scalar field trellis.numStates is 128 (that is, 27) because each of the 
encoder’s seven memory registers can have one of two binary values.

To get details about the matrix fields trellis.nextStates and 
trellis.outputs, inquire specifically about them. As an example, the 
command below displays the first five rows of the 128-by-4 matrix 
trellis.nextStates.

trellis.nextStates(1:5,:)

ans =

     0    64     8    72
     0    64     8    72
     1    65     9    73
     1    65     9    73
     2    66    10    74

This first row indicates that if the encoder starts in the zeroth state and 
receives input bits of 00, 01, 10, or 11, respectively, then the next state will be 
the 0th, 64th, 8th, or 72nd state, respectively. The 64th state means that the 
bottom-left memory register in the diagram contains the value 1, while the 
other six memory registers contain zeros.

See Also istrellis, convenc, vitdec
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3qaskdecoPurpose Demap a message from a QASK square signal constellation

Syntax msg = qaskdeco(inphase,quadr,M);
msg = qaskdeco(inphase,quadr,M,mnmx);

Description msg = qaskdeco(inphase,quadr,M) demaps the message signal msg from the 
M-ary quadrature amplitude shift keying (QASK) square signal constellation 
points given in the vectors inphase and quadr. Here inphase lists the in-phase 
components of the points and quadr lists the corresponding quadrature 
components. M must be a power of 2. qaskdeco uses the default 
minimum/maximum value of the in-phase component and quadrature 
component. The defaults corresponding to small values of M are in the table on 
the reference page for the function qaskenco.

Note  To see how symbols are mapped to the constellation points, generate a 
constellation plot using qaskenco(M).

msg = qaskdeco(inphase,quadr,M,mnmx) is the same as the syntax above, 
except that mnmx specifies the minimum and maximum in-phase and 
quadrature component values. mnmx is a 2-by-2 matrix of the form shown below.

Examples The commands below show that qaskdeco and qaskenco are inverse 
operations.

msg = [0 3 5 3 2 5]'; M = 8;
[inphase,quadr] = qaskenco(msg,M); % Map the message.
newmsg = qaskdeco(inphase,quadr,M) % Demap to recover data.

newmsg =

     0
     3
     5

mnmx in-phase minimum     in-phase maximum
quadrature minimum     quadrature maximum

=
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     3
     2
     5

See Also qaskenco, decode, demodmap
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3qaskencoPurpose Map a message to a QASK square signal constellation

Syntax qaskenco(M)
qaskenco(msg,M)
[inphase,quadr] = qaskenco(M)
[inphase,quadr] = qaskenco(msg,M)

Description qaskenco(M) plots the square signal constellation for M-ary quadrature 
amplitude shift keying (QASK) modulation, labeling the M points with numbers 
in the range [0, M-1]. M must be a power of 2. If M is a perfect square, then 
qaskenco labels the constellation points so as to implement Gray code.

qaskenco(msg,M) is the same as the syntax above, except that only those 
points with labels in the vector msg are plotted. The elements in msg must be 
integers in the range [0, M-1].

[inphase,quadr] = qaskenco(M) returns vectors inphase and quadr that 
represent the coordinates of the points in the signal constellation for M-ary 
QASK modulation. inphase gives the in-phase component of each point and 
quadr gives the quadrature component of each point. M must be a power of 2.

[inphase,quadr] = qaskenco(msg,M) is the same as the syntax above, except 
that inphase and quadr represent only those constellation points with labels in 
the vector msg. (These labels are the same number labels that appear in the plot 
that the command qaskenco(msg,M) produces.) The elements in msg must be 
integers in the range [0, M-1].

The table below shows the maximum value of inphase and quadr, for several 
small values of M.

M Maximum of inphase and 
quadr

M Maximum of inphase and 
quadr

2 1 32 5

4 1 64 7

8 3 (maximum of quadr is 1) 128 11

16 3 256 15
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Examples The command below displays that part of the 8-ary QASK square constellation 
that corresponds to the points in the digital message signal [0 3 4 3 2 5].

qaskenco([0 3 4 3 2 5],8)

The commands below capture the same information in vectors inphase and 
quadr instead of in a plot.

[inphase,quadr] = qaskenco([0 3 5 3 2 5],8);
inphase'

ans =

     1    -1    -3    -1     1    -3

quadr'
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ans =

     1    -1     1    -1    -1     1

The command below captures in inphase and quadr the coordinates of all eight 
points in the 8-ary QASK square constellation.

[inphase2,quadr2] = qaskenco(8);

See Also encode, modmap, qaskdeco
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3quantizPurpose Produce a quantization index and a quantized output value

Syntax index = quantiz(sig,partition);
[index,quants] = quantiz(sig,partition,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);

Description index = quantiz(sig,partition) returns the quantization levels in the real 
vector signal sig using the parameter partition. partition is a real vector 
whose entries are in strictly ascending order. If partition has length n, then 
index is a column vector whose kth entry is:

• 0 if 

• m if 

• n if 

[index,quants] = quantiz(sig,partition,codebook) is the same as the 
syntax above, except that codebook prescribes a value for each partition in the 
quantization and quants contains the quantization of sig based on the 
quantization levels and prescribed values. codebook is a vector whose length 
exceeds the length of partition by one. quants is a row vector whose length is 
the same as the length of sig. quants is related to codebook and index by

quants(ii) = codebook(index(ii)+1); 

where ii is an integer between 1 and length(sig).

[index,quants,distor] = quantiz(sig,partition,codebook) is the same 
as the syntax above, except that distor estimates the mean square distortion 
of this quantization data set.

Examples The command below rounds several numbers between 1 and 100 up to the 
nearest multiple of ten. quants contains the rounded numbers, and index tells 
which quantization level each number is in.

[index,quants] = quantiz([3 34 84 40 23],10:10:90,10:10:100)

index =

     0
     3

sig k( ) partition 1( )≤
partition m( ) sig k( )< partition m 1+( )≤
partition n( ) sig k( )<
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     8
     3
     2

quants =

    10    40    90    40    30

See Also lloyds, dpcmenco, dpcmdeco
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3randerrPurpose Generate bit error patterns

Syntax out = randerr(m);
out = randerr(m,n);
out = randerr(m,n,errors);
out = randerr(m,n,errors,state);

Description For all syntaxes, randerr treats each row of out independently.

out = randerr(m) generates an m-by-m binary matrix, each row of which has 
exactly one nonzero entry in a random position. Each allowable configuration 
has an equal probability.

out = randerr(m,n) generates an m-by-n binary matrix, each row of which has 
exactly one nonzero entry in a random position. Each allowable configuration 
has an equal probability.

out = randerr(m,n,errors) generates an m-by-n binary matrix, where 
errors determines how many nonzero entries are in each row:

• If errors is a scalar, then it is the number of nonzero entries in each row. 

• If errors is a row vector, then it lists the possible number of nonzero entries 
in each row.

• If errors is a matrix having two rows, then the first row lists the possible 
number of nonzero entries in each row and the second row lists the 
probabilities that correspond to the possible error counts.

Once randerr determines the number of nonzero entries in a given row, each 
configuration of that number of nonzero entries has equal probability.

out = randerr(m,n,prob,state) is the same as the syntax above, except that 
it first resets the state of MATLAB’s uniform random number generator rand 
to the integer state.

Examples To generate an 8-by-7 binary matrix, each row of which is equally likely to have 
either zero or two nonzero entries, use the command below.

out = randerr(8,7,[0 2])
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out =

     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     1     0     0     0     1
     1     0     1     0     0     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     0     0     1     1     0
     1     0     1     0     0     0     0

To alter the scenario above by making it three times as likely that a row has 
two nonzero entries, use the command below instead. Notice that the second 
row of the error parameter sums to one.

out2 = randerr(8,7,[0 2; .25 .75])

out =

     0     0     0     0     0     0     0
     1     0     0     0     0     0     1
     1     0     0     0     0     0     1
     0     0     0     1     0     1     0
     0     0     0     0     0     0     0
     0     1     0     0     0     0     1
     0     0     0     0     0     0     0
     1     0     0     0     1     0     0

See Also rand, randsrc, randint
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3randintPurpose Generate matrix of uniformly distributed random integers

Syntax out = randint
out = randint(m);
out = randint(m,n);
out = randint(m,n,rg);
out = randint(m,n,rg,state);

Description out = randint generates a random scalar that is either zero or one, with equal 
probability.

out = randint(m) generates an m-by-m binary matrix, each of whose entries 
independently takes the value zero with probability 1/2.

out = randint(m,n) generates an m-by-n binary matrix, each of whose entries 
independently takes the value zero with probability 1/2.

out = randint(m,n,rg) generates an m-by-n integer matrix. If rg is zero, then 
out is a zero matrix. Otherwise, the entries are uniformly distributed and 
independently chosen from the range:

• [0, rg-1] if rg is a positive integer

• [rg+1, 0] if rg is a negative integer

• Between min and max, inclusive, if rg = [min,max] or [max,min]

out = randint(m,n,rg,state) is the same as the syntax above, except that it 
first resets the state of MATLAB’s uniform random number generator rand to 
the integer state.

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed in the 
range from 0 to 7, you can use either of the following commands.

out = randint(10,10,[0,7]);
out = randint(10,10,8);

See Also rand, randsrc, randerr
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3randsrcPurpose Generate random matrix using prescribed alphabet

Syntax out = randsrc;
out = randsrc(m);
out = randsrc(m,n);
out = randsrc(m,n,alphabet);
out = randsrc(m,n,[alphabet; prob]);
out = randsrc(m,n,...,state);

Description out = randsrc generates a random scalar that is either -1 or 1, with equal 
probability.

out = randsrc(m) generates an m-by-m matrix, each of whose entries 
independently takes the value -1 with probability 1/2, and 1 with probability 
1/2.

out = randsrc(m,n) generates an m-by-n matrix, each of whose entries 
independently takes the value -1 with probability 1/2, and 1 with probability 
1/2.

out = randsrc(m,n,alphabet) generates an m-by-n matrix, each of whose 
entries is independently chosen from the entries in the row vector alphabet. 
Each entry in alphabet occurs in out with equal probability. Duplicate values 
in alphabet are ignored.

out = randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix, each of 
whose entries is independently chosen from the entries in the row vector 
alphabet. Duplicate values in alphabet are ignored. The row vector prob lists 
corresponding probabilities, so that the symbol alphabet(k) occurs with 
probability prob(k), where k is any integer between one and the number of 
columns of alphabet. The elements of prob must add up to one.

out = randsrc(m,n,...,state); is the same as the two preceding syntaxes, 
except that it first resets the state of MATLAB’s uniform random number 
generator rand to the integer state.

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed 
among members of the set {-3,-1,1,3}, you can use either of these commands.
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out = randsrc(10,10,[-3 -1 1 3]);
out = randsrc(10,10,[-3 -1 1 3; .25 .25 .25 .25]);

To skew the probability distribution so that -1 and 1 each occur with 
probability .3, while -3 and 3 each occur with probability .2, use this command.

out = randsrc(10,10,[-3 -1 1 3; .2 .3 .3 .2]);

See Also rand, randint, randerr
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3rcosfirPurpose Design a raised cosine FIR filter

Syntax b = rcosfir(R,n_T,rate,T);
b = rcosfir(R,n_T,rate,T,filter_type);
rcosfir(...);
rcosfir(...,colr);
[b,sample_time] = rcosfir(...);

Optional 
Inputs

Description The rcosfir function designs the same filters that the rcosine function 
designs when the latter’s type_flag argument includes 'fir'. However, 
rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

 

b = rcosfir(R,n_T,rate,T) designs a raised cosine filter and returns a 
vector b of length(n_T(2) - n_T(1))*rate + 1. The filter’s rolloff factor is R, 
where . T is the duration of each bit in seconds. n_T is a length-two 
vector that indicates the number of symbol periods before and after the peak 
response. rate is the number of points in each input symbol period of length T. 
rate must be greater than one. The input sample rate is T samples per second, 
while the output sample rate is T*rate samples per second.

The order of the FIR filter is

(n_T(2)-n_T(1))*rate

The arguments n_T, rate, and T are optional inputs whose default values are 
[-3,3], 5, and 1, respectively.

Input Default Value

n_T [-3,3]

rate 5

T 1

h t( ) sin πt T⁄( )
πt T⁄( )

--------------------------- πRt T⁄( )cos
1 4R2t2 T2⁄–( )

-----------------------------------------⋅=

0 R 1≤ ≤
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b = rcosfir(R,n_T,rate,T,filter_type) designs a square-root raised 
cosine filter if filter_type is 'sqrt'. If filter_type is ’normal’ then this 
syntax is the same as the previous one.

The impulse response of a square root raised cosine filter is

rcosfir(...) produces plots of the time and frequency responses of the raised 
cosine filter.

rcosfir(...,colr) uses the string colr to determine the plotting color. The 
choices for colr are the same as those listed for the plot function.

[b,sample_time] = rcosfir(...) returns the FIR filter and its sample time.

Examples The commands below compare different rolloff factors.

rcosfir(0);
subplot(211); hold on;
subplot(212); hold on;
rcosfir(.5,[],[],[],[],'r-');
rcosfir(1,[],[],[],[],'g-');

See Also rcosiir, rcosflt, rcosine, firrcos, rcosdemo

References Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold, 
1985.

h t( ) 4r

1 r+( )πt T⁄( )cos 1 r–( )πt T⁄( )sin

4r t
T
----

---------------------------------------------+

π T 4rt T⁄( )2 1–( )
-------------------------------------------------------------------------------------------------=
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3rcosfltPurpose Filter the input signal using a raised cosine filter

Syntax y = rcosflt(x,Fd,Fs);
y = rcosflt(x,Fd,Fs,'filter_type’,r,delay,tol);
y = rcosflt(x,Fd,Fs,'filter_type/Fs’,r,delay,tol);
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den);
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay);
y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...);
[y,t] = rcosflt(...);

Optional 
Inputs

Description The function rcosflt passes an input signal through a raised cosine filter. You 
can either let rcosflt design a raised cosine filter automatically or you can 
specify the raised cosine filter yourself using input arguments.

Designing the Filter Automatically

y = rcosflt(x,Fd,Fs) designs a raised cosine FIR filter and then filters the 
input signal x using it. The sample frequency for the digital input signal x is 
Fd, and the sample frequency for the output signal y is Fs. The ratio Fs/Fd must 
be an integer. In the course of filtering, rcosflt upsamples the data by a factor 
of Fs/Fd, by inserting zeros between samples. The order of the filter is 
1+2*delay*Fs/Fd, where delay is 3 by default. If x is a vector, then the sizes of 
x and y are related by this equation.

length(y) = (length(x) + 2 * delay)*Fs/Fd

Otherwise, y is a matrix, each of whose columns is the result of filtering the 
corresponding column of x.

Input Default Value

filter_type fir/normal

r 0.5

delay 3

tol 0.01

den 1
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y = rcosflt(x,Fd,Fs,'filter_type',r,delay,tol) designs a raised cosine 
FIR or IIR filter and then filters the input signal x using it. The ratio Fs/Fd 
must be an integer. r is the rolloff factor for the filter, a real number in the 
range [0, 1]. delay is the filter’s group delay, measured in input samples. The 
actual group delay in the filter design is delay/Fd seconds. The input tol is the 
tolerance in the IIR filter design. FIR filter design does not use tol.

The characteristics of x, Fd, Fs, and y are as in the first syntax.

The fourth input argument, 'filter_type', is a string that determines the type 
of filter that rcosflt should design. Use one of the values in the table below.

y = rcosflt(x,Fd,Fs,'filter_type/Fs',r,delay,tol) is the same as the 
previous syntax, except that it assumes that x has sample frequency Fs. This 
syntax does not upsample x any further. If x is a vector, then the relative sizes 
of x and y are related by this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)

As before, if x is a nonvector matrix, then y is a matrix each of whose columns 
is the result of filtering the corresponding column of x.

Specifying the Filter Using Input Arguments

y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den) filters the input 
signal x using a filter whose transfer function numerator and denominator are 
given in num and den, respectively. If filter_type includes fir, then omit den. 
This syntax uses the same arguments x, Fd, Fs, and filter_type as explained 
in the first and second syntaxes above.

Table 3-18:  Values of filter_type to Determine the Type of Filter

Type of Filter Value of opt

FIR raised cosine filter fir or fir/normal

IIR raised cosine filter iir or iir/normal

Square-root FIR raised cosine filter fir/sqrt

Square-root IIR raised cosine filter iir/sqrt
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y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay) uses delay 
in the same way that the rcosine function uses it. This syntax assumes that 
the filter described by num, den, and delay was designed using rcosine.

As before, if x is a nonvector matrix, then y is a matrix each of whose columns 
is the result of filtering the corresponding column of x.

y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...) is the same 
as the earlier syntaxes, except that it assumes that x has sample frequency Fs 
instead of Fd. This syntax does not upsample x any further. If x is a vector, then 
the relative sizes of x and y are related by this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)

Additional Output

[y,t] = rcosflt(...) outputs t, a vector that contains the sampling time 
points of y.

See Also rcosine, rcosfir, rcosiir, rcosdemo, grpdelay

References Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold, 
1985.
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3rcosiirPurpose Design a raised cosine IIR filter

Syntax [num,den] = rcosiir(R,T_delay,rate,T,tol);
[num,den] = rcosiir(R,T_delay,rate,T,tol,filter_type);
rcosiir(...);
rcosiir(...,colr);
[num,den,sample_time] = rcosiir(...);

Optional 
Inputs

Description The rcosiir function designs the same filters that the rcosine function 
designs when the latter’s type_flag argument includes 'iir'. However, 
rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

[num,den] = rcosiir(R,T_delay,rate,T,tol) designs an IIR 
approximation of an FIR raised cosine filter, and returns the numerator and 
denominator of the IIR filter. The filter’s rolloff factor is R, where . T 
is the symbol period in seconds. The filter’s group delay is T_delay symbol 
periods. rate is the number of sample points in each interval of duration T. 
rate must be greater than one. The input sample rate is T samples per second, 
while the output sample rate is T*rate samples per second. If tol is an integer 
greater than one, then it becomes the order of the IIR filter; if tol is less than 
1, then it indicates the relative tolerance for rcosiir to use when selecting the 
order based on the singular values.

The arguments T_delay, rate, T, and tol are optional inputs whose default 
values are 3, 5, 1, and 0.01, respectively.

Input Default Value

T_delay 3

rate 5

T 1

tol 0.01

h t( ) sin πt T⁄( )
πt T⁄( )

--------------------------- πRt T⁄( )cos
1 4R2t2 T2⁄–( )

-----------------------------------------⋅=

0 R 1≤ ≤
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[num,den] = rcosiir(R,T_delay,rate,T,tol,filter_type) designs a 
square-root raised cosine filter if filter_type is 'sqrt'. If filter_type is 
’normal’ then this syntax is the same as the previous one.

rcosiir(...) plots the time and frequency responses of the raised cosine 
filter.

rcosiir(...,colr) uses the string colr to determine the plotting color. The 
choices for colr are the same as those listed for the plot function.

[num,den,sample_time] = rcosiir(...) returns the transfer function and 
the sample time of the IIR filter.

Examples The script below compares different values of T_delay.

rcosiir(0,10);
subplot(211); hold on;
subplot(212); hold on;
col = ['r-';'g-';'b-';'m-';'c-';'w-'];
R = [8,6,4,3,2,1];
for ii = R

rcosiir(0,ii,[],[],[],[],col(find(R==ii),:));
end;

This example shows how the filter’s frequency response more closely 
approximates that of the ideal raised cosine filter as T_delay increases.

See Also rcosfir, rcosflt, rcosine, rcosdemo, grpdelay

References Kailath, Thomas. Linear Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1980.

Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold, 
1985.
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3rcosinePurpose Design a raised cosine filter

Syntax num = rcosine(Fd,Fs);
[num,den] = rcosine(Fd,Fs,type_flag);
[num,den] = rcosine(Fd,Fs,type_flag,r);
[num,den] = rcosine(Fd,Fs,type_flag,r,delay);
[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol);

Description num = rcosine(Fd,Fs) designs a finite impulse response (FIR) raised cosine 
filter and returns its transfer function. The digital input signal has sampling 
frequency Fd. The sampling frequency for the filter is Fs. The ratio Fs/Fd must 
be a positive integer greater than one. The default rolloff factor is .5. The filter’s 
group delay, which is the time between the input to the filter and the filter’s 
peak response, is three input samples. Equivalently, the group delay is 3/Fd 
seconds.

[num,den] = rcosine(Fd,Fs,type_flag) designs a raised cosine filter using 
directions in the string variable type_flag. Filter types are listed in the table 
below, along with the corresponding values of type_flag.

The default tolerance value in IIR filter design is 0.01.

[num,den] = rcosine(Fd,Fs,type_flag,r) specifies the rolloff factor, r. The 
rolloff factor is a real number in the range [0, 1].

[num,den] = rcosine(Fd,Fs,type_flag,r,delay) specifies the filter’s group 
delay, measured in input samples. delay is a positive integer. The actual group 
delay in the filter design is delay/Fd seconds.

Table 3-19:  Types of Filter and Corresponding Values of type_flag

Type of Filter Value of type_flag

Finite impulse response (FIR) 'default' or 'fir/normal'

Infinite impulse response (IIR) 'iir' or 'iir/normal'

Square-root raised cosine FIR 'sqrt' or 'fir/sqrt'

Square-root raised cosine IIR 'iir/sqrt'
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[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol) specifies the 
tolerance in the IIR filter design. FIR filter design does not use tol.

See Also rcosflt, rcosiir, rcosfir, rcosdemo, grpdelay

References Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold, 
1985.
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3rsdecoPurpose Reed-Solomon decoder

Syntax msg = rsdeco(code,n,k);
msg = rsdeco(code,n,k,fmt);
msg = rsdeco(code,field,...);
[msg,err] = rsdeco(...);
[msg,err,ccode] = rsdeco(...);
[msg,err,ccode,cerr] = rsdeco(...);

Description For All Syntaxes
The encoding counterpart for this function is rsenco.

In all cases, the codeword length n must have the form 2m-1 where m is an 
integer greater than or equal to 3.

The matrix code, which contains the code words to be decoded, can have one of 
several formats. The table below shows the formats for msg, how the optional 
argument fmt should reflect the format of msg, and how the format of the 
output code depends on these choices. If fmt is not specified as input, then its 
default value is binary.

Table 3-20:  Information Formats for Reed-Solomon Decoding

Format of code Value of fmt Argument Format of msg

Binary matrix with m columns 'binary' Binary matrix with m 
columns

Example: code = [0 0 0; 0 1 1; 0 1 1; 1 1 0; 1 0 1; 1 0 0; 0 1 1]

Binary column vector 'binary' Binary column vector

Example: code = [0 0 0, 0 1 1, 0 1 1, 1 1 0, 1 0 1, 1 0 0, 0 1 1]';
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For Specific Syntaxes

msg = rsdeco(code,n,k) decodes code using the Reed-Solomon decoding 
method. n is the codeword length and k is the message length. code has either 
of the two binary formats described in Table 3-20, Information Formats for 
Reed-Solomon Decoding.

msg = rsdeco(code,n,k,fmt) is the same as the syntax above, except that fmt 
specifies the format of code. Table 3-20, Information Formats for 
Reed-Solomon Decoding, lists the possible values for fmt, as well as the 
corresponding shape and contents of code.

msg = rsdeco(code,field,...) is a faster variation of the syntaxes above. 
field is a matrix that lists all elements of GF(2m) in the format described in 
“List of All Elements of a Galois Field” on page 2-91. The size of field 
determines n.

[msg,err] = rsdeco(...) outputs the number err, which specifies the 
number of errors that occurred in the decoding. 

[msg,err,ccode] = rsdeco(...) outputs ccode, a corrected version of code. 
The format of ccode matches the format of code in the input.

[msg,err,ccode,cerr] = rsdeco(...) outputs the number cerr, which 
specifies the number of errors found in the ccode column.

Matrix of integers in the range 
[0, 2m-1], with n columns

'decimal' Matrix of integers in the 
range [0, 2m-1], with k 
columns

Example: code = [0, 6, 6, 3, 5, 1, 6]

Matrix of integers in the range 
[-1, 2m-2], with n columns

'power' Matrix of integers in the 
range [-1, 2m-2], with k 
columns

Example: code = [-1, 5, 5, 2, 4, 0, 5]

Table 3-20:  Information Formats for Reed-Solomon Decoding (Continued)

Format of code Value of fmt Argument Format of msg
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Examples This example creates and decodes a noisy code. Although some codewords 
contain errors, the decoded message contains no errors.

L = 1000; % Number of bits in the computation
m = 4;
n = 2^m - 1; % Codeword length
k = n - 4; % Message word length
rand('state',9876); % Initialize random number generator.
msg = randint(L,1); % L bits of data
field = gftuple([-1 : n-1]',m); % List of elements in GF(2^m)
[code,added] = rsenco(msg,field,k); % Encode the data.
msg = [msg; zeros(added,1)]; % Pad msg for later comparison.

% Add burst errors of length m to the code.
noi = rand(length(code)/m,1) < .03; % Three percent noise
noi = (noi*ones(1,m))'; noi = noi(:);
code_noi = rem(code + noi,2);

% Decode the noisy code.
[dec,err,ccode,err_c] = rsdeco(code_noi,field,k);
err_c = reshape(err_c,n,length(err_c)/n)';
% Number of code symbols that contain at least one error
num_err_codesyms = sum(err_c(:,1) > 0)
% Number of bit errors after decoding
num_err_decbits = sum(abs(dec-msg))

num_err_codesyms =

    36

num_err_decbits =

     0

See Also rsenco, rsencode, rsdecode, rspoly
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3rsdecodePurpose Reed-Solomon decoding using the exponential format

Syntax msg = rsdecode(code,k);
msg = rsdecode(code,k,m);
msg = rsdecode(code,k,field);
[msg,err] = rsdecode(...);
[msg,err,ccode] = rsdecode(...);

Description For All Syntaxes
The encoding counterpart for this function is rsencode.

rsdecode uses the exponential format to represent elements of GF(2m). For 
example, an entry of 2 represents the element , where  is a primitive 
element of GF(2m). If field is not used as an input argument, then the 
exponential format is relative to a root of MATLAB’s default primitive 
polynomial for GF(2m).If field is used as an input argument, then its format 
and the formats in msg and code are all relative to the same primitive element 
of GF(2m). See “Representing Elements of Galois Fields” on page 2-90 for more 
information about these formats.

Since GF(2m) has 2m elements, each codeword represents 2m(2m−1) bits of 
information. Each decoded message represents 2m*k bits of information.

For Specific Syntaxes

msg = rsdecode(code,k) decodes code using the Reed-Solomon method. k is 
the message length. The codeword length n must have the form 2m-1 for some 
integer m greater than or equal to 3. code is a matrix with n columns. Each row 
of code represents one codeword. Each entry of code represents an element of 
GF(2m) in exponential format. msg is a matrix with k columns. Each row of msg 
represents one message. Each entry of msg is the exponential format of an 
element of GF(2m).

msg = rsdecode(code,k,m) is the same as the first syntax when the matrix 
code has 2m-1 columns. This syntax is faster than the first.

msg = rsdecode(code,k,field) is the same as the first syntax, except that 
field is a matrix that lists the elements of GF(2m) in the format described in 

α2 α



rsdecode

3-182

“List of All Elements of a Galois Field” on page 2-91. This syntax is faster than 
the first two.

[msg,err] = rsdecode(...) returns a column vector err that gives 
information about error correction. A nonnegative integer in err(r) indicates 
the number of errors corrected in the rth codeword; a negative integer indicates 
that there are more errors in the rth codeword than can be corrected.

[msg,err,ccode] = rsdecode(...) returns the corrected code in ccode.

Examples The script below continues the example from the reference page for rsencode. 
After corrupting some symbols from the code, it tries to recover the message.

m = 3; n = 2^m-1; % Codeword length is 7.
field = gftuple([-1:2^m-2]',m,2); % List of elements in GF(2^m)
msg = [5 0 1; 2 3 4];
k = size(msg,2); % Message length = number of columns of msg
genpoly = rspoly(n,k,field); % Generator polynomial
code = rsencode(msg,genpoly,n,field); 
% Change up to three of the code symbols.
noisycode = code;
noisycode(1,2) = randint(1,1,[-1,n-1]);
noisycode(2,1) = randint(1,1,[-1,n-1]);
noisycode(2,5) = randint(1,1,[-1,n-1]);
% Try to decode.
[newmsg,err,ccode] = rsdecode(noisycode,k,field);
if ccode==code
   disp('All errors were corrected.')
end
if newmsg==msg
   disp('The message was recovered perfectly.')
end

Unless one of the random integers was zero, err is the matrix [1;2], which 
reflects the fact that we put one error in the first row of noisycode and two 
errors in the second row. Since this code’s error-correction capability is 
floor((n-k)/2), or 2, all errors are corrected in this example.

See Also rsencode, encode, decode, rsdeco
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3rsdecofPurpose Decode an ASCII file that was encoded using Reed-Solomon code

Syntax rsdecof(file_in,file_out);
rsdecof(file_in,file_out,err_cor);

Description This function is the inverse process of the function rsencof in that it decodes a 
file that rsencof encoded.

rsdecof(file_in,file_out) decodes the ASCII file file_in that was 
previously created by the function rsencof using an error-correction capability 
of 5. The decoded message is written to file_out. Both file_in and file_out 
are string variables.

Note  If the number of characters in file_in is not an integer multiple of 
127, then the function appends char(4) symbols to the data it must decode. If 
you encode and then decode a file using rsencof and rsdecof, respectively, 
then the decoded file might have char(4) symbols at the end that the original 
file does not have.

rsdecof(file_in,file_out,err_cor) is the same as the first syntax, except 
that err_cor specifies the error-correction capability for each block of 127 
codeword characters. The message length is 127 - 2∗err_cor. The value in 
err_cor must match the value used in rsencof when file_in was created.

Examples An example is on the reference page for rsencof.

See Also rsencof
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3rsencoPurpose Reed-Solomon encoder

Syntax code = rsenco(msg,n,k);
code = rsenco(msg,n,k,fmt);
code = rsenco(msg,n,k,fmt,genpoly);
code = rsenco(msg,field,...);
[code,added] = rsenco(...);

Description For All Syntaxes
The decoding counterpart for this function is rsdeco.

In all cases, the codeword length n must have the form 2m-1 where m is an 
integer greater than or equal to 3.

The matrix msg, which contains the messages to be encoded, can have one of 
several formats. Table 3-21, Information Formats for Reed-Solomon Encoding, 
shows which formats are allowed for msg, how the optional argument fmt 
should reflect the format of msg, and how the format of the output code depends 
on these choices. If fmt is not specified as input, then its default value is 
’binary’.

Table 3-21:  Information Formats for Reed-Solomon Encoding

Format of msg Value of fmt Argument Format of code

Binary matrix with m columns 'binary' Binary matrix with m 
columns

Example: msg = [1 1 0; 1 0 1; 1 0 0; 0 1 1; 1 1 0; 1 0 1; 1 0 0; 0 1 1]

Binary column vector 'binary' Binary column vector

Example: msg = [1 1 0, 1 0 1, 1 0 0, 0 1 1, 1 1 0, 1 0 1, 1 0 0, 0 1 1]'
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For Specific Syntaxes

code = rsenco(msg,n,k) encodes msg using the Reed-Solomon encoding 
method. k is the message length. msg has either of the two binary formats 
described in Table 3-21, Information Formats for Reed-Solomon Encoding. The 
generator polynomial for the code is the output of the function rspoly.

code = rsenco(msg,n,k,fmt) is the same as the syntax above, except that fmt 
specifies the format of msg. Table 3-21, Information Formats for Reed-Solomon 
Encoding, lists the possible values for fmt, as well as the corresponding shape 
and contents of msg.

code = rsenco(msg,n,k,fmt,genpoly) is the same as the syntax above, 
except that genpoly is a row vector that gives the coefficients, in order of 
ascending powers, of the generator polynomial for the code. Each coefficient is 
an element of GF(2m) expressed in exponential format. For a description of 
exponential format, see “Exponential Format” on page 2-90.

code = rsenco(msg,field,...) is a faster variation of the syntaxes above. 
field is a matrix that lists all elements of GF(2m) in the format described in 
“List of All Elements of a Galois Field” on page 2-91. The size of field 
determines n.

Matrix of integers in the range 
[0, 2m-1], with k columns

'decimal' Matrix of integers in the 
range [0, 2m-1], with n 
columns

Example: msg = [3, 5, 1, 6; 3, 5, 1, 6]

Matrix of integers in the range 
[-1, 2m-2], with k columns

'power' Matrix of integers in the 
range [-1, 2m-2], with n 
columns

Example: msg = [2, 4, 0, 5; 2, 4, 0, 5]

Table 3-21:  Information Formats for Reed-Solomon Encoding (Continued)

Format of msg Value of fmt Argument Format of code



rsenco

3-186

[code,added] = rsenco(...) returns the additional variable added. added is 
the number of zeros that were placed at the end of the message matrix before 
encoding, in order for the matrix to have the appropriate shape. 

Algorithm rsenco invokes the function rsencode, which processes data in power format. 
If msg has decimal or binary format, then rsenco converts it to the power 
format, passes it to rsencode, and converts the code back to the original format 
of msg. Binary data has the longest processing time. For information about the 
conversions among formats, see “Reed-Solomon Coding Using Decimal 
Format” on page 2-29 and “Exponential Format (Reed-Solomon Code Only)” on 
page 2-30.

See Also rsdeco, rsencode, rsdecode, rspoly
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3rsencodePurpose Reed-Solomon encoding using the exponential format

Syntax code = rsencode(msg,genpoly,n);
code = rsencode(msg,genpoly,n,m);
code = rsencode(msg,genpoly,n,field);

Description For All Syntaxes
The decoding counterpart for this function is rsdecode.

rsencode uses the exponential format to represent elements of GF(2m). For 

example, an entry of 2 represents the element , where  is a primitive 

element of GF(2m). If field is not used as an input argument, then the 
exponential format is relative to a root of MATLAB’s default primitive 

polynomial for GF(2m).If field is used as an input argument, then its format 
and the formats in msg and code are all relative to the same primitive element 

of GF(2m). See “Representing Elements of Galois Fields” on page 2-90 for more 
information about these formats.

Since GF(2m) has 2m elements, each codeword represents 2m(2m−1) bits of 
information. Each decoded message represents 2m*k bits of information.

For Specific Syntaxes

code = rsencode(msg,genpoly,n) encodes the message msg using the 
Reed-Solomon coding method. n, the codeword length, must have the form 2m-1 
for some integer m greater than or equal to 3. If the message length is k, then 
msg is a matrix having k columns. Each entry of msg represents an element of 
GF(2m) in exponential format. Each row of msg is treated as a separate 
message. Each row of code represents a codeword, and each entry is the 
exponential format of an element of GF(2m). The last k columns of code are just 
msg; that is, the parity bits are at the beginning of each codeword. genpoly is a 
row vector that gives the coefficients, in order of ascending powers, of the 
generator polynomial. Each coefficient is specified in exponential format. 

code = rsencode(msg,genpoly,n,m) is the same as 
code = rsencode(msg,genpoly,2^m-1) when m is an integer greater than or 
equal to 3. Specifying m as a fourth input argument speeds the execution.

α2 α
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code = rsencode(msg,genpoly,n,field) is the same as the first syntax, 
except that field is a matrix that lists the elements of GF(2m) in the format 
described in “List of All Elements of a Galois Field” on page 2-91. This syntax 
is faster than the first one.

Examples The commands below use the third syntax of rsencode to encode two messages.

m = 3; n = 2^m-1; % Codeword length is 7.
field = gftuple([-1:2^m-2]',m,2); % List of elements in GF(2^m)
msg = [5 0 1; 2 3 4];
k = size(msg,2); % Message length = number of columns of msg
genpoly = rspoly(n,k,field); % Generator polynomial
code = rsencode(msg,genpoly,n,field);

The reference page for rsdecode continues this example by corrupting the code 
and then decoding it.

See Also rsdecode, rspoly, rsenco, encode
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3rsencofPurpose Encode an ASCII file using Reed-Solomon code

Syntax rsencof(file_in,file_out);
rsencof(file_in,file_out,err_cor);

Description rsencof(file_in,file_out) encodes the ASCII file file_in using (127, 117) 
Reed-Solomon code. The error-correction capability of this code is 5 for each 
block of 127 codeword characters. This function writes the encoded text to the 
file file_out. Both file_in and file_out are string variables.

rsencof(file_in,file_out,err_cor) is the same as the first syntax, except 
that err_cor specifies the error correction capability for each block of 127 
codeword characters. The message length is 127-2*err_cor.

Note  If the number of characters in file_in is not an integer multiple of 
127-2*err_cor, then the function appends char(4) symbols to file_out.

Examples The file matlabroot/toolbox/comm/comm/oct2dec.m contains text help for the 
oct2dec function in this toolbox. The commands below encode the file using 
rsencof and then decode it using rsdecof.

file_in = [matlabroot '/toolbox/comm/comm/oct2dec.m'];
file_out = 'encodedfile'; % Or use another filename
rsencof(file_in,file_out) % Encode the file.

file_in = file_out;
file_out = 'decodedfile'; % Or use another filename
rsdecof(file_in,file_out) % Decode the file.

To see the original file and the decoded file in the MATLAB workspace, use the 
commands below (or similar ones if you modified the filenames above).

type oct2dec.m

type decodedfile

See Also rsdecof
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3rspolyPurpose Produce Reed-Solomon code generator polynomial

Syntax genpoly = rspoly(n,k);
genpoly = rspoly(n,k,m);
genpoly = rspoly(n,k,field);
[genpoly,t] = rspoly(...);

Description genpoly = rspoly(n,k) finds the generator polynomial of a Reed-Solomon 
code with codeword length n and message length k. genpoly is a row vector that 
represents the coefficients of the generator polynomial in order of ascending 
powers. Each coefficient is an element of GF(2m) represented in exponential 
format, as described in the section “Representing Elements of Galois Fields” on 
page 2-90.

genpoly = rspoly(n,k,m) is the same as genpoly = rspoly(2^m-1,k), but 
faster. If n does not equal 2m-1, then an error results.

genpoly = rspoly(n,k,field) is the same as the first syntax listed, except 
that field indirectly specifies the primitive element for GF(2m) relative to 
which the coefficients in genpoly are expressed. field is a matrix that lists the 
elements of GF(2m) in the format described in “List of All Elements of a Galois 
Field” on page 2-91. Both field and genpoly use exponential formats relative 
to the same primitive element. This syntax is faster than the first syntax listed.

[genpoly,t] = rspoly(...) returns in t the error-correction capability of the 
Reed-Solomon code.

Examples The command below shows that the (15, 11) Reed-Solomon code generator 

polynomial is .

genpoly = rspoly(15,11,4)

genpoly =

    10     3     6    13     0

The syntax below uses field as the third input argument in rspoly and 
obtains the same result.

α10 α3X α6X2 α13X3 X4
+ + + +
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m = 4;
field = gftuple([-1:2^m-2]',m,2);
genpoly2 = rspoly(15,11,field)

genpoly2 =

    10     3     6    13     0

See Also encode, decode, rsenco, rsdeco
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3scatterplot Purpose Generate a scatter plot

Syntax scatterplot(x);
scatterplot(x,n);
scatterplot(x,n,offset);
scatterplot(x,n,offset,plotstring);
scatterplot(x,n,offset,plotstring,h);
h = scatterplot(...);

Description scatterplot(x) produces a scatter plot for the signal x. The interpretation of 
x depends on its shape and complexity:

• If x is a real two-column matrix, then scatterplot interprets the first 
column as in-phase components and the second column as quadrature 
components.

• If x is a complex vector, then scatterplot interprets the real part as 
in-phase components and the imaginary part as quadrature components.

• If x is a real vector, then scatterplot interprets it as a real signal.

scatterplot(x,n) is the same as the first syntax, except that the function 
plots every nth value of the signal, starting from the first value. That is, the 
function decimates x by a factor of n before plotting.

scatterplot(x,n,offset) is the same as the first syntax, except that the 
function plots every nth value of the signal, starting from the (offset+1)st 
value in x.

scatterplot(x,n,offset,plotstring) is the same as the syntax above, 
except that plotstring determines the plotting symbol, line type, and color for 
the plot. plotstring is a string whose format and meaning are the same as in 
the plot function.

scatterplot(x,n,offset,plotstring,h) is the same as the syntax above, 
except that the scatter plot is in the figure whose handle is h, rather than a new 
figure. h must be a handle to a figure that scatterplot previously generated. 
To plot multiple signals in the same figure, use hold on.

h = scatterplot(...) is the same as the earlier syntaxes, except that h is the 
handle to the figure that contains the scatter plot.
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Examples See “Example: Scatter Plots” on page 2-12 or the example on the reference page 
for demodmap. Both examples illustrate how to plot multiple signals in a single 
scatter plot.

For an online demonstration, use scattereyedemo.

See Also eyediagram, plot, scattereyedemo, scatter
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3symerrPurpose Compute number of symbol errors and symbol error rate

Syntax [number,ratio] = symerr(x,y);
[number,ratio] = symerr(x,y,flg);
[number,ratio,loc] = symerr(...)

Description For All Syntaxes
The symerr function compares binary representations of elements in x with 
those in y. The schematics below illustrate how the shapes of x and y determine 
which elements symerr compares.

The output number is a scalar or vector that indicates the number of elements 
that differ. The size of number is determined by the optional input flg and by 
the dimensions of x and y. The output ratio equals number divided by the total 
number of elements in the smaller input. 

For Specific Syntaxes

[number,ratio] = symerr(x,y) compares the elements in x and y. The sizes 
of x and y determine which elements are compared:

• If x and y are matrices of the same dimensions, then symerr compares x and 
y element-by-element. number is a scalar. See schematic (a) in the figure.

• If one is a row (respectively, column) vector and the other is a 
two-dimensional matrix, then symerr compares the vector 
element-by-element with each row (resp., column) of the matrix. The length 
of the vector must equal the number of columns (resp., rows) in the matrix. 

y

y

(b) Compares column vector y with
each column of matrix x

(c) Compares row vector y with
each row of matrix x

x x

y1 y4

y2 y5

y3 y6

(a) Compares x1 with y1,
x2 with y2, and so on.

x1 x4

x2 x5

x3 x6

x1 x4

x2 x5

x3 x6
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number is a column (resp., row) vector whose mth entry indicates the number 
of elements that differ when comparing the vector with the mth row (resp., 
column) of the matrix. See schematics (b) and (c) in the figure.

[number,ratio] = symerr(x,y,flg) is similar to the previous syntax, except 
that flg can override the defaults that govern which elements symerr 
compares and how symerr computes the outputs. The values of flg are 
’overall’, ’column-wise’, and ’row-wise’. The table below describes the 
differences that result from various combinations of inputs. In all cases, ratio 
is number divided by the total number of elements in y.

[number,ratio,loc] = symerr(...) returns a binary matrix loc that 
indicates which elements of x and y differ. An element of loc is zero if the 
corresponding comparison yields no discrepancy, and one otherwise.

Examples On the reference page for biterr, the last example uses symerr.

Table 3-22:  Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of Comparison number

Two-
dimensional 
matrix

’overall’ 
(default)

Element-by-element Total number of symbol errors

'column-wise' mth column of x vs. mth 
column of y

Row vector whose entries count 
symbol errors in each column

'row-wise' mth row of x vs. mth 
row of y

Column vector whose entries count 
symbol errors in each row

Column 
vector

’overall’ y vs. each column of x Total number of symbol errors

'column-wise' 
(default)

y vs. each column of x Row vector whose entries count 
symbol errors in each column of x

Row vector ’overall’ y vs. each row of x Total number of symbol errors

’row-wise’ 
(default)

y vs. each row of x Column vector whose entries count 
symbol errors in each row of x
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The command below illustrates how symerr works when one argument is a 
vector and the other is a matrix. It compares the vector [1,2,3]' to the 
columns

of the matrix.

num = symerr([1 2 3]',[1 1 3 1;3 2 2 2; 3 3 8 3])

num =

     1     0     2     0

As another example, the command below illustrates the use of flg to override 
the default row-by-row comparison. Notice that number and ratio are scalars.

format rat; [number,ratio,loc] = symerr([1 2; 3 4],...
[1 3],'overall')

number =

      3      

ratio =

     3/4     

loc =

      0            1      
      1            1 

See Also biterr
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3syndtablePurpose Produce syndrome decoding table

Syntax t = syndtable(parmat);

Description t = syndtable(parmat) returns a decoding table for an error-correcting 
binary code having codeword length n and message length k. parmat is an 
(n-k)-by-n parity-check matrix for the code. t is a 2n-k-by-n binary matrix. The 
rth row of t is an error pattern for a received binary codeword whose syndrome 
has decimal integer value r-1. (The syndrome of a received codeword is its 
product with the transpose of the parity-check matrix.) In other words, the 
rows of t represent the coset leaders from the code’s standard array.

When converting between binary and decimal values, the leftmost column is 
interpreted as the most significant digit. This differs from the default 
convention in the bi2de and de2bi commands.

Examples An example is in the section “Decoding Table” on page 2-34.

See Also decode, hammgen, gfcosets

References Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital 
Communications. New York: Plenum Press, 1981.
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3vec2matPurpose Convert a vector into a matrix

Syntax mat = vec2mat(vec,matcol);
mat = vec2mat(vec,matcol,padding);
[mat,padded] = vec2mat(...);

Description mat = vec2mat(vec,matcol) converts the vector vec into a matrix with 
matcol columns, creating one row at a time. If the length of vec is not multiple 
of matcol, then extra zeros are placed in the last row of mat. The matrix mat has 
ceil(length(vec)/matcol) rows.

mat = vec2mat(vec,matcol,padding) is the same as the first syntax, except 
that the extra entries placed in the last row of mat are not necessarily zeros. 
The extra entries are taken from the matrix padding, in order. If padding has 
fewer entries than are needed, then the last entry is used repeatedly.

[mat,padded] = vec2mat(...) returns an integer padded that indicates how 
many extra entries were placed in the last row of mat.

Note  vec2mat is similar to the built-in MATLAB function reshape. However, 
given a vector input, reshape creates a matrix one column at a time instead of 
one row at a time. Also, reshape requires the input and output matrices to 
have the same number of entries, whereas vec2mat places extra entries in the 
output matrix if necessary.

Examples vec = [1 2 3 4 5];
[mat,padded] = vec2mat(vec,3)

mat =

     1     2     3
     4     5     0

padded =

     1
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[mat2,padded2] = vec2mat(vec,4)

mat2 =

     1     2     3     4
     5     0     0     0

padded2 =

     3

mat3 = vec2mat(vec,4,[10 9 8; 7 6 5; 4 3 2])

mat3 =

     1     2     3     4
     5    10     7     4

See Also reshape
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3vitdecPurpose Convolutionally decode binary data using the Viterbi algorithm

Syntax decoded = vitdec(code,trellis,tblen,opmode,dectype);
decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec);
decoded = vitdec(...,'cont',...,initmetric,initstates,initinputs);
[decoded finalmetric finalstates finalinputs] =...
   vitdec(...,'cont',...);

Description decoded = vitdec(code,trellis,tblen,opmode,dectype) decodes the 
vector code using the Viterbi algorithm. The MATLAB structure trellis 
specifies the convolutional encoder that produced code; the format of trellis 
is described in “Trellis Description of a Convolutional Encoder” on page 2-46 
and the reference page for the istrellis function. code contains one or more 
symbols, each of which consists of log2(trellis.numOutputSymbols) bits. 
Each symbol in the vector decoded consists of 
log2(trellis.numInputSymbols) bits. tblen is a positive integer scalar that 
specifies the traceback depth.

The string opmode indicates the decoder’s operation mode and its assumptions 
about the corresponding encoder’s operation. Choices are in the table below.

Table 3-23:  Values of opmode Input

Value Meaning

'trunc' The encoder is assumed to have started at the all-zeros state. 
The decoder traces back from the state with the best metric.

'term' The encoder is assumed to have both started and ended at the 
all-zeros state.  The decoder traces back from the all-zeros 
state.

'cont' The encoder is assumed to have started at the all-zeros state. 
The decoder traces back from the state with the best metric.  A 
delay equal to tblen symbols elapses before the first decoded 
symbol appears in the output.
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The string dectype indicates the type of decision that the decoder makes, and 
influences the type of data the decoder expects in code. Choices are in the table 
below.

Syntax for Soft Decision Decoding

decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec) decodes the 
vector code using soft-decision decoding. code consists of integers between 0 
and 2nsdec-1, where 0 represents the most confident 0 and 2nsdec-1 represents 
the most confident 1.

Additional Syntaxes for Continuous Operation Mode

decoded = vitdec(...,'cont',...,initmetric,initstates,initinputs)
is the same as the earlier syntaxes, except that the decoder starts with its state 
metrics, traceback states, and traceback inputs specified by initmetric, 
initstates, and initinputs, respectively. Each real number in initmetric 
represents the starting state metric of the corresponding state.  initstates 
and initinputs jointly specify the initial traceback memory of the decoder; 
both are trellis.numStates-by-tblen matrices.  initstates consists of 
integers between 0 and trellis.numStates-1. If the encoder schematic has 
more than one input stream, then the shift register that receives the first input 
stream provides the least significant bits in initstates, while the shift 
register that receives the last input stream provides the most significant bits 
in initstates. The vector initinputs consists of integers between 0 and 
trellis.numInputSymbols-1. To use default values for all of the last three 
arguments, specify them as [],[],[].

Table 3-24:  Values of dectype Input

Value Meaning

'unquant' code contains real input values, where 1 represents a logical 
zero and -1 represents a logical one.

'hard' code contains binary input values.

'soft' For soft-decision decoding, use the syntax below. Note that 
nsdec is required for soft-decision decoding.
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[decoded,finalmetric,finalstates,finalinputs] = ...
vitdec(...,'cont',...) is the same as the earlier syntaxes, except that the 
final three output arguments return the state metrics, traceback states, and 
traceback inputs, respectively, at the end of the decoding process. finalmetric 
is a vector with trellis.numStates elements which correspond to the final 
state metrics.  finalstates and finalinputs are both matrices of size 
trellis.numStates-by-tblen. The elements of finalstates have the same 
format as those of initstates.

Examples The example below encodes random data and adds noise. Then it decodes the 
noisy code three times to illustrate the three decision types that vitdec 
supports. Notice that for unquantized and soft decisions, the output of convenc 
does not have the same data type that vitdec expects for the input code, so it 
is necessary to manipulate ncode before invoking vitdec.

trel = poly2trellis(3,[6 7]); % Define trellis.
msg = randint(100,1,2,123); % Random data
code = convenc(msg,trel); % Encode.
ncode = rem(code + randerr(200,1,[0 1;.95 .05]),2); % Add noise.
tblen = 3; % Traceback length
% Use hard decisions.
decoded1 = vitdec(ncode,trel,tblen,'cont','hard');
% Use unquantized decisions.
ucode = 1-2*ncode; % +1 & -1 represent zero & one, respectively.
decoded2 = vitdec(ucode,trel,tblen,'cont','unquant');
% Use soft decisions.
% To prepare for soft-decision decoding, map to decision values.
[x,qcode] = quantiz(1-2*ncode,[-.75 -.5 -.25 0 .25 .5 .75],...
[7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.
decoded3 = vitdec(qcode',trel,tblen,'cont','soft',3);

% Compute bit error rates, using the fact that the decoder
% output is delayed by tblen symbols.
[n1,r1] = biterr(decoded1(tblen+1:end),msg(1:end-tblen));
[n2,r2] = biterr(decoded2(tblen+1:end),msg(1:end-tblen));
[n3,r3] = biterr(decoded3(tblen+1:end),msg(1:end-tblen));
disp(['The bit error rates are:   ',num2str([r1 r2 r3])])

The bit error rates are:   0.020619    0.020619    0.020619
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The example below illustrates how to use the final state and initial state 
arguments when invoking vitdec repeatedly. Notice that 
[decoded4;decoded5] is the same as decoded6.

trel = poly2trellis(3,[6 7]);
code = convenc(randint(100,1,2,123),trel);
% Decode part of code, recording final state for later use.
[decoded4,f1,f2,f3] = vitdec(code(1:100),trel,3,'cont','hard');
% Decode the rest of code, using state input arguments.
decoded5 = vitdec(code(101:200),trel,3,'cont','hard',f1,f2,f3);
% Decode the entire code in one step.
decoded6 = vitdec(code,trel,3,'cont','hard');
isequal(decoded6,[decoded4; decoded5])

ans =

     1

See Also convenc, poly2trellis, istrellis

References Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data 
Communications Principles. New York: Plenum, 1992.
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3wgnPurpose Generate white Gaussian noise

Syntax y = wgn(m,n,p);
y = wgn(m,n,p,imp);
y = wgn(m,n,p,imp,state);
y = wgn(...,powertype);
y = wgn(...,outputtype);

Description y = wgn(m,n,p) generates an m-by-n matrix of white Gaussian noise. p 
specifies the power of y in decibels. The default load impedance is 1 Ohm.

y = wgn(m,n,p,imp) is the same as the previous syntax, except that imp 
specifies the load impedance in Ohms.

y = wgn(m,n,p,imp,state) is the same as the previous syntax, except that 
wgn first resets the state of MATLAB’s normal random number generator 
randn to the integer state.

y = wgn(...,powertype) is the same as the previous syntaxes, except that the 
string powertype specifies the units of p. Choices for powertype are 'dB', 'dBm', 
and 'linear'.

y = wgn(...,outputtype) is the same as the previous syntaxes, except that 
the string outputtype specifies whether the noise is real or complex. Choices 
for outputtype are 'real' and 'complex'. If outputtype is 'complex', then the 
real and imaginary parts of y each have a noise power of p/2.

Examples To generate a column vector of length 100 containing real white Gaussian noise 
of power 0 dB, use this command:

y1 = wgn(100,1,0);

To generate a column vector of length 100 containing complex white Gaussian 
noise, each component of which has a noise power of 0 dB, use this command:

y2 = wgn(100,1,0,'complex');

See Also randn, awgn
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