
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 2

Communications
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Communications Toolbox User’s Guide
 COPYRIGHT 1996 - 2001 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: April 1996 First printing New
May 1997 Second printing Revised for MATLAB 5
September 2000 Third printing Revised for Version 2 (Release 12)
May 2001 Online only Revised for Version 2.0.1 (Release 12.1)

i

Contents

Preface

What Is the Communications Toolbox? viii

Related Products . ix

Using This Guide . xi
Expected Background . xi
Supplementing This Guide with Command-Line Help xii

Configuration Information . xiii

Technical Conventions . xiv
Polynomials as Vectors . xiv
Matrices . xiv

Typographical Conventions . xv

1
Getting Started with the Communications Toolbox

A Detailed Example . 1-2
What the Example Does . 1-2
Where to Find the Example . 1-3
How the Example Works . 1-3
Output from the Example . 1-6

ii Contents

2
Using the Communications Toolbox

Random Signals and Error Analysis . 2-3
Error Analysis Features of the Toolbox 2-3
Random Signals . 2-3
Error Rates . 2-7
Eye Diagrams . 2-8
Scatter Plots . 2-11

Source Coding . 2-14
Source Coding Features of the Toolbox 2-14
Representing Quantization Parameters 2-14
Quantizing a Signal . 2-15
Optimizing Quantization Parameters 2-18
Implementing Differential Pulse Code Modulation 2-19
Optimizing DPCM Parameters . 2-21
Companding a Signal . 2-22
Selected Bibliography for Source Coding 2-23

Block Coding . 2-24
Block Coding Features of the Toolbox . 2-25
Block Coding Terminology . 2-26
Representing Messages and Codewords 2-26
Representing Block Coding Parameters 2-30
Creating and Decoding Block Codes . 2-36
Performing Other Block Code Tasks . 2-40
Selected Bibliography for Block Coding 2-42

Convolutional Coding . 2-43
Convolutional Coding Features of the Toolbox 2-43
Polynomial Description of a Convolutional Encoder 2-43
Trellis Description of a Convolutional Encoder 2-46
Creating and Decoding Convolutional Codes 2-50
Examples of Convolutional Coding . 2-52
Selected Bibliography for Convolutional Coding 2-55

Modulation . 2-56
Modulation Features of the Toolbox . 2-57
Modulation Terminology . 2-58

iii

Representing Analog Signals . 2-59
Simple Analog Modulation Example . 2-61
Other Options in Analog Modulation . 2-62
Filter Design Issues . 2-62
Digital Modulation Overview . 2-66
Representing Digital Signals . 2-67
Significance of Sampling Rates . 2-70
Representing Signal Constellations . 2-70
Simple Digital Modulation Example . 2-74
Customizing the Modulation Process . 2-75
Other Options in Digital Modulation . 2-77
Selected Bibliography for Modulation . 2-77

Special Filters . 2-78
Special Filter Features of the Toolbox 2-78
Noncausality and the Group Delay Parameter 2-78
Designing Hilbert Transform Filters . 2-80
Filtering with Raised Cosine Filters . 2-81
Designing Raised Cosine Filters . 2-87
Selected Bibliography for Special Filters 2-88

Galois Field Computations . 2-89
Galois Field Features of the Toolbox . 2-89
Galois Field Terminology . 2-89
Representing Elements of Galois Fields 2-90
Default Primitive Polynomials . 2-93
Converting and Simplifying Element Formats 2-94
Arithmetic in Galois Fields . 2-97
Polynomials over Prime Fields . 2-99
Other Galois Field Functions . 2-103
Selected Bibliography for Galois Fields 2-103

iv Contents

3
Reference

Functions by Category . 3-3

Alphabetical List of Functions . 3-9
ademod . 3-12
ademodce . 3-16
amod . 3-20
amodce . 3-25
apkconst . 3-28
awgn . 3-32
bchdeco . 3-34
bchenco . 3-36
bchpoly . 3-37
bi2de . 3-41
biterr . 3-43
compand . 3-49
convenc . 3-51
cyclgen . 3-53
cyclpoly . 3-55
ddemod . 3-57
ddemodce . 3-62
de2bi . 3-67
decode . 3-69
demodmap . 3-73
dmod . 3-78
dmodce . 3-82
dpcmdeco . 3-86
dpcmenco . 3-87
dpcmopt . 3-88
encode . 3-89
eyediagram . 3-95
gen2par . 3-97
gfadd . 3-99
gfconv . 3-101
gfcosets . 3-103
gfdeconv . 3-105
gfdiv . 3-108
gffilter . 3-110

v

gflineq . 3-112
gfminpol . 3-114
gfmul . 3-116
gfplus . 3-117
gfpretty . 3-118
gfprimck . 3-120
gfprimdf . 3-121
gfprimfd . 3-122
gfrank . 3-124
gfrepcov . 3-125
gfroots . 3-126
gfsub . 3-128
gftrunc . 3-130
gftuple . 3-131
gfweight . 3-134
hammgen . 3-135
hank2sys . 3-138
hilbiir . 3-140
istrellis . 3-143
lloyds . 3-145
marcumq . 3-147
modmap . 3-148
oct2dec . 3-153
poly2trellis . 3-154
qaskdeco . 3-157
qaskenco . 3-159
quantiz . 3-162
randerr . 3-164
randint . 3-166
randsrc . 3-167
rcosfir . 3-169
rcosflt . 3-171
rcosiir . 3-174
rcosine . 3-176
rsdeco . 3-178
rsdecode . 3-181
rsdecof . 3-183
rsenco . 3-184
rsencode . 3-187
rsencof . 3-189

vi Contents

rspoly . 3-190
scatterplot . 3-192
symerr . 3-194
syndtable . 3-197
vec2mat . 3-198
vitdec . 3-200
wgn . 3-204

Preface

What Is the Communications Toolbox? viii

Related Products ix

Using This Guide xi
Expected Background xi
Supplementing This Guide with Command-Line Helpxii

Configuration Information xiii

Technical Conventions xiv
Polynomials as Vectors xiv
Matrices . xiv

Typographical Conventions xv

 Preface

viii

What Is the Communications Toolbox?
The Communications Toolbox is a set of MATLAB® functions that can help you
design and analyze advanced communication systems. Functions in the toolbox
can accomplish these tasks:

• Random signal production

• Error analysis, including eye diagrams and scatter plots

• Source coding, including scalar quantization, differential pulse code
modulation, and companders

• Error-control coding, including convolutional and linear block coding

• Analog and digital modulation/demodulation

• Filtering of data using special filters

• Computations in Galois fields

Related Products

ix

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Communications Toolbox. They are
listed in the table below. In particular, the Communications Toolbox requires
these products:

• MATLAB

• Signal Processing Toolbox

For more information about any of these products, see either:

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend MATLAB’s
capabilities. The blocksets all include blocks that extend the capabilities of
Simulink®.

Product Description

CDMA Reference
Blockset

Simulink block libraries for the design and
simulation of the IS-95A wireless
communications standard

Communications
Blockset

Simulink block libraries for modeling the
physical layer of communications systems

DSP Blockset Simulink block libraries for the design,
simulation, and prototyping of digital signal
processing systems

 Preface

x

Signal Processing
Toolbox

Tool for algorithm development, signal and
linear system analysis, and time-series data
modeling

Simulink Interactive, graphical environment for
modeling, simulating, and prototyping
dynamic systems

Product Description

Using This Guide

xi

Using This Guide
This guide describes and illustrates the capabilities of the Communications
Toolbox. The table below matches sections of this guide with your possible
learning goals.

Expected Background
This guide assumes that you already have background knowledge in the
subject of communications. If you do not yet have this background, then you
can acquire it using a standard communications text or the books listed in one
of this guide’s sections entitled “Selected Bibliography for... .”

For New Users
Start with “Getting Started with the Communications Toolbox”, which
describes an example in detail. Then read those parts of “Using the
Communications Toolbox” that address the functionality that concerns you.
When you find out from that chapter which functions you want to use, refer to
the references pages in “Reference” that describe those functions.

For Experienced Users
The reference descriptions in “Reference” are probably the most relevant parts
of this guide for you. Each reference description includes the function’s syntax
as well as a complete explanation of its options and operation. Many reference
descriptions also include examples, a description of the function’s algorithm,
and references to additional reading material.

You might also want to browse through “Getting Started with the
Communications Toolbox” and “Using the Communications Toolbox” based on
your interests or needs.

Goal Section

Examine an example in detail, to begin learning
about the toolbox

“Getting Started with the
Communications Toolbox”

Learn how this toolbox implements a particular
category of functionality, such as source coding

“Using the Communications Toolbox”

Learn about particular functions in this toolbox “Reference”

 Preface

xii

Supplementing This Guide with Command-Line Help
Command-line help is text that MATLAB displays in its command window.
The table below lists two kinds of command-line help that are available for the
Communications Toolbox, along with the command that you would type at the
MATLAB prompt in order to display the help text.

Method-Specific Help
Some multipurpose functions also provide command-line help on specific
methods. For example, help encode displays text that describes the use of the
encode command for error-control encoding. One specific method of
error-control encoding is BCH encoding. The command

encode bch

displays text that describes the use of the encode command for BCH encoding.
The functions that provide method-specific help are: amod, ademod, amodce,
ademodce, ddemod, ddemodce, decode, demodmap, dmod, dmodce, encode, and
modmap. The general help text, displayed by the help function command, lists
the available methods.

Type of Command-Line Help MATLAB Command

List of functions in the
Communications Toolbox

help comm

Information about a particular
function

help function (for example, help
ademod)

Configuration Information

xiii

Configuration Information
To determine if the Communications Toolbox is installed on your system, type

ver

at the MATLAB prompt. MATLAB displays information about the version of
MATLAB you are running, including a list of all toolboxes installed on your
system and their version numbers. Check the list to see if the Communications
Toolbox appears.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

 Preface

xiv

Technical Conventions
This section mentions some technical conventions that this guide uses.

Polynomials as Vectors
MATLAB represents a polynomial in one variable x using a vector that lists the
polynomial’s coefficients, arranged according to the powers of x. Descending
order means that the coefficient of the highest power of x appears first and that
the polynomial’s constant term appears last. Ascending order is the opposite.
The table below illustrates the conventions for functions in this toolbox and for
built-in MATLAB functions.

Matrices
Matrix dimensions are described by listing the number of rows and the number
of columns of the matrix in that order, as below.

u = [1 2 3;4 5 6] % A 2-by-3 matrix

Category of Functions Vector That Represents the
Polynomial 1+2x+3x2

Error-control coding or Galois
field computations

[1, 2, 3] (ascending order)

Modulation/demodulation, e.g.,
when using filters

[3, 2, 1] (descending order)

Built-in MATLAB, e.g., roots,
poly, polyval

[3, 2, 1] (descending order)

Typographical Conventions

xv

Typographical Conventions
This guide uses some or all of these conventions.

Item Convention Used Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names/syntax Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Keys Boldface with an initial capital
letter

Press the Return key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with
A =

5

Menu titles, menu items,
dialog boxes, and controls

Boldface with an initial capital
letter

Choose the File menu.

New terms Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

 Preface

xvi

1
Getting Started with the
Communications Toolbox

A Detailed Example 1-2
What the Example Does 1-2
Where to Find the Example 1-3
How the Example Works 1-3
Output from the Example 1-6

1 Getting Started with the Communications Toolbox

1-2

A Detailed Example
This chapter describes a particular example in detail, to help you get started
using the Communications Toolbox. It uses several functions from the toolbox,
as the table below indicates.

This chapter assumes very little about your prior knowledge of MATLAB,
although it still assumes that you have a basic knowledge about
communications subject matter.

What the Example Does
The example creates a random digital signal consisting of integers between 0
and 8, and modulates it using two varieties of the 8-ary quadrature amplitude
shift keying (QASK) technique. This technique associates each integer in the
signal with some point in an eight-point signal constellation, and then uses the
associations to create a modulated signal.

There are 8!, that is, factorial(8), ways to associate eight symbols with eight
constellation points. One category of configurations implements what is called
Gray coding. In a Gray coded constellation, the symbol associated with a given
point and the symbol of any of the point’s nearest neighbors differ in exactly
one bit. Thus, the constellation point associated with the symbol 3 (= 011) can
have as a nearest neighbor the point associated with the symbol 1 (= 001), 2
(= 010), or 7 (= 111), but not any other number.

In order to compare the behavior of different constellation configurations, the
example modulates the message signal separately using two varieties of
8-QASK modulation. Both varieties use constellations with the same points,

Function Purpose in Example

randint Generate a random signal

dmodce Modulate signals

ddemodce Demodulate signals

biterr Compute bit error rate

modmap Plot a signal constellation

A Detailed Example

1-3

but one variety labels the constellation points so as to implement Gray code
while the other variety does not implement Gray code. After modulating, the
example adds noise to both modulated signals, demodulates both noisy signals,
and compares the bit error rates in the two cases.

The example outputs the two bit error rates. The expectation is that although
noise might cause demodulation errors in both cases, the errors in the Gray
coding case should involve fewer bits. When you execute the example, check to
see whether the bit error rate from the Gray coding case is smaller than the bit
error rate from the non-Gray coding case.

Where to Find the Example
If you have already installed MATLAB and the Communications Toolbox, then
the toolbox will be there whenever you start up MATLAB. The example is
contained in a file called commgettingstarted.m, which is located in the
toolbox/comm/commdemos directory within your MATLAB installation. You
can view the contents of the example file by typing

type commgettingstarted

at the MATLAB prompt.

You can execute the example by typing

commgettingstarted

at the MATLAB prompt.

How the Example Works
This section displays and explains the example code, piece by piece.

Setting Up Parameters
The first part of the example defines variables that the rest of the example will
use. The symbol alphabet has M different symbols, namely, the integers
between 0 and M-1. The message will be a column vector having len entries,
each of which is chosen from the symbol alphabet.

The variables Fd and Fs refer to the relative sampling rates for the modulation
scheme. They would be more meaningful if the example were sampling a real
signal that had a natural notion of time. However, since this example uses a
random signal that does not have a built-in notion of time, the main purpose of

1 Getting Started with the Communications Toolbox

1-4

Fd and Fs is to indicate that the modulated signal has three entries for every
one entry of the original signal.

% Set up parameters.
M = 8; % Number of symbols in alphabet
len = 10000; % Number of symbols in the original message
Fd = 1; % Assume the original message is sampled
% at a rate of 1 sample per second.
Fs = 3; % The modulated signal will be sampled
% at a rate of 3 samples per second.

Creating the Signal
The variable signal is a len-by-1 matrix, that is, a column vector of length len,
whose entries are randomly chosen integers between 0 and M-1. This is the
signal that the example will modulate. The randint function is part of this
toolbox.

% Create a signal.
signal = randint(len,1,M); % Random digital message
% consisting of integers between 0 and M-1

Modulating the Signal
This part of the example modulates the data in the column vector signal in two
different ways. The dmodce function performs both modulations and puts the
results into the two-column matrix modsignal.

The first call to dmodce, which creates the first column of modsignal, tells
dmodce to use QASK modulation on M symbols. The string 'qask' indicates the
QASK method as well as the default square constellation configuration. In this
case, the configuration implements Gray code.

The second call to dmodce, which creates the second column of modsignal, tells
dmodce to use QASK modulation with a signal constellation whose
configuration is represented in the vectors inphase and quad. The variables
inphase and quad are length-M vectors that list the in-phase and quadrature
components, respectively, of the points in the signal constellation. The points
are listed in sequence, to associate a message symbol of k with the (k+1)st
elements in inphase and quad. Whereas Gray code labels the constellation
points in a special way, this configuration lists points in a sequence that is
merely convenient for creating inphase and quad.

A Detailed Example

1-5

These lines also illustrate some common ways to manipulate matrices in
MATLAB. If you are not familiar with MATLAB’s colon notation or with
functions like ones and zeros, then you should consult the MATLAB
documentation set.

% Use M-ary QASK modulation with two different labeled
% square constellations.
modsignal(:,1) = dmodce(signal,Fd,Fs,'qask',M);
inphase = [-3:2:3 -3:2:3];
quad = [ones(1,4), -1*ones(1,4)];
modsignal(:,2) = dmodce(signal,Fd,Fs,'qask/arb',inphase,quad);

Adding Noise
According to the definition of baseband QASK modulation, modsignal is a
complex matrix having len*Fs/Fd rows and two columns. The command below
adds normally distributed random numbers to the real and imaginary parts of
modsignal, to produce a noisy signal noisy. The randn function is a built-in
MATLAB function.

Notice that the command adds to modsignal an entire real matrix of the
appropriate size and an entire imaginary matrix of the appropriate size. Using
a loop to add noise to individual scalar entries of modsignal would be less
efficient, since MATLAB is optimized for matrix operations.

% Add noise to real and imaginary parts of the modulated signal.
noisy = modsignal+.5*randn(len*Fs/Fd,2)...
+j*.5*randn(len*Fs/Fd,2);

Demodulating the Signal
This part of the example demodulates the noisy modulated signal, noisy, in
two different ways. The ddemodce function performs both demodulations by
operating on each column of noisy separately. In each case, ddemodce puts the
results into the two-column matrix newsignal.

% Demodulate to recover the message.
newsignal(:,1) = ddemodce(noisy(:,1),Fd,Fs,'qask',M);
newsignal(:,2) = ddemodce(noisy(:,2),Fd,Fs,...
'qask/arb',inphase,quad);

1 Getting Started with the Communications Toolbox

1-6

Computing and Displaying Bit Error Rates
The biterr function compares each demodulated signal (that is, each column
of newsignal) to the original signal. Then biterr computes the number of bit
errors, as well as the rate or fraction of bit errors. The built-in MATLAB
function disp displays the two bit error rates in the command window.

% Check whether Gray code resulted in fewer bit errors.
% Compare signal with each column of newsignal.
[num,rate] = biterr(newsignal,signal);
disp('Bit error rates for the two constellations used here')
disp('--')
disp(['Gray code constellation: ', num2str(rate(1))])
disp(['Non-Gray code constellation: ', num2str(rate(2))])

Plotting a Signal Constellation
The modmap function plots and labels the default square signal constellation
having M points. The constellation that inphase and quad determine looks the
same, except that the points are labeled from left to right across each row in
the diagram, starting with the upper row.

% Plot signal constellations with Gray code labeling.
modmap('qask',M);

Output from the Example
The example produces output in the command window like that shown below.
Since the message signal and the noise are random, you will probably not get
the exact numbers below. (For information about states and repeatable
sequences of random numbers, see the reference page for the built-in MATLAB
function rand.)

Bit error rates for the two constellations used here
--
Gray code constellation: 0.0003
Non-Gray code constellation: 0.00036667

The example also produces a figure window containing the signal constellation
plot in the figure below. The horizontal axis represents the in-phase
components and the vertical axis represents the quadrature components. The
dots are the constellation points. The number next to each dot is the message
symbol associated with that dot. By considering the binary form of each

A Detailed Example

1-7

number from 0 to M-1, you can check that this constellation implements Gray
code.

Figure 1-1: Square 8-ary QASK Signal Constellation, Labeled for Gray Code

1 Getting Started with the Communications Toolbox

1-8

2
Using the
Communications Toolbox

Random Signals and Error Analysis 2-3

Source Coding 2-14

Block Coding 2-24

Convolutional Coding 2-43

Modulation . 2-56

Special Filters 2-78

Galois Field Computations 2-89

2 Using the Communications Toolbox

2-2

A typical communication system includes a signal source, sink, and channel, as
well as processes for transmitting and receiving. This chapter describes and
illustrates how to implement communication components using the functions
provided in the Communications Toolbox. Each section in this chapter
corresponds to a category of functionality within the Communications Toolbox.
The sections are:

• “Random Signals and Error Analysis” on page 2-3

• “Source Coding” on page 2-14

• “Block Coding” on page 2-24

• “Convolutional Coding” on page 2-43

• “Modulation” on page 2-56

• “Special Filters” on page 2-78

• “Galois Field Computations” on page 2-89

Random Signals and Error Analysis

2-3

2. Using the Communications Toolbox

Random Signals and Error Analysis
Simulating a communication system often involves analyzing its response to
the noise inherent in real-world components. Such analysis aims to illustrate
the system’s response and possibly to help design a system appropriate for the
most likely kinds of noise.

Error Analysis Features of the Toolbox
Error analysis tasks supported in the Communications Toolbox include:

• Simulating noise or signal sources using random signals

• Computing the error rate or number of errors

• Plotting an eye diagram

• Generating a scatter plot

This section describes these toolbox functions that accomplish error-analysis
tasks: biterr, eyediagram, randerr, randint, randsrc, scatterplot, symerr,
and wgn. Since error analysis is often a component of communication system
simulation, other portions of this guide provide additional examples.

Random Signals
Random signals are useful for simulating noise, errors, or signal sources.
Besides built-in MATLAB functions like rand and randn, you can also use these
functions from this toolbox:

• wgn, for generating white Gaussian noise

• randsrc, for generating random symbols

• randint, for generating uniformly distributed random integers

• randerr, for generating random bit error patterns

While randsrc and randint are suitable for representing sources, randerr is
more appropriate for modeling channel errors.

White Gaussian Noise
The wgn function generates random matrices using a white Gaussian noise
distribution. You specify the power of the noise in either dB (decibels), dBm, or
linear units. You can generate either real or complex noise.

2 Using the Communications Toolbox

2-4

For example, the command below generates a column vector of length 50
containing real white Gaussian noise whose power is 2 dB. The function
assumes that the load impedance is 1 Ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a
load of 60 Ohms, use either of the commands below. Notice that the ordering of
the string inputs does not matter.

y2 = wgn(50,1,2,60,'complex','linear');
y3 = wgn(50,1,2,60,'linear','complex');

To send a signal through an additive white Gaussian noise channel, use the
awgn function.

Random Symbol Matrices
The randsrc function generates random matrices whose entries are chosen
independently from an alphabet that you specify, with a distribution that you
specify. A special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries are
independently chosen and uniformly distributed in the set {1,3,5}. (Your results
may vary because these are random numbers.)

a = randsrc(5,4,[1,3,5])

a =

 3 5 1 5
 1 5 3 3
 1 3 3 1
 1 1 3 5
 3 1 1 3

If you want 1 to be twice as likely to occur as either 3 or 5, then use the
command below to prescribe the skewed distribution. Notice that the third
input argument has two rows, one of which indicates the possible values of b
and the other indicates the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])

Random Signals and Error Analysis

2-5

b =

 3 3 5 1
 1 1 1 1
 1 5 1 1
 1 3 1 3
 3 1 3 1

Random Integer Matrices
The randint function generates random integer matrices whose entries are in
a range that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing random
integers between 2 and 10.

c = randint(5,4,[2,10])

c =

 2 4 4 6
 4 5 10 5
 9 7 10 8
 5 5 2 3
 10 3 4 10

If your desired range is [0,10] instead of [2,10] then you can use either of the
commands below. They produce different numerical results, but use the same
distribution.

d = randint(5,4,[0,10]);
e = randint(5,4,11);

Random Bit Error Patterns
The randerr function generates matrices whose entries are either 0 or 1.
However, its options are rather different from those of randint, since randerr
is meant for testing error-control coding. For example, the command below
generates a 5-by-4 binary matrix having the property that each row contains
exactly one 1.

f = randerr(5,4)

2 Using the Communications Toolbox

2-6

f =

 0 0 1 0
 0 0 1 0
 0 1 0 0
 1 0 0 0
 0 0 1 0

You might use such a command to perturb a binary code that consists of five
four-bit codewords. Adding the random matrix f to your code matrix (modulo
2) would introduce exactly one error into each codeword.

On the other hand, if you want to perturb each codeword by introducing one
error with probability 0.4 and two errors with probability 0.6, then the
command below should replace the one above.

% Each row has one '1' with probability 0.4, otherwise two '1's
g = randerr(5,4,[1,2; 0.4,0.6])

g =

 0 1 1 0
 0 1 0 0
 0 0 1 1
 1 0 1 0
 0 1 1 0

Note The probability matrix that is the third argument of randerr affects
only the number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element
column vector using any of the commands below. The three commands produce
different numerical outputs, but use the same distribution. Notice that the
third input arguments vary according to each function’s particular way of
specifying its behavior.

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1.
binarymatrix2 = randint(100,1,2); % Two possible values
binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1

Random Signals and Error Analysis

2-7

Error Rates
Comparing messages before and after transmission can help you evaluate the
quality of a communication system design or the performance of a special
technique or algorithm. If your communication system uses several bits to
represent a single symbol, then counting bit errors is different from counting
symbol errors. In either the bit- or symbol-counting case, the error rate is the
number of errors divided by the total number (of bits or symbols) transmitted.

The biterr function compares two messages and computes the number of bit
errors and the bit error rate. The symerr function compares two messages and
computes the number of symbol errors and the symbol error rate.

Example: Computing Error Rates
The script below uses the symerr function to compute the symbol error rates for
a noisy linear block code. After artificially adding noise to the encoded message,
it compares the resulting noisy code to the original code. Then it decodes and
compares the decoded message to the original one.

m = 3; n = 2^m-1; k = n-m; % Prepare to use Hamming code.
msg = randint(k*200,1,2); % 200 messages of k bits each
code = encode(msg,n,k,'hamming');
codenoisy = rem(code+(rand(n*200,1)>.95),2); % Add noise.
% Decode and correct some errors.
newmsg = decode(codenoisy,n,k,'hamming');
% Compute and display symbol error rates.
[codenum,coderate] = symerr(code,codenoisy);
[msgnum,msgrate] = symerr(msg,newmsg);
disp(['Error rate in the received code: ',num2str(coderate)])
disp(['Error rate after decoding: ',num2str(msgrate)])

The output is below. The error rate decreases after decoding because the
Hamming decoder corrects some of the errors. Your results might vary because
the example uses random numbers.

Error rate in the received code: 0.054286
Error rate after decoding: 0.03

2 Using the Communications Toolbox

2-8

Comparison of Symbol Error Rate and Bit Error Rate
In the example above, the symbol errors and bit errors are the same because
each symbol is a bit. The commands below illustrate the difference between
symbol errors and bit errors in other situations.

a = [1 2 3]'; b = [1 4 4]';
format rat % Display fractions instead of decimals.
[snum,srate] = symerr(a,b)

snum =

 2

srate =

 2/3

[bnum,brate] = biterr(a,b)

bnum =

 5

brate =

 5/9

bnum is five because the second entries differ in two bits and the third entries
differ in three bits. brate is 5/9 since the total number of bits is nine. The total
number of bits is, by definition, the number of entries in a or b times the
maximum number of bits among all entries of a and b.

Eye Diagrams
An eye diagram is a simple and convenient tool for studying the effects of
intersymbol interference and other channel impairments in digital
transmission. To construct an eye diagram, plot the received signal against
time on a fixed-interval axis. At the end of the fixed time interval, wrap around
to the beginning of the time axis. Thus the diagram consists of many
overlapping curves. One way to use an eye diagram is to look for the place

Random Signals and Error Analysis

2-9

where the “eye” is most widely opened, and use that point as the decision point
when demapping a demodulated signal to recover a digital message.

To produce an eye diagram from a signal, use the eyediagram function. The
signal can have different formats, as the table below indicates.

Example: Eye Diagrams
The code below illustrates the use of the eye diagram for finding the best
decision point. It maps a random digital signal to a 16-QASK waveform, then
uses a raised cosine filter to simulate a noisy transmission channel. Several
commands manipulate the filtered data to isolate its steady-state behavior.
Then the eyediagram command produces an eye diagram from the resulting
signal.

% Define the M-ary number and sampling rates.
M = 16; Fd = 1; Fs = 10;
Pd = 100; % Number of points in the calculation
msg_d = randint(Pd,1,M); % Random integers in the range [0,M-1]
% Modulate using square constellation QASK method.
msg_a = modmap(msg_d,Fd,Fd,'qask',M);
% Assume the channel is equivalent to a raised cosine filter.
delay = 3; % Delay of the raised cosine filter
rcv = rcosflt(msg_a,Fd,Fs,'fir/normal',.5,delay);

% Truncate the output of rcosflt to remove response tails.
propdelay = delay .* Fs/Fd + 1; % Propagation delay of filter

Table 2-1: Representing In-Phase and Quadrature Components of Signal

Signal Format Source of In-Phase
Components

Source of Quadrature
Components

Real matrix with two
columns

First column Second column

Complex vector Real part Imaginary part

Real vector Vector contents Quadrature
component is always
zero

2 Using the Communications Toolbox

2-10

rcv1 = rcv(propdelay:end-(propdelay-1),:); % Truncated version
N = Fs/Fd;

% Plot the eye diagram of the resulting signal sampled and
% displayed with no offset.
offset1 = 0;
h1 = eyediagram(rcv1,N,1/Fd,offset1);
set(h1,'Name','Eye Diagram Displayed with No Offset');

Notice that a vertical line down the center of the diagram would cross the “eye”
at its most widely opened point, as in the left-hand side below.

In the right-hand diagram above, a similar vertical line would not cross the eye
at the most widely opened point. This diagram results from the commands

offset2 = 2;
h2 = eyediagram(rcv1,N,1/Fd,offset2,'r-');
set(h2,'Name','Eye Diagram Displayed with Offset of Two');

This example continues by using the information gathered from the eye
diagrams to choose the decision-timing offset in the demodmap command.

Random Signals and Error Analysis

2-11

(Notice that the actual offset value in demodmap is offset1+1 because
eyediagram and demodmap express offsets in a different way.)

% Continue, using the offset information for digital demapping.
newmsg1 = demodmap(rcv1,[Fd offset1+1],Fs,'qask',16);
s1 = symerr(msg_d,newmsg1) % Number of symbol errors

s1 =

 0

By contrast, an offset value based on offset2 leads to errors in the recovered
digital signal. Your exact number of errors might vary because the message
msg_d consists of random numbers.

newmsg2 = demodmap(rcv1,[Fd offset2+1],Fs,'qask',16);
s2 = symerr(msg_d,newmsg2)

s2 =

 8

As an additional example of using the eyediagram function, the commands
below display the eye diagram with no offset, but based on data that is sampled
with an offset of two samples. This sampling offset simulates errors in timing
that result from being two samples away from perfect synchronization.

h3 = eyediagram(rcv1(1+offset2:end,:),N,1/Fd,0);
set(h3,'Name','Eye Diagram Sampled with Offset of Two');

Scatter Plots
A scatter plot of a signal shows the signal’s value at a given decision point. In
the best case, the decision point should be at the time when the eye of the
signal’s eye diagram is the most widely open.

To produce a scatter plot from a signal, use the scatterplot function. The
signal can have different formats, as in the case of the eyediagram function.
See Table 2-1, Representing In-Phase and Quadrature Components of Signal,
on page 2-9 for details.

2 Using the Communications Toolbox

2-12

Example: Scatter Plots
The code below is similar to the example from the section, “Example: Eye
Diagrams” on page 2-9. It produces a scatter plot from the received analog
signal, instead of an eye diagram.

% Define the M-ary number and sampling rates.
M = 16; Fd = 1; Fs = 10;
Pd = 200; % Number of points in the calculation
msg_d = randint(Pd,1,M); % Random integers in the range [0,M-1]
% Modulate using square constellation QASK method.
msg_a = modmap(msg_d,Fd,Fs,'qask',M);
% Assume the channel is equivalent to a raised cosine filter.
rcv = rcosflt(msg_a,Fd,Fs);
% Create the scatter plot of the received signal,
% ignoring the first three and the last four symbols.
N = Fs/Fd;
rcv_a = rcv(3*N+1:end-4*N,:);
h = scatterplot(rcv_a,N,0,'bx');

Varying the third parameter in the scatterplot command changes the offset.
An offset of zero yields optimal results, shown on the left below.

Random Signals and Error Analysis

2-13

The diagram on the right results from the commands below. The x’s and +’s
reflect two offsets that are not optimal because they are too late and too early,
respectively. Notice that in the diagram, the dots are the actual constellation
points, while the other symbols are perturbations of those points.

hold on;
scatterplot(rcv_a,N,N+1,'r+',h); % Plot +'s
scatterplot(rcv_a,N,N-1,'mx',h); % Plot x's
scatterplot(rcv_a,N,0,'b.',h); % Plot dots

2 Using the Communications Toolbox

2-14

Source Coding
Source coding, also known as quantization or signal formatting, is a way of
processing data in order to reduce redundancy or prepare it for later
processing. Analog-to-digital conversion and data compression are two
categories of source coding.

Source coding divides into two basic procedures: source encoding and source
decoding. Source encoding converts a source signal into a digital signal using a
quantization method. The symbols in the resulting signal are nonnegative
integers in some finite range. Source decoding recovers the original
information from the source coded signal.

Source Coding Features of the Toolbox
This toolbox supports two source coding quantization methods: scalar
quantization and predictive quantization. It does not support vector
quantization. Functions in the toolbox can accomplish these tasks:

• Quantize a signal according to a partition and codebook that you specify

• Optimize partition and codebook parameters for a set of training data

• Encode or decode a signal using the differential pulse code modulation
(DPCM) technique

• Optimize DPCM parameters for a set of training data

• Perform µ-law or A-law compressor or expander calculations

Representing Quantization Parameters
Scalar quantization is a process that maps all inputs within a specified range
to a common value. It maps inputs in a different range of values to a different
common value. In effect, scalar quantization digitizes an analog signal. Two
parameters determine a quantization: a partition and a codebook. This section
describes how toolbox functions represent these parameters.

Partitions
A quantization partition defines several contiguous, nonoverlapping ranges of
values within the set of real numbers. To specify a partition in MATLAB, list
the distinct endpoints of the different ranges in a vector.

Source Coding

2-15

For example, if the partition separates the real number line into the four sets:

1 {x: x ≤ 0}

2 {x: 0< x ≤ 1}

3 {x: 1 < x ≤ 3} and

4 {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

Notice that the length of the partition vector is one less than the number of
partition intervals.

Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall
into each range of the partition. Represent a codebook as a vector whose length
is the same as the number of partition intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

Quantizing a Signal
The previous section described how you can represent the partition and
codebook that determine your scalar quantization process. This section shows
how to use these parameters in the quantiz function.

Scalar Quantization Example 1
The code below shows how the quantiz function uses partition and codebook
to map a real vector, samp, to a new vector, quantized, whose entries are either
-1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized

2 Using the Communications Toolbox

2-16

quantized =

 Columns 1 through 6

 -1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000

 Columns 7 through 12

 2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

 Column 13

 3.0000

Scalar Quantization Example 2
This example illustrates the nature of scalar quantization more clearly. After
quantizing a sampled sine wave, it plots the original and quantized signals.
The plot contrasts the x’s that make up the sine curve with the dots that make
up the quantized signal. The vertical coordinate of each dot is a value in the
vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')
axis([-.2 7 -1.2 1.2])

Source Coding

2-17

Determining Which Interval Each Input Is in
The quantiz function also returns a vector that tells which interval each input
is in. For example, the output below says that the input entries lie within the
intervals labeled 0, 6, and 5, respectively. Here, the 0th interval consists of real
numbers less than or equal to 3; the 6th interval consists of real numbers
greater than 8 but less than or equal to 9; and the 5th interval consists of real
numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)
index =

 0
 6
 5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

2 Using the Communications Toolbox

2-18

then the equation below relates the vector index to the quantized signal
quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you
instead phrase the example more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimizing Quantization Parameters
Quantization distorts a signal. You can lessen the distortion by choosing
appropriate partition and codebook parameters. However, testing and
selecting parameters for large signal sets with a fine quantization scheme can
be tedious. One way to produce partition and codebook parameters easily is to
optimize them according to a set of so-called training data.

Note The training data that you use should be typical of the kinds of signals
that you will actually be quantizing.

Example: Optimizing Scalar Quantization Parameters
The lloyds function optimizes the partition and codebook according to the
Lloyd algorithm. The code below optimizes the partition and codebook for one
period of a sinusoidal signal, starting from a rough initial guess. Then it uses
these parameters to quantize the original signal using the initial guess
parameters as well as the optimized parameters. The output shows that the
mean square distortion after quantizing is much less for the optimized
parameters. Notice that the quantiz function automatically computes the
mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];
codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.

Source Coding

2-19

[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

ans =

 0.0148 0.0024

Implementing Differential Pulse Code Modulation
The quantization in the section “Quantizing a Signal” on page 2-15 requires no
a priori knowledge about the transmitted signal. In practice, you can often
make educated guesses about the present signal based on past signal
transmissions. Using such educated guesses to help quantize a signal is known
as predictive quantization. The most common predictive quantization method
is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a
DPCM predictive quantizer with a linear predictor.

DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a
partition and codebook as described in “Representing Quantization
Parameters” on page 2-14, but also a predictor. The predictor is a function that
the DPCM encoder uses to produce the educated guess at each step. A linear
predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p
is an m-tuple of real numbers. Instead of quantizing x itself, the DPCM encoder
quantizes the predictive error, x-y. The integer m above is called the predictive
order. The special case when m = 1 is called delta modulation.

Representing Predictors
If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

2 Using the Communications Toolbox

2-20

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note The initial zero in the predictor vector makes sense if you view the
vector as the polynomial transfer function of a finite impulse response (FIR)
filter.

Example: DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal’s
current value and its value at the previous step. Thus the predictor is just
y(k) = x(k-1). The code below implements this scheme. It encodes a sawtooth
signal, decodes it, and plots both the original and decoded signals. The solid
line is the original signal, while the dashed line is the recovered signals. The
example also computes the mean square error between the original and
decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
distor = sum((x-decodedx).^2)/length(x) % Mean square error

distor =

 0.0327

Source Coding

2-21

Optimizing DPCM Parameters
The section “Optimizing Quantization Parameters” on page 2-18 describes how
you can use training data with the lloyds function to help find quantization
parameters that will minimize signal distortion. This section describes similar
procedures for using the dpcmopt function in conjunction with the two
functions dpcmenco and dpcmdeco, which first appear in the previous section.

Note The training data that you use with dpcmopt should be typical of the
kinds of signals that you will actually be quantizing with dpcmenco.

Example: Comparing Optimized and Nonoptimized DPCM Parameters
This example is similar to the one in the last section. However, whereas the last
example created predictor, partition, and codebook in a straightforward but
haphazard way, this example uses the same codebook (now called
initcodebook) as an initial guess for a new optimized codebook parameter.
This example also uses the predictive order, 1, as the desired order of the new

2 Using the Communications Toolbox

2-22

optimized predictor. The dpcmopt function creates these optimized parameters,
using the sawtooth signal x as training data. The example goes on to quantize
the training data itself; in theory, the optimized parameters are suitable for
quantizing other data that is similar to x. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error

distor =

 0.0063

Companding a Signal
In certain applications, such as speech processing, it is common to use a
logarithm computation, called a compressor, before quantizing. The inverse
operation of a compressor is called an expander. The combination of a
compressor and expander is called a compander.

The compand function supports two kinds of companders: µ-law and A-law
companders. Its reference page lists both compressor laws.

Example: A µ-Law Compander
The code below quantizes an exponential signal in two ways and compares the
resulting mean square distortions. First, it simply uses the quantiz function
with a partition consisting of length-one intervals. In the second trial, compand
implements a µ-law compressor, quantiz quantizes the compressed data, and
finally compand expands the quantized data. The output shows that the
distortion is smaller for the second scheme. This is because equal-length
intervals are well-suited to the logarithm of sig, but not well-suited to sig
itself.

Source Coding

2-23

Mu = 255; % Parameter for mu-law compander
sig = -4:.1:4;
sig = exp(sig); % Exponential signal to quantize
V = max(sig);
% 1. Quantize using equal-length intervals and no compander.
[index,quants,distor] = quantiz(sig,0:floor(V),0:ceil(V));

% 2. Use same partition and codebook, but compress
% before quantizing and expand afterwards.
compsig = compand(sig,Mu,V,'mu/compressor');
[index,quants] = quantiz(compsig,0:floor(V),0:ceil(V));
newsig = compand(quants,Mu,max(quants),'mu/expander');
distor2 = sum((newsig-sig).^2)/length(sig);
[distor, distor2] % Display both mean square distortions.

ans =

 0.5348 0.0397

Selected Bibliography for Source Coding
[1] Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons,
1994.

[2] Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

2 Using the Communications Toolbox

2-24

Block Coding
Error-control coding techniques detect and possibly correct errors that occur
when messages are transmitted in a digital communication system. To
accomplish this, the encoder transmits not only the information symbols but
also extra redundant symbols. The decoder interprets what it receives, using
the redundant symbols to detect and possibly correct whatever errors occurred
during transmission. You might use error-control coding if your transmission
channel is very noisy or if your data is very sensitive to noise. Depending on the
nature of the data or noise, you might choose a specific type of error-control
coding.

Block coding is a special case of error-control coding. Block coding techniques
maps a fixed number of message symbols to a fixed number of code symbols. A
block coder treats each block of data independently and is a memoryless device.

This section discusses these topics:

• “Block Coding Features of the Toolbox” on page 2-25

• “Block Coding Terminology” on page 2-26

• “Representing Messages and Codewords” on page 2-26

• “Representing Block Coding Parameters” on page 2-30

• “Creating and Decoding Block Codes” on page 2-36

• “Performing Other Block Code Tasks” on page 2-40

For background information about block coding, see the works listed in
“Selected Bibliography for Block Coding” on page 2-42.

Block Coding

2-25

Block Coding Features of the Toolbox
The class of linear block coding techniques includes categories shown below.

The Communications Toolbox supports general linear block codes. It also
includes functions to process cyclic, BCH, Hamming, and Reed-Solomon codes
(which are all special kinds of linear block codes). Functions in the toolbox can
accomplish these tasks:

• Encode or decode a message using one of the techniques mentioned above

• Determine characteristics of a technique, such as error-correction capability
or valid message length

• Perform lower-level computations associated with a technique, such as:

- Compute a decoding table

- Compute a generator or parity-check matrix

- Convert between generator and parity-check matrices

- Compute a generator polynomial

Note The functions in this toolbox are designed for block codes that use an
alphabet having 2 or 2m symbols.

Cyclic codes

Hamming codes

BCH codes

Reed-Solomon codes

Linear block codes

2 Using the Communications Toolbox

2-26

The table below lists the functions that are related to each supported block
coding technique.

Block Coding Terminology
Throughout this section, the information to be encoded consists of a sequence
of message symbols and the code that is produced consists of a sequence of
codewords.

Each block of k message symbols is encoded into a codeword that consists of n
symbols; in this context, k is called the message length, n is called the codeword
length, and the code is called an [n,k] code.

Representing Messages and Codewords
Each message or codeword is an ordered grouping of symbols. The next few
subsections illustrate the various ways that these symbols may be organized or
interpreted as input and output.

Binary Vector Format
One straightforward MATLAB format for messages and codewords is a vector
of 0s and 1s. That is, messages and codes might look like msg and code in the
lines below.

Table 2-2: Functions Related to Block Coding Techniques

Block Coding Technique Toolbox Functions

Linear block encode, decode, gen2par, syndtable

Cyclic encode, decode, cyclpoly, cyclgen, gen2par,
syndtable

BCH encode, decode, bchenco, bchdeco, bchpoly,
cyclgen, gen2par, syndtable

Hamming encode, decode, hammgen, gen2par,
syndtable

Reed-Solomon encode, decode, rsenco, rsdeco, rsencode,
rsdecode, rspoly, rsencof, rsdecof,
syndtable

Block Coding

2-27

n = 6; k = 4; % Set codeword length and message length
% for a [6,4] code.
msg = [1 0 0 1 1 0 1 0 1 0 1 1]'; % Message is a binary column.
code = encode(msg,n,k,'cyclic'); % Code will be a binary column.
msg'

ans =

 1 0 0 1 1 0 1 0 1 0 1 1

code'

ans =

 Columns 1 through 12

 0 0 1 0 0 1 1 0 1 0 1 0

 Columns 13 through 18

 0 1 1 0 1 1

In this example, msg consists of 12 entries, which are interpreted as three
four-digit (since k = 4) messages. The resulting vector code comprises three
six-digit (since n = 6) codewords, which are concatenated to form a vector of
length eighteen.

Binary Matrix Format
You can also organize coding information so as to emphasize the grouping of
digits in a single message or codeword. The code below illustrates this by listing
each four-digit message on a separate row in msg and each six-digit codeword
on a separate row in code.

n = 6; k = 4; % Set codeword length and message length.
msg = [1 0 0 1; 1 0 1 0; 1 0 1 1]; % Message is a binary matrix.
code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.
msg

2 Using the Communications Toolbox

2-28

msg =

 1 0 0 1
 1 0 1 0
 1 0 1 1

code

code =

 0 0 1 0 0 1
 1 0 1 0 1 0
 0 1 1 0 1 1

For all coding techniques except Reed-Solomon, the message matrix must have
k columns. The corresponding code matrix has n columns.

Reed-Solomon Coding Using Binary Matrix Format. For Reed-Solomon codes, the
message matrix must have m columns, where m is an integer greater than or
equal to 3 that satisfies n = 2m-1.

Decimal Format
Another way to process the same information is to regard each of the three rows
of msg and code above as binary representations of decimal integers. MATLAB
then accepts the corresponding decimal integers as valid messages, and
returns decimal integers as codewords.

Note If 2n or 2k is large, then you should use the default binary format
instead of the decimal format. This is because the function uses a binary
format internally, while the round-off error associated with converting many
bits to large decimal numbers and back might be substantial.

Note In this context, MATLAB expects the leftmost bit to be the least
significant bit.

Block Coding

2-29

The syntax for the encode command must mention the decimal format
explicitly, as in the example below. Notice that /decimal is appended to the
fourth argument in the encode command.

n = 6; k = 4; % Set codeword length and message length.
msg = [9;5;13]; % Message is a decimal column vector.
% Code will be a decimal vector.
code = encode(msg,n,k,'cyclic/decimal')

code =

 36
 21
 54

Note The three examples above used cyclic coding. The formats for messages
and codes are similar for Hamming, generic linear, and BCH codes.

Reed-Solomon Coding Using Decimal Format. For Reed-Solomon coding using
decimal formats, the message matrix must have k columns. Each entry in the
matrix must be an integer between 0 and n. The example below illustrates the
decimal format for Reed-Solomon coding using the encode command.

m = 3;
n = 2^m-1; k = 4; % Set codeword length and message length.
msgdec = [1 6 4 1; 0 0 4 3]; % Message is a decimal matrix.
% Code will be a decimal vector.
codedec = encode(msgdec,n,k,'rs/decimal')

codedec =

 0 4 3 1 6 4 1
 3 7 5 0 0 4 3

The example below illustrates how to convert between binary and decimal
message formats for Reed-Solomon coding.

m = 3;
n = 2^m-1; k = 4;

2 Using the Communications Toolbox

2-30

msgbin = [1 1 1; 1 0 1; 0 0 1; 0 1 0];
% Convert binary matrix format to decimal format.
% Replace k by n below if this is a code instead of a message.
msgdec = vec2mat(bi2de(msgbin),k);
% Convert decimal format back to binary matrix format.
msgbin2 = de2bi(vec2mat(msgdec,1),m);

Exponential Format (Reed-Solomon Code Only)
For Reed-Solomon coding using exponential formats, the message matrix must
have k columns. Each entry of the matrix must be an integer between -1 and
n-1. The example below is the exponential-form counterpart of the
Reed-Solomon example from the previous section.

m = 3;
n = 2^m-1; k = 4; % Set codeword length and message length.
msg = [0 5 3 0; -1 -1 3 2];
% Message is an exponential-form matrix.
% Code will be an exponential-form matrix.
code = encode(msg,n,k,'rs/power');

The name “exponential format” comes from one of MATLAB’s standard formats
for elements of GF(2m). This format uses integers from -1 to 2m-2, where the
symbol -Inf is sometimes substituted for -1. See “Exponential Format” on
page 2-90 for definitions.

To convert from decimal format to exponential format, simply subtract one. To
convert from exponential format to decimal format, replace any negative
values by -1 and then add one.

Representing Block Coding Parameters
This subsection describes the items that you might need in order to process
[n,k] linear block codes. The table below lists the items and the coding
techniques for which they are most relevant.

Table 2-3: Parameters Used in Block Coding Techniques

Parameter Block Coding Technique

Generator Matrix Generic linear block

Parity-Check Matrix Generic linear block

Block Coding

2-31

Generator Matrix
The process of encoding a message into an [n,k] linear block code is determined
by a k-by-n generator matrix G. Specifically, the 1-by-k message vector v is
encoded into the 1-by-n codeword vector vG. If G has the form [Ik P] or [P Ik],
where P is some k-by-(n-k) matrix and Ik is the k-by-k identity matrix, then G
is said to be in standard form. (Some authors, e.g., Clark and Cain [1], use the
first standard form, while others, e.g., Lin and Costello [2], use the second.)
Most functions in this toolbox assume that a generator matrix is in standard
form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check
Matrix.”

Parity-Check Matrix
Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix
H. It satisfies GHtr = 0 (mod 2), where Htr denotes the matrix transpose of H,
G is the code’s generator matrix, and this zero matrix is k-by-(n-k). If G = [Ik P]
then H = [-Ptr In-k]. Most functions in this toolbox assume that a parity-check
matrix is in standard form when you use it as an input argument.

The table below summarizes the standard forms of the generator and
parity-check matrices for an [n,k] binary linear block code.

Generator Polynomial Cyclic, BCH, Reed-Solomon

Primitive Polynomial and
List of Galois Field Elements

Hamming, Reed-Solomon

Decoding Table Generic linear block, Hamming

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n

Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

Table 2-3: Parameters Used in Block Coding Techniques (Continued)

Parameter Block Coding Technique

2 Using the Communications Toolbox

2-32

Ik is the identity matrix of size k and the ' symbol indicates matrix transpose.
(For binary codes, the minus signs in the parity-check form listed above are
irrelevant; that is, -1 = 1 in the binary field.)

Examples. In the command below, parmat is a parity-check matrix and genmat
is a generator matrix for a Hamming code in which [n,k] = [23-1, n-3] = [7,4].
Notice that genmat has the standard form [P Ik].

[parmat,genmat] = hammgen(3)

parmat =

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

genmat =

 1 1 0 1 0 0 0
 0 1 1 0 1 0 0
 1 1 1 0 0 1 0
 1 0 1 0 0 0 1

The next example finds parity-check and generator matrices for a [7,3] cyclic
code. The cyclpoly function is mentioned below in “Generator Polynomial.”

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)

parmat =

 1 0 0 0 1 1 0
 0 1 0 0 0 1 1
 0 0 1 0 1 1 1
 0 0 0 1 1 0 1

genmat =

 1 0 1 1 1 0 0
 1 1 1 0 0 1 0
 0 1 1 1 0 0 1

Block Coding

2-33

The example below converts a generator matrix for a [5,3] linear block code into
the corresponding parity-check matrix.

genmat = [1 0 0 1 0; 0 1 0 1 1; 0 0 1 0 1];
parmat = gen2par(genmat)

parmat =

 1 1 0 1 0
 0 1 1 0 1

The same function gen2par can also convert a parity-check matrix into a
generator matrix.

Generator Polynomial
Cyclic codes, including the special cases of BCH and Reed-Solomon codes, have
special algebraic properties that allow a polynomial to determine the coding
process completely. This so-called generator polynomial is a degree-(n-k)
divisor of the polynomial xn-1. Van Lint [4] explains how a generator
polynomial determines a cyclic code.

The functions in this toolbox that produce generator polynomials are bchpoly,
cyclpoly, and rspoly. They represent a generator polynomial using a row
vector that lists the polynomial’s coefficients in order of ascending powers of
the variable. Functions dealing with BCH and generic cyclic codes use binary
digits as coefficients, as in the first example below. Functions dealing with
Reed-Solomon codes express the coefficients (which are elements of GF(2m)) in
exponential format, as in the second example below. See “Representing
Elements of Galois Fields” on page 2-90 for a description of this exponential
format for elements of Galois fields.

Examples. The command

genpoly = cyclpoly(7,3)

genpoly =

 1 0 1 1 1

finds that one valid generator polynomial for a [7,3] cyclic code is
1 + x2 + x3 + x4.

2 Using the Communications Toolbox

2-34

A second example finds that a generator polynomial for a [15,13] Reed-Solomon

code is , where α is a root of MATLAB’s default primitive
polynomial for GF(15+1).

r = rspoly(15,13)

r =

 3 5 0

Primitive Polynomial and List of Galois Field Elements
Hamming and Reed-Solomon codes rely on algebraic fields that have 2m
elements (or, more generally, pm elements for a prime number p). Elements of
such fields are named relative to a distinguished element of the field that is
called a primitive element. Some functions in this toolbox use a primitive
polynomial or a list of elements in the field as a way to determine the primitive
element and, consequently, as a way to name elements of the field. See “Galois
Field Computations” on page 2-89 and especially the subsection “Representing
Elements of Galois Fields” for details about MATLAB’s use of primitive
polynomials and lists of Galois field elements.

To reduce the mathematical background that you need to use the block coding
functions, simply use the default parameters in commands that ask for
primitive polynomials or lists of Galois field elements. For more specifics, see
the reference pages for encode, decode, hammgen, rsenco, rsencode, rsdeco,
rsdecode, and rspoly.

Decoding Table
A decoding table tells a decoder how to correct errors that may have corrupted
the code during transmission. Hamming codes can correct any single-symbol
error in any codeword. Other codes can correct, or partially correct, errors that
corrupt more than one symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and 2n-k
rows. Each row gives a correction vector for one received codeword vector. A
Hamming decoding table has n+1 rows. The syndtable function generates a
decoding table for a given parity-check matrix.

α3 α5x α0x2
+ +

Block Coding

2-35

Example: Using a Decoding Table
The script below shows how to use a Hamming decoding table to correct an
error in a received message. The hammgen function produces the parity-check
matrix, while the syndtable function produces the decoding table. The
transpose of the parity-check matrix is multiplied on the left by the received
codeword, yielding the syndrome. The decoding table helps determine the
correction vector. The corrected codeword is the sum (modulo 2) of the
correction vector and the received codeword.

% Use a [7,4] Hamming code.
m = 3; n = 2^m-1; k = n-m;
parmat = hammgen(m); % Produce parity-check matrix.
trt = syndtable(parmat); % Produce decoding table.
recd = [1 0 0 1 1 1 1] % Suppose this is the received vector.
syndrome = rem(recd * parmat',2);
syndrome_de = bi2de(syndrome,'left-msb'); % Convert to decimal.
disp(['Syndrome = ',num2str(syndrome_de),...
 ' (decimal), ',num2str(syndrome),' (binary)'])
corrvect = trt(1+syndrome_de,:) % Correction vector
% Now compute the corrected codeword.
correctedcode = rem(corrvect+recd,2)

The output is below.

recd =

 1 0 0 1 1 1 1

Syndrome = 3 (decimal), 0 1 1 (binary)

corrvect =

 0 0 0 0 1 0 0

correctedcode =

 1 0 0 1 0 1 1

2 Using the Communications Toolbox

2-36

Creating and Decoding Block Codes
The functions for encoding and decoding linear block codes are encode, decode,
bchenco, bchdeco, rsenco, rsdeco, rsencode, rsdecode, rsencof, and rsdecof.
The first two in this list are general-purpose functions that invoke other
functions from the list when appropriate. This section discusses how to use
these functions to create and decode generic linear block codes, cyclic codes,
BCH codes, Hamming codes, and Reed-Solomon codes.

Generic Linear Block Codes
Encoding a message using a generic linear block code requires a generator
matrix. If you have defined variables msg, n, k, and genmat, then either of the
commands

code = encode(msg,n,k,'linear',genmat);
code = encode(msg,n,k,'linear/decimal',genmat);

encodes the information in msg using the [n,k] code that the generator matrix
genmat determines. The /decimal option, suitable when 2n and 2k are not very
large, indicates that msg contains nonnegative decimal integers rather than
their binary representations. See “Representing Messages and Codewords” on
page 2-26 or the reference page for encode for a description of the formats of
msg and code.

Decoding the code requires the generator matrix and possibly a decoding table.
If you have defined variables code, n, k, genmat, and possibly also trt, then the
commands

newmsg = decode(code,n,k,'linear',genmat);
newmsg = decode(code,n,k,'linear/decimal',genmat);
newmsg = decode(code,n,k,'linear',genmat,trt);
newmsg = decode(code,n,k,'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in the
decoding table that trt represents.

Example: Generic Linear Block Coding. The example below encodes a message,
artificially adds some noise, decodes the noisy code, and keeps track of errors
that the decoder detects along the way. Since the decoding table contains only
zeros, the decoder does not correct any errors.

n = 4; k = 2;

Block Coding

2-37

genmat = [[1 1; 1 0], eye(2)]; % Generator matrix
msg = [0 1; 0 0; 1 0]; % Three messages, two bits each
% Create three codewords, four bits each.
code = encode(msg,n,k,'linear',genmat);
noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2^(n-k),n); % No correction of errors
% Decode, keeping track of all detected errors.
[newmsg,err] = decode(noisycode,n,k,'linear',genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your
results might vary since this example uses random numbers as errors.

err_words =

 1
 2

Cyclic Codes
Encoding a message using a cyclic code requires a generator polynomial. If you
have defined variables msg, n, k, and genpoly, then either of the commands

code = encode(msg,n,k,'cyclic',genpoly);
code = encode(msg,n,k,'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the
generator polynomial genpoly. genpoly is an optional argument for encode.
The default generator polynomial is cyclpoly(n,k). The /decimal option,
suitable when 2n and 2k are not very large, indicates that msg contains
nonnegative decimal integers rather than their binary representations. See
“Representing Messages and Codewords” on page 2-26 or the reference page for
encode for a description of the formats of msg and code.

Decoding the code requires the generator polynomial and possibly a decoding
table. If you have defined variables code, n, k, genpoly, and trt, then the
commands

newmsg = decode(code,n,k,'cyclic',genpoly);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly);
newmsg = decode(code,n,k,'cyclic',genpoly,trt);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly,trt);

2 Using the Communications Toolbox

2-38

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in the
decoding table that trt represents. genpoly is an optional argument in the first
two syntaxes above. The default generator polynomial is cyclpoly(n,k).

There are no lower-level functions that provide alternative means to process
cyclic codes.

Example. The example in the section “Generic Linear Block Codes” on page 2-36
can be modified so that it uses the cyclic coding technique, instead of the linear
block code with the generator matrix genmat. Make the changes listed below:

• Replace the second line by
genpoly = [1 0 1]; % generator poly is 1 + x^2

• In the fifth and ninth lines (encode and decode commands), replace genmat
by genpoly and replace 'linear' by 'cyclic'.

Another example of encoding and decoding a cyclic code is on the reference page
for encode.

BCH Codes
BCH codes are a special case of cyclic codes, though the decoding algorithm for
BCH codes is more complicated than that for generic cyclic codes. The
discussion in the section “Cyclic Codes” above applies almost exactly to the case
of BCH codes. The only differences are that:

• bch replaces cyclic in the syntax for encode and decode.

• bchpoly(n,k) replaces cyclpoly(n,k) as the default generator polynomial.

• n and k must be valid codeword and message lengths for BCH code.

Valid codeword lengths for BCH code are those integers of the form 2m-1 for
some integer m greater than or equal to 3. Given a valid BCH codeword length,
the corresponding valid BCH message lengths are those numbers in the second
column of the output of the command below.

params = bchpoly(n); % Where n = 2^m-1 for some integer m >= 3

For example, the output of the command below shows that a BCH code with
codeword length 15 may have message length 5, 7, or 11. No other message
lengths are valid for this codeword length.

Block Coding

2-39

params = bchpoly(15)

params =

 15 11 1
 15 7 2
 15 5 3

The third column of the output above represents the error-correction capability
for each pair of codeword length and message length.

Choice of Functions for BCH Coding. To process BCH codes, you can use either the
encode and decode functions, or the lower-level bchenco and bchdeco
functions. The syntax of the lower-level functions is slightly different from that
of the higher-level functions. The only difference in functionality is that the
higher-level functions prepare the input data (including default values of
options that you omit) before invoking the lower-level commands. The
reference page for encode contains an example that uses encode and decode.
The reference pages for bchenco and bchdeco contain other examples.

Hamming Codes
The reference pages for encode and decode contain examples of encoding and
decoding Hamming codes. Also, the section “Decoding Table” on page 2-34
illustrates error-correction in a Hamming code. There are no lower-level
functions that provide alternative means to process Hamming codes.

Reed-Solomon Codes
Reed-Solomon codes are useful for correcting errors that occur in bursts. The
codeword length n of a Reed-Solomon code must have the form 2m-1, where m
is an integer greater than or equal to 3. The error correction capability of a
Reed-Solomon code is floor((n-k)/2). Since n is an odd number, the coding is
more efficient when the message length k is also odd.

One difference between Reed-Solomon codes and the other codes supported in
this toolbox is that Reed-Solomon codes process symbols in GF(2m) instead of
GF(2). Each such symbol is specified by m bits. That is why some parts of the
section “Representing Messages and Codewords” on page 2-26 make exceptions
for Reed-Solomon codes.

2 Using the Communications Toolbox

2-40

Encoding a message using a Reed-Solomon code requires a generator
polynomial. The rspoly function finds generator polynomials. For example, the
command

genpoly = rspoly(15,12)

genpoly =

 6 13 11 0

shows that the generator polynomial for a [15,12] Reed-Solomon code is

where α is a root of MATLAB’s default primitive polynomial for GF(16). In this
example, m = 4, n = 2m-1 = 15, and k = 12.

Choice of Functions for Reed-Solomon Coding. To process Reed-Solomon codes, you
can use either the encode and decode functions, or the lower-level rsenco,
rsdeco, rsencode, and rsdecode functions. The syntax of the lower-level
functions is slightly different from that of the higher-level functions. The only
difference in functionality is that the higher-level functions prepare the input
data (including default values of options that you omit) before invoking the
lower-level functions. The reference pages for the lower-level functions contain
examples that illustrate their use.

Performing Other Block Code Tasks
This section describes functions that compute typical parameters associated
with block codes and functions that convert information from one format to
another. Specific tasks are:

• Finding a generator polynomial

• Finding generator and parity-check matrices

• Converting between parity-check and generator matrices

• Finding the error-correction capability

Finding a Generator Polynomial
To find a generator polynomial for cyclic, BCH, and Reed-Solomon codes, use
the functions cyclpoly, bchpoly, and rspoly, respectively. The commands

α6 α13x α11x2 x3+ + +

Block Coding

2-41

genpolyCyclic = cyclpoly(7,4);
genpolyBCH = bchpoly(7,4);
genpolyRS = rspoly(7,4);

all represent valid ways to find one generator polynomial for a [7,4] code of the
respective coding method. The result is suitable for use in other block coding
functions, such as encode.

For generic cyclic coding, there might be more than one generator polynomial
consistent with a given codeword length and message length. The cyclpoly
command syntax includes ways to retrieve all of them or those that satisfy
certain constraints that you specify. For example, the command

genpolys = cyclpoly(7,4,'all')

genpolys =

 1 0 1 1
 1 1 0 1

shows that 1 + x2 + x3 and 1 + x + x3 are two possible generator polynomials for
a [7,4] cyclic code.

See the reference pages for cyclpoly, bchpoly, and rspoly for details about
other options.

Finding Generator and Parity-Check Matrices
To find a parity-check and generator matrix for a Hamming code with
codeword length 2m-1, use the hammgen function as below. m must be at least
three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen
function. You must provide the codeword length and a valid generator
polynomial. You can use the cyclpoly command to produce one possible
generator polynomial after you provide the codeword length and message
length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic

2 Using the Communications Toolbox

2-42

To find a parity-check and generator matrix for a BCH code, use the same
cyclgen function mentioned above. Since the generator polynomial must now
be valid for BCH code, the bchpoly function replaces cyclpoly.

[parmat,genmat] = cyclgen(7,bchpoly(7,4)); % BCH

Converting Between Parity-Check and Generator Matrices
The gen2par function converts a generator matrix into a parity-check matrix,
and vice-versa. Examples to illustrate this are on the reference page for
gen2par.

Finding the Error-Correction Capability
The error-correction capability of BCH codes and Reed-Solomon codes depends
on the codeword length and message length. The functions bchpoly and rspoly
perform such computations. To retrieve the error-correction capability t of
BCH and Reed-Solomon codes, respectively, use the commands below.

[temp1,temp2,temp3,temp4,t] = bchpoly(n,k); % BCH
[temp1,t] = rspoly(n,k); % Reed-Solomon

For Reed-Solomon codes, the error-correction capability is floor((n-k)/2); for
BCH codes, there is no easy formula.

Selected Bibliography for Block Coding
[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Lin, Shu and Daniel J. Costello, Jr. Error Control Coding: Fundamentals
and Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1983.

[3] Peterson, W. Wesley and E. J. Weldon, Jr. Error-correcting Codes, 2nd ed.
Cambridge, Mass.: MIT Press, 1972.

[4] van Lint, J. H. Introduction to Coding Theory. New York: Springer-Verlag,
1982.

Convolutional Coding

2-43

Convolutional Coding
Convolutional coding is a special case of error-control coding. Unlike a block
coder, a convolutional coder is not a memoryless device. Even though a
convolutional coder accepts a fixed number of message symbols and produces a
fixed number of code symbols, its computations depend not only on the current
set of input symbols but on some of the previous input symbols.

This section:

• Outlines the convolutional coding features of the Communications Toolbox

• Defines the two supported ways to describe a convolutional encoder:

- Polynomial description

- Trellis description

• Describes how to encode and decode using the convenc and vitdec functions

• Gives additional examples of convolutional coding

Convolutional Coding Features of the Toolbox
The Communications Toolbox supports feedforward or feedback convolutional
codes that can be described by a trellis structure or a set of generator
polynomials. It uses the Viterbi algorithm to implement hard-decision and
soft-decision decoding.

For background information about convolutional coding, see the works listed in
“Selected Bibliography for Convolutional Coding” on page 2-55.

Polynomial Description of a Convolutional Encoder
A polynomial description of a convolutional encoder describes the connections
among shift registers and modulo-2 adders. For example, the figure below
depicts a feedforward convolutional encoder that has one input, two outputs,
and two shift registers.

2 Using the Communications Toolbox

2-44

Figure 2-1: Example of a Convolutional Encoder Diagram with Shift Registers

A polynomial description of a convolutional encoder has either two or three
components, depending on whether the encoder is a feedforward or feedback
type:

• Constraint lengths

• Generator polynomials

• Feedback connection polynomials (for feedback encoders only)

Constraint Lengths
The constraint lengths of the encoder form a vector whose length is the number
of inputs in the encoder diagram. The elements of this vector indicate the
number of bits stored in each shift register, including the current input bits.

In the figure above, the constraint length is three. It is a scalar because the
encoder has one input stream, and its value is one plus the number of shift
registers for that input.

Generator Polynomials
If the encoder diagram has k inputs and n outputs, then the code generator
matrix is a k-by-n matrix. The element in the ith row and jth column indicates
how the ith input contributes to the jth output.

+

+

z-1 z-1

Second output

First output

Input

Convolutional Coding

2-45

For systematic bits of a systematic feedback encoder, match the entry in the
code generator matrix with the corresponding element of the feedback
connection vector. See “Feedback Connection Polynomials” below for details.

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where a
connection line from the shift register feeds into the adder, and a zero
elsewhere. The leftmost spot in the binary number represents the current
input, while the rightmost spot represents the oldest input that still remains
in the shift register.

2 Convert this binary representation into an octal representation by
considering consecutive triplets of bits, starting from the rightmost bit. The
rightmost bit in each triplet is the least significant. If the number of bits is
not a multiple of three, then place zero bits at the left end as necessary. (For
example, interpret 1101010 as 001 101 010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower adders
in the figure above are 110 and 111, respectively. These binary numbers are
equivalent to the octal numbers 6 and 7, respectively. Thus the generator
polynomial matrix is [6 7].

For a table of some good convolutional code generators, refer to [1] in the
section “Selected Bibliography for Block Coding” on page 2-42, especially that
book’s appendices.

Feedback Connection Polynomials
If you are representing a feedback encoder, then you need a vector of feedback
connection polynomials. The length of this vector is the number of inputs in the
encoder diagram. The elements of this vector indicate the feedback connection
for each input, using an octal format. First build a binary number
representation as in step 1 above. Then convert the binary representation into
an octal representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, then the
code generator and feedback connection parameters corresponding to the
systematic bits must have the same values.

For example, the diagram below shows a rate 1/2 systematic encoder with
feedback.

2 Using the Communications Toolbox

2-46

This encoder has a constraint length of 5, a generator polynomial matrix of
[37 33], and a feedback connection polynomial of 37. The first generator
polynomial matches the feedback connection polynomial because the first
output corresponds to the systematic bits.

Using the Polynomial Description in MATLAB
To use the polynomial description with the functions convenc and vitdec, first
convert it into a trellis description using the poly2trellis function. For
example, the command below computes the trellis description of the encoder in
Figure 2-1, Example of a Convolutional Encoder Diagram with Shift Registers,
on page 2-44.

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trellis is a suitable input argument for convenc and
vitdec.

Trellis Description of a Convolutional Encoder
A trellis description of a convolutional encoder shows how each possible input
to the encoder influences both the output and the state transitions of the
encoder. This section describes trellises, describes how to represent trellises in
MATLAB, and gives an example of a MATLAB trellis.

The figure below depicts a trellis for the convolutional encoder from the
previous section. The encoder has four states (numbered in binary from 00 to
11), a one-bit input, and a two-bit output. (The ratio of input bits to output bits
makes this encoder a rate-1/2 encoder.) Each solid arrow shows how the

+

+

z-1 z-1z-1 z-1

Second output

First output (systematic)

Input

Convolutional Coding

2-47

encoder changes its state if the current input is zero, and each dashed arrow
shows how the encoder changes its state if the current input is one. The octal
numbers above each arrow indicate the current output of the encoder.

Figure 2-2: A Trellis for a 4-State Rate-1/2 Convolutional Encoder

As an example of interpreting this trellis diagram, if the encoder is in the 10
state and receives an input of zero, then it outputs the code symbol 3 and
changes to the 01 state. If it is in the 10 state and receives an input of one, then
it outputs the code symbol 0 and changes to the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent
to some trellis description, although some trellises have no corresponding
polynomial descriptions.

Specifying a Trellis in MATLAB
To specify a trellis in MATLAB, use a specific form of a MATLAB structure
called a trellis structure. A trellis structure must have five fields, as in the
table below.

00

01

10

11

00

01

10

11

State State
0

State transition when input is 0

State transition when input is 1

3
1
2

3
0
2
1

Table 2-4: Fields of a Trellis Structure for a Rate k/n Code

Field in Trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to the encoder: 2k

numOutputsymbols Scalar Number of output symbols from the encoder: 2n

numStates Scalar Number of states in the encoder

2 Using the Communications Toolbox

2-48

Note While your trellis structure can have any name, its fields must have
the exact names as in the table. Field names are case-sensitive.

In the nextStates matrix, each entry is an integer between 0 and numStates-1.
The element in the ith row and jth column denotes the next state when the
starting state is i-1 and the input bits have decimal representation j-1. To
convert the input bits to a decimal value, use the first input bit as the most
significant bit (MSB). For example, the second column of the nextStates
matrix stores the next states when the current set of input values is {0,...,0,1}.
To learn how to assign numbers to states, see the reference page for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes the
encoder’s output when the starting state is i-1 and the input bits have decimal
representation j-1. To convert to decimal value, use the first output bit as the
MSB.

How to Create a MATLAB Trellis Structure
Once you know what information you want to put into each field, you can create
a trellis structure in any of these ways:

• Define each of the five fields individually, using structurename.fieldname
notation. For example, set the first field of a structure called s using the
command below. Use additional commands to define the other fields.
s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.

nextStates numStates-by-2k
matrix

Next states for all combinations of current state
and current input

outputs numStates-by-2k
matrix

Outputs (in decimal) for all combinations of
current state and current input

Table 2-4: Fields of a Trellis Structure for a Rate k/n Code (Continued)

Field in Trellis Structure Dimensions Meaning

Convolutional Coding

2-49

• Collect all field names and their values in a single struct command. For
example:
s = struct('numInputSymbols',2,'numOutputSymbols',2,...
'numStates',2,'nextStates',[0 1;0 1],'outputs',[0 0;1 1]);

• Start with a polynomial description of the encoder and use the poly2trellis
function to convert it to a valid trellis structure. The polynomial description
of a convolutional encoder is described in “Polynomial Description of a
Convolutional Encoder” on page 2-43.

To check whether your structure is a valid trellis structure, use the istrellis
function.

Example: A MATLAB Trellis Structure
Reconsider the trellis shown in Figure 2-2, A Trellis for a 4-State Rate-1/2
Convolutional Encoder, which is repeated below.

To build a trellis structure that describes it, use the command below.

trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types of
input path, the solid arrow and the dashed arrow. The number of output
symbols is 4 because the numbers above the arrows can be either 0, 1, 2, or 3.
The number of states is 4 because there are four bullets on the left side of the
trellis diagram (equivalently, four on the right side). To compute the matrix of
next states, create a matrix whose rows correspond to the four current states
on the left side of the trellis, whose columns correspond to the inputs of 0 and

00

01

10

11

00

01

10

11

State State
0

State transition when input is 0

State transition when input is 1

3
1
2

3
0
2
1

2 Using the Communications Toolbox

2-50

1, and whose elements give the next states at the end of the arrows on the right
side of the trellis. To compute the matrix of outputs, create a matrix whose
rows and columns are as in the next states matrix, but whose elements give the
octal outputs shown above the arrows in the trellis.

Creating and Decoding Convolutional Codes
The functions for encoding and decoding convolutional codes are convenc and
vitdec. This section discusses using these functions to create and decode
convolutional codes.

Encoding
A simple way to use convenc to create a convolutional code is shown in the
commands below.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.

The first command converts a polynomial description of a feedforward
convolutional encoder to the corresponding trellis description. The second
command encodes 100 bits, or 50 two-bit symbols. Since the code rate in this
example is 2/3, the output vector code contains 150 bits (that is, 100 input bits
times 3/2).

Hard-Decision Decoding
To decode using hard decisions, use the vitdec function with the flag 'hard'
and with binary input data. Since the output of convenc is binary,
hard-decision decoding can use the output of convenc directly, without
additional processing. This example extends the previous example and
implements hard decision decoding.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.
tb = 2; % Traceback length for decoding
decoded = vitdec(code,t,tb,'trunc','hard'); % Decode.

Convolutional Coding

2-51

Soft-Decision Decoding
To decode using soft decisions, use the vitdec function with the flag 'soft'.
You must also specify the number, nsdec, of soft-decision bits and use input
data consisting of integers between 0 and

2nsdec - 1

An input of 0 represents the most confident 0, while an input of 2nsdec-1
represents the most confident 1. Other values represent less confident
decisions. For example, the table below lists interpretations of values for 3-bit
soft decisions.

Example: Soft-Decision Decoding. The script below illustrates decoding with 3-bit
soft decisions. First it creates a convolutional code with convenc and adds
white Gaussian noise to the code with awgn. Then, to prepare for soft-decision
decoding, the example uses quantiz to map the noisy data values to
appropriate decision-value integers between 0 and 7. The second argument in
quantiz is a partition vector that determines which data values map to 0, 1, 2,
etc. The partition is chosen so that values near 0 map to 0, and values near 1
map to 7. (You can refine the partition to obtain better decoding performance
if your application requires it.) Finally, the example decodes the code and
computes the bit error rate. Notice that when comparing the decoded data with
the original message, the example must take the decoding delay into account.

Table 2-5: Input Values for 3-bit Soft Decisions

Input Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1

2 Using the Communications Toolbox

2-52

The continuous operation mode of vitdec causes a delay equal to the traceback
length, so msg(1) corresponds to decoded(tblen+1) rather than to
decoded(1).

msg = randint(4000,1,2,139); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Encode the data.
ncode = awgn(code,6,'measured',244); % Add noise.

% Quantize to prepare for soft-decision decoding.
qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length
decoded = vitdec(qcode,t,tblen,'cont','soft',3); % Decode.

% Compute bit error rate.
[number,ratio] = biterr(decoded(delay+1:end),msg(1:end-delay))

The output is below.

number =

 5

ratio =

 0.0013

Examples of Convolutional Coding
This section contains more examples of convolutional coding:

• The first example determines the correct trellis parameter for its encoder
and then uses it to process a code. The decoding process uses hard decisions
and the continuous operation mode. This operation mode causes a decoding
delay, which the error rate computation takes into account.

• The second example processes a punctured convolutional code. The decoding
process uses the unquantized decision type.

Convolutional Coding

2-53

Example: A Rate-2/3 Feedforward Encoder
The example below uses the rate 2/3 feedforward encoder depicted in the
schematic below. The accompanying description explains how to determine the
trellis structure parameter from a schematic of the encoder and then how to
perform coding using this encoder.

Figure 2-3: Schematic for a Rate 2/3 Feedforward Convolutional Encoder

Determining Coding Parameters. The convenc and vitdec functions can implement
this code if their parameters have the appropriate values.

The encoder’s constraint length is a vector of length 2 since the encoder has two
inputs. The elements of this vector indicate the number of bits stored in each
shift register, including the current input bits. Counting memory spaces in
each shift register in the diagram and adding one for the current inputs leads
to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal
numbers, use the element in the ith row and jth column to indicate how the ith
input contributes to the jth output. For example, to compute the element in the
second row and third column, notice that the leftmost and two rightmost
elements in the second shift register of the diagram feed into the sum that
forms the third output. Capture this information as the binary number 1011,

z-1

z-1 z-1 z-1

z-1z-1z-1

+

+

+

2 Using the Communications Toolbox

2-54

which is equivalent to the octal number 13. The full value of the code generator
matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc and
vitdec functions, use the poly2trellis function to convert those parameters
into a trellis structure. The command to do this is below.

trel = poly2trellis([5 4],[27 33 0;0 5 13]); % Define trellis.

Using the Encoder. Below is a script that uses this encoder.

len = 1000;
msg = randint(2*len,1); % Random binary message of 2-bit symbols
trel = poly2trellis([5 4],[27 33 0;0 5 13]); % Trellis
code = convenc(msg,trel); % Encode the message.
ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.
decoded = vitdec(ncode,trel,34,'cont','hard'); % Decode.
[number,ratio] = biterr(decoded(68+1:end),msg(1:end-68));

Notice that convenc accepts a vector containing 2-bit symbols and produces a
vector containing 3-bit symbols, while vitdec does the opposite. Also notice
that biterr ignores the first 68 elements of decoded. That is, the decoding
delay is 68, which is the number of bits per symbol (2) of the recovered message
times the traceback depth value (34) in the vitdec function. The first 68
elements of decoded are zeros, while subsequent elements represent the
decoded messages.

Example: A Punctured Convolutional Code
This example processes a punctured convolutional code. It begins by
generating 3000 random bits and encoding them using a rate-1/2 convolutional
encoder. The resulting vector contains 6000 bits, which are mapped to values
of -1 and 1 for transmission. The puncturing process removes every third value
and results in a vector of length 4000. The punctured code, punctcode, passes
through an additive white Gaussian noise channel. Afterwards, the example
inserts values to reverse the puncturing process. While the puncturing process
removed both -1s and 1s from code, the insertion process inserts zeros. Then
vitdec decodes the vector of -1s, 1s, and 0s using the 'unquant' decision type.
This unquantized decision type is appropriate here for these reasons:

• tcode uses -1 to represent the 1s in code.

• tcode uses 1 to represent the 0s in code.

Convolutional Coding

2-55

• The inserted 0s are acceptable for the 'unquant' decision type, which allows
any real values as input.

Finally, the example computes the bit error rate and the number of bit errors.

len = 3000; msg = randint(len,1,2,94384); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Length is 2*len.
tcode = -2*code+1; % Transmit -1s and 1s.

% Puncture by removing every third value.
punctcode = tcode;
punctcode(3:3:end)=[]; % Length is (2*len)*2/3.

ncode = awgn(punctcode,8,'measured',1234); % Add noise.

% Insert zeros.
nicode = zeros(2*len,1); % Zeros represent inserted data.
nicode(1:3:end) = ncode(1:2:end); % Write actual data.
nicode(2:3:end) = ncode(2:2:end); % Write actual data.

decoded = vitdec(nicode,t,96,'trunc','unquant'); % Decode.
[number,ratio]=biterr(decoded,msg); % Bit error rate

Selected Bibliography for Convolutional Coding
[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data
Communications Principles. New York: Plenum Press, 1992.

2 Using the Communications Toolbox

2-56

2. Using the Communications Toolbox

Modulation
In most media for communication, only a fixed range of frequencies is available
for transmission. One way to communicate a message signal whose frequency
spectrum does not fall within that fixed frequency range, or one that is
otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called
modulation, and it is the modulated signal that you transmit. The receiver
then recovers the original signal through a process called demodulation.

The table shows how this section is organized.

For background information about modulation and demodulation, see the
works listed in “Selected Bibliography for Modulation” on page 2-77.

Subject Topics

General
modulation

“Modulation Features of the Toolbox” on page 2-57

“Modulation Terminology” on page 2-58

Analog
modulation

“Representing Analog Signals” on page 2-59

“Simple Analog Modulation Example” on page 2-61

“Other Options in Analog Modulation” on page 2-62

“Filter Design Issues” on page 2-62

Digital
modulation

“Digital Modulation Overview” on page 2-66

“Representing Digital Signals” on page 2-67

“Significance of Sampling Rates” on page 2-70

“Representing Signal Constellations” on page 2-70

“Simple Digital Modulation Example” on page 2-74

“Customizing the Modulation Process” on page 2-75

“Other Options in Digital Modulation” on page 2-77

Modulation

2-57

Modulation Features of the Toolbox
The available methods of modulation depend on whether the input signal is
analog or digital. The figures below show the modulation techniques that the
Communications Toolbox supports for analog and digital signals, respectively.
As the figures suggest, some categories of techniques include named special
cases.

Modulation methods for analog signals

Frequency
modulation (FM)

Amplitude
modulation (AM)

Single-sideband
suppressed-carrier
(SSB)

Quadrature
amplitude
modulation
(QAM)

Double-sideband
suppressed-carrier
(DSB-SC)

Phase
modulation (PM)

Modulation methods for digital signals

Frequency shift
keying (FSK)

Amplitude shift
keying (ASK)

Quadrature
amplitude shift
keying (QASK)

Phase shift
keying (PSK)

Minimum shift
keying (MSK)

2 Using the Communications Toolbox

2-58

Baseband Versus Passband Simulation
For a given modulation technique, two ways to simulate modulation techniques
are called baseband and passband. Baseband simulation, also known as the
lowpass equivalent method, requires less computation. This toolbox supports
both baseband and passband simulation. Since baseband simulation is more
prevalent, this guide focuses more on baseband simulation.

Note To use this toolbox for passband simulation, see the reference pages for
the functions amod, ademod, dmod, and ddemod.

Supported Modulation Tasks
Functions in the toolbox can accomplish these tasks:

• Modulate a signal using one of the techniques shown in the figures above

• Demodulate a signal using one of the techniques shown in the figures above

• Map a digital signal to an analog signal, before modulation

• Demap an analog signal to a digital signal, after demodulation

• Map, demap, and plot constellations for QASK modulation

The modulation and demodulation functions also let you control such features
as the initial phase of the modulated signal, post-demodulation filtering, and
the decision timing for digital demodulation.

Modulation Terminology
Modulation is a process by which a carrier signal is altered according to
information in a message signal. The carrier frequency, denoted Fc, is the
frequency of the carrier signal. The sampling rate is the rate at which the
message signal is sampled during the simulation.

The frequency of the carrier signal is usually much greater than the highest
frequency of the input message signal. The Nyquist sampling theorem requires
that the simulation sampling rate Fs be greater than two times the highest
frequency of the modulated signal, in order for the demodulator to recover the
message correctly. The sampling rate Fs of a modulated digital signal is greater
than or equal to the sampling rate Fd of the original message signal before
modulation.

Modulation

2-59

The table below lists the requirements in terms of the input arguments for this
toolbox’s modulation and demodulation functions. Note that the situations are
not mutually exclusive.

Representing Analog Signals
To perform baseband modulation of an analog signal using this toolbox, start
with a real message signal and a sampling rate Fs in Hertz. For modulation
techniques other than quadrature amplitude modulation (QAM), represent the
signal using a vector x, the entries of which give the signal’s values in time
increments of 1/Fs. Baseband modulation (using a technique other than QAM)
produces a complex vector.

For example, if t measures time in seconds, then the vector x below is the result
of sampling a frequency-one sine wave 100 times per second for 2 seconds. The
vector y represents the modulated signal. The output shows that y is complex.

Fs = 100; % Sampling rate is 100 samples per second.
t = [0:1/Fs:2]'; % Sampling times for 2 seconds
x = sin(2*pi*t); % Representation of the signal
y = amodce(x,Fs,'pm'); % Modulate x to produce y.
whos
 Name Size Bytes Class

 Fs 1x1 8 double array
 t 201x1 1608 double array
 x 201x1 1608 double array
 y 201x1 3216 double array (complex)

Grand total is 604 elements using 6440 bytes

Situation Requirement

Passband simulation 2*(highest frequency of modulated signal) < Fs

Digital signals Fd ≤ Fs

Passband simulation,
digital signals

Fd < Fc

2 Using the Communications Toolbox

2-60

Baseband Modulated Signals Defined
This section explains the connection between this complex vector y and the real
signal that you might expect to get after modulating a real signal. If the
modulated signal has the waveform

Y1(t) cos(2πfct+θ) - Y2(t) sin(2πfct+θ)

where fc is the carrier frequency and θ is the carrier signal’s initial phase, then
a baseband simulation recognizes that this equals the real part of

and models only the part inside the square brackets. Here j is the square root
of -1. The complex vector y is a sampling of the complex signal
(Y1(t) + jY2(t)) exp(jθ).

Note You can also simultaneously process several signals of equal length. To
do this, make x a matrix in which each signal occupies one column. The
corresponding modulated signal y is a complex matrix whose kth column is
the modulation of the kth column of x.

Changes for QAM
The case for quadrature amplitude modulation (QAM) is similar, except that
the message signal has in-phase and quadrature components. Represent the
signal using a matrix x that has an even number of columns. The odd-indexed
columns represent in-phase components of the signal and the even-indexed
columns represent quadrature components. If the message signal is a 2n-by-m
matrix, then the modulated signal is an n-by-m matrix. As in the other
methods, baseband modulation turns a real message signal into a complex
modulated signal.

For example, the code below implements QAM on a set of sinusoidal input
signals.

Fs = 100; % Sampling rate is 100 samples per second.
t = [0:1/Fs:2]'; % Sampling times
% Signal is a four column matrix.
% Each column models a sinusoidal signal, the frequencies

Y1 t() jY2 t()+()ejθ[]e
j2πfct

Modulation

2-61

% of which are 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz respectively.
x = sin([2*pi*t,3*pi*t,4*pi*t,5*pi*t]);
y = amodce(x,Fs,'qam'); % Modulate x to produce y.

The output below shows the sizes and types of x and y.

whos
 Name Size Bytes Class

 Fs 1x1 8 double array
 t 201x1 1608 double array
 x 201x4 6432 double array
 y 201x2 6432 double array (complex)

Grand total is 1408 elements using 14480 bytes

Simple Analog Modulation Example
This example illustrates the basic format of the baseband modulation and
demodulation commands, amodce and ademodce. Although the example uses
the AMDSB-TC method, most elements of this example apply to other analog
modulation techniques as well. The example samples an analog signal and
modulates it. Then it demodulates it and displays the order of magnitude of the
variance between the original and demodulated signals.

% Sample the signal for two seconds,
% at a rate of 100 samples per second.
Fs = 100;
t = [0:1/Fs:2]';
% The signal is a sum of sinusoids.
x = sin(2*pi*t) + sin(4*pi*t);
% Use AMDSB-TC modulation to produce y.
y = amodce(x,Fs,'amdsb-tc');
% Demodulate y to recover the message.
z = ademodce(y,Fs,'amdsb-tc');
v = floor(log10(var(x-z)))

v =

 -33

2 Using the Communications Toolbox

2-62

Other Options in Analog Modulation
The table below lists a few ways in which you might vary the simple example
in the previous section in order to perform the modulation and demodulation
slightly differently. See the reference pages for full details about options.

Filter Design Issues
After demodulating, you might want to filter out the carrier signal, especially
if you are using passband simulation. The Signal Processing Toolbox provides
functions that can help you design your filter, such as butter, cheby1, cheby2,
and ellip. Different demodulation methods have different properties, and you

Table 2-6: Substitutions in “Simple Analog Modulation Example”

Modification of Process Modifications in the Code

Set the carrier signal’s initial phase to
phs, measured in radians

y = amodce(x,[Fs phs],'amdsb-tc');
z = ademodce(y,[Fs phs],'amdsb-tc');

Use a lowpass filter after
demodulating. num and den are row
vectors that give the coefficients, in
descending order, of the numerator
and denominator of the filter’s
transfer function.

z = ademodce(y,Fs,'amdsb-tc',0,num,den);

(For other demodulation methods, the 0 in the
statement above would be unnecessary. See the
reference page for ademodce for details.)

(AM-SSB only) Use a Hilbert filter in
the time domain. num and den are as
above.

y = amodce(x,Fs,'amssb/time',num,den);
z = ademodce(y,Fs,'amssb');

(AMDSB only) Use a Costas
phase-locked loop

z = ademodce(y,Fs,'amdsb-tc/costas');

or

y = amodce(x,Fs,'amdsb-sc');
z = ademodce(y,Fs,'amdsb-sc/costas');

(AMDSB-TC only) Shift the signal
values by offset before modulating
and after demodulating

y = amodce(x,Fs,'amdsb-tc',offset);
z = ademodce(y,Fs,'amdsb-tc',offset);

Modulation

2-63

might need to test your application with several filters before deciding which is
most suitable. This subsection mentions two issues that relate to the use of
filters: cutoff frequency and time lag.

Example: Varying the Filter’s Cutoff Frequency
In many situations, a suitable cutoff frequency is half the carrier frequency.
Since the carrier frequency must be higher than the bandwidth of the message
signal, a cutoff frequency chosen in this way limits the bandwidth of the
message signal. If the cutoff frequency is too high, then the carrier frequency
may not be filtered out. If the cutoff frequency is too low, then it might narrow
the bandwidth of the message signal.

The code below modulates a sawtooth message signal, demodulates the
resulting signal using a Butterworth filter, and plots the original and recovered
signals. Note that the scaling in the butter function causes the cutoff
frequency of the filter to be F*Fs/2, not F itself.

Fc = 25; % Carrier frequency
Fs = 100; % Signal sampling rate
t = [0:1/Fs:2]'; % Times to sample the signal
x = sawtooth(6*t,0); % Signal is a sawtooth.
y = amod(x,Fc,Fs,'amssb'); % Modulate.
F = Fc/Fs; % Change F to vary the filter's cutoff frequency.
[num,den] = butter(2,F); % Design Butterworth filter.
z = ademod(y,Fc,Fs,'amssb',num,den); % Demodulate and filter.
plot(t,x,'-',t,z,'--') % Plot original and recovered signals.

The plots below show the effects of three lowpass filters with different cutoff
frequencies. In each plot, the dotted curve is the demodulated signal and the
solid curve is the original message signal. The top plot uses the suggested cutoff
frequency (F = Fc/Fs). The lower left plot uses a higher cutoff frequency (F =
3.9*Fc/Fs), which allows the carrier signal to interfere with the demodulated
signal. The lower right plot uses a lower cutoff frequency (F = Fc/Fs/4), which
narrows the bandwidth of the demodulated signal.

2 Using the Communications Toolbox

2-64

Figure 2-4: Original and Recovered Signals, with Filter Cutoff F = Fc/Fs, 3.9*Fc/Fs, and Fc/Fs/4

Example: Time Lag From Filtering
There is invariably a time delay between a demodulated signal and the original
received signal. Both the filter order and the filter parameters directly affect
the length of this delay. The example below illustrates the time delay by

Modulation

2-65

plotting a signal before and after the modulation, demodulation, and filtering
processes. The solid curve is the original sine wave and the dashed curve is the
recovered signal.

Fs = 100; % Sampling rate of signal
[num,den] = butter(2,0.8); % Design Butterworth filter.
t = [0:1/Fs:10]'; % Times to sample the signal
x = sin(t); % Signal is a sine wave.
y = amodce(x,Fs,'pm'); % Modulate.
z = ademodce(y,Fs,'pm',num,den); % Demodulate and filter.
plot(t,x,t,z,'r--') % Plot original signal and recovered signal.

2 Using the Communications Toolbox

2-66

Digital Modulation Overview
Modulating a digital signal can be interpreted as a combination of two steps:
mapping the digital signal to an analog signal and modulating the analog
signal. These are depicted in the schematic below.

Figure 2-5: Two Steps of Digital Modulation

Except for FSK and MSK methods, when the receiver tries to recover a digital
message from the analog signal that it receives, it performs two steps:
demodulating the analog signal and demapping the demodulated analog signal
to produce a digital message. These are depicted in the schematic below.

Figure 2-6: Two Steps of Digital Demodulation

For FSK and MSK methods, the demodulator uses correlation techniques
instead of the two-stage process above.

The mapping process increases the sampling rate of the signal from Fd to Fs,
whereas the demapping process decreases the sampling rate from Fs to Fd.

Modulate

0 0 1 1 0 0

• Digital signal

• Sampling rate Fd

• Real

• Analog signal

• Sampling rate Fs (Fd ≤ Fs)

• Real

• Analog signal

• Sampling rate Fs

• Complex, if baseband simulation

Map

0 0 1 1 0 0

DemapDemodulate

• Analog signal

• Sampling rate Fs

• Complex, if baseband simulation

• Analog signal

• Sampling rate Fs

• Real

• Digital signal

• Sampling rate Fd

• Real

Modulation

2-67

Functions in this toolbox can perform any of these steps, as summarized in the
table below.

The functions are described in more detail in the sections that follow.

Representing Digital Signals
This section describes the formats for digital message signals, the analog
signals to which they map, and the analog signals that result from the
two-stage baseband digital modulation process. The last part, “Constellations
and Mapped Signals (PSK, QASK),” discusses some special formats that apply
to the PSK and QASK modulation methods.

Message Signals
To perform M-ary baseband modulation of a digital signal using this toolbox,
start with a message signal consisting of integers in the range [0, M-1].
Represent the signal using a vector x. Associate with the message signal a
sampling rate Fd, which means that the entries of x give the signal’s values in
time increments of 1/Fd.

Mapped Signals
Mapping produces a real signal y whose sampling rate Fs must satisfy

Fs > Fd

Table 2-7: Functions for the Steps of Digital Modulation and Demodulation

Step Function

Mapping and modulation dmodce or dmod

Mapping only modmap

Modulation without mapping dmodce or dmod, with /nomap flag

Demodulation and demapping ddemodce or ddemod

Demodulation without demapping
(ASK, PSK, or QASK)

ddemodce or ddemod, with /nomap flag

Demapping only demodmap

2 Using the Communications Toolbox

2-68

(For passband simulation, in which the carrier frequency Fc appears explicitly,
both of the relations Fs > Fc > Fd and Fs > 2Fc must hold.) If x consists of n
samples, then y contains n*Fs/Fd samples. The actual dimensions of y depend
on the modulation scheme, as detailed in “To Map a Digital Signal (General
Information)” on page 3-149.

For example, the vector x below samples a random digital signal 100 times per
second for 2 seconds. The vector y represents the mapped signal, sampled three
times as frequently. The output shows that y contains three times as many
samples as x.

Fd = 100; % Sampling rate of x
M = 32; % Digital symbols are 0,1,2,...,31
x = randint(2*Fd,1,M); % Representation of the digital signal
Fs = 3*Fd; % Sampling rate of mapped signal
y = modmap(x,Fd,Fs,'ask',M); % Mapped signal
r = [size(x,1) size(y,1)] % Number of rows in x and y

r =

 200 600

Modulated Signals
Baseband modulation produces a complex signal with sampling rate Fs. Notice
that this is the same sampling rate as the mapped signal. Baseband signals are
explained briefly in the section, “Representing Analog Signals” on page 2-59;
for more details, see the works listed in “Selected Bibliography for Modulation”
on page 2-77. To illustrate the size and nature of the modulated signal,
supplement the example in the paragraph above with these commands.

z = dmodce(x,Fd,[Fs pi/2],'ask',M);
whos
 Name Size Bytes Class

 Fd 1x1 8 double array
 Fs 1x1 8 double array
 M 1x1 8 double array
 r 1x2 16 double array
 x 200x1 1600 double array
 y 600x1 4800 double array

Modulation

2-69

 z 600x1 9600 double array (complex)

Grand total is 1405 elements using 16040 bytes

Constellations and Mapped Signals (PSK, QASK)
If you map a digital message using the phase shift keying (PSK) or quadrature
amplitude shift keying (QASK) modulation method, then modmap describes the
amplitude and phase of the resulting analog signal using an in-phase part and
a quadrature part. For this reason, one column in the original message signal
vector corresponds to two columns in the mapped signal matrix.

For example, compare the code below with the example in “Mapped Signals”
above. The mapped signal ypsk is a two-column matrix, whereas the earlier
ASK example produced a column vector. The first column of ypsk gives the
in-phase components of the samples and the second column gives the
quadrature components.

Fd = 100; % Sampling rate of x
M = 32; % Digital symbols are 0,1,2,...,31.
x = randint(2*Fd,1,M); % Representation of the digital signal
Fs = 3*Fd; % Sampling rate of mapped signal
ypsk = modmap(x,Fd,Fs,'psk',M); % PSK mapped signal
s = size(ypsk)

s =

 600 2

Using Signal Constellation Plots. To understand the in-phase and quadrature
description more easily, refer to a signal constellation plot. Each point in the
constellation represents an analog signal to which modmap can map the digital
message data. Each row of y in the example above gives the two rectangular
coordinates of some point in the constellation. To produce a signal constellation
plot that corresponds to the example above, use the command

modmap('psk',M) % Using M = 32 from before

More about creating signal constellation plots is in the section “Representing
Signal Constellations” on page 2-70.

2 Using the Communications Toolbox

2-70

Significance of Sampling Rates
The vectors and matrices that form the input and output of the modulation and
demodulation functions do not have a built-in notion of time. That is, MATLAB
does not know whether the digital signal [0 1 2 3 4 5 6 7] represents an
8-second signal sampled once per second, or a 1-second signal sampled eight
times, or something else. However, many functions appearing in this
“Modulation” section ask for one or more sampling rates. This subsection
discusses the significance of these sampling rates.

If your application has a natural notion of time, then you are free to use it in
the modulation and demodulation functions. For example, if you generate the
digital signal [0 1 2 3 4 5 6 7] and know that it represents a 1-second
signal sampled eight times, then set Fd = 8. On the other hand, if you know
that the signal represents a 2-second signal sampled four times per second,
then set Fd = 4. You can also use the formula

Fd = size(x,1) / (max(t)-min(t)); % if x=signal, t=sample times

for a signal x sampled at times t. Here x is a matrix or vector and t is a vector
whose length is the number of rows of x.

For most digital modulation computations, MATLAB does not directly use the
sampling rates Fd and Fs of digital message signals and mapped signals,
respectively. What it uses is their ratio Fs/Fd. For example, the two commands
below produce exactly the same result, because 3/1 equals 6/2.

y13 = dmodce([0 1 2 3 4 5 6 7]',1,3,'ask',8);
y26 = dmodce([0 1 2 3 4 5 6 7]',2,6,'ask',8);

One exceptional situation in which the individual value of Fd matters occurs in
the MSK and M-ary FSK methods. The default separations between successive
frequencies are Fd/2 and Fd for these two methods, respectively.

Representing Signal Constellations
The QASK method depends on a choice of a signal constellation. The QASK
mapping and demapping functions in this toolbox can process two special types
of signal constellations, as well as a general type of constellation that you can
define as you choose. The special types are called square and circle
constellations and the general type is called an arbitrary constellation. This
section describes how you can tell MATLAB what signal constellation you want
to use, and how you can plot signal constellations.

Modulation

2-71

Square Constellations
To use a square constellation, you only need to tell MATLAB the number of
points in the constellation. This number, M, must be a power of two. For
example, to map the digital signal [3 8 15 30 28] to a square constellation
having 32 points, use the qaskenco function as below.

[inphase,quadr] = qaskenco([3 8 15 30 28],32);

The returned vectors inphase and quadr give the in-phase and quadrature
components, respectively, of the mapped signal. The command

msg = qaskdeco(inphase,quadr,32);

demaps to recover the original message [3 8 15 30 28]. Notice that in both
cases, the square constellation is described only by the number 32.

The modulation and demodulation functions use the M-ary number and the
method string 'qask' to specify the square constellation. The command below
implements QASK modulation on the message [3 8 15 30 28], using a 32-point
square constellation. The command assumes that the sampling rates are 1 Hz
before modulating and 2 Hz after modulating.

y = dmodce([3 8 5 30 28],1,2,'qask',32);

Plotting Square Constellations. To plot a square constellation with M points, use one
of these commands.

qaskenco(M)
modmap('qask',M);

Circle Constellations
To use a circle constellation having equally spaced points on each circle, you
need to give MATLAB this information, in this order:

1 The number of points on each circle

2 The radius of each circle

3 The phase of one point on each circle

The three types of information occupy three vectors of the same length. The
first entries of the three vectors determine one circle, the second entries of the
three vectors determine another circle, and so on.

2 Using the Communications Toolbox

2-72

For example, the apkconst command below returns the complex coordinates of
the points on a circle constellation that contains sixteen points on each of two
circles. The inner circle has radius one, and one of the constellation points has
zero phase. The outer circle has radius three and a constellation point at 10
degrees.

y = apkconst([16 16],[1 3],[0 10*pi/180]);

The constellation contains two circles because each vector has length two. The
constellation has 32 points in total because the sum of entries in the first vector
is 32.

The modulation and demodulation functions use three equal-length vectors
and the method string 'qask/cir' to specify the circle constellation. The
command below implements QASK modulation on the message [3 8 15 30 28],
using the circle constellation described above.

y = dmodce([3 8 5 30 28],1,2,'qask/cir',[16 16],[1 3],...
[0 10*pi/180]);

Default Values. If you do not provide the phase vector, then by default one
constellation point on each circle will have zero phase. If you provide neither
the phase vector nor the radius vector, then by default the kth circle will have
radius k, and one of the constellation points will have zero phase. You must
provide the vector that specifies how many points are on each circle.

Plotting Circle Constellations. To plot a circle constellation in which numsig gives
the number of points on each circle, amp gives the radius of each circle, and phs
gives the phase of one point on each circle, use one of these commands.

apkconst(numsig,amp,phs)
modmap('qask/cir',numsig,amp,phs);

To label the constellation points by number, use this syntax instead.

apkconst(numsig,amp,phs,'n')

Arbitrary Constellations
You can also use a signal constellation that does not fit into the categories
above. To do this, you need to give MATLAB two real vectors of equal length,
one that contains the in-phase components of the constellation point and one
that contains the corresponding quadrature components. You also need to use

Modulation

2-73

the method string 'qask/arb' in the modulation, demodulation, mapping, and
demapping functions.

For example, the code examples below plot signal constellations that have a
hexagonal and triangular structure, respectively. They use the modmap
function.

% Example #1: A hexagonal constellation
inphase = [1/2 1 1 1/2 1/2 2 2 5/2];
quadr = [0 1 -1 2 -2 1 -1 0];
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;quadr]; quadr = quadr(:);
modmap('qask/arb',inphase,quadr);

% Example #2: A triangular constellation
figure;
inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];
quadr = [1 1 0 2 1 1 2 2];
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;-quadr]; quadr = quadr(:);
modmap('qask/arb',inphase,quadr);

The figure below shows plots of the hexagonal and triangular signal
constellations on the left and right, respectively. The dashed lines are not part
of MATLAB’s output, and appear below only to suggest the hexagonal and
triangular structures.

2 Using the Communications Toolbox

2-74

The modulation and demodulation functions also use the method string
'qask/arb' and a pair of equal-length vectors like inphase and quadr to
determine your constellation. For example, to modulate the message
[3 8 5 10 7] using the QASK method with one of the constellations described in
the examples above, supplement the example code with this command.

y = dmodce([3 8 5 10 7],1,2,'qask/arb',inphase,quadr);

Simple Digital Modulation Example
This example illustrates the basic format of the baseband modulation and
demodulation commands, dmodce and ddemodce. Although the example uses
the PSK method, most elements of this example apply to digital modulation
techniques other than PSK.

The example generates a random digital signal, modulates it, and adds noise.
Then it creates a scatter plot, demodulates the noisy signal, and computes the
symbol error rate. The ddemodce function demodulates the analog signal y and
then demaps to produce the digital signal z.

Notice that the scatter plot does not look exactly like a signal constellation.
Whereas the signal constellation would have 16 precisely located points, the
noise causes the scatter plot to have a small cluster of points approximately
where each constellation point would be. However, the noise is sufficiently
small that the signal can be recovered perfectly.

Note Since some options vary by method, you should check the reference
pages before adapting the code here for other uses.

Below are the code and the scatter plot.

M = 16; % Use 16-ary modulation.
Fd = 1; % Assume the original message is sampled
% at a rate of 1 sample per second.
Fs = 3; % The modulated signal will be sampled
% at a rate of 3 samples per second.
x = randint(100,1,M); % Random digital message
% Use M-ary PSK modulation to produce y.
y = dmodce(x,Fd,Fs,'psk',M);
% Add some Gaussian noise.

Modulation

2-75

ynoisy = y + .04*randn(300,1) + .04*j*randn(300,1);
% Create scatter plot from noisy data.
scatterplot(ynoisy,1,0,'b.');
% Demodulate y to recover the message.
z = ddemodce(ynoisy,Fd,Fs,'psk',M);
s = symerr(x,z) % Check symbol error rate.

s =

 0

Customizing the Modulation Process
Recall from “Digital Modulation Overview” on page 2-66 that the modulation
and demodulation processes each consist of two steps. You can tell the toolbox
functions to carry out only selected steps in the processes. For example, this
might be useful if you want to use standard mapping and demapping
techniques along with unusual or proprietary modulation and demodulation
techniques.

2 Using the Communications Toolbox

2-76

Mapping Without Modulating and Demapping Without Demodulating
To map the digital signal to an analog signal without modulating the analog
signal, use the modmap function instead of the dmodce function. To demap the
analog signal to a digital signal without demodulating the analog signal, use
the demodmap function instead of the ddemodce function.

To alter the basic example so that it does not modulate or demodulate the
analog signals at all, replace the “old commands” listed in the first column of
the table below with the “new commands” listed in the second column.

Modulating Without Mapping and Demodulating Without Demapping
To carry out the analog modulation step on a signal that has already been
mapped from a digital signal to an analog signal, use the dmodce function with
the extra word /nomap appended to the method string. To carry out the analog
demodulation step but avoid demapping the resulting signal to a digital signal,
use the ddemodce function with the extra word /nomap appended to the method
string.

If you substituted your own mapping and demapping steps into the basic
example then it would look something like the code below. The lines in the
second grouping differ from the original example.

M = 16; % Use 16-ary modulation.
Fd = 1; % Assume the original message is sampled
% at a rate of 1 sample per second.
Fs = 3; % The modulated signal will be sampled
% at a rate of 3 samples per second.
x = randint(100,1,M); % Random digital message

% Important changes are below.
mapx = mymappingfunction(x); % Use your own function here.

Table 2-8: Changes in “Simple Digital Modulation Example” to Avoid Modulating

Old Command New Command

y = dmodce(x,Fd,Fs,'psk',M); y = modmap(x,Fd,Fs,'psk',M);

ynoisy = y + .04*randn(300,1) +
.04*j*randn(300,1);

ynoisy = y + .04*randn(300,2) +
.04*j*randn(300,2);

z = ddemodce(y,Fd,Fs,'psk',M); z = demodmap(y,Fd,Fs,'psk',M);

Modulation

2-77

y = dmodce(mapx,Fd,Fs,'psk/nomap',M); % Modulate without mapping.
% Demodulate y without demapping.
demody = ddemodce(y,Fd,Fs,'psk/nomap',M);
% Now demap.
z = mydemappingfunction(demody); % Use your own function here.

Other Options in Digital Modulation
The table below lists a few ways in which you might vary the example in the
section “Simple Digital Modulation Example” on page 2-74 in order to perform
the modulation and demodulation slightly differently. See the reference pages
for full details about options.

Selected Bibliography for Modulation
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation
of Communication Systems. New York: Plenum Press, 1992.

[2] Proakis, John G. Digital Communications, 3rd ed. New York: McGraw-Hill, 1995.

[3] Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

Table 2-9: Substitutions in the Digital Example

Modification of Process Modifications in the Code in “Simple Digital
Modulation Example” on page 2-74

Set the carrier signal’s initial phase to
phs, measured in radians

y = dmodce(x,Fd,[Fs phs],'psk',M);
z = ddemodce(y,Fd,[Fs phs],'psk',M);

Use a lowpass filter after
demodulating but before demapping.
num and den are row vectors that give
the coefficients, in descending order,
of the numerator and denominator of
the filter’s transfer function.

z = ddemodce(y,Fd,Fs,'psk',M,num,den);

(See also “Filter Design Issues” on page 2-62 if you plan
to use filters.)

(ASK only) Use a Costas phase-locked
loop

y = dmodce(x,Fd,Fs,'ask',M);
z = ddemodce(y,Fd,Fs,'ask/costas',M);

(FSK only) Use noncoherent
demodulation

y = dmodce(x,Fd,Fs,'fsk',M);
z = ddemodce(y,Fd,Fs,'fsk/noncoherence',M);

2 Using the Communications Toolbox

2-78

Special Filters
The Communications Toolbox includes several functions that can help you
design and use filters. Other filtering capabilities are in the Signal Processing
Toolbox.

Special Filter Features of the Toolbox
Filtering tasks supported in the Communications Toolbox include:

• Designing a Hilbert transform filter

• Filtering data using a raised cosine filter

• Designing a raised cosine filter

After discussing an implementation issue relating to filters’ group delays, this
section describes the toolbox functions that accomplish these tasks: hilbiir,
rcosflt, rcosine, and the lower-level functions rcosfir and rcosiir.

For background information about Hilbert filters and raised cosine filters, see
the works listed in “Selected Bibliography for Special Filters” on page 2-88. For
a demonstration involving raised cosine filters, see rcosdemo.

Noncausality and the Group Delay Parameter
Without propagation delays, both Hilbert filters and raised cosine filters are
noncausal. This means that the current output depends on the system’s future
input. In order to design only realizable filters, the hilbiir, rcosine, and
rcosflt functions delay the input signal before producing an output. This
delay, known as the filter’s group delay, is the time between the filter’s initial
response and its peak response. The group delay is defined as

where θ is the phase of the filter and ω is the frequency in radians. This delay
is set so that the impulse response before time zero is negligible and can safely
be ignored by the function.

For example, the Hilbert filter whose impulse is shown below uses a group
delay of 1 second. Notice in the figure that the impulse response near time 0 is
small and that the large impulse response values occur near time 1.

ωd
d θ ω()–

Special Filters

2-79

Figure 2-7: Impulse Response of a Hilbert Filter

Example: Compensating for Group Delays When Analyzing Data
Comparing filtered with unfiltered data might be easier if you delay the
unfiltered signal by the filter’s group delay. For example, suppose you use the
code below to filter x and produce y.

tx = 0:4; % Times for data samples
x = [0 1 1 1 1]'; % Binary data samples
% Filter the data and use a delay of 2 seconds.
delay = 2;
[y,ty] = rcosflt(x,1,8,'fir',.3,delay);

Here, the elements of tx and ty represent the times of each sample of x and y,
respectively. However, y is delayed relative to x, so corresponding elements of
x and y do not have the same time values. Plotting y against ty and x against
tx is less useful than plotting y against ty and x against a delayed version of tx.

% Top plot
subplot(2,1,1), plot(tx,x,'*',ty,y);

2 Using the Communications Toolbox

2-80

% Bottom plot delays tx.
subplot(2,1,2), plot(tx+delay,x,'*',ty,y);

For another example of compensating for group delay, see the raised-cosine
filter demo, rcosdemo.

Designing Hilbert Transform Filters
The hilbiir function designs a Hilbert transform filter and produces either:

• A plot of the filter’s impulse response, or

• A quantitative characterization of the filter, using either a transfer function
model or a state-space model

Example with Default Parameters
For example, typing simply

hilbiir

plots the impulse response of a fourth-order digital Hilbert transform filter
having a 1-second group delay. The sample time is 2/7 seconds. In this

Special Filters

2-81

particular design, the tolerance index is 0.05. The plot also displays the
impulse response of the ideal Hilbert transform filter having a 1-second group
delay. The plot is in Figure 2-7, Impulse Response of a Hilbert Filter, on page
2-79.

To compute this filter’s transfer function, use the command below.

[num,den] = hilbiir

num =

 -0.3183 -0.3041 -0.5160 -1.8453 3.3105

den =

 1.0000 -0.4459 -0.1012 -0.0479 -0.0372

Here, the vectors num and den contain the coefficients of the numerator and
denominator, respectively, of the transfer function in ascending order of
powers of z-1.

The commands in this section used the function’s default parameters. You can
also control the filter design by specifying the sample time, group delay,
bandwidth, and tolerance index. The reference entry for hilbiir explains
these parameters. The group delay is also mentioned above in “Noncausality
and the Group Delay Parameter” on page 2-78.

Filtering with Raised Cosine Filters
The rcosflt function applies a raised cosine filter to data. Because rcosflt is
a versatile function, you can:

• Use rcosflt to both design and implement the filter.

• Specify a raised cosine filter and use rcosflt only to filter the data.

• Design and implement either raised cosine filters or square-root raised
cosine filters.

• Specify the rolloff factor and/or group delay of the filter, if rcosflt designs
the filter.

• Design and implement either FIR or IIR filters.

2 Using the Communications Toolbox

2-82

This section discusses the use of sampling rates in filtering, and then covers
these options. For additional examples, see rcosdemo.

Sampling Rates
The basic rcosflt syntax

y = rcosflt(x,Fd,Fs...) % Basic syntax

assumes by default that you want to apply the filter to a digital signal x whose
sampling rate is Fd. The filter’s sampling rate is Fs. The ratio of Fs to Fd must
be an integer. By default, the function upsamples the input data by a factor of
Fs/Fd before filtering. It upsamples by inserting Fs/Fd-1 zeros between input
data samples. The upsampled data consists of Fs/Fd samples per symbol and
has sampling rate Fs.

An example using this syntax is below. The output sampling rate is four times
the input sampling rate.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.

Maintaining the Input Sampling Rate. You can also override the default upsampling
behavior. In this case, the function assumes that the input signal already has
sampling rate Fs and consists of Fs/Fd samples per symbol. You might want to
maintain the sampling rate in a receiver’s filter if the corresponding
transmitter’s filter has already upsampled sufficiently.

To maintain the sampling rate, modify the fourth input argument in rcosflt
to include the string Fs. For example, in the first command below, rcosflt uses
its default upsampling behavior and the output sampling rate is four times the
input sampling rate. By contrast, the second command below uses Fs in the
string argument and thus maintains the sampling rate throughout.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.
y2 = rcosflt([1;0;0],1,4,'fir/Fs'); % Maintain sampling rate.

The second command assumes that the sampling rate of the input signal is 4,
and that the input signal contains 4/1 samples per symbol.

An example that uses the 'Fs' option at the receiver is in “Combining Two
Square-Root Raised Cosine Filters” on page 2-85.

Special Filters

2-83

Designing Filters Automatically
The simplest syntax of rcosflt assumes that the function should both design
and implement the raised cosine filter. For example, the command below
designs an FIR raised cosine filter and then filters the input vector [1;0;0] with
it. The second and third input arguments indicate that the function should
upsample the data by a factor of 8 (that is, 8/1) during the filtering process.

y = rcosflt([1;0;0],1,8);

Types of Raised Cosine Filters. You can have rcosflt design other types of raised
cosine filters by using a fourth input argument. Variations on the previous
example are below.

y = rcosflt([1;0;0],1,8,'fir'); % Same as original example
y = rcosflt([1;0;0],1,8,'fir/sqrt'); % FIR square-root RC filter
y = rcosflt([1;0;0],1,8,'iir'); % IIR raised cosine filter
y = rcosflt([1;0;0],1,8,'iir/sqrt'); % IIR square-root RC filter

Specifying Filters Using Input Arguments
If you have a transfer function for a raised cosine filter, then you can provide it
as an input to rcosflt so that rcosflt does not design its own filter. This is
useful if you want to use rcosine to design the filter once and then use the filter
many times. For example, the rcosflt command below uses the 'filter' flag
to indicate that transfer function is an input argument. The input num is a
vector that represents the FIR transfer function by listing its coefficients.

num = rcosine(1,8); y = rcosflt([1;0;0],1,8,'filter',num);

This syntax for rcosflt works whether num represents the transfer function
for a square-root raised cosine FIR filter or an ordinary raised cosine FIR filter.
For example, the code below uses a square-root raised cosine FIR filter. Only
the definition of num is different.

num = rcosine(1,8,'sqrt'); y = rcosflt([1;0;0],1,8,'filter',num);

You can also use a raised cosine IIR filter. To do this, modify the fourth input
argument of the rcosflt command above so that it contains the string 'iir'
and provide a denominator argument. An example is below.

delay = 8;
[num,den] = rcosine(1,8,'iir',.5,delay);
y = rcosflt([1;0;0],1,8,'iir/filter',num,den,delay);

2 Using the Communications Toolbox

2-84

Controlling the Rolloff Factor
If rcosflt designs the filter automatically, then you can control the rolloff
factor of the filter, as described below. If you specify your own filter, then
rcosflt does not need to know its rolloff factor.

The rolloff factor determines the excess bandwidth of the filter. For example, a
rolloff factor of .5 means that the bandwidth of the filter is 1.5 times the input
sampling frequency, Fd. This also means that the transition band of the filter
extends from .5 * Fd to 1.5 * Fd.

The default rolloff factor is .5, but if you want to use a value of .2, then you can
use a command such as the one below. Typical values for the rolloff factor are
between .2 and .5.

y = rcosflt([1;0;0],1,8,'fir',.2); % Rolloff factor is .2.

Controlling the Group Delay
If rcosflt designs the filter automatically, then you can control the group
delay of the filter, as described below. If you specify your own FIR filter, then
rcosflt does not need to know its group delay.

The filter’s group delay is the time between the filter’s initial response and its
peak response. The default group delay in the implementation is three input
samples. To specify a different value, measure it in input symbol periods and
provide it as the sixth input argument. For example, the command below
specifies a group delay of six input samples, which is equivalent to 6*8/1 output
samples.

y = rcosflt([1;0;0],1,8,'fir',.2,6); % Delay is 6 input samples.

The group delay influences the size of the output, as well as the order of the
filter if rcosflt designs the filter automatically. See the reference page for
rcosflt for details that relate to the syntax you want to use.

Example: Raised Cosine Filter Delays. The code below filters a signal using two
different group delays. A larger delay results in a smaller error in the
frequency response of the filter. The plot shows how the two filtered signals
differ, and the output pt indicates that the first peak occurs at different times
for the two filtered signals.

[y,t] = rcosflt(ones(10,1),1,8,'fir',.5,6); % Delay = 6 samples
[y1,t1] = rcosflt(ones(10,1),1,8,'fir',.5,8); % Delay = 8 samples

Special Filters

2-85

plot(t,y,t1,y1,'--') % Two curves indicate the different delays.
peak = t(find(y == max(y))); % Times where first curve peaks
peak1 = t1(find(y1 == max(y1))); % Times where second curve peaks
pt = [min(peak), min(peak1)] % First peak time for both curves

pt =

 14.6250 16.6250

Figure 2-8: Delays of Three Samples (Dashed) and Five Samples (Solid)

If Fs/Fd is at least 4, then a group delay value of at least 8 works well in many
cases. In the examples of this section, Fs/Fd is 8.

Combining Two Square-Root Raised Cosine Filters
If you want to split the filtering equally between the transmitter’s filter and the
receiver’s filter, then you can use a pair of square-root raised cosine filters. In
theory, the combination of two square-root raised cosine filters is equivalent to
a single normal raised cosine filter. However, the limited impulse response of

2 Using the Communications Toolbox

2-86

practical square-root raised cosine filters causes a slight difference between the
response of two successive square-root raised cosine filters and the response of
one raised cosine filter.

Using rcosine and rcosflt to Implement Square-Root Raised Cosine Filters. One way to
implement the pair of square-root raised cosine filters is to follow these steps:

1 Use rcosine with the 'sqrt' flag to design a square-root raised cosine filter.

2 Use rcosflt in the transmitter section of code to upsample and filter the
data.

3 Use rcosflt in the receiver section of code to filter the received data without
upsampling it. Use the 'Fs' flag to avoid upsampling.

An example of this approach is below. Notice that the syntaxes for rcosflt use
the 'filter' flag to indicate that you are providing the filter’s transfer
function as an input.

% First approach
x = randint(100,1,2,1234); % Data
num = rcosine(1,8,'sqrt'); % Transfer function of filter
y = rcosflt(x,1,8,'filter',num); % Filter the data.
z = rcosflt(y,1,8,'Fs/filter',num); % Filter the received data
% but do not upsample it.

Using rcosflt Alone. Another way to implement the pair of square-root raised
cosine filters is to have rcosflt both design and use the square-root raised
cosine filter. This approach avoids using rcosine. The corresponding example
code is below. Notice that the syntaxes for rcosflt use the 'sqrt' flag to
indicate that you want it to design a square-root raised cosine filter.

% Second approach
x = randint(100,1,2,1234); % Data (again)
y1 = rcosflt(x,1,8,'sqrt'); % Design and use a filter.
z1 = rcosflt(y1,1,8,'sqrt/Fs'); % Design and use a filter
% but do not upsample the data.

Because these two approaches are equivalent, y is the same as y1 and z is the
same as z1.

Special Filters

2-87

Designing Raised Cosine Filters
The rcosine function designs (but does not apply) filters of these types:

• Finite impulse response (FIR) raised cosine filter

• Infinite impulse response (IIR) raised cosine filter

• FIR square-root raised cosine filter

• IIR square-root raised cosine filter

The function returns the transfer function as output. To learn about applying
raised cosine filters, see “Filtering with Raised Cosine Filters” on page 2-81.

Sampling Rates
The rcosine function assumes that you want to apply the filter to a digital
signal whose sampling rate is Fd. The function also requires you to provide the
filter’s sampling rate, Fs. The ratio of Fs to Fd must be an integer.

Example Designing a Square-Root Raised Cosine Filter
For example, the command below designs a square-root raised cosine FIR filter
with a sampling rate of 2, for use with a digital signal whose sampling rate is 1.

num = rcosine(1,2,'fir/sqrt')

num =

 Columns 1 through 7

 0.0021 -0.0106 0.0300 -0.0531 -0.0750 0.4092 0.8037

 Columns 8 through 13

 0.4092 -0.0750 -0.0531 0.0300 -0.0106 0.0021

Here, the vector num contains the coefficients of the filter, in ascending order of
powers of z-1.

Other Options in Filter Design
You can also control the filter design by specifying the rolloff factor, group
delay, and (for IIR filters) tolerance index explicitly, instead of having rcosine
use its default values. The reference entry for rcosine explains these

2 Using the Communications Toolbox

2-88

parameters. The group delay is also mentioned above in “Noncausality and the
Group Delay Parameter” on page 2-78.

Selected Bibliography for Special Filters
[1] Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold,
1985.

[2] Oppenheim, Alan V. and Ronald W. Schafer. Discrete-Time Signal
Processing. Englewood Cliffs, N.J.: Prentice Hall, 1989.

Galois Field Computations

2-89

2. Using the Communications Toolbox

Galois Field Computations
A Galois field is an algebraic field that has a finite number of elements. The
number of elements is always of the form pm, where p is a prime number and
m is a positive integer. Galois fields are used in error-control coding.

Galois Field Features of the Toolbox
The Communications Toolbox provides functions for manipulating elements of
Galois fields, working with polynomials over Galois fields, and performing
other tasks related to Galois fields. This section discusses these topics:

• “Galois Field Terminology” on page 2-89

• “Representing Elements of Galois Fields” on page 2-90

• “Default Primitive Polynomials” on page 2-93

• “Converting and Simplifying Element Formats” on page 2-94

• “Arithmetic in Galois Fields” on page 2-97

• “Polynomials over Prime Fields” on page 2-99

For background information about Galois fields or their use in error-control
coding, see the works listed in “Selected Bibliography for Galois Fields” on
page 2-103.

Galois Field Terminology
Throughout this section, p is a prime number and m is a positive integer.

Also, this document uses a few terms that are not used consistently in the
literature. The definitions adopted here appear in van Lint [4].

• A primitive element of GF(pm) is a cyclic generator of the group of nonzero
elements of GF(pm). This means that every nonzero element of the field can
be expressed as the primitive element raised to some integer power.
Primitive elements are called α throughout this section.

• A primitive polynomial for GF(pm) is the minimal polynomial of some
primitive element of GF(pm). As a consequence, it has degree m and is
irreducible.

2 Using the Communications Toolbox

2-90

Representing Elements of Galois Fields
This section discusses how to represent Galois field elements using this
toolbox’s exponential format and polynomial format. It also describes a way to
list all elements of the Galois field, because some functions use such a list as
an input argument. Finally, it discusses the nonuniqueness of representations
of Galois field elements.

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least two, GF(pm) is called an extension field. Integers alone
cannot represent the elements of GF(pm) in a straightforward way. MATLAB
uses two main conventions for representing elements of GF(pm): the
exponential format and the polynomial format.

Note Both the exponential format and the polynomial format are relative to
your choice of a particular primitive element α of GF(pm).

Exponential Format
This format uses the property that every nonzero element of GF(pm) can be
expressed as αc for some integer c between 0 and pm-2. Higher exponents are
not needed, since the theory of Galois fields implies that every nonzero element
of GF(pm) satisfies the equation xq-1 = 1 where q = pm.

MATLAB’s use of the exponential format is shown in the table below.

Table 2-10: Exponential Format in MATLAB

Element of GF(pm) MATLAB Representation of the Element

0 -Inf

α0 = 1 0

α1 1

αq-2 where q = pm q-2

… …

Galois Field Computations

2-91

Although -Inf is the standard exponential representation of the zero element,
all negative integers are equivalent to -Inf when used as input arguments in
exponential format. This equivalence can be useful; for example, see the
concise line of code at the end of the section “Default Primitive Polynomials” on
page 2-93.

Note The equivalence of all negative integers and -Inf as exponential
formats means that, for example, -1 does not represent α-1, the multiplicative
inverse of α. Instead, -1 represents the zero element of the field.

Polynomial Format
The polynomial format uses the property that every element of GF(pm) can be
expressed as a polynomial in α with exponents between 0 and m-1, and
coefficients in GF(p). In the polynomial format, the element

A(1) + A(2) α + A(3) α2 + ... + A(m) αm-1

is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note The Galois field functions in this toolbox represent a polynomial as a
vector that lists the coefficients in order of ascending powers of the variable.
This is the opposite of the order that other MATLAB functions use.

List of All Elements of a Galois Field
Some Galois field functions in this toolbox require an argument that lists all
elements of an extension field GF(pm). This is again relative to a particular
primitive element α of GF(pm). The proper format for the list of elements is that
of a matrix having pm rows, one for each element of the field. The matrix has
m columns, one for each coefficient of a power of α in the polynomial format
shown in “Polynomial Format” above. The first row contains only zeros because
it corresponds to the zero element in GF(pm). If k is between 2 and pm, then the
kth row specifies the polynomial format of the element αk-2.

2 Using the Communications Toolbox

2-92

The minimal polynomial of α aids in the computation of this matrix, since it
tells how to express αm in terms of lower powers of α. For example, the table
below lists the elements of GF(32), where α is a root of the primitive polynomial
2 + 2x + x2. This polynomial allows repeated use of the substitution

α2 = -2 - 2α = 1 + α

when performing the computations in the middle column of the table.

An automatic way to generate the matrix whose rows are in the third column
of the table above is to use the code below.

p = 3; m = 2;
% Use the primitive polynomial 2 + 2x + x^2 for GF(9).
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);

The gftuple function is discussed in more detail in “Converting and
Simplifying Element Formats” on page 2-94.

Table 2-11: Elements of GF(9)

Exponential
Format

Polynomial Format Row of MATLAB
Matrix of Elements

α-Inf 0 0 0

α0 1 1 0

α1 α 0 1

α2 1+α 1 1

α3 α + α2 = α + 1 + α = 1 + 2α 1 2

α4 α + 2α2 = α + 2 + 2α = 2 2 0

α5 2α 0 2

α6 2α2 = 2 + 2α 2 2

α7 2α + 2α2 = 2α + 2 + 2α = 2 + α 2 1

Galois Field Computations

2-93

Nonuniqueness of Representations
A given field has more than one primitive element. If two primitive elements
have different minimal polynomials, then the corresponding matrices of
elements will have their rows in a different order. If the two primitive elements
share the same minimal polynomial, then the matrix of elements of the field is
the same.

Note You may use whatever primitive element you want, as long as you
understand how the inputs and outputs of Galois field functions depend on the
choice of some primitive polynomial. It is usually best to use the same
primitive polynomial throughout a given script or function.

Other ways in which representations of elements are not unique arise from the
equations that Galois field elements satisfy. For example, an exponential
format of 8 in GF(9) is really the same as an exponential format of 0, since
α8 = 1 = α0 in GF(9). As another example, the substitution mentioned just
before Table 2-11, Elements of GF(9), shows that the polynomial format [0 0 1]
is really the same as the polynomial format [1 1].

Default Primitive Polynomials
This toolbox provides a default primitive polynomial for each extension field.
You can retrieve this polynomial using the gfprimdf function. The command

primpoly = gfprimdf(m,p); % If m and p are already defined

produces the standard row-vector representation of the default minimal
polynomial for GF(pm).

For example, the command below shows that the default primitive polynomial
for GF(9) is 2 + x + x2, not the polynomial used in the section, “List of All
Elements of a Galois Field” on page 2-91.

gfprimdf(2,3)

ans =

 2 1 1

2 Using the Communications Toolbox

2-94

To generate a list of elements of GF(pm) using the default primitive polynomial,
use the command

field = gftuple([-1:p^m-2]',m,p);

Converting and Simplifying Element Formats
This section describes how to convert between the exponential and polynomial
formats for Galois field elements, as well as how to simplify a given
representation.

Converting to Simplest Polynomial Format
The gftuple function produces the simplest polynomial representation of an
element of GF(pm), given either an exponential representation or a polynomial
representation of that element. This can be useful for generating the list of
elements of GF(pm) that other functions require.

The simplest use of gftuple requires two arguments: one representing an
element of GF(pm) and the other indicating the primitive polynomial that
MATLAB should use when computing the output. An optional third argument
is the prime p; if it is omitted, then the default is 2. The table below indicates
how gftuple behaves when given the first two arguments in various formats.

Table 2-12: Behavior of gftuple Depending on Format of Inputs

How to Specify
Element

How to Indicate Primitive
Polynomial

What gftuple Produces

Exponential format;
c = any integer

Integer m > 1 Polynomial format of αc, where α is a
root of the default primitive polynomial
for GF(pm)

Example: tp = gftuple(6,2,3); % c = 6 here

Exponential format;
c = any integer

Vector of coefficients of
primitive polynomial

Polynomial format of αc, where α is a
root of the given primitive polynomial

Example: polynomial = gfprimdf(2,3); tp = gftuple(6,polynomial,3); % c = 6 here

Galois Field Computations

2-95

The four examples that appear in the table above all produce the same vector
tp = [2, 1], but their different inputs to gftuple correspond to the lines of
the table. Each example expresses the fact that

α6 = 2+α

where α is a root of the (default) primitive polynomial 2 + x + x2 for GF(32).

Example. This example shows how gfconv and gftuple combine to multiply two
polynomial-format elements of GF(34). Initially, gfconv multiplies the two
polynomials, treating the primitive element as if it were a variable. This
produces a high-order polynomial, which gftuple simplifies using the
polynomial equation that the primitive element satisfies. The final result is the
simplest polynomial format of the product.

p = 3; m = 4;
a = [1 2 0 1]; b = [2 2 1 2];
notsimple = gfconv(a,b,p) % a times b, using high powers of alpha

notsimple =

 2 0 2 0 0 1 2

simple = gftuple(notsimple,m,p) %Highest exponent of alpha is m-1

Polynomial format of
any degree

Integer m > 1 Polynomial format of degree < m, using
default primitive polynomial for
GF(pm) to simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);

Polynomial format of
any degree

Vector of coefficients of
primitive polynomial

Polynomial format of degree < m, using
the given primitive polynomial for
GF(pm) to simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 0 1],polynomial,3);

Table 2-12: Behavior of gftuple Depending on Format of Inputs (Continued)

How to Specify
Element

How to Indicate Primitive
Polynomial

What gftuple Produces

2 Using the Communications Toolbox

2-96

simple =

 2 1 0 1

Example: Generating a List of Galois Field Elements
This example applies the conversion functionality to the task of generating a
matrix that lists all elements of a Galois field. A matrix that lists all field
elements is an input argument in functions such as gfadd and gfmul. The
variables field1 and field2 below have the format that such functions expect.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field1 = gftuple([-1:p^m-2]',m,p);

primpoly = gfprimdf(m,p); % Or any primitive polynomial
% for GF(p^m)
field2 = gftuple([-1:p^m-2]',primpoly,p);

Converting to Simplest Exponential Format
The same function gftuple also produces the simplest exponential
representation of an element of GF(pm), given either an exponential
representation or a polynomial representation of that element. To retrieve this
output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in Table 2-12, Behavior of
gftuple Depending on Format of Inputs. In addition, the variable expformat
contains the simplest exponential format of the element represented in
polyformat. It is simplest in the sense that the exponent is either -Inf or a
number between 0 and pm-2.

To recover the exponential format of the element 2 + α that the previous
section considered, use the commands below. In this case, polyformat contains
redundant information, while expformat contains the desired result.

[polyformat, expformat] = gftuple([2 1],2,3)

polyformat =

 2 1

Galois Field Computations

2-97

expformat =

 6

This output appears at first to contradict the information in Table 2-11,
Elements of GF(9), but in fact it does not. The table uses a different primitive
element; two plus that primitive element has the polynomial and exponential
formats shown below. The output below reflects the information in the bottom
line of the table.

primpoly = [2 2 1];
[polyformat, expformat] = gftuple([2 1],primpoly,3)

polyformat =

 2 1

expformat =

 7

Arithmetic in Galois Fields
You can add, subtract, multiply, and divide elements of Galois fields using the
functions gfadd, gfsub, gfmul, and gfdiv, respectively. Each of these functions
has a mode for prime fields and a mode for extension fields.

Arithmetic in Prime Fields
Arithmetic in GF(p) is the same as arithmetic modulo p. The functions gfadd,
gfmul, gfsub, and gfdiv accept two arguments that represent elements of
GF(p) as integers between 0 and p-1. An optional third argument specifies p; if
it does not appear, then the computations are performed in GF(2).

Example: Addition Table for GF(5). The code below constructs an addition table for
GF(5). If a and b are between 0 and 4, then the element gfp_add(a+1,b+1)
represents the sum a+b in GF(5). For example, gfp_add(3,5) = 1 because 2+4
is 1 modulo 5.

p = 5;
row = 0:p-1;

2 Using the Communications Toolbox

2-98

table = ones(p,1)*row;
gfp_add = gfadd(table,table',p)

gfp_add =

 0 1 2 3 4
 1 2 3 4 0
 2 3 4 0 1
 3 4 0 1 2
 4 0 1 2 3

Other values of p produce tables for different prime fields GF(p). Replacing
gfadd by gfmul, gfsub, or gfdiv produces a table for the corresponding
arithmetic operation in GF(p).

Arithmetic in Extension Fields
The same arithmetic functions can add elements of GF(pm) when m > 1, but the
format of the arguments is more complicated than in the case above. In general,
arithmetic in extension fields is more complicated than arithmetic in prime
fields; see the works listed in “Selected Bibliography for Galois Fields” on
page 2-103 for details about how the arithmetic operations work.

When working in extension fields, the functions gfadd, gfmul, gfsub, and
gfdiv use the first two arguments to represent elements of GF(pm) in
exponential format. The third argument, which is required, lists all elements
of GF(pm) as described in the section, “List of All Elements of a Galois Field” on
page 2-91. The result is in exponential format.

Example: Addition Table for GF(9). The code below constructs an addition table for
GF(32), using exponential formats relative to a root of the default primitive
polynomial for GF(9). If a and b are between -1 and 7, then the element
gfpm_add(a+2,b+2) represents the sum of αa and αb in GF(9). For example,
gfpm_add(4,6) = 5 because

α2 + α4 = α5

Using the fourth and sixth rows of the matrix field, you can verify that

α2 + α4 = (1 + 2α) + (2 + 0α) = 3 + 2α = 0 + 2α = α5 modulo 3.

p = 3; m = 2; % Work in GF(3^2).
field = gftuple([-1:p^m-2]',m,p); % Construct list of elements.

Galois Field Computations

2-99

row = -1:p^m-2;
table = ones(p^m,1)*row;
gfpm_add = gfadd(table,table',field)

gfpm_add =

 -Inf 0 1 2 3 4 5 6 7
 0 4 7 3 5 -Inf 2 1 6
 1 7 5 0 4 6 -Inf 3 2
 2 3 0 6 1 5 7 -Inf 4
 3 5 4 1 7 2 6 0 -Inf
 4 -Inf 6 5 2 0 3 7 1
 5 2 -Inf 7 6 3 1 4 0
 6 1 3 -Inf 0 7 4 2 5
 7 6 2 4 -Inf 1 0 5 3

Note If you used a different primitive polynomial, then the tables would look
different. This makes sense because the ordering of the rows and columns of
the tables was based on that particular choice of primitive polynomial and not
on any natural ordering of the elements of GF(9).

Other values of p and m produce tables for different prime fields GF(pm).
Replacing gfadd by gfmul, gfsub, or gfdiv produces a table for the
corresponding arithmetic operation in GF(pm).

Polynomials over Prime Fields
A polynomial over GF(p) is a polynomial whose coefficients are elements of
GF(p). The Communications Toolbox provides functions for:

• Changing polynomials in cosmetic ways

• Performing polynomial arithmetic

• Characterizing polynomials as primitive or irreducible

• Finding roots of polynomials in a Galois field

2 Using the Communications Toolbox

2-100

Note The Galois field functions in this toolbox represent a polynomial as a
vector that lists the coefficients in order of ascending powers of the variable.
This is the opposite of the order that other MATLAB functions use.

Cosmetic Changes of Polynomials
To display the traditionally formatted polynomial that corresponds to a row
vector containing coefficients, use gfpretty. To truncate a polynomial by
removing all zero-coefficient terms that have exponents higher than the degree
of the polynomial, use gftrunc. For example,

polynom = gftrunc([1 20 394 10 0 0 29 3 0 0])

polynom =

 1 20 394 10 0 0 29 3

gfpretty(polynom)

 2 3 6 7
 1 + 20 X + 394 X + 10 X + 29 X + 3 X

Note If you do not use a fixed-width font, then the spacing in the display
might not look correct.

Polynomial Arithmetic
The functions gfadd and gfsub add and subtract, respectively, polynomials
over GF(p). The gfconv function multiplies polynomials over GF(p). The
gfdeconv function divides polynomials in GF(p), producing a quotient
polynomial and a remainder polynomial. For example, the commands below
show that 2 + x + x2 times 1 + x over the field GF(3) is 2 + 2x2 + x3.

a = gfconv([2 1 1],[1 1],3)

Galois Field Computations

2-101

a =

 2 0 2 1

[quot, remd] = gfdeconv(a,[2 1 1],3)

quot =

 1 1

remd =

 0

The previously discussed functions gfadd and gfsub add and subtract,
respectively, polynomials. Because it uses a vector of coefficients to represent
a polynomial, MATLAB does not distinguish between adding two polynomials
and adding two row vectors elementwise.

Characterization of Polynomials
Given a polynomial over GF(p), the gfprimck function determines whether it
is irreducible and/or primitive. By definition, if it is primitive then it is
irreducible; however, the reverse is not necessarily true.

Given an element of GF(pm), the gfminpol function computes its minimal
polynomial over GF(p).

For example, the code below reflects the irreducibility of all minimal
polynomials. However, the minimal polynomial of a nonprimitive element is
not a primitive polynomial.

p = 2; m = 4;
% Use default primitive polynomial here.

primpoly = gfminpol(1,m,p);
ckprim = gfprimck(primpoly,p);
% ckprim = 1, since primpoly represents a primitive polynomial.

notprimpoly = gfminpol(3,m,p);
cknotprim = gfprimck(notprimpoly,p);
% cknotprim = 0 (irreducible but not primitive)

2 Using the Communications Toolbox

2-102

% since alpha^3 is not a primitive element when p = 2.

ckreducible = gfprimck([0 1 1],p);
% ckreducible = -1 since the polynomial is reducible.

Roots of Polynomials
Given a polynomial over GF(p), the gfroots function finds the roots of the
polynomial in a suitable extension field GF(pm). If p is not specified, then the
default is 2. If m is not specified, then the default is the degree of the
polynomial. There are two ways to tell MATLAB the degree m of the extension
field GF(pm), as shown in the table below.

Example: Roots of a Polynomial in GF(9). The code below finds roots of the
polynomial 1 + x2 + x3 in GF(9) and then checks that they are indeed roots. The
exponential format of elements of GF(9) is used throughout.

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3
 root = rts(ii);
 rootsquared = gfmul(root,root,field);
 rootcubed = gfmul(root,rootsquared,field);
 answer(ii)=...
 gfadd(gfadd(0,rootsquared,field),rootcubed,field);
 % Recall that 1 is really alpha to the zero power.
 % If answer = -Inf, then the variable root represents
 % a root of the polynomial.

Table 2-13: Formats for Second Argument of gfroots

Second Argument Represents

A positive integer m as in GF(pm). MATLAB uses the default
primitive polynomial in its computations.

A row vector a primitive polynomial for GF(pm). Here m
is the degree of this primitive polynomial.

Galois Field Computations

2-103

end
answer

The output shows that α0 (which equals 1), α5, and α7 are roots.

roots =

 0
 5
 7

answer =

 -Inf -Inf -Inf

See the reference page for gfroots to see how gfroots can also provide you
with the polynomial formats of the roots and the list of all elements of the field.

Other Galois Field Functions
See the reference pages for information about these other Galois field functions
in the Communications Toolbox:

• gfcosets, which produces cyclotomic cosets

• gffilter, which filters data using GF(p) polynomials

• gflineq, which solves a linear matrix equation over GF(p)

• gfprimfd, which finds primitive polynomials

• gfrank, which computes the rank of a matrix over GF(p)

• gfrepcov, which converts one GF(2) polynomial representation to another

Selected Bibliography for Galois Fields
[1] Blahut, Richard E. Theory and Practice of Error Control Codes. Reading,
Mass.: Addison-Wesley, 1983, p.105.

[2] Lang, Serge. Algebra. Third Edition. Reading, Mass.: Addison-Wesley,
1993.

[3] Lin, Shu and Daniel J. Costello, Jr. Error Control Coding: Fundamentals
and Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1983.

2 Using the Communications Toolbox

2-104

[4] van Lint, J. H. Introduction to Coding Theory. New York: Springer-Verlag,
1982.

3

Reference

3 Reference

3-2

This chapter contains detailed descriptions of all Communications Toolbox
functions. To access the descriptions, use the links in the second column of the
table below.

Organization of Functions Section

By category “Functions by Category”

Alphabetical “Alphabetical List of Functions”

Functions by Category

3-3

3. Reference

Functions by Category

Table 3-1: Signal Sources

Function Purpose

randerr Generate bit error patterns

randint Generate matrix of uniformly distributed random integers

randsrc Generate random matrix using prescribed alphabet

wgn Generate white Gaussian noise

Table 3-2: Signal Analysis Functions

Function Purpose

biterr Compute number of bit errors and bit error rate

eyediagram Generate an eye diagram

scatterplot Generate a scatter plot

symerr Compute number of symbol errors and symbol error rate

Table 3-3: Source Coding

Function Purpose

compand Source code mu-law or A-law compressor or expander

dpcmdeco Decode using differential pulse code modulation

dpcmenco Encode using differential pulse code modulation

dpcmopt Optimize differential pulse code modulation parameters

3 Reference

3-4

lloyds Optimize quantization parameters using the Lloyd
algorithm

quantiz Produce a quantization index and a quantized output value

Table 3-4: Error-Control Coding

Function Purpose

bchpoly Produce parameters or generator polynomial for binary
BCH code

convenc Convolutionally encode binary data

cyclgen Produce parity-check and generator matrices for cyclic code

cyclpoly Produce generator polynomials for a cyclic code

decode Block decoder

encode Block encoder

gen2par Convert between parity-check and generator matrices

gfweight Calculate the minimum distance of a linear block code

hammgen Produce parity-check and generator matrices for Hamming
code

rsdecof Decode an ASCII file that was encoded using Reed-Solomon
code

rsencof Encode an ASCII file using Reed-Solomon code

rspoly Produce Reed-Solomon code generator polynomial

Table 3-3: Source Coding (Continued)

Function Purpose

Functions by Category

3-5

syndtable Produce syndrome decoding table

vitdec Convolutionally decode binary data using the Viterbi
algorithm

Table 3-5: Lower-Level Functions for Error-Control Coding

Function Purpose

bchdeco BCH decoder

bchenco BCH encoder

rsdeco Reed-Solomon decoder

rsdecode Reed-Solomon decoding using the exponential format

rsenco Reed-Solomon encoder

rsencode Reed-Solomon encoding using the exponential format

Table 3-6: Modulation and Demodulation

Function Purpose

ademod Analog passband demodulator

ademodce Analog baseband demodulator

amod Analog passband modulator

amodce Analog baseband modulator

apkconst Plot a combined circular ASK-PSK signal constellation

ddemod Digital passband demodulator

Table 3-4: Error-Control Coding (Continued)

Function Purpose

3 Reference

3-6

ddemodce Digital baseband demodulator

demodmap Demap a digital message from a demodulated signal

dmod Digital passband modulator

dmodce Digital baseband modulator

modmap Map a digital signal to an analog signal

qaskdeco Demap a message from a QASK square signal constellation

qaskenco Map a message to a QASK square signal constellation

Table 3-7: Special Filters

Function Purpose

hank2sys Convert a Hankel matrix to a linear system model

hilbiir Design a Hilbert transform IIR filter

rcosflt Filter the input signal using a raised cosine filter

rcosine Design a raised cosine filter

Table 3-8: Lower-Level Functions for Special Filters

Function Purpose

rcosfir Design a raised cosine FIR filter

rcosiir Design a raised cosine IIR filter

Table 3-6: Modulation and Demodulation (Continued)

Function Purpose

Functions by Category

3-7

Table 3-9: Channel Functions

Function Purpose

awgn Add white Gaussian noise to a signal

Table 3-10: Galois Field Computation

Function Purpose

gfadd Add polynomials over a Galois field

gfconv Multiply polynomials over a Galois field

gfcosets Produce cyclotomic cosets for a Galois field

gfdeconv Divide polynomials over a Galois field

gfdiv Divide elements of a Galois field

gffilter Filter data using polynomials over a prime Galois field

gflineq Find a particular solution of A x = b over a prime Galois
field

gfminpol Find the minimal polynomial of an element of a Galois field

gfmul Multiply elements of a Galois field

gfplus Add elements of a Galois field of characteristic two

gfpretty Display a polynomial in traditional format

gfprimck Check whether a polynomial over a Galois field is primitive

gfprimdf Provide default primitive polynomials for a Galois field

gfprimfd Find primitive polynomials for a Galois field

gfrank Compute the rank of a matrix over a Galois field

3 Reference

3-8

gfrepcov Convert one GF(2) polynomial representation to another

gfroots Find the roots of a polynomial over a prime Galois field

gfsub Subtract polynomials over a Galois field

gftrunc Minimize the length of a polynomial representation

gftuple Simplify or convert the format of elements of a Galois field

Table 3-11: Utilities

Function Purpose

bi2de Convert binary vectors to decimal numbers

de2bi Convert decimal numbers to binary vectors

erf Error function

erfc Complementary error function

istrellis Check if the input is a valid trellis structure

marcumq Generalized Marcum Q function

oct2dec Convert octal numbers to decimal numbers

poly2trellis Convert convolutional code polynomials to trellis
description

vec2mat Convert a vector into a matrix

Table 3-10: Galois Field Computation (Continued)

Function Purpose

Alphabetical List of Functions

3-9

Alphabetical List of Functions 3

ademod . 3-12
ademodce . 3-16
amod . 3-20
amodce . 3-25
apkconst . 3-28
awgn . 3-32
bchdeco . 3-34
bchenco . 3-36
bchpoly . 3-37
bi2de . 3-41
biterr . 3-43
compand . 3-49
convenc . 3-51
cyclgen . 3-53
cyclpoly . 3-55
ddemod . 3-57
ddemodce . 3-62
de2bi . 3-67
decode . 3-69
demodmap . 3-73
dmod . 3-78
dmodce . 3-82
dpcmdeco . 3-86
dpcmenco . 3-87
dpcmopt . 3-88
encode . 3-89
eyediagram . 3-95
gen2par . 3-97
gfadd . 3-99
gfconv . 3-101
gfcosets . 3-103
gfdeconv . 3-105
gfdiv . 3-108
gffilter . 3-110
gflineq . 3-112
gfminpol . 3-114
gfmul . 3-116

3

3-10

gfplus . 3-117
gfpretty . 3-118
gfprimck . 3-120
gfprimdf . 3-121
gfprimfd . 3-122
gfrank . 3-124
gfrepcov . 3-125
gfroots . 3-126
gfsub . 3-128
gftrunc . 3-130
gftuple . 3-131
gfweight . 3-134
hammgen . 3-135
hank2sys . 3-138
hilbiir . 3-140
istrellis . 3-143
lloyds . 3-145
marcumq . 3-147
modmap . 3-148
oct2dec . 3-153
poly2trellis . 3-154
qaskdeco . 3-157
qaskenco . 3-159
quantiz . 3-162
randerr . 3-164
randint . 3-166
randsrc . 3-167
rcosfir . 3-169
rcosflt . 3-171
rcosiir . 3-174
rcosine . 3-176
rsdeco . 3-178
rsdecode . 3-181
rsdecof . 3-183
rsenco . 3-184
rsencode . 3-187
rsencof . 3-189
rspoly . 3-190
scatterplot . 3-192

Alphabetical List of Functions

3-11

symerr . 3-194
syndtable . 3-197
vec2mat . 3-198
vitdec . 3-200
wgn . 3-204

ademod

3-12

3ademodPurpose Analog passband demodulator

Syntax z = ademod(y,Fc,Fs,'amdsb-tc',offset,num,den);
z = ademod(y,Fc,Fs,'amdsb-tc/costas',offset,num,den);
z = ademod(y,Fc,Fs,'amdsb-sc',num,den);
z = ademod(y,Fc,Fs,'amdsb-sc/costas',num,den);
z = ademod(y,Fc,Fs,'amssb',num,den);
z = ademod(y,Fc,Fs,'qam',num,den);
z = ademod(y,Fc,Fs,'fm',num,den,vcoconst);
z = ademod(y,Fc,Fs,'pm',num,den,vcoconst);
z = ademod(y,Fc,[Fs phase],...);

Optional
Inputs

Description The function ademod performs analog passband demodulation. The
corresponding modulation function is amod. The table below lists the
demodulation schemes that ademod supports.

Input Default Value

offset Appropriate value so that each output signal has zero mean

num, den [num,den] = butter(5,Fc*2/Fs);

vcoconst 1

Demodulation Scheme Fourth Input Argument

Amplitude demodulation 'amdsb-tc' or
'amdsb-tc/costas'

Amplitude demodulation, double sideband
suppressed carrier

'amdsb-sc' or
'amdsb-sc/costas'

Amplitude demodulation, single sideband
suppressed carrier

'amssb'

Quadrature amplitude demodulation 'qam'

Frequency demodulation 'fm'

Phase demodulation 'pm'

ademod

3-13

For All Syntaxes
The generic syntax z = ademod(y,Fc,Fs,...) demodulates the received signal
that y represents. Fc is the carrier frequency in Hertz, and Fs is the sampling
rate in Hertz. The initial phase of the carrier signal is zero.

y and z are real matrices whose sizes depend on the demodulation method:

• (QAM method) If y is a length-n vector, then z is an n-by-2 matrix.
Otherwise, if y is n-by-m, then z is n-by-2m and each column of y is processed
separately. The odd-numbered columns in z represent in-phase components
and the even-numbered columns represent quadrature components.

• (Other methods) y and z have the same dimensions. If y is a
two-dimensional matrix, then each column of y is processed separately.

The generic syntax z = ademod(y,Fc,[Fs phase],...) is the same, except
that the third input argument is a two-element vector instead of a scalar. The
first entry, Fs, is the sampling rate. The second entry, phase, is the initial
phase of the carrier signal, measured in radians.

ademod uses a lowpass filter with sample time 1/Fs while demodulating, in
order to filter out the carrier signal. To specify the lowpass filter, include num
and den in the list of input arguments. num and den are row vectors that give
the coefficients, in descending order, of the numerator and denominator of the
filter’s transfer function. If num is empty, zero, or absent, then the default filter
is a Butterworth filter whose parameters come from the command below.
butter is in the Signal Processing Toolbox.

[num,den] = butter(5,Fc*2/Fs);

For Specific Syntaxes

z = ademod(y,Fc,Fs,'amdsb-tc',offset,num,den) implements
double-sideband amplitude demodulation. offset is a vector whose kth entry
is subtracted from the kth signal after the demodulation. If offset is empty,
then by default z will be adjusted so that each column has mean zero (or, so
that z has mean zero in case z is a vector).

z = ademod(y,Fc,Fs,'amdsb-tc/costas',offset,num,den) is the same as
the syntax above, except that the algorithm includes a Costas phase-locked
loop.

ademod

3-14

z = ademod(y,Fc,Fs,'amdsb-sc',num,den) implements double-sideband
suppressed-carrier amplitude demodulation.

z = ademod(y,Fc,Fs,'amdsb-sc/costas',num,den) is the same as the syntax
above, except that the algorithm includes a Costas phase-locked loop.

z = ademod(y,Fc,Fs,'amssb',num,den) implements single-sideband
suppressed-carrier amplitude demodulation.

z = ademod(y,Fc,Fs,'qam',num,den) implements quadrature amplitude
demodulation.

z = ademod(y,Fc,Fs,'fm',num,den,vcoconst) implements frequency
demodulation. The spectrum of the demodulated signal is between
min(y) + Fc and max(y) + Fc. The demodulation process uses a phase-locked
loop composed of a multiplier (as a phase detector), a lowpass filter, and a
voltage-controlled oscillator (VCO). If Fs is a two-element vector, then its
second element is the initial phase of the VCO, in radians. The optional
argument vcoconst is a scalar that represents the VCO constant in Hz/V.

z = ademod(y,Fc,Fs,'pm',num,den,vcoconst) implements phase
demodulation. The demodulation process uses a phase-locked loop (which acts
as an FM demodulator) cascaded with an integrator. The phase-locked loop
consists of a multiplier (as a phase detector), a lowpass filter, and a
voltage-controlled oscillator (VCO). If Fs is a two-element vector, then its
second element is the initial phase of the VCO, in radians. The optional
argument vcoconst is a scalar that represents the input signal’s sensitivity.

Examples This example illustrates the use of the offset argument. Since the first ademod
command uses the same offset value of .3 that the amod command used, z1 is
similar to the original message signal. Since the second ademod command omits
offset, z2 has mean close to zero (not exactly zero because of roundoff error).

Fc = 25; % Carrier signal frequency
Fs = 100; % Sampling rate of signal
t = [0:1/Fs:5]'; % Times to sample the signals
x = [cos(t), sin(t)]; % Cosine signal and sine signal
y = amod(x,Fc,Fs,'amdsb-tc',.3); % Modulate
% and shift the values up by .3.
z1 = ademod(y,Fc,Fs,'amdsb-tc',.3); % Demodulate.

ademod

3-15

z2 = ademod(y,Fc,Fs,'amdsb-tc'); % Demodulate.
plot(t,z1,'b',t,z2,'r--') % Plot recovered signal.

The plot shows z1 as a solid line and z2 as a dashed line.

Other examples using ademod are the Hilbert Filter Example on the reference
page for amod, and in the section “Example: Varying the Filter’s Cutoff
Frequency” on page 2-63.

See Also amod, dmod, ddemod, amodce, ademodce

ademodce

3-16

3ademodce Purpose Analog baseband demodulator

Syntax z = ademodce(y,Fs,'amdsb-tc',offset,num,den);
z = ademodce(y,Fs,'amdsb-tc/costas',offset,num,den);
z = ademodce(y,Fs,'amdsb-sc',num,den);
z = ademodce(y,Fs,'amdsb-sc/costas',num,den);
z = ademodce(y,Fs,'amssb',num,den);
z = ademodce(y,Fs,'qam',num,den);
z = ademodce(y,Fs,'fm',num,den,vcoconst);
z = ademodce(y,Fs,'pm',num,den,vcoconst);
z = ademodce(y,[Fs phase],...);

Optional
Inputs

Description The function ademodce performs analog baseband demodulation. The
corresponding modulation function is amodce. The table below lists the
demodulation schemes that ademodce supports.

Input Default Value, or Default Behavior if Input is Omitted

offset Appropriate value so that each output signal has zero mean

num, den Omitting these arguments prevents ademodce from using a
filter.

vcoconst 1

Demodulation Scheme Third Input Argument

Amplitude demodulation 'amdsb-tc'

Amplitude demodulation, double sideband
suppressed carrier

'amdsb-sc' or
'amdsb-sc/costas'

Amplitude demodulation, single sideband
suppressed carrier

'amssb'

Quadrature amplitude demodulation 'qam'

Frequency demodulation 'fm'

Phase demodulation 'pm'

ademodce

3-17

For All Syntaxes
The generic syntax z = ademodce(y,Fs,...) demodulates the received signal
that y represents. Fs is the sampling rate in Hertz. The initial phase of the
carrier signal is zero. y is a complex matrix and z is a real matrix. Their sizes
depend on the demodulation method:

• (QAM method) If y is a vector of length n, then z is an n-by-2 matrix.
Otherwise, if y is n-by-m, then z is n-by-2m and each column of y is processed
separately. The odd-numbered columns in z represent in-phase components
and the even-numbered columns represent quadrature components.

• (Other methods) y and z have the same dimensions. If y is a
two-dimensional matrix, then each column of y is processed separately.

The generic syntax z = ademodce(y,[Fs phase],...) is the same, except that
the second input argument is a two-element vector instead of a scalar. The first
entry, Fs, is the sampling rate as described in the paragraph above. The second
entry, phase, is the initial phase of the carrier signal, measured in radians.

To use a lowpass filter in the demodulation, include num and den in the list of
input arguments. num and den are row vectors that give the coefficients, in
descending order, of the numerator and denominator of the filter’s transfer
function. If num is empty, zero, or absent, then ademodce does not use a filter.

For Specific Syntaxes

z = ademodce(y,Fs,'amdsb-tc',offset,num,den) implements
double-sideband amplitude demodulation. offset is a vector whose kth entry
is subtracted from the kth column of demodulated data. If offset is empty,
then by default z will be adjusted so that each column has mean zero (or, so
that z has mean zero in case z is a vector).

z = ademodce(y,Fs,'amdsb-tc/costas',offset,num,den) is the same as the
syntax above, except that the algorithm includes a Costas phase-locked loop.

z = ademodce(y,Fs,'amdsb-sc',num,den) implements double-sideband
suppressed-carrier amplitude demodulation.

z = ademodce(y,Fs,'amdsb-sc/costas',num,den) is the same as the syntax
above, except that the algorithm includes a Costas phase-locked loop.

ademodce

3-18

z = ademodce(y,Fs,'amssb',num,den) implements single-sideband
suppressed-carrier amplitude demodulation.

z = ademodce(y,Fs,'qam',num,den) implements quadrature amplitude
demodulation.

z = ademodce(y,Fs,'fm',num,den,vcoconst) implements frequency
demodulation. The optional argument vcoconst is a scalar that represents the
VCO constant in the demodulation.

z = ademodce(y,Fs,'pm',num,den,vcoconst) implements phase
demodulation. The optional argument vcoconst specifies the VCO constant in
the demodulation.

Examples The example below processes sine, cosine, and sawtooth signals
simultaneously. All three signals have the same sampling rate and the same
number of samples. The code also plots the original and demodulated signals.

Fs = 100; % Sampling rate of signal
t = [0:1/Fs:5]'; % Times to sample the signals
% Combine three signals into a three-column matrix.
% Each signal occupies one column.
x = [sin(2*pi*t), .5*cos(5*pi*t), sawtooth(4*t)];
y = amodce(x,Fs,'fm'); % Modulate.
z = ademodce(y,Fs,'fm'); % Demodulate.
plot(x); figure; plot(z); % Original and demodulated signals

ademodce

3-19

Other examples using ademodce are in the sections “Simple Analog Modulation
Example” on page 2-61 and “Example: Time Lag From Filtering” on page 2-64.

See Also amodce, dmodce, ddemodce, amod, ademod

amod

3-20

3amodPurpose Analog passband modulator

Syntax y = amod(x,Fc,Fs,'amdsb-sc');
y = amod(x,Fc,Fs,'amdsb-tc',offset);
y = amod(x,Fc,Fs,'amssb/opt');
y = amod(x,Fc,Fs,'amssb/opt',num,den);
y = amod(x,Fc,Fs,'amssb/opt',hilbertflag);
y = amod(x,Fc,Fs,'qam');
y = amod(x,Fc,Fs,'fm',deviation);
y = amod(x,Fc,Fs,'pm',deviation);
y = amod(x,Fc,[Fs phase],...);
[y,t] = amod(...);

Optional
Inputs

Description The function amod performs analog passband modulation. The corresponding
demodulation function is ademod. The table below lists the modulation schemes
that amod supports.

Input Default Value, or Default Behavior if Input is Omitted

offset -min(min(x))

opt Omitting this argument causes amod to produce the lower
sideband instead of the upper sideband.

deviation 1

Modulation Scheme Fourth Input Argument

Amplitude modulation, double sideband with
transmission carrier

'amdsb-tc'

Amplitude modulation, double sideband
suppressed carrier

'amdsb-sc'

Amplitude modulation, single sideband
suppressed carrier

'amssb' or 'amssb/up'

Quadrature amplitude modulation 'qam'

amod

3-21

For All Syntaxes
The generic syntax y = amod(x,Fc,Fs,...) modulates the message signal that
x represents. Fc is the carrier frequency in Hertz, and Fs is the sampling rate
in Hertz. (Thus 1/Fs represents the time interval between two consecutive
samples in x.) The initial phase of the carrier signal is zero. By the Nyquist
theorem, the sampling rate must be at least twice as large as the modulation
carrier frequency. x and y are real matrices whose sizes depend on the
demodulation method:

• (QAM method) x must have an even number of columns. The odd-numbered
columns in x represent in-phase components and the even-numbered
columns represent quadrature components. If x is n-by-2m, then y is n-by-m
and each pair of columns of x is processed separately.

• (Other methods) x and y have the same dimensions. If x is a
two-dimensional matrix, then each column of x is processed separately.

The generic syntax y = amod(x,Fc,[Fs phase],...) is the same, except that
the third input argument is a two-element vector instead of a scalar. The first
entry, Fs, is the sampling rate as described in the paragraph above. The second
entry, phase, is the initial phase of the carrier signal, measured in radians.

For Specific Syntaxes

y = amod(x,Fc,Fs,'amdsb-tc',offset) implements double-sideband
amplitude modulation. offset is the value added to x prior to the modulation.
If you omit offset, then its default value is -min(min(x)). This default value
produces 100% modulation.

y = amod(x,Fc,Fs,'amdsb-sc') implements double-sideband
suppressed-carrier amplitude modulation.

y = amod(x,Fc,Fs,'amssb/opt') implements single-sideband
suppressed-carrier amplitude modulation. By default, it produces the lower

Frequency modulation 'fm'

Phase modulation 'pm'

Modulation Scheme Fourth Input Argument

amod

3-22

sideband; if opt is up, then the function produces the upper sideband. This
syntax does a Hilbert transform in the frequency domain.

y = amod(x,Fc,Fs,'amssb/opt',num,den) is the same as the syntax above,
except that it specifies a time-domain Hilbert filter. num and den are row
vectors that give the coefficients, in descending order, of the numerator and
denominator of the filter’s transfer function. You can use the function hilbiir
to design the Hilbert filter.

y = amod(x,Fc,Fs,'amssb/opt',hilbertflag) is the same as the syntax
above, except that it uses a default time-domain Hilbert filter. The filter’s
transfer function is defined by [num,den] = hilbiir(1/Fs), where num and
den are as in the paragraph above. The input argument hilbertflag can have
any value.

y = amod(x,Fc,Fs,'qam') implements quadrature amplitude modulation. x
is a two-column matrix whose first column represents the in-phase signal and
whose second column represents the quadrature signal. y is a column vector.

y = amod(x,Fc,Fs,'fm',deviation) implements frequency modulation. The
spectrum of the modulated signal is between min(x) + Fc and max(x) + Fc.
The optional argument deviation is a scalar that represents the frequency
deviation constant of the modulation. The command y =
amod(x,Fc,Fs,'fm',deviation) is equivalent to the command y =
amod(x*deviation,Fc,Fs,'fm').

y = amod(x,Fc,Fs,'pm',deviation) implements phase modulation. The
optional argument deviation is a scalar that represents the phase deviation
constant of the modulation. The command y =
amod(x,Fc,Fs,'pm',deviation) is equivalent to the command y =
amod(x*deviation,Fc,Fs,'pm').

[y,t] = amod(...) returns the computation time in t.

Examples Double- and Single-Sideband Comparison Example
The first example compares the spectra of signals after modulation using the
double-sideband and single-sideband techniques. The message signal is a
frequency-one sine wave and the carrier signal is a 10 Hz sine wave. The script
below uses the 'amdsb-sc' and 'amssb' arguments in the amod function to

amod

3-23

produce modulated signals ydouble and ysingle, respectively. It then plots the
spectra of both modulated signals.

% Sample the signal 100 times per second, for 2 seconds.
Fs = 100;
t = [0:2*Fs+1]'/Fs;
Fc = 10; % Carrier frequency
x = sin(2*pi*t); % Sinusoidal signal
% Modulate x using single- and double-sideband AM.
ydouble = amod(x,Fc,Fs,'amdsb-sc');
ysingle = amod(x,Fc,Fs,'amssb');
% Plot spectra of both modulated signals.
zdouble = fft(ydouble);
zdouble = abs(zdouble(1:length(zdouble)/2+1));
frqdouble = [0:length(zdouble)-1]*Fs/length(zdouble)/2;
plot(frqdouble,zdouble); % The plot on the left-hand side below
figure;
zsingle = fft(ysingle);
zsingle = abs(zsingle(1:length(zsingle)/2+1));
frqsingle = [0:length(zsingle)-1]*Fs/length(zsingle)/2;
plot(frqsingle,zsingle); % The plot on the right-hand side below

Notice that the spectrum in the left plot has two peaks; these are the lower and
the upper sidebands of the modulated signal. The two sidebands are
symmetrical with respect to the 10 Hz carrier frequency, Fc. The spectrum of a
DSB-SC AM modulated signal is twice as wide as the input signal bandwidth.

amod

3-24

In the right plot, there is one peak because the SSB AM technique requires
amod to transmit only one sideband.

Hilbert Filter Example
The next example uses a Hilbert filter in the time domain.

Fc = 25; % Carrier signal frequency
Fs = 100; % Sampling rate of signal
[numh,denh] = hilbiir(1/Fs,15/Fs,15); % Design Hilbert filter.
t = [0:1/Fs:5]'; % Times to sample the signal
x = cos(t); % Signal is a cosine wave.
y = amod(x,Fc,[Fs pi/4],'amssb',numh,denh); % Modulate,
% using a Hilbert filter in the time domain.
z = ademod(y,Fc,[Fs pi/4],'amssb'); % Demodulate.
plot(t,z) % Plot recovered signal.

The resulting plot is on the left below. If you replace the sixth line above with

y = amod(x,Fc,[Fs pi/4],'amssb'); % Modulate,

then modulation uses a Hilbert transform in the frequency domain. The result
is the plot on the right below. The two plots differ slightly in their initial errors.

See Also ademod, dmod, ddemod, amodce, ademodce

amodce

3-25

3amodcePurpose Analog baseband modulator

Syntax y = amodce(x,Fs,'amdsb-tc',offset);
y = amodce(x,Fs,'amdsb-sc');
y = amodce(x,Fs,'amssb');
y = amodce(x,Fs,'amssb/time',num,den);
y = amodce(x,Fs,'amssb/time');
y = amodce(x,Fs,'qam');
y = amodce(x,Fs,'fm',deviation);
y = amodce(x,Fs,'pm',deviation);
y = amodce(x,[Fs phase],...);

Optional
Inputs

Description The function amodce performs analog baseband modulation. The corresponding
demodulation function is ademodce. The table below lists the modulation
schemes that amodce supports.

Input Default Value, or Default Behavior if Input is Omitted

offset -min(min(x))

deviation 1

Modulation Scheme Third Input Argument

Amplitude modulation, double sideband 'amdsb-tc'

Amplitude modulation, double sideband
suppressed carrier

'amdsb-sc'

Amplitude modulation, single sideband
suppressed carrier

'amssb' or
'amssb/time'

Quadrature amplitude modulation 'qam'

Frequency modulation 'fm'

Phase modulation 'pm'

amodce

3-26

For All Syntaxes
The generic syntax y = amodce(x,Fs,...) modulates the message signal that
x represents, and returns the modulated signal’s complex envelope. The input
and output signals share the same sampling rate Fs, measured in Hertz. (Thus
1/Fs represents the time interval between two consecutive samples in x.) The
initial phase of the carrier signal is zero. x is a real matrix and y is a complex
matrix. Their sizes depend on the modulation method:

• (QAM method) x must have an even number of columns. The odd-numbered
columns in x represent in-phase components and the even-numbered
columns represent quadrature components. If x is n-by-2m, then y is n-by-m
and each pair of columns of x is processed separately.

• (Other methods) x and y have the same dimensions. If x is a
two-dimensional matrix, then each column of x is processed separately.

The generic syntax y = amodce(x,[Fs phase],...) is the same, except that
the second input argument is a two-element vector instead of a scalar. The first
entry, Fs, is the sampling rate as described in the paragraph above. The second
entry, phase, is the initial phase of the carrier signal, measured in radians.

For Specific Syntaxes

y = amodce(x,Fs,'amdsb-tc',offset) implements double-sideband
amplitude modulation. offset is the value added to x prior to the modulation.
If you omit offset, then its default value is -min(min(x)). This default value
produces 100% modulation.

y = amodce(x,Fs,'amdsb-sc') implements double-sideband
suppressed-carrier amplitude modulation.

y = amodce(x,Fs,'amssb') implements single-sideband suppressed-carrier
amplitude modulation. By default, it produces the lower sideband. It does a
Hilbert transform in the frequency domain.

y = amodce(x,Fs,'amssb/time',num,den) is the same as the syntax above,
except that it specifies a time-domain Hilbert filter. num and den are row
vectors that give the coefficients, in descending order, of the numerator and
denominator of the filter’s transfer function. You can use the function hilbiir
to design the Hilbert filter.

amodce

3-27

y = amodce(x,Fs,'amssb/time') is the same as the syntax above, except that
it uses a default time-domain Hilbert filter. The filter’s transfer function is
defined by [num,den] = hilbiir(1/Fs), where num and den are as in the
paragraph above.

y = amodce(x,Fs,'qam') implements quadrature amplitude modulation. x is
a two-column matrix whose first column represents the in-phase signal and
whose second column represents the quadrature signal. y is a column vector.

y = amodce(x,Fs,'fm',deviation) implements frequency modulation. The
bandwidth of the modulated signal is max(x)-min(x). The optional argument
deviation is a scalar that represents the frequency deviation constant of the
modulation.

y = amodce(x,Fs,'pm',deviation) implements phase modulation. The
optional argument deviation is a scalar that represents the phase deviation
constant of the modulation.

Examples This example is similar to the one under the heading “Hilbert Filter Example”
on the amod reference page, except that it uses baseband simulation. The plots
in the passband (amod) example show far more obvious errors in the recovered
signal. The output from this example shows that the average difference
between the original and recovered signals is smaller than 10-16.

Fs = 100; % Sampling rate of signal
[numh,denh] = hilbiir(1/Fs,15/Fs,15); % Design Hilbert filter.
t = [0:1/Fs:5]'; % Times to sample the signal
x = cos(t); % Signal is a cosine wave.
y = amodce(x,[Fs pi/4],'amssb/time',numh,denh); % Modulate,
% using a Hilbert filter in the time domain.
z = ademodce(y,[Fs pi/4],'amssb'); % Demodulate.
d = ceil(log10(sum(abs(x-z))/length(x)))

d =

 -16

Other examples using amodce are in the sections “Representing Analog
Signals” on page 2-59 and “Simple Analog Modulation Example” on page 2-61.

See Also ademodce, dmodce, ddemodce, amod, ademod

apkconst

3-28

3apkconstPurpose Plot a combined circular ASK-PSK signal constellation

Syntax apkconst(numsig);
apkconst(numsig,amp);
apkconst(numsig,amp,phs);
apkconst(numsig,amp,'n');
apkconst(numsig,amp,phs,plotspec);
y = apkconst(...);

Description APK refers to a hybrid of amplitude- and phase-keying modulation. See the
reference listed below for more details.

apkconst(numsig) plots a circular signal constellation. numsig is a vector of
positive integers. The plot contains length(numsig) circles. The kth circle has
radius k and contains numsig(k) evenly spaced constellation points. One point
on each circle has zero phase.

apkconst(numsig,amp) is the same as the previous syntax, except that amp(k)
is the radius of the kth circle. amp is a vector of positive real numbers. The
lengths of amp and numsig must be the same.

apkconst(numsig,amp,phs) is the same as the previous syntax, except that it
is not necessarily true that one point on each circle has zero phase. However,
one point on the kth circle has phase phs(k). The lengths of phs, amp and numsig
must all be the same.

apkconst(numsig,amp,phs,'n') is the same as the previous syntax, except
that the plot includes a number next to each constellation point. The number
indicates how symbols would be mapped to constellation points if you were
using numsig, amp, and phs in modulation and demodulation functions such as
dmodce/ddemodce or modmap/demodmap.

apkconst(numsig,amp,phs,plotspec) is the same as
apkconst(numsig,amp,phs), except that plotspec influences the appearance
of the constellation points via MATLAB’s plot function. plotspec is a

apkconst

3-29

two-character string made up of one character from each odd-numbered
column in the table below.

y = apkconst(...) does not produce a plot, but instead returns a complex
vector y that represents the coordinates of the points in the constellation. The
real part of y gives the in-phase component of each point and the imaginary
part of y gives the quadrature component of each point.

Examples The command below produces a plot having three circles. One circle has radius
1 and four points, one of which has zero phase. Another circle has radius 4 and
five points, one of which has phase π. The outermost circle has radius 5 and two
points, one of which has phase π/4. The plot follows.

apkconst([4 5 2],[1 4 5],[0 pi pi/4])

Color Character Meaning Marker-Type
Character

Meaning

y yellow . point

m magenta o circle

c cyan x cross

r red + plus sign

g green * asterisk

b blue s square

w white d diamond

k black v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p five-pointed star

h six-pointed star

apkconst

3-30

The command below produces a vector containing the coordinates in the
complex plane of the points in the figure above.

y = apkconst([4 5 2],[1 4 5],[0 pi pi/4])

y =

 Columns 1 through 4

 1.0000 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000 - 1.0000i

 Columns 5 through 8

 -4.0000 + 0.0000i -1.2361 - 3.8042i 3.2361 - 2.3511i 3.2361 + 2.3511i

 Columns 9 through 11

 -1.2361 + 3.8042i 3.5355 + 3.5355i -3.5355 - 3.5355i

See Also dmod, modmap, ddemod, demodmap

apkconst

3-31

References Thomas, C. Melvil, Michaeil Y. Weidner, and S. H. Durrani. “Digital
Amplitude-Phase Keying with M-ary Alphabets.” IEEE Transactions on
Communications. Vol Com-22, No. 2, Feb. 1974, 168-180.

awgn

3-32

3awgnPurpose Add white Gaussian noise to a signal

Syntax y = awgn(x,snr);
y = awgn(x,snr,sigpower);
y = awgn(x,snr,'measured');
y = awgn(x,snr,sigpower,state);
y = awgn(x,snr,'measured',state);
y = awgn(...,powertype);

Description y = awgn(x,snr) adds white Gaussian noise to the vector signal x. The scalar
snr specifies the signal-to-noise ratio in decibels. If x is complex, then awgn
adds complex noise. This syntax assumes that the power of x is 0 dB.

y = awgn(x,snr,sigpower) is the same as the syntax above, except that
sigpower is the power of x in dB.

y = awgn(x,snr,'measured') is the same as y = awgn(x,snr), except that
awgn measures the power of x before adding noise.

y = awgn(x,snr,sigpower,state) is the same as y =
awgn(x,snr,sigpower), except that awgn first resets the state of MATLAB’s
normal random number generator randn to the integer state.

y = awgn(x,snr,'measured',state) is the same as y =
awgn(x,snr,'measured'), except that awgn first resets the state of MATLAB’s
normal random number generator randn to the integer state.

y = awgn(...,powertype) is the same as the previous syntaxes, except that
the string powertype specifies the units of snr and sigpower. Choices for
powertype are 'db' and 'linear'. Linear power is measured in Watts.

Examples The commands below add white Gaussian noise to a sawtooth signal. It then
plots the original and noisy signals.

t = 0:.1:10;
x = sawtooth(t); % Create sawtooth signal.
y = awgn(x,10,'measured'); % Add white Gaussian noise.
plot(t,x,t,y) % Plot both signals.

awgn

3-33

See Also wgn, randn

bchdeco

3-34

3bchdecoPurpose BCH decoder

Syntax msg = bchdeco(code,k,t);
msg = bchdeco(code,k,t,primpoly);
[msg,err] = bchdeco(...);
[msg,err,ccode] = bchdeco(...);

Description msg = bchdeco(code,k,t) decodes code using the BCH method. k is the
message length. The codeword length n must have the form 2m-1 for some
integer m greater than or equal to 3. code is a binary matrix with n columns,
each row of which represents one codeword. msg is a binary matrix with k
columns, each row of which represents one message. t is the error-correction
capability. BCH decoding requires a primitive polynomial for GF(2m); this
syntax uses MATLAB’s default primitive polynomial, gfprimdf(m).

msg = bchdeco(code,k,t,primpoly) is the same as the first syntax, except
that primpoly is a row vector that gives the coefficients, in order of ascending
powers, of the primitive polynomial for GF(2m) that will be used during
processing.

[msg,err] = bchdeco(...) returns a column vector err that gives
information about error correction. A nonnegative integer in err(r) indicates
the number of errors corrected in the rth codeword; a negative integer indicates
that there are more errors in the rth codeword than can be corrected.

[msg,err,ccode] = bchdeco(...) returns the corrected code in ccode.

Examples The script below encodes a (random) message, simulates the addition of noise
to the code, and then decodes the message.

m = 4; n = 2^m-1; % Codeword length
params = bchpoly(n);
% Arbitrarily focus on 3rd row of params.
k = params(3,2); % Codeword length
t = params(3,3); % Error-correction capability
msg = randint(100,k);
code = bchenco(msg,n,k); % Encode the message.
% Corrupt up to t bits in each codeword.
noisycode = rem(code + randerr(100,n,1:t),2);

bchdeco

3-35

% Decode the noisy code.
[newmsg,err,ccode] = bchdeco(noisycode,k,t);
if ccode==code
 disp('All errors were corrected.')
end
if newmsg==msg
 disp('The message was recovered perfectly.')
end

In this case, all errors are corrected and the message is recovered perfectly.
However, if the ninth line is changed to

noisycode = rem(code + randerr(100,n,1:(t+1)),2);

then some codewords will contain more than t errors. This is too many errors,
and some will go uncorrected.

See Also bchenco, bchpoly

bchenco

3-36

3bchencoPurpose BCH encoder

Syntax code = bchenco(msg,n,k);
code = bchenco(msg,n,k,genpoly);

Description code = bchenco(msg,n,k) encodes msg using the BCH technique and the
generator polynomial genpoly = bchpoly(n,k). n is the codeword length and
k is the message length. msg is a binary matrix with k columns. Each row of msg
represents a message. code is a binary matrix with n columns. Each row of code
represents a codeword.

code = bchenco(msg,n,k,genpoly) is the same as the first syntax, except
that genpoly is a row vector that gives the coefficients of the generator
polynomial in order of ascending powers.

Examples See the example on the reference page for the function bchdeco.

See Also bchdeco, encode, decode, bchpoly, cyclgen

bchpoly

3-37

3bchpolyPurpose Produce parameters or generator polynomial for binary BCH code

Syntax bchpoly
params = bchpoly
params = bchpoly(n);
genpoly = bchpoly(n,k);
genpoly = bchpoly(primpoly,k);
[genpoly,factors] = bchpoly(...,k);
[genpoly,factors,cosets] = bchpoly(...,k);
[genpoly,factors,cosets,parmat] = bchpoly(...,k);
[genpoly,factors,cosets,parmat,errorcorr] = bchpoly(...,k);

Description bchpoly produces a figure window containing a table that lists valid codeword
and message lengths of binary BCH codes, as well as the corresponding
error-correction capabilities. The codeword lengths listed are 7, 15, 31, 63, 127,
255, and 511. The codeword lengths, message length, and error-correction
capabilities are denoted by N, K, and T, respectively.

params = bchpoly produces a three-column matrix containing the same
information that is in the table mentioned in the syntax above. The first
column of params gives the codeword length, the second column gives the
message length, and the third column gives the error-correction capability.

params = bchpoly(n) produces a matrix params containing valid codeword
and message lengths of binary BCH codes in its first and second columns,
respectively. If n < 1024, then params has a third column that lists the
corresponding error-correction capabilities. The codeword lengths listed in
params are all equal to the smallest number of the form 2m-1 that is at least as
big as n, where m is an integer greater than or equal to 3.

genpoly = bchpoly(n,k) produces a generator polynomial for a binary BCH
code having codeword length n and message length k. genpoly is a row vector
that gives the coefficients, in order of ascending powers, of the generator
polynomial. n must have the form 2m-1 for some integer m greater than or
equal to 3. k must be a valid message length, as reported in the second column
of the output of the command genpoly = bchpoly(n). The primitive
polynomial used for the GF(2m) calculations is MATLAB’s default primitive
polynomial, gfprimdf(m).

bchpoly

3-38

genpoly = bchpoly(primpoly,k) produces a generator polynomial for a
binary BCH code having codeword length n and message length k. primpoly
represents a degree-m primitive polynomial for the field GF(2m). Both
primpoly and genpoly are row vectors that represent polynomials by giving
the coefficients in order of ascending powers. Given the degree m of the
primitive polynomial, the message length n is 2m-1. k must be a valid message
length, as reported in the second column of the output of the command genpoly
= bchpoly(n).

The remaining syntaxes, of the form

[genpoly,...] = bchpoly(...,k)

return some or all of the output variables listed in the table below.

Examples The script below uses bchpoly to find out what message lengths are valid for a
BCH code with codeword length 24-1. It then chooses one of the possible
message lengths and uses bchpoly to find the generator polynomial and
parity-check matrix for such a code.

m = 4;
n = 2^m-1; % Codeword length is 15.
% Want to find out possible valid message lengths.

Table 3-12: Additional Output Variables for bchpoly(...,k)

Output
Variable

Significance Format

factors Irreducible factors of
the generator
polynomial

Binary matrix, each row of which
gives the coefficients of a factor
polynomial in order of ascending
powers

cosets Cyclotomic cosets of
the field GF(2m)

Same as gfcosets(m)

parmat Parity-check matrix
of the code

(n-k)-by-n binary matrix

errorcorr Error-correction
capability of the code

Positive integer

bchpoly

3-39

params = bchpoly(n);
disp(['Possible message lengths are ',num2str(params(:,2)')])
disp(' ')

ii = 1; % Arbitrarily choose first row.
k = params(ii,2); % Message lengths are in 2nd column.
% Get generator polynomial and other facts.
[genpoly,factors,cosets,parmat,errorcorr] = bchpoly(n,k);
disp(['For k = ',num2str(k),' the generator polynomial is'])
gfpretty(genpoly)
disp('and the parity-check matrix is')
parmat

The full output is below.

Possible message lengths are 11 7 5

For k = 11 the generator polynomial is

 4
 1 + X + X
and the parity-check matrix is

parmat =

 Columns 1 through 12

 1 0 0 0 1 0 0 1 1 0 1 0
 0 1 0 0 1 1 0 1 0 1 1 1
 0 0 1 0 0 1 1 0 1 0 1 1
 0 0 0 1 0 0 1 1 0 1 0 1

 Columns 13 through 15

 1 1 1
 1 0 0
 1 1 0
 1 1 1

See Also cyclpoly, encode, decode

bchpoly

3-40

References Peterson, W. Wesley and E. J. Weldon, Jr. Error-correcting Codes, 2nd ed.
Cambridge, Mass.: MIT Press, 1972.

bi2de

3-41

3bi2dePurpose Convert binary vectors to decimal numbers

Syntax d = bi2de(b);
d = bi2de(b,flg)
d = bi2de(b,p);
d = bi2de(b,p,flg);

Description d = bi2de(b) converts a binary row vector b to a nonnegative decimal integer.
If b is a matrix, then each row is interpreted separately as a binary number. In
this case, the output d is a column vector, each element of which is the decimal
representation of the corresponding row of b.

Note By default, bi2de interprets the first column of b as the lowest-order
digit.

d = bi2de(b,flg) is the same as the syntax above, except that flg is a string
that determines whether the first column of b contains the lowest-order or
highest-order digits. Possible values for flg are ’right-msb’ and ’left-msb’.
The value ’right-msb’ produces the default behavior.

d = bi2de(b,p) converts a base-p row vector b to a nonnegative decimal
integer , where p is an integer greater than or equal to two. The first column of
b is the lowest base-p digit. If b is a matrix, then the output d is a nonnegative
decimal vector, each row of which is the decimal form of the corresponding row
of b.

d = bi2de(b,p,flg) is the same as the syntax above, except that flg is a
string that determines whether the first column of b contains the lowest-order
or highest-order digits. Possible values for flg are ’right-msb’ and ’left-msb’.
The value ’right-msb’ produces the default behavior.

Examples The code below generates a matrix that contains binary representations of five
random numbers between 0 and 15. It then converts all five numbers to
decimal integers.

b = randint(5,4); % Generate a 5-by-4 random binary matrix.
de = bi2de(b);

bi2de

3-42

disp(' Dec Binary')
disp(' ----- -------------------')
disp([de, b])

Sample output is below. Your results may vary since the numbers are random.

 Dec Binary
 ----- -------------------
 13 1 0 1 1
 7 1 1 1 0
 15 1 1 1 1
 4 0 0 1 0
 9 1 0 0 1

The command below converts a base-five number into its decimal counterpart,
using the leftmost base-five digit (4 in this case) as the most significant digit.
The example reflects the fact that 4(53) + 2(52) +50 = 551.

d = bi2de([4 2 0 1],5,'left-msb')

d =

 551

See Also de2bi

biterr

3-43

3biterrPurpose Compute number of bit errors and bit error rate

Syntax [number,ratio] = biterr(x,y);
[number,ratio] = biterr(x,y,k);
[number,ratio] = biterr(...,flg);
[number,ratio,individual] = biterr(...)

Description For All Syntaxes
The biterr function compares unsigned binary representations of elements in
x with those in y. The schematics below illustrate how the shapes of x and y
determine which elements biterr compares.

Each element of x and y must be a nonnegative decimal integer; biterr
converts each element into its natural unsigned binary representation. number
is a scalar or vector that indicates the number of bits that differ. ratio is
number divided by the total number of bits. The total number of bits, the size of
number, and the elements that biterr compares are determined by the
dimensions of x and y and by the optional parameters.

For Specific Syntaxes

[number,ratio] = biterr(x,y) compares the elements in x and y. If the
largest among all elements of x and y has exactly k bits in its simplest binary
representation, then the total number of bits is k times the number of entries
in the smaller input. The sizes of x and y determine which elements are
compared:

y

y

(b) Compares column vector y with
each column of matrix x

(c) Compares row vector y with
each row of matrix x

x x

y1 y4

y2 y5

y3 y6

(a) Compares x1 with y1,
x2 with y2, and so on.

x1 x4

x2 x5

x3 x6

x1 x4

x2 x5

x3 x6

biterr

3-44

• If x and y are matrices of the same dimensions, then biterr compares x and
y element-by-element. number is a scalar. See schematic (a) in the figure.

• If one is a row (respectively, column) vector and the other is a
two-dimensional matrix, then biterr compares the vector
element-by-element with each row (resp., column) of the matrix. The length
of the vector must equal the number of columns (resp., rows) in the matrix.
number is a column (resp., row) vector whose mth entry indicates the number
of bits that differ when comparing the vector with the mth row (resp.,
column) of the matrix. See schematics (b) and (c) in the figure.

[number,ratio] = biterr(x,y,k) is the same as the first syntax, except that
it considers each entry in x and y to have k bits. The total number of bits is k
times the number of entries of the smaller of x and y. An error occurs if the
binary representation of an element of x or y would require more than k digits.

[number,ratio] = biterr(x,y,k,flg) is similar to the previous syntaxes,
except that flg can override the defaults that govern which elements biterr
compares and how biterr computes the outputs. The possible values of flg are
’row-wise’, ’column-wise’, and ’overall’. The table below describes the
differences that result from various combinations of inputs. As always, ratio
is number divided by the total number of bits. If you do not provide k as an input
argument, then the function defines it internally as the number of bits in the
simplest binary representation of the largest among all elements of x and y.

biterr

3-45

[number,ratio,individual] = biterr(...) returns a matrix individual
whose dimensions are those of the larger of x and y. Each entry of individual
corresponds to a comparison between a pair of elements of x and y, and
specifies the number of bits by which the elements in the pair differ.

Table 3-13: Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of Comparison number Total Number
of Bits

Two-
dimensional
matrix

’overall’
(default)

Element-by-element Total number of
bit errors

k times number
of entries of y

'row-wise' mth row of x vs. mth
row of y

Column vector
whose entries
count bit errors in
each row

k times number
of entries of y

'column-wise' mth column of x vs.
mth column of y

Row vector whose
entries count bit
errors in each
column

k times number
of entries of y

Row vector 'overall' y vs. each row of x Total number of
bit errors

k times number
of entries of x

’row-wise’
(default)

y vs. each row of x Column vector
whose entries
count bit errors in
each row of x

k times size of y

Column
vector

'overall' y vs. each column of x Total number of
bit errors

k times number
of entries of x

'column-wise'
(default)

y vs. each column of x Row vector whose
entries count bit
errors in each
column of x

k times size of y

biterr

3-46

Examples Example 1
The commands below compare the column vector [0; 0; 0] to each column of a
random binary matrix. The output is the number, proportion, and locations of
ones in the matrix. In this case, individual is the same as the random matrix.

format rat;
[number,ratio,individual] = biterr([0;0;0],randint(3,5))

number =

 2 0 0 3 1

ratio =

 2/3 0 0 1 1/3

individual =

 1 0 0 1 0
 1 0 0 1 0
 0 0 0 1 1

Example 2
The commands below illustrate the use of flg to override the default
row-by-row comparison. Notice that number and ratio are scalars, while
individual has the same dimensions as the larger of the first two arguments
of biterr.

format rat;
[number,ratio,individual] = biterr([1 2; 3 4],[1 3],3,'overall')

number =

 5

biterr

3-47

ratio =

 5/12

individual =

 0 1
 1 3

Example 3
The script below adds errors to 10% of the elements in a matrix. Each entry in
the matrix is a two-bit number in decimal form. The script computes the bit
error rate using biterr and the symbol error rate using symerr.

x = randint(100,100,4); % Original signal
% Create errors to add to ten percent of the elements of x.
% Errors can be either 1, 2, or 3 (not zero).
errorplace = (rand(100,100) > .9); % Where to put errors
errorvalue = randint(100,100,[1,3]); % Value of the errors
errors = errorplace.*errorvalue;
y = rem(x+errors,4); % Signal with errors added, mod 4
format short
[num_bit,ratio_bit] = biterr(x,y,2)
[num_sym,ratio_sym] = symerr(x,y)

Sample output is below. Notice that ratio_sym is close to the target value of
0.10. Your results might vary because the example uses random numbers.

num_bit =

 1304

ratio_bit =

 0.0652

biterr

3-48

num_sym =

 981

ratio_sym =

 0.0981

See Also symerr

compand

3-49

3compandPurpose Source code mu-law or A-law compressor or expander

Syntax out = compand(in,Mu,maxim);
out = compand(in,Mu,maxim,'mu/compressor');
out = compand(in,Mu,maxim,'mu/expander');
out = compand(in,A,maxim,'A/compressor');
out = compand(in,A,maxim,'A/expander');

Description out = compand(in,param,maxim) implements a µ-law compressor for the
input vector in. Mu specifies µ and maxim is the input signal’s maximum
magnitude. out has the same dimensions and maximum magnitude as in.

out = compand(in,Mu,maxim,'mu/compressor') is the same as the syntax
above.

out = compand(in,Mu,maxim,'mu/expander') implements a µ-law expander
for the input vector in. Mu specifies µ and maxim is the input signal’s maximum
magnitude. out has the same dimensions and maximum magnitude as in.

out = compand(in,A,maxim,'A/compressor') implements an A-law
compressor for the input vector in. The scalar A is the A-law parameter, and
maxim is the input signal’s maximum magnitude. out is a vector of the same
length and maximum magnitude as in.

out = compand(in,A,maxim,'A/expander') implements an A-law expander
for the input vector in. The scalar A is the A-law parameter, and maxim is the
input signal’s maximum magnitude. out is a vector of the same length and
maximum magnitude as in.

Note The prevailing parameters used in practice are µ = 255 and A = 87.6.

Examples The examples below illustrate the fact that compressors and expanders
perform inverse operations.

compressed = compand(1:5,87.6,5,'a/compressor')

compand

3-50

compressed =

 3.5296 4.1629 4.5333 4.7961 5.0000

expanded = compand(compressed,87.6,5,'a/expander')

expanded =

 1.0000 2.0000 3.0000 4.0000 5.0000

Algorithm For a given signal x, the output of the µ-law compressor is

where V is the maximum value of the signal x, µ is the µ-law parameter of the
compander, log is the natural logarithm and sgn is the signum function (sign
in MATLAB).

The output of the A-law compressor is

where A is the A-law parameter of the compander and the other elements are
as in the µ-law case.

See Also quantiz, dpcmenco, dpcmdeco

References Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

y V 1 µ x V⁄+()log
1 µ+()log

--- x()sgn=

y

A x
1 Alog+
---------------------- x()sgn

V 1 A x V⁄()log+()
1 Alog+

--- x()sgn

 for 0 x V
A
----≤ ≤

 for V
A
---- x V≤<









=

convenc

3-51

3convencPurpose Convolutionally encode binary data

Syntax code = convenc(msg,trellis);
code = convenc(msg,trellis,initstate);
[code,finalstate] = convenc(...);

Description code = convenc(msg,trellis) encodes the binary vector msg using the
convolutional encoder whose MATLAB trellis structure is trellis. For details
about MATLAB trellis structures, see “Trellis Description of a Convolutional
Encoder” on page 2-46. Each symbol in msg consists of
log2(trellis.numInputSymbols) bits. The vector msg contains one or more
symbols. The output vector code contains one or more symbols, each of which
consists of log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,initstate) is the same as the syntax above,
except that initstate specifies the starting state of the encoder registers. The
scalar initstate is an integer between 0 and trellis.numStates-1. If the
encoder schematic has more than one input stream, then the shift register that
receives the first input stream provides the least significant bits in initstate,
while the shift register that receives the last input stream provides the most
significant bits in initstate. To use the default value for initstate, specify
initstate as 0 or [].

[code,finalstate] = convenc(...) encodes the input message and also
returns in finalstate the encoder’s state. finalstate has the same format as
initstate.

Examples The command below encodes five two-bit symbols using a rate 2/3 convolutional
code. A schematic of this encoder is on the reference page for the poly2trellis
function.

code1 = convenc(randint(10,1,2,123),...
poly2trellis([5 4],[27 33 0; 0 5 13]));

The commands below define the encoder’s trellis structure explicitly and then
use convenc to encode ten one-bit symbols. A schematic of this encoder is in the
section, “Trellis Description of a Convolutional Encoder” on page 2-46.

trel = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...

convenc

3-52

'outputs',[0 3;1 2;3 0;2 1]);
code2 = convenc(randint(10,1),trel);

The commands below illustrate how to use the final state and initial state
arguments when invoking convenc repeatedly. Notice that [code3; code4] is
the same as the earlier example’s output, code1.

trel = poly2trellis([5 4],[27 33 0; 0 5 13]);
msg = randint(10,1,2,123);
% Encode part of msg, recording final state for later use.
[code3,fstate] = convenc(msg(1:6),trel);
% Encode the rest of msg, using state as an input argument.
code4 = convenc(msg(7:10),trel,fstate);

See Also vitdec, poly2trellis, istrellis

References Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data
Communications Principles. New York: Plenum, 1992.

cyclgen

3-53

3cyclgenPurpose Produce parity-check and generator matrices for cyclic code

Syntax parmat = cyclgen(n,pol);
parmat = cyclgen(n,pol,opt);
[parmat,genmat] = cyclgen(...);
[parmat,genmat,k] = cyclgen(...);

Description For all syntaxes, the codeword length is n and the message length is k. A
polynomial can generate a cyclic code with codeword length n and message
length k if and only if the polynomial is a degree-(n-k) divisor of xn-1. (Over the
binary field GF(2), xn-1 is the same as xn+1.) This implies that k equals n minus
the degree of the generator polynomial.

parmat = cyclgen(n,pol) produces an (n-k)-by-n parity-check matrix for a
systematic binary cyclic code having codeword length n. The row vector pol
gives the binary coefficients, in order of ascending powers, of the degree-(n-k)
generator polynomial.

parmat = cyclgen(n,pol,opt) is the same as the syntax above, except that
the argument opt determines whether the matrix should be associated with a
systematic or nonsystematic code. The values for opt are 'system' and
'nonsys'.

[parmat,genmat] = cyclgen(...) is the same as parmat = cyclgen(...)
except that it also produces the k-by-n generator matrix genmat that
corresponds to the parity-check matrix parmat.

[parmat,genmat,k] = cyclgen(...) is the same as [parmat,genmat] =
cyclgen(...) except that it also returns the message length k.

Examples The code below produces parity-check and generator matrices for a binary
cyclic code with codeword length 7 and message length 4.

pol = cyclpoly(7,4);
[parmat,genmat,k] = cyclgen(7,pol)

cyclgen

3-54

parmat =

 1 0 0 1 1 1 0
 0 1 0 0 1 1 1
 0 0 1 1 1 0 1

genmat =

 1 0 1 1 0 0 0
 1 1 1 0 1 0 0
 1 1 0 0 0 1 0
 0 1 1 0 0 0 1

k =

 4

In the output below, notice that the parity-check matrix is different from
parmat above, since it corresponds to a nonsystematic cyclic code. In particular,
parmatn does not have a 3-by-3 identity matrix in its leftmost three columns,
as parmat does.

parmatn = cyclgen(7,cyclpoly(7,4),'nonsys')

parmatn =

 1 1 1 0 1 0 0
 0 1 1 1 0 1 0
 0 0 1 1 1 0 1

See Also encode, decode, bchpoly, cyclpoly,

cyclpoly

3-55

3cyclpolyPurpose Produce generator polynomials for a cyclic code

Syntax pol = cyclpoly(n,k);
pol = cyclpoly(n,k,opt);

Description For all syntaxes, a polynomial is represented as a row containing the
coefficients in order of ascending powers.

pol = cyclpoly(n,k) returns the row vector representing one nontrivial
generator polynomial for a cyclic code having codeword length n and message
length k.

pol = cyclpoly(n,k,opt) searches for one or more nontrivial generator
polynomials for cyclic codes having codeword length n and message length k.
The output pol depends on the argument opt as shown in the table below.

The weight of a binary polynomial is the number of nonzero terms it has. If no
generator polynomial satisfies the given conditions, then the output pol is
empty and an error message is displayed.

Examples The first command below produces representations of three generator
polynomials for a [15,4] cyclic code. The second command shows that

1 + x + x2 + x3+ x5+ x7+ x8+ x11 is one such polynomial having the largest
number of nonzero terms. The third command shows that no generator
polynomial for a [15,4] cyclic code has exactly three nonzero terms.

opt Significance of pol Format of pol

'min' One generator polynomial having the
smallest possible weight

The row vector representing the
polynomial

'max' One generator polynomial having the
greatest possible weight

The row vector representing the
polynomial

'all' All generator polynomials A matrix, each row of which represents
one such polynomial

a positive
integer

All generator polynomials having
weight opt

A matrix, each row of which represents
one such polynomial

cyclpoly

3-56

c1 = cyclpoly(15,4,'all')

c1 =

 1 1 0 0 0 1 1 0 0 0 1 1
 1 0 0 1 1 0 1 0 1 1 1 1
 1 1 1 1 0 1 0 1 1 0 0 1

c2 = cyclpoly(15,4,'max')

c2 =

 1 1 1 1 0 1 0 1 1 0 0 1

c3 = cyclpoly(15,4,3)

No generator polynomial satisfies the given constraints.

c3 =

 []

Algorithm If opt is 'min', 'max', or omitted, then polynomials are constructed by
converting decimal integers to base p. Based on the decimal ordering, gfprimfd
returns the first polynomial it finds that satisfies the appropriate conditions.
This algorithm is similar to the one used in gfprimfd.

See Also cyclgen, encode

ddemod

3-57

3ddemod Purpose Digital passband demodulator

Syntax z = ddemod(y,Fc,Fd,Fs,'ask/opt',M,num,den);
z = ddemod(y,Fc,Fd,Fs,'fsk/opt',M);
z = ddemod(y,Fc,Fd,Fs,'msk');
z = ddemod(y,Fc,Fd,Fs,'psk/opt',M,num,den);
z = ddemod(y,Fc,Fd,Fs,'qask/opt',M,num,den);
z = ddemod(y,Fc,Fd,Fs,'qask/arb/opt',inphase,quadr,num,den);
z = ddemod(y,Fc,Fd,Fs,'qask/cir/opt',numsig,amp,phs,num,den);
z = ddemod(y,Fc,Fd,[Fs phase],...);

Optional
Inputs

Description The function ddemod performs digital passband demodulation. The
corresponding modulation function is dmod. The table below lists the
demodulation schemes that ddemod supports.

The second column of the table indicates in bold type the required portion of
the fifth input argument for ddemod. The third column indicates optional flags

Input Default Value, or Default Behavior if Input is Omitted

opt ddemod demaps after demodulating. If the method is ASK, then
the algorithm does not use a Costas loop. If the method is FSK,
then demodulation is coherent.

num, den Omitting these arguments prevents ddemod from using a filter.

amp [1:length(numsig)]

phs numsig*0

Demodulation Scheme Fifth Input Argument Where /opt can contain

M-ary amplitude shift keying 'ask/opt' /nomap; /costas

M-ary frequency shift keying 'fsk/opt' /noncoherence

M-ary phase shift keying 'psk/opt' /nomap

Quadrature amplitude shift
keying

'qask/opt', 'qask/cir/opt', or
'qask/arb/opt'

/nomap

ddemod

3-58

that you can append to the fifth argument. The order of optional flags does not
matter.

To Demodulate Without Demapping (ASK, PSK, QASK only)
Ordinarily, the ddemod function first demodulates the analog signal it receives
and then demaps the demodulated signal in order to recover the digital
message signal. The optional /nomap flag, appended to the fifth input
argument, prevents ddemod from demapping. The output is then an analog
signal x whose sampling rate is Fs. You can use the demodmap function to
perform the demapping step. The /nomap option is not available for FSK or
MSK demodulation.

To Demodulate a Digital Signal (General Information)
The generic syntax z = ddemod(y,Fc,Fd,Fs,...) demodulates the digital
message signal z from a received analog signal y. After measuring the distance
from the received signal to all possible digits in the coding scheme, ddemod
returns the nearest digit.

y and z are real matrices whose sizes depend on the demodulation method:

• (ASK, FSK, MSK methods) If y is a vector of length n*Fs/Fd, then z is a
column vector of length n. Otherwise, if y is (n*Fs/Fd)-by-m, then z is n-by-m
and each column of y is processed separately.

• (PSK, QASK methods) If y is (n*Fs/Fd)-by-m, then z is n-by-2m. The
odd-numbered columns in z represent in-phase components and the
even-numbered columns represent quadrature components. Each column of
y is processed separately.

The carrier frequency in Hertz is Fc. The sampling rates in Hertz of y and z,
respectively, are Fs and Fd. (Thus 1/Fs represents the time interval between
two consecutive samples in y, and similarly for z.) The ratio Fs/Fd must be a
positive integer. The time interval between two decision points is 1/Fd.

The generic syntax z = ddemod(y,Fc,Fd,[Fs phase],...) is the same, except
that the fourth input argument is a two-element vector instead of a scalar. The
first entry, Fs, is the sampling rate as described in the paragraph above. The
second entry, phase, is the initial phase of the carrier signal, measured in
radians.

ddemod

3-59

ddemod can use a lowpass filter with sample time 1/Fs while demodulating, in
order to filter out the carrier signal. To specify the lowpass filter, include num
and den in the list of input arguments. num and den are row vectors that give
the coefficients, in descending order, of the numerator and denominator of the
filter’s transfer function. If num is empty, zero, or absent, then the function does
not use a filter.

To Demodulate a Digital Signal (Specific Syntax Information)

z = ddemod(y,Fc,Fd,Fs,'ask',M) implements M-ary amplitude shift keying
demodulation. Each entry of z is in the range [0, M-1].

z = ddemod(y,Fc,Fd,Fs,'ask/costas',M) is the same as the syntax above,
except that the algorithm includes a Costas loop

z = ddemod(y,Fc,Fd,Fs,'fsk',M,tone) implements coherent M-ary
frequency shift keying demodulation. The optional argument tone is the
separation between successive frequencies in the modulated signal z. The
default value of tone is Fd. Each entry of z is in the range [0, M-1].

z = ddemod(y,Fc,Fd,Fs,'fsk/noncoherence',M,tone) is the same as the
syntax above, except that it uses noncoherent demodulation.

z = ddemod(y,Fc,Fd,Fs,'msk') implements minimum shift keying
demodulation. Each entry of z is either 0 or 1. The separation between the two
frequencies is Fd/2.

z = ddemod(y,Fc,Fd,Fs,'psk',M) implements M-ary correlation phase shift
keying demodulation. Each entry of z is in the range [0, M-1].

z = ddemod(y,Fc,Fd,Fs,'qask',M) implements M-ary quadrature amplitude
shift keying demodulation with a square signal constellation. The table below

ddemod

3-60

shows the maximum among in-phase and quadrature coordinates of
constellation points, for several small values of M.

Note To see how symbols are mapped to the constellation points, generate a
square constellation plot using qaskenco(M).

z = ddemod(y,Fc,Fd,Fs,'qask/arb',inphase,quadr) implements
quadrature amplitude shift keying demodulation, with a signal constellation
that you define using the vectors inphase and quadr. The signal constellation
point for the kth message has in-phase component inphase(k+1) and
quadrature component quadr(k+1).

z = ddemod(y,Fc,Fd,Fs,'qask/cir',numsig,amp,phs) implements
quadrature amplitude shift keying demodulation with a circular signal
constellation. numsig, amp, and phs are vectors of the same length. The entries
in numsig and amp must be positive. If k is an integer in the range
[1, length(numsig)], then amp(k) is the radius of the kth circle, numsig(k) is the
number of constellation points on the kth circle, and phs(k) is the phase of the
first constellation point plotted on the kth circle. All points on the kth circle are
evenly spaced. If you omit phs, then its default value is numsig*0. If you omit
amp, then its default value is [1:length(numsig)].

M Maximum of Coordinates
of Constellation Points

M Maximum of Coordinates
of Constellation Points

2 1 32 5

4 1 64 7

8 3 (quadrature maximum is
1)

128 11

16 3 256 15

ddemod

3-61

Note To see how symbols are mapped to the constellation points, generate a
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples This example mimics the one in the section “Simple Digital Modulation
Example” on page 2-74 but uses passband simulation. It generates a random
digital signal, modulates it using dmod, and adds noise. Then it demodulates
the noisy signal and computes the symbol error rate. The ddemod function
demodulates the analog signal y and then demaps to produce the digital signal
z.

Important differences between this example and the original baseband
example are the explicit reference to the carrier signal frequency Fc and the
fact that y and ynoisy are real, not complex. For variety, this example uses
ASK instead of PSK, as well as a different sampling rate Fd.

M = 16; % Use 16-ary modulation.
Fc = 10; % Carrier signal frequency is 10 Hz.
Fd = 1; % Sampling rates of original and modulated signals
Fs = 50; % are 1 and 50, respectively (samples per second).
x = randint(100,1,M); % Random digital message
% Use M-ary PSK modulation to produce y.
y = dmod(x,Fc,Fd,Fs,'ask',M);
% Add some Gaussian noise.
ynoisy = y + .01*randn(Fs/Fd*100,1);
% Demodulate y to recover the message.
z = ddemod(ynoisy,Fc,Fd,Fs,'ask',M);
s = symerr(x,z) % Check symbol error rate.

s =

 0

See Also dmod, amod, ademod, dmodce, ddemodce, demodmap, modmap, eyediagram,
scatterplot

ddemodce

3-62

3ddemodcePurpose Digital baseband demodulator

Syntax z = ddemodce(y,Fd,Fs,'ask/opt',M,num,den);
z = ddemodce(y,Fd,Fs,'fsk/opt',M);
z = ddemodce(y,Fd,Fs,'msk');
z = ddemodce(y,Fd,Fs,'psk/opt',M,num,den);
z = ddemodce(y,Fd,Fs,'qask/opt',M,num,den);
z = ddemodce(y,Fd,Fs,'qask/arb/opt',inphase,quadr,num,den);
z = ddemodce(y,Fd,Fs,'qask/cir/opt',numsig,amp,phs,num,den);
z = ddemodce(y,Fd,[Fs phase],...);

Optional
Inputs

Description The function ddemodce performs digital baseband demodulation. The
corresponding modulation function is dmodce. The table below lists the
demodulation schemes that ddemodce supports.

The second column of the table indicates in bold type the required portion of
the fourth input argument for ddemodce. The third column indicates optional

Input Default Value, or Default Behavior if Input is Omitted

opt ddemodce demaps after demodulating. If the method is ASK,
then the algorithm does not use a Costas loop. If the method is
FSK, then demodulation is coherent.

num, den Omitting these arguments prevents ddemodce from using a
filter.

amp [1:length(numsig)]

phs numsig*0

Demodulation Scheme Fourth Input Argument Where /opt can contain

M-ary amplitude shift keying 'ask/opt' /nomap; /costas

M-ary frequency shift keying 'fsk/opt' /noncoherence

M-ary phase shift keying 'psk/opt' /nomap

Quadrature amplitude shift
keying

'qask/opt', 'qask/cir/opt', or
'qask/arb/opt'

/nomap

ddemodce

3-63

flags that you can append to the fourth argument. The order of optional flags
does not matter.

To Demodulate Without Demapping (ASK, PSK, QASK only)
Ordinarily, the ddemodce function first demodulates the analog signal it
receives and then demaps the demodulated signal in order to recover the
digital message signal. The optional /nomap flag, appended to the fourth input
argument, prevents ddemodce from demapping. The output is then an analog
signal z whose sampling rate is Fs. The size of z depends on the size of y and
the demodulation method:

• (ASK method) z has the same size as y.

• (PSK and QASK methods) If y is a vector of length n, then z is an n-by-2
matrix. Otherwise, if y is n-by-m, then z is n-by-2m and each column of y is
processed separately. In either case, the odd-numbered columns in z
represent in-phase components and the even-numbered columns represent
quadrature components.

You can use the demodmap function to perform the demapping step. The /nomap
option is not available for FSK or MSK demodulation.

To Demodulate a Digital Signal (General Information)
The generic syntax z = ddemodce(y,Fd,Fs,...) demodulates the digital
message signal z from a received analog signal y. After measuring the distance
from the received signal to all possible digits in the coding scheme, ddemodce
returns the nearest digit.

y is a complex matrix and z is a real matrix. The sizes of y and z depend on the
demodulation method:

• (ASK, FSK, MSK methods) If y is a vector of length n*Fs/Fd, then z is a
column vector of length n. Otherwise, if y is (n*Fs/Fd)-by-m, then z is n-by-m
and each column of y is processed separately.

• (PSK, QASK methods) If y is (n*Fs/Fd)-by-m, then z is n-by-2m. The
odd-numbered columns in z represent in-phase components and the
even-numbered columns represent quadrature components. Each column of
y is processed separately.

The sampling rates in Hertz of y and z, respectively, are Fs and Fd. (Thus 1/Fs
represents the time interval between two consecutive samples in y, and

ddemodce

3-64

similarly for z.) The ratio Fs/Fd must be a positive integer. The time interval
between two decision points is 1/Fd.

The generic syntax z = ddemodce(y,Fd,[Fs phase],...) is the same, except
that the third input argument is a two-element vector instead of a scalar. The
first entry, Fs, is the sampling rate as described in the paragraph above. The
second entry, phase, is the initial phase of the carrier signal, measured in
radians.

To use a lowpass filter in conjunction with ASK, PSK, or QASK demodulation,
include num and den in the list of input arguments. num and den are row vectors
that give the coefficients, in descending order, of the numerator and
denominator of the filter’s transfer function. If num is empty, zero, or absent,
then ddemodce does not use a filter.

To Demodulate a Digital Signal (Specific Syntax Information)

z = ddemodce(y,Fd,Fs,'ask',M) implements M-ary amplitude shift keying
demodulation. Each entry of z is in the range [0, M-1].

z = ddemodce(y,Fd,Fs,'ask/costas',M) is the same as the syntax above,
except that the algorithm includes a Costas loop

z = ddemodce(y,Fd,Fs,'fsk',M,tone) implements coherent M-ary frequency
shift keying demodulation. The optional argument tone is the separation
between successive frequencies in the modulated signal z. The default value of
tone is Fd. Each entry of z is in the range [0, M-1].

z = ddemodce(y,Fd,Fs,'fsk/noncoherence',M,tone) is the same as the
syntax above, except that it uses noncoherent demodulation.

z = ddemodce(y,Fd,Fs,'msk') implements minimum shift keying
demodulation. Each entry of z is either 0 or 1. The separation between the two
frequencies is Fd/2.

z = ddemodce(y,Fd,Fs,'psk',M) implements M-ary correlation phase shift
keying demodulation. Each entry of z is in the range [0, M-1].

z = ddemodce(y,Fd,Fs,'qask',M) implements M-ary quadrature amplitude
shift keying demodulation with a square signal constellation. The table below

ddemodce

3-65

shows the maximum among in-phase and quadrature coordinates of
constellation points, for several small values of M.

Note To see how symbols are mapped to the constellation points, generate a
square constellation plot using qaskenco(M).

z = ddemodce(y,Fd,Fs,'qask/arb',inphase,quadr) implements
quadrature amplitude shift keying demodulation, with a signal constellation
that you define using the vectors inphase and quadr. The signal constellation
point for the kth message has in-phase component inphase(k+1) and
quadrature component quadr(k+1).

z = ddemodce(y,Fd,Fs,'qask/cir',numsig,amp,phs) implements
quadrature amplitude shift keying demodulation with a circular signal
constellation. numsig, amp, and phs are vectors of the same length. The entries
in numsig and amp must be positive. If k is an integer in the range
[1, length(numsig)], then amp(k) is the radius of the kth circle, numsig(k) is the
number of constellation points on the kth circle, and phs(k) is the phase of the
first constellation point plotted on the kth circle. All points on the kth circle are
evenly spaced. If you omit phs, then its default value is numsig*0. If you omit
amp, then its default value is [1:length(numsig)].

M Maximum of Coordinates
of Constellation Points

M Maximum of Coordinates of
Constellation Points

2 1 32 5

4 1 64 7

8 3 (quadrature maximum
is 1)

128 11

16 3 256 15

ddemodce

3-66

Note To see how symbols are mapped to the constellation points, generate a
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

See Also dmodce, amodce, ademodce, dmod, ddemod, demodmap, modmap, eyediagram,
scatterplot

de2bi

3-67

3de2biPurpose Convert decimal numbers to binary vectors

Syntax b = de2bi(d);
b = de2bi(d,n);
b = de2bi(d,n,p);
b = de2bi(d,[],p);
b = de2bi(d,...,flg)

Description b = de2bi(d) converts a nonnegative decimal integer d to a binary row vector.
If d is a vector, then the output b is a matrix, each row of which is the binary
form of the corresponding element in d. If d is a matrix, then de2bi treats it like
the vector d(:).

Note By default, de2bi uses the first column of b as the lowest-order digit.

b = de2bi(d,n) is the same as b = de2bi(d), except that its output has n
columns, where n is a positive integer. An error occurs if the binary
representations would require more than n digits. If necessary, the binary
representation of d is padded with extra zeros.

b = de2bi(d,n,p) converts a nonnegative decimal integer d to a base-p row
vector, where p is an integer greater than or equal to two. The first column of
b is the lowest base-p digit. b is padded with extra zeros if necessary, so that it
has n columns, where n is a positive integer. An error occurs if the base-p
representations would require more than n digits. If d is a nonnegative decimal
vector, then the output b is a matrix, each row of which is the (possibly
zero-padded) base-p form of the corresponding element in d. If d is a matrix,
then de2bi treats it like the vector d(:).

b = de2bi(d,[],p) specifies the base p but not the number of columns.

b = de2bi(d,...,flg) uses the string flg to determine whether the first
column of b contains the lowest-order or highest-order digits. Values for flg are
’right-msb’ and ’left-msb’. The value ’right-msb’ produces the default
behavior.

de2bi

3-68

Examples The code below counts to ten in decimal and binary.

d = (1:10)';
b = de2bi(d);
disp(' Dec Binary ')
disp(' ----- -------------------')
disp([d, b])

The output is below.

 Dec Binary
 ----- -------------------
 1 1 0 0 0
 2 0 1 0 0
 3 1 1 0 0
 4 0 0 1 0
 5 1 0 1 0
 6 0 1 1 0
 7 1 1 1 0
 8 0 0 0 1
 9 1 0 0 1
 10 0 1 0 1

The command below shows how de2bi pads its output with zeros.

bb = de2bi([3 9],5) % Zero-padding the output

bb =

 1 1 0 0 0
 1 0 0 1 0

The command below shows how to convert a decimal integer to base three
without specifying the number of columns in the output matrix.

t = de2bi(12,[],3) % Convert 12 to base 3.

t =

 0 1 1

See Also bi2de

decode

3-69

3decodePurpose Block decoder

Syntax msg = decode(code,n,k,'hamming/fmt',primpoly);
msg = decode(code,n,k,'linear/fmt',genmat,trt);
msg = decode(code,n,k,'cyclic/fmt',genpoly,trt);
msg = decode(code,n,k,'bch/fmt',errorcorr,primpoly);
msg = decode(code,n,k,'rs/fmt',field);
msg = decode(code,n,k);
[msg,err] = decode(...);
[msg,err,ccode] = decode(...);
[msg,err,ccode,cerr] = decode(...);

Optional
Inputs

Description For All Syntaxes
The decode function aims to recover messages that were encoded using an
error-correction coding technique. The technique and the defining parameters
must match those that were used to encode the original signal.

The “For All Syntaxes” section on the reference page for the encode function
explains the meanings of n and k, the possible values of fmt, and the possible
formats for code and msg. You should be familiar with the conventions
described there before reading the rest of this section. Using the decode
function with an input argument code that was not created by the encode
function may cause errors.

For Specific Syntaxes

msg = decode(code,n,k,'hamming/fmt',primpoly) decodes code using the
Hamming method. For this syntax, n must have the form 2m-1 for some integer
m greater than or equal to 3, and k must equal n-m. primpoly is a row vector

Input Default Value

fmt binary

primpoly gfprimdf(m) where n = 2m-1

genpoly cyclpoly(n,k)

trt Uses syndtable to create the syndrome decoding table
associated with the method’s parity-check matrix.

decode

3-70

that gives the binary coefficients, in order of ascending powers, of the primitive
polynomial for GF(2m) that is used in the encoding process. The default value
of primpoly is gfprimdf(m). The decoding table that the function uses to
correct a single error in each codeword is syndtable(hammgen(m)).

msg = decode(code,n,k,'linear/fmt',genmat,trt) decodes code, which is
a linear block code determined by the k-by-n generator matrix genmat. genmat,
a k-by-n matrix, is required as input. decode tries to correct errors using the
decoding table trt, where trt is a 2n-k-by-n matrix.

msg = decode(code,n,k,'cyclic/fmt',genpoly,trt) decodes the cyclic code
code and tries to correct errors using the decoding table trt, where trt is a
2n-k-by-n matrix. genpoly is a row vector that gives the coefficients, in order of
ascending powers, of the binary generator polynomial of the code. The default
value of genpoly is cyclpoly(n,k). By definition, the generator polynomial for
an [n,k] cyclic code must have degree n-k and must divide xn-1.

msg = decode(code,n,k,'bch/fmt',errorcorr,primpoly) decodes code
using the BCH method. primpoly is a row vector that gives the coefficients, in
order of ascending powers, of the primitive polynomial for GF(2m) that will be
used during processing. The default value of primpoly is gfprimdf(m). For
this syntax, n must have the form 2m-1 for some integer m greater than or
equal to 3. k and errorcorr must be a valid message length and
error-correction capability, respectively, as reported in the second and third
columns of a row of params in the command

params = bchpoly(n)

msg = decode(code,n,k,'rs/fmt',field) decodes code using the
Reed-Solomon method. n must have the form 2m-1 for some integer m greater
than or equal to 3. field is a matrix that lists all elements of GF(2m) in the
format described in “List of All Elements of a Galois Field” on page 2-91. The
default value of field is gftuple([-1:2^m-2]',m).

msg = decode(code,n,k) is the same as
msg = decode(code,n,k,'hamming/binary').

[msg,err] = decode(...) returns a column vector err that gives information
about error correction. If the code is a convolutional code, then err contains the
metric calculations used in the decoding decision process. For other types of

decode

3-71

codes, a nonnegative integer in the rth row of err (or the rth row of
vec2mat(err,k) if code is a column vector) indicates the number of errors
corrected in the rth message word; a negative integer indicates that there are
more errors in the rth word than can be corrected.

[msg,err,ccode] = decode(...) returns the corrected code in ccode.

[msg,err,ccode,cerr] = decode(...) returns a column vector cerr whose
meaning depends on the format of code:

• If code is a binary vector, then a nonnegative integer in the rth row of
vec2mat(cerr,n) indicates the number of errors corrected in the rth
codeword; a negative integer indicates that there are more errors in the rth
codeword than can be corrected.

• If code is not a binary vector, then cerr = err.

Examples On the reference page for encode, some of the example code illustrates the use
of the decode function.

The example below illustrates the use of err and cerr when the coding method
is not convolutional code and the code is a binary vector. The script encodes two
five-bit messages using BCH code. Each codeword has fifteen bits. Errors are
added to the first two bits of the first codeword and the first bit of the second
codeword. Then decode is used to recover the original message. As a result, the
errors are corrected. err is the same size as msg and cerr is the same size as
code. err reflects the fact that the first message was recovered after correcting
two errors, while the second message was recovered after correcting one error.
cerr reflects the fact that the first codeword was decoded after correcting two
errors, while the second codeword was decoded after correcting one error.

m = 4; n = 2^m-1; % Codeword length is 15.
k = 5; % Valid message length for BCH code when n = 15
t = 3; % Corresponding error-correction capability
msg = ones(10,1); % Two messages, five bits each
code = encode(msg,n,k,'bch'); % Encode the message.
% Now place two errors in first word and one error
% in the second word. Create errors by reversing bits.
noisycode = code;
noisycode(1:2) = bitxor(noisycode(1:2),[1 1]');
noisycode(16) = bitxor(noisycode(16),1);

decode

3-72

% Decode and try to correct the errors.
[newmsg,err,ccode,cerr] = decode(noisycode,n,k,'bch',t);
disp('Transpose of err is'); disp(err')
disp('Transpose of cerr is'); disp(cerr')

The output is below.

Transpose of err is
 2 2 2 2 2 1 1 1 1 1

Transpose of cerr is
 Columns 1 through 12

 2 2 2 2 2 2 2 2 2 2 2 2

 Columns 13 through 24

 2 2 2 1 1 1 1 1 1 1 1 1

 Columns 25 through 30

 1 1 1 1 1 1

Algorithm Depending on the decoding method, decode relies on such lower-level functions
as hammgen, syndtable, cyclgen, bchdeco, and rsdeco.

See Also encode, bchpoly, cyclpoly, syndtable, gen2par, bchdeco, rsdeco

demodmap

3-73

3demodmap Purpose Demap a digital message from a demodulated signal

Syntax z = demodmap(x,Fd,Fs,'ask',M);
z = demodmap(x,Fd,Fs,'fsk',M,tone);
z = demodmap(x,Fd,Fs,'msk');
z = demodmap(x,Fd,Fs,'psk',M);
z = demodmap(x,Fd,Fs,'qask',M);
z = demodmap(x,Fd,Fs,'qask/arb',inphase,quadr);
z = demodmap(x,Fd,Fs,'qask/cir',numsig,amp,phs);
z = demodmap(x,[Fd offset],Fs,...)

Optional
Inputs

Description The digital demodulation process consists of two steps: demodulating an analog
signal and demapping the demodulated signal to a digital signal. You can
perform the first step using ademod, ademodce, or your own custom
demodulator. The function demodmap performs the second step. The table below
lists the demodulation schemes that demodmap supports.

To Demap a Digital Signal (General Information)
The generic syntax z = demodmap(x,Fd,Fs,...) demaps the digital message
signal z from a received analog signal x. After measuring the distance from the

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Demodulation Scheme Fourth Input Argument

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'

demodmap

3-74

received signal to all possible digits in the coding scheme, the demapper
returns the nearest digit.

x is a matrix. The sizes of x and z depend on the demodulation method:

• (ASK, FSK, MSK methods) If x is a vector of length n*Fs/Fd, then z is a
column vector of length n. Otherwise, if x is (n*Fs/Fd)-by-m, then z is n-by-m
and each column of x is processed separately.

• (PSK, QASK methods) x must have an even number of columns. The
odd-numbered columns in x represent in-phase components and the
even-numbered columns represent quadrature components. Each pair of
columns of x is processed separately. If x is (n*Fs/Fd)-by-2m, then z is
n-by-m.

The sampling rates in Hertz of x and z, respectively, are Fs and Fd. (Thus 1/Fs
represents the time interval between two consecutive samples in x, and
similarly for z.) The ratio Fs/Fd must be a positive integer. The time interval
between two decision points is 1/Fd.

To shift the decision times ahead by the integer offset, use the alternative
syntax

z = demodmap(x,[Fd offset],...)

instead of the demapping syntaxes listed in this section and the next. The
default decision offset is 0.

To Demap a Digital Signal (Specific Syntax Information)

z = demodmap(x,Fd,Fs,'ask',M) demaps from an M-ary amplitude shift
keying signal constellation. Each entry of z is in the range [0, M-1].

z = demodmap(x,Fd,Fs,'fsk',M,tone) demaps using the coherent M-ary
frequency shift keying method. The optional argument tone is the separation
between successive frequencies in the modulated signal x. The default value of
tone is Fd. Each entry of z is in the range [0, M-1].

z = demodmap(x,Fd,Fs,'msk') demaps using the minimum shift keying
method. Each entry of z is either 0 or 1. The separation between the two
frequencies is Fd/2.

demodmap

3-75

z = demodmap(x,Fd,Fs,'psk',M) demaps from an M-ary phase shift keying
signal constellation. Each entry of z is in the range [0, M-1].

z = demodmap(x,Fd,Fs,'qask',M) demaps from an M-ary quadrature
amplitude shift keying square signal constellation. The table below shows the
maximum among in-phase and quadrature coordinates of constellation points,
for several small values of M.

Note To see how symbols are mapped to the constellation points, generate a
square constellation plot using qaskenco(M).

z = demodmap(x,Fd,Fs,'qask/arb',inphase,quadr) demaps from a
quadrature amplitude shift keying signal constellation that you define using
the vectors inphase and quadr. The signal constellation point for the kth
message has in-phase component inphase(k+1) and quadrature component
quadr(k+1).

z = demodmap(x,Fd,Fs,'qask/cir',numsig,amp,phs) demaps from a
quadrature amplitude shift keying circular signal constellation. numsig, amp,
and phs are vectors of the same length. The entries in numsig and amp must be
positive. If k is an integer in the range [1, length(numsig)], then amp(k) is the
radius of the kth circle, numsig(k) is the number of constellation points on the
kth circle, and phs(k) is the phase of the first constellation point plotted on the
kth circle. All points on the kth circle are evenly spaced. If you omit phs, then

M Maximum of Coordinates
of Constellation Points

M Maximum of Coordinates
of Constellation Points

2 1 32 5

4 1 64 7

8 3 (quadrature
maximum = 1)

128 11

16 3 256 15

demodmap

3-76

its default value is numsig*0. If you omit amp, then its default value is
[1:length(numsig)].

Note To see how symbols are mapped to the constellation points, generate a
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples The script below suggests which regions in the in-phase/quadrature plane are
associated with different digits. It demaps random points, looks for points that
were demapped to the digits 0 and 2, and plots those points in red and blue,
respectively. The horizontal axis shows in-phase components and the vertical
axis shows quadrature components.

% Construct [in-phase, quadrature] for random points.
x = 4*(rand(1000,2)-1/2);
% Demap to a digital signal, using 4-PSK method.
y = demodmap(x,1,1,'psk',4);
red = find(y==0); % Indices of points that mapped to the digit 0
h = scatterplot(x(red,:),1,0,'r.'); hold on % Plot in red.
blue = find(y==2); % Indices of points that mapped to the digit 2
scatterplot(x(blue,:),1,0,'b.',h); hold off % Plot in blue.

demodmap

3-77

See Also modmap, ddemod, ddemodce, ademod, ademodce, eyediagram, scatterplot

dmod

3-78

3dmodPurpose Digital passband modulator

Syntax y = dmod(x,Fc,Fd,Fs,'method/nomap'...);
y = dmod(x,Fc,Fd,Fs,'ask',M);
y = dmod(x,Fc,Fd,Fs,'fsk',M,tone);
y = dmod(x,Fc,Fd,Fs,'msk');
y = dmod(x,Fc,Fd,Fs,'psk',M);
y = dmod(x,Fc,Fd,Fs,'qask',M);
y = dmod(x,Fc,Fd,Fs,'qask/arb',inphase,quadr);
y = dmod(x,Fc,Fd,Fs,'qask/cir',numsig,amp,phs);
y = dmod(x,Fc,Fd,[Fs phase],...);
[y,t] = dmod(...);

Optional
Inputs

Description The function dmod performs digital passband modulation and some related
tasks. The corresponding demodulation function is ddemod. The table below
lists the modulation schemes that dmod supports.

To Avoid the Mapping Process
Ordinarily, the dmod function first maps the digital message signal to an analog
signal and then modulates the analog signal. The generic syntax

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Modulation Scheme Fifth Input Argument

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'

dmod

3-79

y = dmod(x,Fc,Fd,Fs,'method/nomap'...)

uses the nomap flag to tell dmod that the digital message has already been
mapped to an analog signal x whose sampling rate is Fs. As a result, dmod skips
its usual mapping step. You can use the modmap function to perform the
mapping step. In this generic syntax, method is one of the seven values listed
in the table above and the other variables are as in the next section.

To Modulate a Digital Signal (General Information)
The generic syntax y = dmod(x,Fc,Fd,Fs,...) modulates the digital message
signal that x represents. x is a matrix of nonnegative integers. If x is a vector
of length n, then y is a vector of length n*Fs/Fd. Otherwise, if x is n-by-m, then
y is (n*Fs/Fd)-by-m and each column of x is processed separately.

Fc is the carrier frequency in Hertz. The sampling rates in Hertz of x and y,
respectively, are Fd and Fs. (Thus 1/Fd represents the time interval between
two consecutive samples in x, and similarly for y.) The ratio Fs/Fd must be a
positive integer. For best results, use values such that Fs > Fc > Fd. The initial
phase of the carrier signal is zero.

The generic syntax y = dmod(x,Fc,Fd,[Fs phase],...) is the same, except
that the fourth input argument is a two-element vector instead of a scalar. The
first entry, Fs, is the sampling rate as described in the paragraph above. The
second entry, phase, is the initial phase of the carrier signal, measured in
radians.

To Modulate a Digital Signal (Specific Syntax Information)

y = dmod(x,Fc,Fd,Fs,'ask',M) performs M-ary amplitude shift keying
modulation. Each entry of x must be in the range [0, M-1]. The maximum value
of the modulated signal is 1.

y = dmod(x,Fc,Fd,Fs,'fsk',M,tone) performs M-ary frequency shift keying
modulation. Each entry of x must be in the range [0, M-1]. The optional
argument tone is the separation between successive frequencies in the
modulated signal y. The default value of tone is Fd. The maximum value of y is
1.

y = dmod(x,Fc,Fd,Fs,'msk') performs minimum shift keying modulation.
Each entry of x is either 0 or 1. The maximum value of y is 1.

dmod

3-80

y = dmod(x,Fc,Fd,Fs,'psk',M) performs M-ary phase shift keying
modulation. Each entry of x must be in the range [0, M-1]. The maximum value
of y is 1.

y = dmod(x,Fc,Fd,Fs,'qask',M) performs M-ary quadrature amplitude shift
keying modulation with a square signal constellation. The table below shows
the maximum value of y, for several small values of M.

Note To see how symbols are mapped to the constellation points, generate a
square constellation plot using qaskenco(M).

y = dmod(x,Fc,Fd,Fs,'qask/arb',inphase,quadr) performs quadrature
amplitude shift keying modulation, with a signal constellation that you define
using the vectors inphase and quadr. The constellation point for the kth
message has in-phase component inphase(k+1) and quadrature component
quadr(k+1).

y = dmod(x,Fc,Fd,Fs,'qask/cir',numsig,amp,phs) performs quadrature
amplitude shift keying modulation with a circular signal constellation. numsig,
amp, and phs are vectors of the same length. The entries in numsig and amp
must be positive. If k is an integer in the range [1, length(numsig)], then
amp(k) is the radius of the kth circle, numsig(k) is the number of constellation
points on the kth circle, and phs(k) is the phase of the first constellation point
plotted on the kth circle. All points on the kth circle are evenly spaced. If you
omit phs, then its default value is numsig*0. If you omit amp, then its default
value is [1:length(numsig)].

M Maximum Value of y M Maximum Value of y

2 1 32 5

4 1 64 7

8 3 128 11

16 3 256 15

dmod

3-81

Note To see how symbols are mapped to the constellation points, generate a
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

[y,t] = dmod(...) returns the computation time in t. t is a vector whose
length is the number of rows of y.

Examples An example on the reference page for ddemod uses dmod. Also, the code below
shows the waveforms used to communicate the digits 0 and 1 using 4-ASK
modulation. Notice that the dmod command has two output arguments. The
second output, t, is used to scale the horizontal axis in the plot.

Fc = 20; Fd = 10; Fs = 50;
M = 4; % Use 4-ASK modulation.
x = ones(Fd,1)*[0 1]; x=x(:);
% Modulate, keeping track of time.
[y,t] = dmod(x,Fc,Fd,Fs,'ask',M);
plot(t,y) % Plot signal versus time.

See Also ddemod, dmodce, ddemodce, amod, amodce

dmodce

3-82

3dmodcePurpose Digital baseband modulator

Syntax y = dmodce(x,Fd,Fs,'method/nomap'...);
y = dmodce(x,Fd,Fs,'ask',M);
y = dmodce(x,Fd,Fs,'fsk',M,tone);
y = dmodce(x,Fd,Fs,'msk');
y = dmodce(x,Fd,Fs,'psk',M);
y = dmodce(x,Fd,Fs,'qask',M);
y = dmodce(x,Fd,Fs,'qask/arb',inphase,quadr);
y = dmodce(x,Fd,Fs,'qask/cir',numsig,amp,phs);
y = dmodce(x,Fd,[Fs phase],...);

Optional
Inputs

Description The function dmodce performs digital baseband modulation and some related
tasks. The corresponding demodulation function is ddemodce. The table below
lists the modulation schemes that dmodce supports.

To Modulate Without Mapping
Ordinarily, the dmodce function first maps the digital message signal to an
analog signal and then modulates the analog signal. The generic syntax

y = dmodce(x,Fd,Fs,'method/nomap'...)

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Modulation Scheme Fourth Input Argument

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'

dmodce

3-83

uses the /nomap flag to tell dmodce that the digital message has already been
mapped to an analog signal x whose sampling rate is Fs. As a result, dmodce
skips its usual mapping step. You can use the modmap function to perform the
mapping step. In this generic syntax, method is one of the seven values listed
in the table above, and the other variables are as in the next section.

To Modulate a Digital Signal (General Information)
The generic syntax y = dmodce(x,Fd,Fs,...) modulates the digital message
signal that x represents. x is a matrix of nonnegative integers. If x is a vector
of length n, then y is a vector of length n*Fs/Fd. Otherwise, if x is n-by-m, then
y is (n*Fs/Fd)-by-m and each column of x is processed separately. Since dmodce
implements baseband simulation, the entries of y are complex.

The sampling rates in Hertz of x and y, respectively, are Fd and Fs. (Thus 1/Fd
represents the time interval between two consecutive samples in x, and
similarly for y.) The ratio Fs/Fd must be a positive integer. The initial phase in
the modulation is zero.

The generic syntax y = dmodce(x,Fd,[Fs phase],...) is the same, except
that the third input argument is a two-element vector instead of a scalar. The
first entry, Fs, is the sampling rate as described in the paragraph above. The
second entry, phase, is the initial phase in the modulation, measured in
radians.

To Modulate a Digital Signal (Specific Syntax Information)

y = dmodce(x,Fd,Fs,'ask',M) performs M-ary amplitude shift keying
modulation. Each entry of x must be in the range [0, M-1]. The maximum value
of the modulated signal is 1.

y = dmodce(x,Fd,Fs,'fsk',M,tone) performs M-ary frequency shift keying
modulation. Each entry of x must be in the range [0, M-1]. The optional
argument tone is the separation between successive frequencies in the
modulated signal y. The default value of tone is Fd. The maximum value of y is
1.

y = dmodce(x,Fd,Fs,'msk') performs minimum shift keying modulation.
Each entry of x is either 0 or 1. The maximum value of y is 1. The separation
between the two frequencies is Fd/2.

dmodce

3-84

y = dmodce(x,Fd,Fs,'psk',M) performs M-ary phase shift keying modulation.
Each entry of x must be in the range [0, M-1]. The maximum value of y is 1.

y = dmodce(x,Fd,Fs,'qask',M) performs M-ary quadrature amplitude shift
keying modulation with a square signal constellation. The table below shows
the maximum value of y, for several small values of M.

Note To see how symbols are mapped to the constellation points, generate a
square constellation plot using qaskenco(M).

y = dmodce(x,Fd,Fs,'qask/arb',inphase,quadr) performs quadrature
amplitude shift keying modulation, with a signal constellation that you define
using the vectors inphase and quadr. The constellation point for the kth
message has in-phase component inphase(k+1) and quadrature component
quadr(k+1).

y = dmodce(x,Fd,Fs,'qask/cir',numsig,amp,phs) performs quadrature
amplitude shift keying modulation with a circular signal constellation. numsig,
amp, and phs are vectors of the same length. The entries in numsig and amp
must be positive. If k is an integer in the range [1, length(numsig)], then
amp(k) is the radius of the kth circle, numsig(k) is the number of constellation
points on the kth circle, and phs(k) is the phase of the first constellation point
plotted on the kth circle. All points on the kth circle are evenly spaced. If you
omit phs, then its default value is numsig*0. If you omit amp, then its default
value is [1:length(numsig)].

M Maximum Value of y M Maximum Value of y

2 1 32 5

4 1 64 7

8 3 128 11

16 3 256 15

dmodce

3-85

Note To see how symbols are mapped to the constellation points, generate a
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples This example uses FSK modulation and demodulation with different frequency
separations tone. The output indicates that the symbol error rate varies
depending on the value of tone. Your results might be different from those
shown below, because the example uses random numbers.

M = 4; Fd = 1; Fs = 32;
SNRperBit = 5;
adjSNR = SNRperBit-10*log10(Fs/Fd)+10*log10(log2(M));
x = randint(5000,1,M); % Original signal
% Modulate using FSK with orthogonal tone spacing.
tone = .5;
randn('state',1945724); % Seed the Gaussian generator.
w1 = dmodce(x,Fd,Fs,'fsk',M,tone);
y1 = awgn(w1, adjSNR, 'measured', [], 'dB');
z1 = ddemodce(y1,Fd,Fs,'fsk',M,tone);
ser1 = symerr(x,z1)

ser1 =

 67

% Modulate using FSK with nonorthogonal tone spacing.
tone = .25;
randn('state',1945724); % Reseed the Gaussian generator.
w2 = dmodce(x,Fd,Fs,'fsk',M,tone);
y2 = awgn(w2, adjSNR, 'measured', [], 'dB');
z2 = ddemodce(y2,Fd,Fs,'fsk',M,tone);
ser2 = symerr(x,z2)

ser2 =

 258

See Also ddemodce, dmod, ddemod, amod, amodce, modmap, apkconst

dpcmdeco

3-86

3dpcmdecoPurpose Decode using differential pulse code modulation

Syntax sig = dpcmdeco(indx,codebook,predictor);
[sig,quanterror] = dpcmdeco(indx,codebook,predictor);

Description sig = dpcmdeco(indx,codebook,predictor) implements differential pulse
code demodulation to decode the vector indx. The vector codebook represents
the predictive-error quantization codebook. The vector predictor specifies the
predictive transfer function. If the transfer function has predictive order M,
then predictor has length M+1 and an initial entry of 0. To decode correctly,
use the same codebook and predictor in dpcmenco and dpcmdeco.

See either “Representing Quantization Parameters” on page 2-14 or the
reference page for quantiz in this chapter, for a description of the formats of
partition and codebook.

[sig,quanterror] = dpcmdeco(indx,codebook,predictor) is the same as
the syntax above, except that the vector quanterror is the quantization of the
predictive error based on the quantization parameters. quanterror is the same
size as sig.

Note You can estimate the input parameters codebook, partition, and
predictor using the function dpcmopt.

Examples See the sections “Example: DPCM Encoding and Decoding” on page 2-20 and
“Example: Comparing Optimized and Nonoptimized DPCM Parameters” on
page 2-21 for examples that use dpcmdeco.

See Also quantiz, dpcmopt, dpcmenco

References Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons, 1994.

dpcmenco

3-87

3dpcmencoPurpose Encode using differential pulse code modulation

Syntax indx = dpcmenco(sig,codebook,partition,predictor)
[indx,quants] = dpcmenco(sig,codebook,partition,predictor)

Description indx = dpcmenco(sig,codebook,partition,predictor) implements
differential pulse code modulation to encode the vector sig. partition is a
vector whose entries give the endpoints of the partition intervals. codebook, a
vector whose length exceeds the length of partition by one, prescribes a value
for each partition in the quantization. predictor specifies the predictive
transfer function. If the transfer function has predictive order M, then
predictor has length M+1 and an initial entry of 0. The output vector indx is
the quantization index.

See “Implementing Differential Pulse Code Modulation” on page 2-19 for more
about the format of predictor. See either “Representing Quantization
Parameters” on page 2-14 or the reference page for quantiz in this chapter, for
a description of the formats of partition and codebook.

[indx,quants] = dpcmenco(sig,codebook,partition,predictor) is the
same as the syntax above, except that quants contains the quantization of sig
based on the quantization parameters. quants is a vector the same size as sig.

Note If predictor is an order-one transfer function, then the modulation is
called a delta-modulation.

Examples See the sections “Example: DPCM Encoding and Decoding” on page 2-20 and
“Example: Comparing Optimized and Nonoptimized DPCM Parameters” on
page 2-21 for examples that use dpcmenco.

See Also quantiz, dpcmopt,dpcmdeco

References Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons, 1994.

dpcmopt

3-88

3dpcmoptPurpose Optimize differential pulse code modulation parameters

Syntax predictor = dpcmopt(trainingset,ord);
[predictor,codebook,partition] = dpcmopt(trainingset,ord,len);
[predictor,codebook,partition] =

dpcmopt(trainingset,ord,initcodebook);

Description predictor = dpcmopt(trainingset,ord) returns a vector representing a
predictive transfer function of order ord that is appropriate for the training
data in the vector trainingset. predictor is a row vector of length ord+1. See
“Representing Quantization Parameters” on page 2-14 for more about its
format.

Note dpcmopt optimizes for the data in trainingset. For best results,
trainingset should be similar to the data that you plan to quantize.

[predictor,codebook,partition] = dpcmopt(trainingset,ord,len) is the
same as the syntax above, except that it also returns corresponding optimized
codebook and partition vectors codebook and partition. len is an integer that
prescribes the length of codebook. partition is a vector of length len-1. See
either “Representing Quantization Parameters” on page 2-14 or the reference
page for quantiz in this chapter, for a description of the formats of partition
and codebook.

[predictor,codebook,partition] =
dpcmopt(trainingset,ord,initcodebook) is the same as the first syntax,
except that it also returns corresponding optimized codebook and partition
vectors codebook and partition. initcodebook, a vector of length at least 2,
is the initial guess of the codebook values. The output codebook is a vector of
the same length as initcodebook. The output partition is a vector whose
length is one less than the length of codebook.

Examples See the section “Example: Comparing Optimized and Nonoptimized DPCM
Parameters” on page 2-21 for an example that uses dpcmopt.

See Also dpcmenco, dpcmdeco, quantiz, lloyds

encode

3-89

3encodePurpose Block encoder

Syntax code = encode(msg,n,k,'linear/fmt',genmat);
code = encode(msg,n,k,'cyclic/fmt',genpoly);
code = encode(msg,n,k,'bch/fmt',genpoly);
code = encode(msg,n,k,'hamming/fmt',primpoly);
code = encode(msg,n,k,'rs/fmt',genpoly);
code = encode(msg,field,k,'rs/fmt',genpoly);
code = encode(msg,n,k);
[code,added] = encode(...);

Optional
Inputs

Description For All Syntaxes
The encode function encodes messages using one of the following
error-correction coding methods:

• Linear block

• Cyclic

• BCH (Bose, Ray-Chaudhuri, Hocquenghem)

• Hamming

• Reed-Solomon

For all of these methods, the codeword length is n and the message length is k.

msg, which represents the messages, can have one of several formats.
Table 3-14, Information Formats for Encoding Methods Other than
Reed-Solomon, below, which applies to all coding methods supported by encode
except the Reed-Solomon method, shows which formats are allowed for msg,
how the argument fmt should reflect the format of msg, and how the format of
the output code depends on these choices. Table 3-15, Information Formats for

Input Default Value

fmt binary

genpoly cyclpoly(n,k) for cyclic codes;
bchpoly(n,k) for BCH codes;
rspoly(n,k) or rspoly(n,k,field) for Reed-Solomon codes

primpoly gfprimdf(n-k)

encode

3-90

the Reed-Solomon Encoding Method, gives the corresponding information for
the Reed-Solomon method. The examples in the tables are for k = 4 and, in
Table 3-15, Information Formats for the Reed-Solomon Encoding Method,
m = 3. If fmt is not specified as input, then its default value is binary.

Note If 2n or 2k is large, then you should use the default binary format
instead of the decimal format. This is because the function uses a binary
format internally, while the round-off error associated with converting many
bits to large decimal numbers and back might be substantial.

.

Table 3-14: Information Formats for Encoding Methods Other than Reed-Solomon

Format of msg Value of “fmt” Argument Format of code

Binary column vector binary Binary column vector

Example: msg = [0 1 1 0, 0 1 0 1, 1 0 0 1]'

Binary matrix with k columns binary Binary matrix with n
columns

Example: msg = [0 1 1 0; 0 1 0 1; 1 0 0 1]

Column vector of integers in the
range [0, 2k-1]

decimal Column vector of integers
in the range [0, 2n-1]

Example: msg = [6, 10, 9]'

Table 3-15: Information Formats for the Reed-Solomon Encoding Method

Format of msg
(where n = 2m-1, m = integer
greater than or equal to 3)

Value of “fmt” Argument Format of code

 Binary matrix with m columns binary Binary matrix with m columns

Example: msg = [1 1 0; 1 0 1; 1 0 0; 0 1 1; 1 1 0; 1 0 1; 1 0 0; 0 1 1]

encode

3-91

For Specific Syntaxes

code = encode(msg,n,k,'linear/fmt',genmat) encodes msg using genmat as
the generator matrix for the linear block encoding method. genmat, a k-by-n
matrix, is required as input.

code = encode(msg,n,k,'cyclic/fmt',genpoly) encodes msg and creates a
systematic cyclic encode. genpoly is a row vector that gives the coefficients, in
order of ascending powers, of the binary generator polynomial. The default
value of genpoly is cyclpoly(n,k). By definition, the generator polynomial for
an [n,k] cyclic code must have degree n-k and must divide xn-1.

code = encode(msg,n,k,'bch/fmt',genpoly) encodes msg using the BCH
encoding method. genpoly is a row vector that gives the coefficients, in order of
ascending powers, of the degree-(n-k) binary BCH generator polynomial. The
default value of genpoly is bchpoly(n,k). For this syntax, n must have the
form 2m-1 for some integer m greater than or equal to 3. k must be a valid
message length as reported in the second column of params in the command

params = bchpoly(n)

Binary column vector binary Binary column vector

Example: msg = [1 1 0, 1 0 1, 1 0 0, 0 1 1, 1 1 0, 1 0 1, 1 0 0, 0 1 1]'

Matrix of integers in the range
[0, 2m-1], with k columns

decimal Matrix of integers in the range
[0, 2m-1], with n columns

Example: msg = [3, 5, 1, 6; 3, 5, 1, 6]

Matrix of integers in the range
[-1, 2m-2], with k columns

power Matrix of integers in the range
[-1, 2m-2], with n columns

Example: msg = [2, 4, 0, 5; 2, 4, 0, 5]

Table 3-15: Information Formats for the Reed-Solomon Encoding Method (Continued)

Format of msg
(where n = 2m-1, m = integer
greater than or equal to 3)

Value of “fmt” Argument Format of code

encode

3-92

code = encode(msg,n,k,'hamming/fmt',primpoly) encodes msg using the
Hamming encoding method. For this syntax, n must have the form 2m-1 for
some integer m greater than or equal to 3, and k must equal n-m. primpoly is
a row vector that gives the binary coefficients, in order of ascending powers, of
the primitive polynomial for GF(2m) that is used in the encoding process. The
default value of primpoly is the default primitive polynomial gfprimdf(m).

code = encode(msg,n,k,'rs/fmt',genpoly) encodes msg using the
Reed-Solomon encoding method. n must have the form 2m-1 for some integer m
greater than or equal to 3. genpoly is a row vector that gives the coefficients,
in order of ascending powers, of the generator polynomial for the code. Each
coefficient is an element of GF(2m) expressed in exponential format. For a
description of exponential format, see “Exponential Format” on page 2-90. For
information about the conversions among formats, see “Reed-Solomon Coding
Using Decimal Format” on page 2-29 and “Exponential Format (Reed-Solomon
Code Only)” on page 2-30. The default value of genpoly is the output of the
function rspoly.

code = encode(msg,field,k,'rs/fmt',genpoly) is the same as the syntax
above, except that field is a matrix that lists all elements of GF(2m) in the
format described in “List of All Elements of a Galois Field” on page 2-91. The
size of field determines n. This syntax is faster than the one above.

code = encode(msg,n,k) is the same as code =
encode(msg,n,k,'hamming/binary').

[code,added] = encode(...) returns the additional variable added. added is
the number of zeros that were placed at the end of the message matrix before
encoding, in order for the matrix to have the appropriate shape. “Appropriate”
depends on n, k, the shape of msg, and the encoding method.

Examples The example below illustrates the three different information formats (binary
vector, binary matrix, and decimal vector) for Hamming code. The three
messages have identical content in different formats; as a result, the three
codes that encode creates have identical content in correspondingly different
formats.

m = 4; n = 2^m-1; % Codeword length = 15
k = 11; % Message length

encode

3-93

% Create 100 messages, k bits each.
msg1 = randint(100*k,1,[0,1]); % As a column vector
msg2 = vec2mat(msg1,k); % As a k-column matrix
msg3 = bi2de(msg2); % As a column of decimal integers

% Create 100 codewords, n bits each.
code1 = encode(msg1,n,k,'hamming/binary');
code2 = encode(msg2,n,k,'hamming/binary');
code3 = encode(msg3,n,k,'hamming/decimal');
if (vec2mat(code1,n)==code2 & de2bi(code3,n)==code2)
 disp('All three formats produced the same content.')
end

The next example creates a cyclic code, adds noise, and then decodes the noisy
code. It uses the decode function. Your error rate results might vary because
the noise is random.

n = 3; k = 2; % A (3,2) cyclic code
msg = randint(100,k,[0,1]); % 100 messages, k bits each
code = encode(msg,n,k,'cyclic/binary');
% Add noise.
noisycode = rem(code + randerr(100,n,[0 1;.7 .3]), 2);
newmsg = decode(noisycode,n,k,'cyclic'); % Try to decode.
% Compute error rate for decoding the noisy code.
[number,ratio] = biterr(newmsg,msg);
disp(['The bit error rate is ',num2str(ratio)])

The bit error rate is 0.08

The next example encodes the same message using Hamming, BCH, and cyclic
methods. Before creating BCH code, it uses the bchpoly command to find out
what codeword and message lengths are valid. This example also creates
Hamming code with the 'linear' option of the encode command. It then
decodes each code and recovers the original message.

n = 6; % Try codeword length = 6.
% Find any valid message length for BCH code.
params = bchpoly(n);
n = params(1,1); % Redefine codeword length in case earlier one
% was invalid.
k = params(1,2); % Message length

encode

3-94

m = log2(n+1); % Express n as 2^m-1.
msg = randint(100,1,[0,2^k-1]); % Column of decimal integers

% Create various codes.
codehamming = encode(msg,n,k,'hamming/decimal');
[parmat,genmat] = hammgen(m);
codehamming2 = encode(msg,n,k,'linear/decimal',genmat);
if codehamming==codehamming2
 disp('The ''linear'' method can create Hamming code.')
end
codebch = encode(msg,n,k,'bch/decimal');
codecyclic = encode(msg,n,k,'cyclic/decimal');

% Decode to recover the original message.
decodedhamming = decode(codehamming,n,k,'hamming/decimal');
decodedbch = decode(codebch,n,k,'bch/decimal');
decodedcyclic = decode(codecyclic,n,k,'cyclic/decimal');
if (decodedhamming==msg & decodedbch==msg & decodedcyclic==msg)
 disp('All decoding worked flawlessly in this noiseless world.')
end

Algorithm Depending on the encoding method, encode relies on such lower-level functions
as hammgen, cyclgen, bchenco, and rsenco.

See Also decode, bchpoly, rspoly, cyclpoly, cyclgen, hammgen, bchenco, rsenco

eyediagram

3-95

3eyediagram Purpose Generate an eye diagram

Syntax eyediagram(x,n);
eyediagram(x,n,period);
eyediagram(x,n,period,offset);
eyediagram(x,n,period,offset,plotstring);
eyediagram(x,n,period,offset,plotstring,h);
h = eyediagram(...);

Description eyediagram(x,n) creates an eye diagram for the signal x, plotting n samples in
each trace. n must be an integer greater than 1. The labels on the horizontal
axis of the diagram range between -1/2 and 1/2. The function assumes that the
first value of the signal and every nth value thereafter, occur at integer times.
The interpretation of x and the number of plots depend on the shape and
complexity of x:

• If x is a real two-column matrix, then eyediagram interprets the first column
as in-phase components and the second column as quadrature components.
The two components appear in different subplots of a single figure window.

• If x is a complex vector, then eyediagram interprets the real part as in-phase
components and the imaginary part as quadrature components. The two
components appear in different subplots of a single figure window.

• If x is a real vector, then eyediagram interprets it as a real signal. The figure
window contains a single plot.

eyediagram(x,n,period) is the same as the syntax above, except that the
labels on the horizontal axis range between -period/2 and period/2.

eyediagram(x,n,period,offset) is the same as the syntax above, except that
the function assumes that the (offset+1)st value of the signal, and every nth
value thereafter, occur at times that are integer multiples of period. The
variable offset must be a nonnegative integer between 0 and n-1.

eyediagram(x,n,period,offset,plotstring) is the same as the syntax
above, except that plotstring determines the plotting symbol, line type, and
color for the plot. plotstring is a string whose format and meaning are the
same as in the plot function.

eyediagram

3-96

eyediagram(x,n,period,offset,plotstring,h) is the same as the syntax
above, except that the eye diagram is in the figure whose handle is h, rather
than a new figure. h must be a handle to a figure that eyediagram previously
generated.

Note You cannot use hold on to plot multiple signals in the same figure.

h = eyediagram(...) is the same as the earlier syntaxes, except that h is the
handle to the figure that contains the eye diagram.

Examples See “Example: Eye Diagrams” on page 2-9 for an example. For an online
demonstration, use scattereyedemo.

See Also scatterplot, plot, scattereyedemo

gen2par

3-97

3gen2parPurpose Convert between parity-check and generator matrices

Syntax parmat = gen2par(genmat);
genmat = gen2par(parmat);

Description parmat = gen2par(genmat) converts the standard-form binary generator
matrix genmat into the corresponding parity-check matrix parmat.

genmat = gen2par(parmat) converts the standard-form binary parity-check
matrix parmat into the corresponding generator matrix genmat.

The standard forms of the generator and parity-check matrices for an [n,k]
binary linear block code are shown in the table below.

where Ik is the identity matrix of size k and the ' symbol indicates matrix
transpose. Two standard forms are listed for each type, since different authors
use different conventions. For binary codes, the minus signs in the parity-check
form listed above are irrelevant; that is, -1 = 1 in the binary field.

Examples The commands below convert the parity-check matrix for a Hamming code into
the corresponding generator matrix and back again.

parmat = hammgen(3)

parmat =

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

genmat = gen2par(parmat)

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n

Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

gen2par

3-98

genmat =

 1 1 0 1 0 0 0
 0 1 1 0 1 0 0
 1 1 1 0 0 1 0
 1 0 1 0 0 0 1

parmat2 = gen2par(genmat) % Ans should be the same as parmat above

parmat2 =

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

See Also cyclgen, hammgen

gfadd

3-99

3gfaddPurpose Add polynomials over a Galois field

Syntax c = gfadd(a,b);
c = gfadd(a,b,p);
c = gfadd(a,b,p,len);
c = gfadd(a,b,field);

Description c = gfadd(a,b) adds two GF(2) polynomials. The inputs and output are row
vectors that give the coefficients of the corresponding polynomials in order of
ascending powers. Each coefficient is either 0 or 1, since the field is GF(2). If a
and b are matrices of the same size, then the function treats each row
independently.

c = gfadd(a,b,p) adds two GF(p) polynomials, where p is a prime number. a,
b, and c are row vectors that give the coefficients of the corresponding
polynomials in order of ascending powers. Each coefficient is between 0 and
p-1. If a and b are matrices of the same size, then the function treats each row
independently.

c = gfadd(a,b,p,len) adds row vectors a and b as in the previous syntax,
except that it returns a row vector of length len. The output c is a truncated or
extended representation of the sum. If the row vector corresponding to the sum
has fewer than len entries (including zeros), then extra zeros are added at the
end; if it has more than len entries, then entries from the end are removed.

c = gfadd(a,b,field) adds two GF(pm) elements, where m is a positive
integer. a and b are the exponential format of the two elements, relative to
some primitive element of GF(pm). field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. c is the exponential
format of the sum, relative to the same primitive element. See “Representing
Elements of Galois Fields” on page 2-90 for an explanation of these formats. If
a and b are matrices of the same size, then the function treats each element
independently.

Examples In the code below, sum5 is the sum of 2 + 3x + x2 and 4 + 2x + 3x2 over GF(5),
and linpart is the degree-one part of sum5.

sum5 = gfadd([2 3 1],[4 2 3],5)

gfadd

3-100

sum5 =

 1 0 4

linpart = gfadd([2 3 1],[4 2 3],5,2)

linpart =

 1 0

The code below shows that , where is a root of the primitive
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);
g = gfadd(2,4,field)

g =

 1

Other examples are in the section, “Arithmetic in Galois Fields” on page 2-97.

See Also gfsub, gfconv, gfmul, gfdeconv, gfdiv, gftuple, gfplus

α2 α4
+ α1

= α

gfconv

3-101

3gfconvPurpose Multiply polynomials over a Galois field

Syntax c = gfconv(a,b);
c = gfconv(a,b,p);
c = gfconv(a,b,field);

Description The gfconv function multiplies polynomials over a Galois field. (To multiply
elements of a Galois field, use gfmul instead.) Algebraically, multiplying
polynomials over a Galois field is equivalent to convolving vectors containing
the polynomials’ coefficients, where the convolution operation uses arithmetic
over the same Galois field.

c = gfconv(a,b) multiplies two GF(2) polynomials. The inputs and output are
row vectors that give the coefficients of the corresponding polynomials in order
of ascending powers. Each coefficient is either 0 or 1, since the field is GF(2).

c = gfconv(a,b,p) multiplies two GF(p) polynomials, where p is a prime
number. a, b, and c are row vectors that give the coefficients of the
corresponding polynomials in order of ascending powers. Each coefficient is
between 0 and p-1.

c = gfconv(a,b,field) multiplies two GF(pm) polynomials, where p is a
prime number and m is a positive integer. a, b, and c are row vectors that list
the exponential formats of the coefficients of the corresponding polynomials, in
order of ascending powers. The exponential format is relative to some primitive
element of GF(pm). field is the matrix listing all elements of GF(pm), arranged
relative to the same primitive element. See “Representing Elements of Galois
Fields” on page 2-90 for an explanation of these formats.

Examples The command below shows that over
GF(2).

gfc = gfconv([1 1 0 0 1],[0 1 1])

gfc =

 0 1 0 1 0 1 1

The code below illustrates the identity

1 x x4+ +() x x2+() x x3 x5 x6+ + +=

gfconv

3-102

 in GF(p)

for the case in which p = 7, r = 5, and s = 3. (The identity holds when p is any
prime number, and r and s are positive integers.)

p = 7; r = 5; s = 3;
a = gfrepcov([r s]); % x^r + x^s

% Compute a^p over GF(p).
c = 1;
for ii = 1:p
 c = gfconv(c,a,p);
end;

% Check whether c = x^(rp) + x^(sp).
powers = [];
for ii = 1:length(c)
 if c(ii)~=0
 powers = [powers, ii];
 end;
end;
if (powers==[r*p+1 s*p+1] | powers==[s*p+1 r*p+1])
 disp('The identity is proved for this case of r, s, and p.')
end

See Also gfdeconv, gfadd, gfsub, gfmul, gftuple

xr xs+()p xrp xsp+=

gfcosets

3-103

3gfcosetsPurpose Produce cyclotomic cosets for a Galois field

Syntax c = gfcosets(m);
c = gfcosets(m,p);

Description c = gfcosets(m) produces the cyclotomic cosets for GF(2m), where m is a
positive integer.

c = gfcosets(m,p) produces the cyclotomic cosets for GF(pm), where m is a
positive integer and p is a prime number.

In both cases, the output matrix c is structured so that each row represents one
coset. The row represents the coset by giving the exponential format of the
elements of the coset, relative to the default primitive polynomial for the field.
For a description of exponential formats, see “Representing Elements of Galois
Fields” on page 2-90.

The first column contains the coset leaders. Because the lengths of cosets may
vary, entries of NaN are used to fill the extra spaces when necessary to make c
rectangular.

A cyclotomic coset is a set of elements that all satisfy the same minimal
polynomial. For more details on cyclotomic cosets, see the works listed in
“References” below.

Examples The command below finds the cyclotomic cosets for GF(9).

c = gfcosets(2,3)

c =

 0 NaN
 1 3
 2 6
 4 NaN
 5 7

The gfminpol function can check that the elements of, for example, the third
row of c indeed belong in the same coset.

gfcosets

3-104

m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.

m =

 2 0 1
 2 0 1

See Also gfminpol, gfprimdf, gfroots

References Blahut, Richard E. Theory and Practice of Error Control Codes. Reading,
Mass.: Addison-Wesley, 1983, p.105.

Lin, Shu and Daniel J. Costello, Jr. Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1983.

gfdeconv

3-105

3gfdeconvPurpose Divide polynomials over a Galois field

Syntax [quot,remd] = gfdeconv(b,a);
[quot,remd] = gfdeconv(b,a,p);
[quot,remd] = gfdeconv(b,a,field);

Description The gfdeconv function divides polynomials over a Galois field. (To divide
elements of a Galois field, use gfdiv instead.) Algebraically, dividing
polynomials over a Galois field is equivalent to deconvolving vectors containing
the polynomials’ coefficients, where the deconvolution operation uses
arithmetic over the same Galois field.

[quot,remd] = gfdeconv(b,a) divides the polynomial b by the polynomial a
over GF(2) and returns the quotient in quot and the remainder in remd. All
inputs and outputs are row vectors that give the coefficients of the
corresponding polynomials in order of ascending powers. Each coefficient is
either 0 or 1, since the field is GF(2).

[quot,remd] = gfdeconv(b,a,p) divides the polynomial b by the polynomial
a over GF(p) and returns the quotient in quot and the remainder in remd. p is
a prime number. b, a, quot, and remd are row vectors that give the coefficients
of the corresponding polynomials in order of ascending powers. Each coefficient
is between 0 and p-1.

[quot,remd] = gfdeconv(b,a,field) divides the polynomial b by the
polynomial a over GF(pm) and returns the quotient in quot and the remainder
in remd. Here p is a prime number and m is a positive integer. b, a, quot, and
remd are row vectors that list the exponential formats of the coefficients of the
corresponding polynomials, in order of ascending powers. The exponential
format is relative to some primitive element of GF(pm). field is the matrix
listing all elements of GF(pm), arranged relative to the same primitive element.
See “Representing Elements of Galois Fields” on page 2-90 for an explanation
of these formats.

Examples The code below shows that

in GF(2). It also checks the results of the division.

x x3 x4+ +() 1 x+()÷ 1 x+ 3 Remainder 1=

gfdeconv

3-106

p = 2;
b = [0 1 0 1 1]; a = [1 1];
[quot, remd] = gfdeconv(b,a,p)
% Check the result.
bnew = gfadd(gfconv(quot,a,p),remd,p);
if isequal(bnew,b)
 disp('Correct.')
end;

The output is below.

quot =

 1 0 0 1

remd =

 1

Correct.

Working over GF(3), the code below outputs those polynomials of the form
xk - 1 (k = 2, 3, 4,..., 8) that 1 + x2 divides evenly.

p = 3; m = 2;
a = [1 0 1]; % 1+x^2
for ii = 2:p^m-1
 b = gfrepcov(ii); % x^ii
 b(1) = p-1; % -1+x^ii
 [quot, remd] = gfdeconv(b,a,p);
 % Display -1+x^ii if a divides it evenly.
 if remd==0
 gfpretty(b)
 end
end

The output is below.

 4
 2 + X

gfdeconv

3-107

 8
 2 + X

In light of the discussion in “Algorithm” on the reference page for gfprimck
along with the irreducibility of 1 + x2 over GF(3), this output indicates that
1 + x2 is not primitive for GF(9).

Algorithm The algorithm of gfdeconv is similar to that of the MATLAB function deconv.

See Also gfconv, gfadd, gfsub, gfdiv, gftuple

gfdiv

3-108

3gfdivPurpose Divide elements of a Galois field

Syntax quot = gfdiv(b,a);
quot = gfdiv(b,a,p);
quot = gfdiv(b,a,field);

Description The gfdiv function divides elements of a Galois field. (To divide polynomials
over a Galois field, use gfdeconv instead.)

quot = gfdiv(b,a) divides b by a in GF(2) and returns the quotient. If a and
b are matrices of the same size, then the function treats each element
independently. All entries of b, a, and quot are either 0 or 1, since the field is
GF(2).

quot = gfdiv(b,a,p) divides b by a in GF(p) and returns the quotient. p is a
prime number. If a and b are matrices of the same size, then the function treats
each element independently. All entries of b, a, and quot are between 0 and p-1.

quot = gfdiv(b,a,field) divides b by a in GF(pm) and returns the quotient.
p is a prime number and m is a positive integer. If a and b are matrices of the
same size, then the function treats each element independently. All entries of
b, a, and quot are the exponential formats of elements of GF(pm) relative to
some primitive element of GF(pm). field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. See “Representing
Elements of Galois Fields” on page 2-90 for an explanation of these formats.

In all cases, an attempt to divide by the zero element of the field results in a
“quotient” of NaN.

Examples The code below displays lists of multiplicative inverses in GF(5) and GF(25). It
uses column vectors as inputs to gfdiv.

% Find inverses of nonzero elements of GF(5).
p = 5;
b = ones(p-1,1);
a = [1:p-1]';
quot1 = gfdiv(b,a,p);
disp('Inverses in GF(5):')
disp('element inverse')
disp([a, quot1])

gfdiv

3-109

% Find inverses of nonzero elements of GF(25).
m = 2;
field = gftuple([-1:p^m-2]',m,p);
b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.
a = [0:p^m-2]';
quot2 = gfdiv(b,a,field);
disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')
disp('respect to a root of the default primitive polynomial:')
disp('element inverse')
disp([a, quot2])

See Also gfmul, gfdeconv, gfconv, gftuple

gffilter

3-110

3gffilterPurpose Filter data using polynomials over a prime Galois field

Syntax y = gffilter(b,a,x);
y = gffilter(b,a,x,p);

Description y = gffilter(b,a,x) filters the data x using the filter described by vectors a
and b. y is the filtered data in GF(2).

y = gffilter(b,a,x,p) filters the data x using the filter described by vectors
a and b. y is the filtered data in GF(p). p is a prime number, and all entries of
a and b are between 0 and p-1.

By definition of the filter, y solves the difference equation below

a(1)y(n) = b(1)x(n)+b(2)x(n-1)+b(3)x(n-2)+...+b(B+1)x(n-B)
-a(2)y(n-1)-a(3)y(n-2)-...-a(A+1)y(n-A)

where:

• A+1 is the length of the vector a

• B+1 is the length of the vector b

• n varies between 1 and the length of the vector x.

The vector a represents the degree-na polynomial

a(1)+a(2)x+a(3)x2+...+a(A+1)xA

Examples The impulse response of a particular filter is given in the code and diagram
below.

b = [1 0 0 1 0 1 0 1];
a = [1 0 1 1];
y = gffilter(b,a,[1,zeros(1,19)]);
stem(y);
axis([0 20 -.1 1.1])

gffilter

3-111

Algorithm For filters over GF(2) only, gffilter uses an algorithm similar to that used by
the MATLAB function filter. You can use filter for filters over GF(2) by
using the command below.

y = abs(rem(filter(b,a,x),2));

However, this may produce an error if a is not stable in the regular
discrete-time system analysis and the vector x is too long, or for a high order
filter. gffilter produces an accurate result in all cases.

See Also gfconv, gfadd, filter

gflineq

3-112

3gflineqPurpose Find a particular solution of A x = b over a prime Galois field

Syntax x = gflineq(A,b);
x = gflineq(A,b,p);
[x,vld] = gflineq(...);

Description x = gflineq(A,b) returns a particular solution of the linear equation A x = b
over GF(2). If A is a k-by-n matrix and b is a vector of length k, then x is a vector
of length n. Each entry of A, x, and b is either 0 or 1. If no solution exists, then
x is empty.

x = gflineq(A,b,p) returns a particular solution of the linear equation A x =
b over GF(p), where p is a prime number. If A is a k-by-n matrix and b is a vector
of length k, then x is a vector of length n. Each entry of A, x, and b is an integer
between 0 and p-1.

[x,vld] = gflineq(...) returns a flag vld that indicates the existence of a
solution. If vld = 1, then the solution x exists and is valid; if vld = 0, then no
solution exists.

Examples The code below produces some valid solutions of a linear equation over GF(2).

A=[1 0 1;
 1 1 0;
 1 1 1];
% An example in which the solutions are valid
[x,vld] = gflineq(A,[1;0;0])

x =

 1
 1
 0

vld =

 1

gflineq

3-113

By contrast, the command below finds that the linear equation has no
solutions.

[x2,vld2] = gflineq(zeros(3,3),[1;0;0])
This linear equation has no solution.

x2 =

 []

vld2 =

 0

Algorithm gflineq uses Gaussian elimination.

See Also gfadd, gfdiv, gfroots, gfrank, gfconv, conv

gfminpol

3-114

3gfminpolPurpose Find the minimal polynomial of an element of a Galois field

Syntax pol = gfminpol(k,m);
pol = gfminpol(k,primpoly);
pol = gfminpol(k,m,p);
pol = gfminpol(k,primpoly,p);

Description pol = gfminpol(k,m) finds the minimal polynomial of over GF(2), where
 is a root of the default primitive polynomial for GF(2m). m is an integer

greater than one. The format of the output is listed below:

• If k is a nonnegative integer, then pol is a row vector that gives the
coefficients of the minimal polynomial in order of ascending powers.

• If k is a vector of length len all of whose entries are nonnegative integers,
then pol is a matrix having len rows; the rth row of pol gives the coefficients

of the minimal polynomial of in order of ascending powers.

pol = gfminpol(k,primpoly) is the same as the first syntax listed, except
that is a root of the primitive polynomial for GF(2m) specified by primpoly.
primpoly is a row vector that gives the coefficients of the degree-m primitive
polynomial in order of ascending powers.

pol = gfminpol(k,m,p) is the same as the first syntax listed, except that 2 is
replaced by a prime number p.

pol = gfminpol(k,primpoly,p) is the same as the first syntax listed, except
that 2 is replaced by a prime number p, and that is a root of the primitive
polynomial for GF(pm) specified by primpoly. primpoly is a row vector that
gives the coefficients of the degree-m primitive polynomial in order of
ascending powers.

Examples The syntax gfminpol(k,m,p) is used in the sample code in the section
“Characterization of Polynomials” on page 2-101.

As another example, the code below determines which elements of GF(24) are
also in GF(22), by considering the degrees of their minimal polynomials.

p = 2; m = 4; % Consider elements of GF(16).
primpoly = gfprimdf(4);

αk

α

αk r()

α

α

gfminpol

3-115

% Get minimal polys for all elements except 0 and 1.
k = [1:p^m-2];
minpolys = gfminpol(k,primpoly);

% Check which minimal polys have degree 2.
gf4=[];
for ii = 1:p^m-2
 if length(gftrunc(minpolys(ii,:)))==3 % A degree-2 polynomial
 gf4=[gf4, ii];
 end
end

disp(['The elements of GF(4) are 0, 1, alpha^',...
 int2str(gf4(1)),' and alpha^',int2str(gf4(2))])
disp('where alpha is a root in GF(16) of the polynomial')
gfpretty(primpoly)

The output is below.

The elements of GF(4) are 0, 1, alpha^5 and alpha^10
where alpha is a root in GF(16) of the polynomial

 4
 1 + X + X

See Also gfprimdf, gfcosets, gfroots

gfmul

3-116

3gfmulPurpose Multiply elements of a Galois field

Syntax c = gfmul(a,b);
c = gfmul(a,b,p);
c = gfmul(a,b,field);

Description The gfmul function multiplies elements of a Galois field. (To multiply
polynomials over a Galois field, use gfconv instead.)

c = gfmul(a,b) multiplies a and b in GF(2). Each entry of a and b is either 0
or 1. If a and b are matrices of the same size, then the function treats each
element independently.

c = gfmul(a,b,p) multiplies a and b in GF(p). Each entry of a and b is
between 0 and p-1. p is a prime number. If a and b are matrices of the same size,
then the function treats each element independently.

c = gfmul(a,b,field) multiplies a and b in GF(pm), where p is a prime
number and m is a positive integer. a and b represent elements of GF(pm) in
exponential format relative to some primitive element of GF(pm). field is the
matrix listing all elements of GF(pm), arranged relative to the same primitive
element. c is the exponential format of the product, relative to the same
primitive element. See “Representing Elements of Galois Fields” on page 2-90
for an explanation of these formats. If a and b are matrices of the same size,
then the function treats each element independently.

Examples The section “Arithmetic in Galois Fields” on page 2-97 contains examples. Also,
the code below shows that , where is a root of the primitive
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);
a = gfmul(2,4,field)

a =

 6

See Also gfdiv, gfdeconv, gfadd, gfsub, gftuple

α2 α4⋅ α6
= α

gfplus

3-117

3gfplusPurpose Add elements of a Galois field of characteristic two

Syntax k = gfplus(a,b,fvec,ivec);

Description k = gfplus(a,b,fvec,ivec) adds a and b in GF(2m), using the exponential
format to represent inputs and outputs. If a and b are matrices, then they must
have the same dimensions, and gfplus adds them element-by-element. See
“Representing Elements of Galois Fields” on page 2-90 for an explanation of the
exponential format.

fvec and ivec are vectors of length 2m. The entries in both are integers
between 0 and 2m-1. fvec contains the same information as the field
parameter as used by gfadd, except that fvec has been condensed into a vector.
To compute fvec and ivec, define m and then use the commands below.

fvec = gftuple([−1 : 2^m−2]',m) ∗ 2.^[0 : m−1]';
ivec(fvec + 1) = 0 : 2^m - 1;

Alternatively, define a primitive polynomial vector pol and then use the
commands below. See gfprimfd for information about defining pol.

fvec = gftuple([−1 : 2^m−2]',pol) ∗ 2.^[0 : m−1]';
ivec(fvec + 1) = 0 : 2^m - 1;

Examples This example adds two matrices, each of which contains random nonzero
elements of GF(25).

m = 5;
a = randint(3,6,2^m-1,1234); % Create a 3-by-6 matrix in GF(2^5).
b = randint(3,6,2^m-1);
fvec = gftuple([-1 : 2^m - 2]',m)*2.^[0 : m-1]';
ivec(fvec + 1) = 0 : 2^m - 1;
aplusb = gfplus(a,b,fvec,ivec) % Add.

aplusb =

 22 25 4 23 9 29
 9 30 24 23 -Inf 19
 15 17 10 12 25 30

See Also gfadd, gfsub

gfpretty

3-118

3gfprettyPurpose Display a polynomial in traditional format

Syntax gfpretty(a)
gfpretty(a,st)
gfpretty(a,st,n)

Description gfpretty(a) displays a polynomial in a traditional format, using X as the
variable and the entries of the row vector a as the coefficients in order of
ascending powers. The polynomial is displayed in order of ascending powers.
Terms having a zero coefficient are not displayed.

gfpretty(a,st) is the same as the first syntax listed, except that the content
of the string st is used as the variable instead of X.

gfpretty(a,st,n) is the same as the first syntax listed, except that the
content of the string st is used as the variable instead of X, and each line of the
display has width n instead of the default value of 79.

Note For all syntaxes: If you do not use a fixed-width font, then the spacing
in the display might not look correct.

Examples The code below displays statements about the elements of GF(16).

p = 2; m = 4;
ii = randint(1,1,[1,p^m-2]); % Random exponent for prim element
primpolys = gfprimfd(m,'all');
[rows, cols] = size(primpolys);
jj = randint(1,1,[1,rows]); % Random primitive polynomial

disp('If A is a root of the primitive polynomial')
gfpretty(primpolys(jj,:)) % Polynomial in X
disp('then the element')
gfpretty([zeros(1,ii),1],'A') % The polynomial A^ii
disp('can also be expressed as')
gfpretty(gftuple(ii,m,p),'A') % Polynomial in A

Below is a sample of the output.

gfpretty

3-119

If A is a root of the primitive polynomial

 3 4
 1 + X + X
then the element

 5
 A
can also be expressed as

 2
 A + A

See Also gftuple, gfprimdf

gfprimck

3-120

3gfprimckPurpose Check whether a polynomial over a Galois field is primitive

Syntax ck = gfprimck(a);
ck = gfprimck(a,p);

Description ck = gfprimck(a) returns a flag ck that indicates whether a polynomial over
GF(2) is irreducible or primitive. a is a row vector that gives the coefficients of
the polynomial in order of ascending powers. Each coefficient is either 0 or 1,
since the field is GF(2). If m is the degree of the polynomial, then the output ck
is:

• -1 if a is not an irreducible polynomial

• 0 if a is irreducible but not a primitive polynomial for GF(2m)

• 1 if a is a primitive polynomial for GF(2m)

This function considers the zero polynomial to be “not irreducible” and
considers all polynomials of degree zero or one to be primitive.

ck = gfprimck(a,p) is the same as the syntax listed above, except that 2 is
replaced by a prime number p.

Examples The section “Characterization of Polynomials” on page 2-101 contains
examples.

Algorithm An irreducible polynomial over GF(p) of degree at least 2 is primitive if and
only if it does not divide -1 + xk for any positive integer k smaller than pm-1.

See Also gfprimfd, gfprimdf, gftuple, gfminpol, gfadd

References Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

gfprimdf

3-121

3gfprimdfPurpose Provide default primitive polynomials for a Galois field

Syntax pol = gfprimdf(m);
pol = gfprimdf(m,p);

Description pol = gfprimdf(m) returns the row vector that gives the coefficients, in order
of ascending powers, of MATLAB’s default primitive polynomial for GF(2m). m
is a positive integer.

pol = gfprimdf(m,p) returns the row vector that gives the coefficients, in
order of ascending powers, of MATLAB’s default primitive polynomial for
GF(pm). m is a positive integer and p is a prime number.

Examples The command below shows that 2 + x + x2 is the default primitive polynomial
for GF(52).

pol = gfprimdf(2,5)

pol =

 2 1 1

The code below displays the default primitive polynomial for each of the fields
GF(2m), where m ranges between 3 and 5.

for m = 3:5
 gfpretty(gfprimdf(m))
end

 3
 1 + X + X

 4
 1 + X + X

 2 5
 1 + X + X

See Also gfprimck, gfprimfd, gftuple, gfminpol

gfprimfd

3-122

3gfprimfdPurpose Find primitive polynomials for a Galois field

Syntax pol = gfprimfd(m);
pol = gfprimfd(m,opt);
pol = gfprimfd(m,opt,p);

Description For all syntaxes:

• If m = 1, then pol = [1 1].

• A polynomial is represented as a row containing the coefficients in order of
ascending powers.

pol = gfprimfd(m) returns the row vector representing one primitive
polynomial for GF(2m). m is a positive integer.

pol = gfprimfd(m,opt) searches for one or more primitive polynomials for
GF(2m), where m is a positive integer. If m > 1, then the output pol depends on
the argument opt as shown in the table below.

pol = gfprimfd(m,opt,p) is the same as pol = gfprimfd(m,opt) except that
2 is replaced by a prime number p.

opt Significance of pol Format of pol

'min' One primitive polynomial for GF(2m)
having the smallest possible number
of nonzero terms

The row vector representing the
polynomial

'max' One primitive polynomial for GF(2m)
having the greatest possible number
of nonzero terms

The row vector representing the
polynomial

'all' All primitive polynomials for GF(2m) A matrix, each row of which represents
one such polynomial

A positive
integer

All primitive polynomials for GF(2m)
that have opt nonzero terms

A matrix, each row of which represents
one such polynomial

gfprimfd

3-123

Examples The code below seeks primitive polynomials for GF(32) having various other
properties. Notice that fourterms is empty because no primitive polynomial for
GF(32) has exactly four nonzero terms. Also notice that manyterms represents
a single polynomial having five terms, while fiveterms represents all of the
five-term primitive polynomials for GF(32).

p = 2; m = 5; % Work in GF(32).
manyterms = gfprimfd(5,'max')
fiveterms = gfprimfd(5,5)
fourterms = gfprimfd(5,4)

The output is below.

manyterms =

 1 1 1 1 0 1

fiveterms =

 1 1 1 1 0 1
 1 1 1 0 1 1
 1 1 0 1 1 1
 1 0 1 1 1 1

No primitive polynomial satisfies the given constraints.

fourterms =

 []

Algorithm gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max', or
omitted, then polynomials are constructed by converting decimal integers to
base p. Based on the decimal ordering, gfprimfd returns the first polynomial it
finds that satisfies the appropriate conditions.

See Also gfprimck, gfprimdf, gftuple, gfminpol

gfrank

3-124

3gfrankPurpose Compute the rank of a matrix over a Galois field

Syntax rk = gfrank(A);
rk = gfrank(A,p);

Description rk = gfrank(A) calculates the rank of the matrix A in GF(2).

rk = gfrank(A,p) calculates the rank of the matrix A in GF(p), where p is a
prime number.

Algorithm gfrank uses an algorithm similar to Gaussian elimination.

Examples In the code below, gfrank says that the matrix A has less than full rank. This
conclusion makes sense because the determinant of A is zero mod 2.

A=[1 0 1;
 1 1 0;
 0 1 1];
det_a = det(A); % Ordinary determinant of A
detmod2 = rem(det(A),2); % Determinant mod 2
rank2 = gfrank(A);
disp(['determinant = ',num2str(det_a)])
disp(['determinant mod 2 is ',num2str(detmod2)])
disp(['rank over GF(2) is ',num2str(rank2)])

The output is below.

determinant = 2
determinant mod 2 is 0
rank over GF(2) is 2

Notice that gflineq finds only the trivial solution to the equation Ax = 0, even
though the output above implies that there are infinitely many other solutions.

sol = gflineq(A,[0;0;0])'

sol =

 0 0 0

See Also gflineq

gfrepcov

3-125

3gfrepcovPurpose Convert one GF(2) polynomial representation to another

Syntax polystandard = gfrepcov(poly2)

Description Two logical ways to represent polynomials over GF(2) are listed below:

1 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

.

Each entry A_k is either one or zero.

2 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

.

Each entry A_k is a nonnegative integer. All entries must be distinct.

Format 1 is the standard form used by the Galois field functions in this toolbox,
but there are some cases in which format 2 is more convenient.

polystandard = gfrepcov(poly2) converts from the second format to the
first, for polynomials of degree at least 2. poly2 and polystandard are row
vectors. The entries of poly2 are distinct integers, and at least one entry must
exceed 1. Each entry of polystandard is either 0 or 1.

Note If poly2 is a binary row vector, then gfrepcov assumes that it is
already in Format 1 above and returns it unaltered.

Examples The command below converts the representation format of the polynomial
1 + x2 + x5.

polystandard = gfrepcov([0 2 5])

polystandard =

 1 0 1 0 0 1

See Also gfpretty

A_0 A_1x A_2x2 … A_(m-1)xm 1–+ + + +

xA_0 xA_1 xA_2 … xA_(m-1)+ + + +

gfroots

3-126

3gfrootsPurpose Find the roots of a polynomial over a prime Galois field

Syntax rt = gfroots(f);
rt = gfroots(f,m);
rt = gfroots(f,primpoly);
rt = gfroots(f,m,p);
rt = gfroots(f,primpoly,p);
[rt,rt_tuple] = gfroots(...);
[rt,rt_tuple,field] = gfroots(...);

Description For all syntaxes, f is a row vector that gives the coefficients, in order of
ascending powers, of a degree-d polynomial.

Note gfroots lists each root exactly once, ignoring multiplicities of roots.

rt = gfroots(f) finds roots in GF(2d) of the polynomial that f represents. rt
is a column vector each of whose entries is the exponential format of a root. The
exponential format is relative to a root of the default primitive polynomial for
GF(2d).

rt = gfroots(f,m) finds roots in GF(2m) of the polynomial that f represents.
m is an integer greater than or equal to d. rt is a column vector each of whose
entries is the exponential format of a root. The exponential format is relative
to a root of the default primitive polynomial for GF(2m).

rt = gfroots(f,primpoly) finds roots in GF(2m) of the polynomial that f
represents. rt is a column vector each of whose entries is the exponential
format of a root. The exponential format is relative to a root of the degree-m
primitive polynomial for GF(2m) that primpoly represents. m is an integer
greater than or equal to d.

rt = gfroots(f,m,p) is the same as rt = gfroots(f,m) except that 2 is
replaced by a prime number p.

rt = gfroots(f,primpoly,p) is the same as rt = gfroots(f,primpoly)
except that 2 is replaced by a prime number p.

gfroots

3-127

[rt,rt_tuple] = gfroots(...) returns an additional matrix rt_tuple,
whose kth row is the polynomial format of the root rt(k). The polynomial and
exponential formats are both relative to the same primitive element.

[rt,rt_tuple,field] = gfroots(...) returns additional matrices rt_tuple
and field. rt_tuple is described in the paragraph above. field gives the list
of elements of the extension field. The list of elements, the polynomial format,
and the exponential format are all relative to the same primitive element.

Note For a description of the various formats that gfroots uses, see
“Representing Elements of Galois Fields” on page 2-90.

Examples The section, “Roots of Polynomials” on page 2-102, contains a description and
example of the use of gfroots.

As another example, the code below finds the polynomial format of the roots of
the primitive polynomial 1 + x3 + x4 for GF(16). It then displays the roots in
traditional form as polynomials in alpha. Since primpoly is both the primitive
polynomial and the polynomial whose roots are sought, alpha itself is a root.

p = 2; m = 4;
primpoly = [1 0 0 1 1]; % A primitive polynomial for GF(16)
f = primpoly; % Find roots of the primitive polynomial.
[rt,rt_tuple] = gfroots(f,primpoly,p);
% Display roots as polynomials in alpha.
for ii = 1:length(rt_tuple)
 gfpretty(rt_tuple(ii,:),'alpha')
end

See Also gfprimdf, gflineq

gfsub

3-128

3gfsubPurpose Subtract polynomials over a Galois field

Syntax c = gfsub(a,b);
c = gfsub(a,b,p);
c = gfsub(a,b,p,len);
c = gfsub(a,b,field);

Description c = gfsub(a,b) calculates a minus b, where a and b represent polynomials
over GF(2). The inputs and output are row vectors that give the coefficients of
the corresponding polynomials in order of ascending powers. Each coefficient is
either 0 or 1, since the field is GF(2). If a and b are matrices of the same size,
then the function treats each row independently.

c = gfsub(a,b,p) calculates a minus b, where a and b represent polynomials
over GF(p) and p is a prime number. a, b, and c are row vectors that give the
coefficients of the corresponding polynomials in order of ascending powers.
Each coefficient is between 0 and p-1. If a and b are matrices of the same size,
then the function treats each row independently.

c = gfsub(a,b,p,len) subtracts row vectors as in the syntax above, except
that it returns a row vector of length len. The output c is a truncated or
extended representation of the answer. If the row vector corresponding to the
answer has fewer than len entries (including zeros), then extra zeros are added
at the end; if it has more than len entries, then entries from the end are
removed.

c = gfsub(a,b,field) calculates a minus b, where a and b are the
exponential format of two elements of GF(pm), relative to some primitive
element of GF(pm). p is a prime number and m is a positive integer. field is
the matrix listing all elements of GF(pm), arranged relative to the same
primitive element. c is the exponential format of the answer, relative to the
same primitive element. See “Representing Elements of Galois Fields” on page
2-90 for an explanation of these formats. If a and b are matrices of the same
size, then the function treats each element independently.

Examples In the code below, differ is the difference of 2 + 3x + x2 and 4 + 2x + 3x2 over
GF(5), and linpart is the degree-one part of differ.

differ = gfsub([2 3 1],[4 2 3],5)

gfsub

3-129

differ =

 3 1 3

linpart = gfsub([2 3 1],[4 2 3],5,2)

linpart =

 3 1

The code below shows that , where is a root of the primitive
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
primpoly = [2 2 1];
field = gftuple([-1:p^m-2]',primpoly,p);
d = gfsub(2,4,field)

d =

 7

See Also gfadd, gfconv, gfmul, gfdeconv, gfdiv, gftuple

α2 α4
– α7

= α

gftrunc

3-130

3gftruncPurpose Minimize the length of a polynomial representation

Syntax c = gftrunc(a);

Description c = gftrunc(a) truncates a row vector, a, that gives the coefficients of a GF(p)
polynomial in order of ascending powers. If a(k) = 0 whenever k > d + 1, then
the polynomial has degree d. The row vector c omits these high-order zeros and
thus has length d + 1.

Examples In the code below, zeros are removed from the end, but not from the beginning
or middle, of the row-vector representation of x2 + 2x3 + 3x4 + 4x7 + 5x8.

c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])

c =

 0 0 1 2 3 0 0 4 5

See Also gfadd, gfsub, gfconv, gfdeconv, gftuple

gftuple

3-131

3gftuplePurpose Simplify or convert the format of elements of a Galois field

Syntax tp = gftuple(a,m);
tp = gftuple(a,primpoly);
tp = gftuple(a,m,p);
tp = gftuple(a,primpoly,p);
tp = gftuple(a,primpoly,p,prim_ck);
[tp,expform] = gftuple(...);

Description For All Syntaxes
gftuple serves to simplify the polynomial or exponential format of Galois field
elements, or to convert from one format to another. For an explanation of the
formats that gftuple uses, see “Representing Elements of Galois Fields” on
page 2-90.

In this discussion, the format of an element of GF(pm) is called “simplest” if all
exponents of the primitive element are:

• Between 0 and m-1 for the polynomial format

• Either -Inf, or between 0 and pm-2 for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element of a
Galois field. The format of a determines how MATLAB interprets it:

• If a is a column of integers, then MATLAB interprets each row as an
exponential format of an element. Negative integers are equivalent to -Inf
in that they all represent the zero element of the field.

• If a has more than one column, then MATLAB interprets each row as a
polynomial format of an element. (Each entry of a must be an integer
between 0 and p-1, where p is 2 if not specified as an input.)

The exponential or polynomial formats mentioned above are all relative to a
primitive element specified by the second input argument. The second
argument is described below.

For Specific Syntaxes

tp = gftuple(a,m) returns the simplest polynomial format of the elements
that a represents, where the kth row of tp corresponds to the kth row of a. The

gftuple

3-132

formats are relative to a root of the default primitive polynomial for GF(2m). m
is a positive integer. If possible, the default primitive polynomial is used to
simplify the polynomial formats.

tp = gftuple(a,primpoly) returns the simplest polynomial format of the
element that a represents, where the kth row of tp corresponds to the kth row
of a. The formats are relative to a root of the primitive polynomial whose
coefficients are given, in order of ascending powers, by the row vector
primpoly. If possible, this primitive polynomial is used to simplify the
polynomial formats.

tp = gftuple(a,m,p) is the same as tp = gftuple(a,m) except that 2 is
replaced by a prime number p.

tp = gftuple(a,primpoly,p) is the same as tp = gftuple(a,primpoly)
except that 2 is replaced by a prime number p.

tp = gftuple(a,primpoly,p,prim_ck) is the same as tp =
gftuple(a,primpoly,p) except that gftuple checks whether primpoly
represents a polynomial that is indeed primitive. If not, then gftuple
generates an error and tp is not returned. The input argument prim_ck can be
any number or string; only its existence matters.

[tp,expform] = gftuple(...) returns the additional matrix expform. The
kth row of expform is the simplest exponential format of the element that the
kth row of a represents. All other features are as described in earlier parts of
this “Description” section, depending on the input arguments.

Examples Some examples are in these subsections of “Galois Field Computations” on
page 2-89:

• “List of All Elements of a Galois Field” on page 2-91 (end of section)

• “Converting to Simplest Polynomial Format” on page 2-94

• “Converting to Simplest Exponential Format” on page 2-96

As another example, the gftuple command below generates a list of elements
of GF(pm), arranged relative to a root of the default primitive polynomial. Some
functions in this toolbox use such a list as an input argument.

gftuple

3-133

p = 5; % Or any prime number
m = 4; % Or any positive integer
field = gftuple([-1:p^m-2]',m,p);

Finally, the two commands below illustrate the influence of the shape of the
input matrix. In the first command, a column vector is treated as a sequence of
elements expressed in exponential format. In the second command, a row
vector is treated as a single element expressed in polynomial format.

tp1 = gftuple([0; 1],3)

tp1 =

 1 0 0
 0 1 0

tp2 = gftuple([0, 0, 0, 1],3)

tp2 =

 1 1 0

The outputs reflect that, according to the default primitive polynomial for
GF(8), the relations below are true.

Algorithm gftuple uses recursive callbacks to determine the exponential format.

See Also gfadd, gfmul, gfconv, gfdiv, gfdeconv, gfprimdf

α0 1 0α 0α2
+ +=

α1 0 1α 0α2
+ +=

0 0α 0α2 α3
+ + + 1 α 0α2

+ +=

gfweight

3-134

3gfweightPurpose Calculate the minimum distance of a linear block code

Syntax wt = gfweight(genmat);
wt = gfweight(genmat,'gen');
wt = gfweight(parmat,'par');
wt = gfweight(genpoly,n);

Description The minimum distance, or minimum weight, of a linear block code is defined
as the smallest positive number of nonzero entries in any n-tuple that is a
codeword.

wt = gfweight(genmat) returns the minimum distance of the linear block
code whose generator matrix is genmat.

wt = gfweight(genmat,'gen') returns the minimum distance of the linear
block code whose generator matrix is genmat.

wt = gfweight(parmat,'par') returns the minimum distance of the linear
block code whose parity-check matrix is parmat.

wt = gfweight(genpoly,n) returns the minimum distance of the cyclic code
whose codeword length is n and whose generator polynomial is represented by
genpoly. genpoly is a row vector that gives the coefficients of the generator
polynomial in order of ascending powers.

Examples The commands below illustrate three different ways to compute the minimum
distance of a (7,4) cyclic code.

n = 7;
% Generator polynomial of (7,4) cyclic code
genpoly = cyclpoly(n,4);
[parmat, genmat] = cyclgen(n,genpoly);
wts = [gfweight(genmat,'gen'),gfweight(parmat,'par'),...
 gfweight(genpoly,n)]

wts =

 3 3 3

See Also hammgen, cyclpoly, bchpoly

hammgen

3-135

3hammgenPurpose Produce parity-check and generator matrices for Hamming code

Syntax h = hammgen(m);
h = hammgen(m,pol);
[h,g] = hammgen(...);
[h,g,n,k] = hammgen(...);

Description For all syntaxes, the codeword length is n. n has the form 2m-1 for some positive
integer m greater than or equal to 3. The message length, k, has the form n-m.

h = hammgen(m) produces an m-by-n parity-check matrix for a Hamming code
having codeword length n = 2m-1. m is a positive integer greater than or equal
to 3. The message length of the code is n-m. The binary primitive polynomial
used to produce the Hamming code is MATLAB’s default primitive polynomial
for GF(2m), represented by gfprimdf(m).

h = hammgen(m,pol) produces an m-by-n parity-check matrix for a Hamming
code having codeword length n = 2m-1. m is a positive integer greater than or
equal to 3. The message length of the code is n-m. pol is a row vector that gives
the coefficients, in order of ascending powers, of the binary primitive
polynomial for GF(2m) that is used to produce the Hamming code. hammgen
produces an error if pol represents a polynomial that is not, in fact, primitive.

[h,g] = hammgen(...) is the same as h = hammgen(...) except that it also
produces the k-by-n generator matrix g that corresponds to the parity-check
matrix h. k, the message length, equals n-m, or, 2m-1-m.

[h,g,n,k] = hammgen(...) is the same as [h,g] = hammgen(...) except that
it also returns the codeword length n and the message length k.

Note If your value of m is less than 25 and if your primitive polynomial is
MATLAB’s default primitive polynomial for GF(2m), then the syntax
hammgen(m) is likely to be faster than the syntax hammgen(m,pol).

Examples The command below exhibits the parity-check and generator matrices for a
Hamming code with codeword length 7 = 23-1 and message length 4 = 7-3.

hammgen

3-136

[h,g,n,k] = hammgen(3)

h =

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

g =

 1 1 0 1 0 0 0
 0 1 1 0 1 0 0
 1 1 1 0 0 1 0
 1 0 1 0 0 0 1

n =

 7

k =

 4

The command below, which uses 1 + x2 + x3 as the primitive polynomial for
GF(23), shows that the parity-check matrix depends on the choice of primitive
polynomial. Notice that h1 below is different from h in the example above.

h1 = hammgen(3,[1 0 1 1])

h1 =

 1 0 0 1 1 1 0
 0 1 0 0 1 1 1
 0 0 1 1 1 0 1

hammgen

3-137

Algorithm Unlike gftuple which processes one m-tuple at a time, hammgen generates the
entire sequence from 0 to 2m−1. The computation algorithm uses all previously
computed values to produce the computation result.

See Also gftuple, gfrepcov, gfprimck, gfprimfd, gfprimdf

hank2sys

3-138

3hank2sysPurpose Convert a Hankel matrix to a linear system model

Syntax [num,den] = hank2sys(h,ini,tol)
[num,den,sv] = hank2sys(h,ini,tol)
[a,b,c,d] = hank2sys(h,ini,tol)
[a,b,c,d,sv] = hank2sys(h,ini,tol)

Description [num,den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a linear
system transfer function with numerator num and denominator den. The
vectors num and den list the coefficients of their respective polynomials in order
of ascending exponents. ini is the system impulse at time zero. If tol > 1, then
tol is the order of the conversion. If tol < 1, then tol is the tolerance in
selecting the conversion order based on the singular values. If you omit tol,
then its default value is 0.01. This conversion uses the singular value
decomposition method.

[num,den,sv] = hank2sys(h,ini,tol) returns a vector sv that lists the
singular values of h.

[a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to a
corresponding linear system state-space model. a, b, c, and d are matrices. The
input parameters are the same as in the first syntax above.

[a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax above,
except that sv is a vector that lists the singular values of h.

Examples h = hankel([1 0 1]);
[num,den,sv] = hank2sys(h,0,.01)

num =

 0 1.0000 0.0000 1.0000

den =

 1.0000 0.0000 0.0000 0.0000

hank2sys

3-139

sv =

 1.6180
 1.0000
 0.6180

See Also hilbiir, hankel, rcosflt

hilbiir

3-140

3hilbiirPurpose Design a Hilbert transform IIR filter

Syntax hilbiir;
hilbiir(ts);
hilbiir(ts,dly);
hilbiir(ts,dly,bandwidth);
hilbiir(ts,dly,bandwidth,tol);
[num,den] = hilbiir(...);
[num,den,sv] = hilbiir(...);
[a,b,c,d] = hilbiir(...);
[a,b,c,d,sv] = hilbiir(...);

Description The function hilbiir designs a Hilbert transform filter. The output is either:

• A plot of the filter’s impulse response, or

• A quantitative characterization of the filter, using either a transfer function
model or a state-space model

Background Information
An ideal Hilbert transform filter has the transfer function H(s) = -j sgn(s),
where sgn(.) is the signum function (sign in MATLAB). The impulse response
of the Hilbert transform filter is

Since the Hilbert transform filter is a noncausal filter, the hilbiir function
introduces a group delay, dly. A Hilbert transform filter with this delay has the
impulse response

Choosing a Group Delay Parameter
The filter design is an approximation. If you provide the filter’s group delay as
an input argument, then these two suggestions can help improve the accuracy
of the results:

h t() 1
πt
-----=

h t() 1
π t dly–()
---------------------------=

hilbiir

3-141

• Choose the sample time ts and the filter’s group delay dly so that dly is at
least a few times larger than ts and rem(dly,ts) = ts/2. For example, you
can set ts to 2*dly/N, where N is a positive integer.

• At the point t = dly, the impulse response of the Hilbert transform filter can
be interpreted as 0, −Inf, or Inf. If hilbiir encounters this point, then it sets
the impulse response there to zero. To improve accuracy, avoid the point
t = dly.

Syntaxes for Plots
Each of these syntaxes produces a plot of the impulse response of the filter that
the hilbiir function designs, as well as the impulse response of a
corresponding ideal Hilbert transform filter.

hilbiir plots the impulse response of a fourth-order digital Hilbert transform
filter with a 1-second group delay. The sample time is 2/7 seconds. In this
particular design, the tolerance index is 0.05. The plot also displays the
impulse response of the ideal Hilbert transform filter with a 1-second group
delay.

hilbiir(ts) plots the impulse response of a fourth-order Hilbert transform
filter with a sample time of ts seconds and a group delay of ts*7/2 seconds.
The tolerance index is 0.05. The plot also displays the impulse response of the
ideal Hilbert transform filter having a sample time of ts seconds and a group
delay of ts*7/2 seconds.

hilbiir(ts,dly) is the same as the syntax above, except that the filter’s group
delay is dly for both the ideal filter and the filter that hilbiir designs. See
“Choosing a Group Delay Parameter” above for guidelines on choosing dly.

hilbiir(ts,dly,bandwidth) is the same as the syntax above, except that
bandwidth specifies the assumed bandwidth of the input signal and that the
filter design might use a compensator for the input signal. If bandwidth = 0 or
bandwidth > 1/(2*ts), then hilbiir does not use a compensator.

hilbiir(ts,dly,bandwidth,tol) is the same as the syntax above, except that
tol is the tolerance index. If tol < 1, then the order of the filter is determined
by

hilbiir

3-142

If tol > 1, then the order of the filter is tol.

Syntaxes for Transfer Function and State-Space Quantities
Each of these syntaxes produces quantitative information about the filter that
hilbiir designs, but does not produce a plot. The input arguments for these
syntaxes (if you provide any) are the same as those described in the “Syntaxes
for Plots” section above.

[num,den] = hilbiir(...) outputs the numerator and denominator of the
IIR filter’s transfer function.

[num,den,sv] = hilbiir(...) outputs the numerator and denominator of
the IIR filter’s transfer function, and the singular values of the Hankel matrix
that hilbiir uses in the computation.

[a,b,c,d] = hilbiir(...) outputs the discrete-time state-space model of the
designed Hilbert transform filter. a, b, c, and d are matrices.

[a,b,c,d,sv] = hilbiir(...) outputs the discrete-time state-space model of
the designed Hilbert transform filter, and the singular values of the Hankel
matrix that hilbiir uses in the computation.

Algorithm The hilbiir function calculates the impulse response of the ideal Hilbert
transform filter response with a group delay. It fits the response curve using a
singular-value decomposition method. See the book by Kailath listed below.

Examples At the MATLAB prompt, type hilbiir or [num,den] = hilbiir for an example
using the function’s default values.

See Also grpdelay

References Kailath, Thomas. Linear Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1980.

truncated-singular-value
maximum-singular-value
-- tol<

istrellis

3-143

3istrellisPurpose Check if the input is a valid trellis structure

Syntax [isok,status] = istrellis(s);

Description [isok,status] = istrellis(s) checks if the input s is a valid trellis
structure. If the input is a valid trellis structure, then isok is 1 and status is
an empty string. Otherwise, isok is 0 and status is a string that indicates why
s is not a valid trellis structure.

A valid trellis structure is a MATLAB structure whose fields are as in the table
below.

In the nextStates matrix, each entry is an integer between 0 and numStates-1.
The element in the sth row and uth column denotes the next state when the
starting state is s-1 and the input bits have decimal representation u-1. To
convert the input bits to a decimal value, use the first input bit as the most
significant bit (MSB). For example, the second column of the nextStates
matrix stores the next states when the current set of input values is {0,...,0,1}.

To convert the state to a decimal value, use this rule: If k exceeds 1, then the
shift register that receives the first input stream in the encoder provides the
least significant bits in the state number, while the shift register that receives
the last input stream in the encoder provides the most significant bits in the
state number.

Table 3-16: Fields of a Valid Trellis Structure for a Rate k/n Code

Field in Trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to the encoder: 2k

numOutputsymbols Scalar Number of output symbols from the encoder: 2n

numStates Scalar Number of states in the encoder

nextStates numStates-by-2k
matrix

Next states for all combinations of current state
and current input

outputs numStates-by-2k
matrix

Outputs (in octal) for all combinations of
current state and current input

istrellis

3-144

In the outputs matrix, the element in the sth row and uth column denotes the
encoder’s output when the starting state is s-1 and the input bits have decimal
representation u-1. To convert to decimal value, use the first output bit as the
MSB.

Examples These commands assemble the fields into a very simple trellis structure, and
then verify the validity of the trellis structure.

trellis.numInputSymbols = 2;
trellis.numOutputSymbols = 2;
trellis.numStates = 2;
trellis.nextStates = [0 1;0 1];
trellis.outputs = [0 0;1 1];
[isok,status] = istrellis(trellis)

isok =

 1

status =

 ''

See Also poly2trellis, struct, convenc, vitdec

lloyds

3-145

3lloydsPurpose Optimize quantization parameters using the Lloyd algorithm

Syntax [partition,codebook] = lloyds(trainingset,initcodebook);
[partition,codebook] = lloyds(trainingset,len);
[partition,codebook] = lloyds(trainingset,...,tol);
[partition,codebook,distor] = lloyds(...);
[partition,codebook,distor,reldistor] = lloyds(...);

Description [partition,codebook] = lloyds(trainingset,initcodebook) optimizes
the scalar quantization parameters partition and codebook for the training
data in the vector trainingset. initcodebook, a vector of length at least 2, is
the initial guess of the codebook values. The output codebook is a vector of the
same length as initcodebook. The output partition is a vector whose length
is one less than the length of codebook.

See either “Representing Quantization Parameters” on page 2-14 or the
reference page for quantiz in this chapter, for a description of the formats of
partition and codebook.

Note lloyds optimizes for the data in trainingset. For best results,
trainingset should be similar to the data that you plan to quantize.

[partition,codebook] = lloyds(trainingset,len) is the same as the first
syntax, except that the scalar argument len indicates the size of the vector
codebook. This syntax does not include an initial codebook guess.

[partition,codebook] = lloyds(trainingset,...,tol) is the same as the
two syntaxes above, except that tol replaces 10-7 in condition 1 of the algorithm
description below.

[partition,codebook,distor] = lloyds(...) returns the final mean
square distortion in the variable distor.

[partition,codebook,distor,reldistor] = lloyds(...) returns a value
reldistor that is related to the algorithm’s termination. In case 1 of “Algorithm”
below, reldistor is the relative change in distortion between the last two
iterations. In case 2 , reldistor is the same as distor.

lloyds

3-146

Examples The code below optimizes the quantization parameters for a sinusoidal
transmission via a 3-bit channel. Since the typical data is sinusoidal,
trainingset is a sampled sine wave. Since the channel can transmit 3 bits at
a time, lloyds prepares a codebook of length 23.

% Generate a complete period of a sinusoidal signal.
x = sin([0:1000]∗pi/500);
[partition,codebook] = lloyds(x,2^3)

partition =

 -0.8540 -0.5973 -0.3017 0.0031 0.3077 0.6023 0.8572

codebook =

 Columns 1 through 7

 -0.9504 -0.7330 -0.4519 -0.1481 0.1558 0.4575 0.7372

 Column 8

 0.9515

Algorithm lloyds uses an iterative process to try to minimize the mean square distortion.
The optimization processing ends when either:

1 The relative change in distortion between iterations is less than 10-7, or

2 The distortion is less than eps*max(trainingset), where eps is MATLAB’s
floating-point relative accuracy

See Also quantiz, dpcmopt

References S. P. Lloyd. “Least Squares Quantization in PCM.” IEEE Transactions on
Information Theory. Vol IT-28, March 1982, 129-137.

J. Max. “Quantizing for Minimum Distortion.” IRE Transactions on
Information Theory. Vol. IT-6, March 1960, 7-12.

marcumq

3-147

3marcumqPurpose Generalized Marcum Q function

Syntax Q = marcumq(a,b);
Q = marcumq(a,b,m);

Description Q = marcumq(a,b) computes the Marcum Q function of a and b, defined by

where a and b are nonnegative real numbers. In this expression, I0 is the
modified Bessel function of the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by

where a and b are nonnegative real numbers, and m is a nonnegative integer.
In this expression, Im-1 is the modified Bessel function of the first kind of order
m-1.

See Also besseli; ncx2cdf (Statistics Toolbox)

References Cantrell, P. E. and A. K. Ojha, “Comparison of Generalized Q-Function
Algorithms.” IEEE Transactions on Information Theory, vol. IT-33, July 1987,
591-596.

Marcum, J. I. “A Statistical Theory of Target Detection by Pulsed Radar:
Mathematical Appendix.” RAND Corporation, Santa Monica, CA, Research
Memorandum RM-753, July 1, 1948. Reprinted in IRE Transactions on
Information Theory, vol. IT-6, April 1960, 59-267.

McGee, W. F. “Another Recursive Method of Computing the Q Function.” IEEE
Transactions on Information Theory, vol. IT-16, July 1970, 500-501.

Q a b,() x x2 a2+
2

------------------– 
  I0 ax()exp xd

b

∞

∫=

Qm a b,() 1
am 1–
--------------- xm x2 a2+

2
------------------– 

  Im 1– ax()exp xd

b

∞

∫=

modmap

3-148

3modmap Purpose Map a digital signal to an analog signal

Syntax modmap('method',...);
y = modmap(x,Fd,Fs,'ask',M);
y = modmap(x,Fd,Fs,'fsk',M,tone);
y = modmap(x,Fd,Fs,'msk');
y = modmap(x,Fd,Fs,'psk',M);
y = modmap(x,Fd,Fs,'qask',M);
y = modmap(x,Fd,Fs,'qask/arb',inphase,quadr);
y = modmap(x,Fd,Fs,'qask/cir',numsig,amp,phs);

Optional
Inputs

Description The digital modulation process consists of two steps: mapping the digital signal
to an analog signal and modulating this analog signal. The function modmap
performs the first step. You can perform the second step using amod, amodce, or
your own custom modulator. The table below lists the digital modulation
schemes that modmap supports.

To Plot a Signal Constellation

modmap('method',...) creates a plot that characterizes the M-ary modulation
method that ’method’ specifies. ’method’ is one of the entries in the

Input Default Value

tone Fd

amp [1:length(numsig)]

phs numsig*0

Modulation Scheme Value of ’method’

M-ary amplitude shift keying 'ask'

M-ary frequency shift keying 'fsk'

Minimum shift keying 'msk'

M-ary phase shift keying 'psk'

Quadrature amplitude shift keying 'qask', 'qask/cir', or 'qask/arb'

modmap

3-149

right-hand column of the table above. If ’method’ is a value other than ’fsk’ or
’msk’, then the plot shows the signal constellation; otherwise, it shows the
spectrum.

For most methods, the input parameters that follow ’method’ in this syntax
are the same as those that follow ’method’ in the corresponding mapping
syntax. For more information about them, see the section “To Map a Digital
Signal (Specific Syntax Information)” below.

However, if ’method’ is 'msk', then the syntax is

modmap('msk',Fd)

where Fd is the sampling rate of the message signal.

To Map a Digital Signal (General Information)
The generic syntax y = modmap(x,Fd,Fs,...) maps the digital message signal
x onto an analog signal. x is a matrix of nonnegative integers. The sizes of x and
y depend on the modulation method:

• (ASK, FSK, MSK methods) If x is a vector of length n, then y is a column
vector of length n*Fs/Fd. Otherwise, if x is n-by-m, then y is (n*Fs/Fd)-by-m
and each column of x is processed separately.

• (PSK, QASK methods) If x is a vector of length n, then y is an n*Fs/Fd-by-2
matrix. Otherwise, if x is n-by-m, then y is (n*Fs/Fd)-by-2m and each column
of x is processed separately. The odd-numbered columns in y represent
in-phase components and the even-numbered columns represent quadrature
components.

The sampling rates in Hertz of x and y, respectively, are Fd and Fs. (Thus 1/Fd
represents the time interval between two consecutive samples in x, and
similarly for y.) The ratio Fs/Fd must be a positive integer.

To Map a Digital Signal (Specific Syntax Information)

y = modmap(x,Fd,Fs,'ask',M) maps to an M-ary amplitude shift keying
signal constellation. Each entry of x must be in the range [0, M-1]. Each entry
of y is in the range [-1, 1].

y = modmap(x,Fd,Fs,'fsk',M,tone) maps to frequencies in an M-ary
frequency shift keying set. Each entry of x must be in the range [0, M-1]. The

modmap

3-150

optional argument tone is the separation between successive frequencies in the
FSK set. The default value of tone is Fd.

y = modmap(x,Fd,Fs,'msk') maps to frequencies in a minimum shift keying
set. Each entry of x is either 0 or 1. The separation between the two frequencies
is Fd/2.

y = modmap(x,Fd,Fs,'psk',M) maps to an M-ary phase shift keying signal
constellation. Each entry of x must be in the range [0, M-1].

y = modmap(x,Fd,Fs,'qask',M) maps to an M-ary quadrature amplitude shift
keying square signal constellation. The table below shows the maximum value
of the in-phase and quadrature components in y, for several small values of M.

Note To see how symbols are mapped to the constellation points, generate a
square constellation plot using qaskenco(M) or modmap('qask',M).

y = modmap(x,Fd,Fs,'qask/arb',inphase,quadr) maps to a quadrature
amplitude shift keying signal constellation that you define using the vectors
inphase and quadr. The signal constellation point for the kth message has
in-phase component inphase(k+1) and quadrature component quadr(k+1).

y = modmap(x,Fd,Fs,'qask/cir',numsig,amp,phs) maps to a quadrature
amplitude shift keying circular signal constellation. numsig, amp, and phs are
vectors of the same length. The entries in numsig and amp must be positive. If
k is an integer in the range [1, length(numsig)], then amp(k) is the radius of

M Maximum of y M Maximum of y

2 1 32 5

4 1 64 7

8 3 (quadrature
maximum is 1)

128 11

16 3 256 15

modmap

3-151

the kth circle, numsig(k) is the number of constellation points on the kth circle,
and phs(k) is the phase of the first constellation point plotted on the kth circle.
All points on the kth circle are evenly spaced. If you omit phs, then its default
value is numsig*0. If you omit amp, then its default value is
[1:length(numsig)].

Note To see how symbols are mapped to the constellation points, generate a
labeled circle constellation plot using apkconst(numsig,amp,phs,'n').

Examples The command below plots a phase shift keying (PSK) signal constellation with
32 points.

modmap('psk',32);

The script below maps a digital signal using the 32-point PSK constellation. It
then adds noise and computes the resulting error rate while demapping. Your
results might vary because the example uses random numbers.

M = 32; Fd = 1; Fs = 3;
x = randint(100,1,M); % Original signal

modmap

3-152

y = modmap(x,Fd,Fs,'psk',M); % Mapped signal, using 32-ary PSK
ynoisy = y+.1*rand(100*Fs,2); % Mapped signal with noise added
z = demodmap(ynoisy,Fd,Fs,'psk',M); % Demapped noisy signal
s = symerr(x,z) % Number of errors after demapping noisy signal

s =

 8

See Also demodmap, dmod, dmodce, amod, amodce, apkconst

oct2dec

3-153

3oct2decPurpose Convert octal numbers to decimal numbers

Syntax d = oct2dec(c)

Description d = oct2dec(c) converts an octal matrix c to a decimal matrix d, element by
element. In both octal and decimal representations, the rightmost digit is the
least significant.

Examples The command below converts a 2-by-2 octal matrix.

d = oct2dec([12 144;0 25])

d =

 10 100
 0 21

For instance, the octal number 144 is equivalent to the decimal number 100
because 144 (octal) = 1*82 + 4*81 + 4*80 = 64 + 32 + 4 = 100.

See Also bi2de

poly2trellis

3-154

3poly2trellisPurpose Convert convolutional code polynomials to trellis description

Syntax trellis = poly2trellis(ConstraintLength,CodeGenerator);
trellis = poly2trellis(ConstraintLength,CodeGenerator,...

FeedbackConnection);

Description The poly2trellis function accepts a polynomial description of a convolutional
encoder and returns the corresponding trellis structure description. The output
of poly2trellis is suitable as an input to the convenc and vitdec functions,
and as a mask parameter for the Convolutional Encoder, Viterbi Decoder, and
APP Decoder blocks in the Communications Blockset.

trellis = poly2trellis(ConstraintLength,CodeGenerator) performs the
conversion for a rate k/n feedforward encoder. ConstraintLength is a 1-by-k
vector that specifies the delay for the encoder’s k input bit streams.
CodeGenerator is a k-by-n matrix of octal numbers that specifies the n output
connections for each of the encoder’s k input bit streams.

trellis = poly2trellis(ConstraintLength,CodeGenerator,...
FeedbackConnection) is the same as the syntax above, except that it applies
to a feedback, not feedforward, encoder. FeedbackConnection is a 1-by-k vector
of octal numbers that specifies the feedback connections for the encoder’s k
input bit streams.

For both syntaxes, the output is a MATLAB structure whose fields are as in the
table below.

Table 3-17: Fields of the Output Structure trellis for a Rate k/n Code

Field in trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to the encoder: 2k

numOutputsymbols Scalar Number of output symbols from the encoder: 2n

numStates Scalar Number of states in the encoder

poly2trellis

3-155

For more about this structure, see the reference page for the istrellis
function.

Examples Consider the rate 2/3 feedforward convolutional encoder depicted in the figure
below. The reference page for the convenc function includes an example that
uses this encoder.

For this encoder, the ConstraintLength vector is [5,4] and the CodeGenerator
matrix is [27,33,0; 0,5,13]. The output below reveals part of the corresponding
trellis structure description of this encoder.

trellis = poly2trellis([5 4],[27 33 0; 0 5 13])

nextStates numStates-by-2k
matrix

Next states for all combinations of current state
and current input.

outputs numStates-by-2k
matrix

Outputs (in octal) for all combinations of
current state and current input

Table 3-17: Fields of the Output Structure trellis for a Rate k/n Code (Continued)

Field in trellis Structure Dimensions Meaning

z-1

z-1 z-1 z-1

z-1z-1z-1

+

+

+

poly2trellis

3-156

trellis =

 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 128
 nextStates: [128x4 double]
 outputs: [128x4 double]

The scalar field trellis.numInputSymbols has the value 4 because the
combination of two input bit streams can produce four different input symbols.
Similarly, trellis.numOutputSymbols is 8 because the three output bit
streams can produce eight different output symbols.

The scalar field trellis.numStates is 128 (that is, 27) because each of the
encoder’s seven memory registers can have one of two binary values.

To get details about the matrix fields trellis.nextStates and
trellis.outputs, inquire specifically about them. As an example, the
command below displays the first five rows of the 128-by-4 matrix
trellis.nextStates.

trellis.nextStates(1:5,:)

ans =

 0 64 8 72
 0 64 8 72
 1 65 9 73
 1 65 9 73
 2 66 10 74

This first row indicates that if the encoder starts in the zeroth state and
receives input bits of 00, 01, 10, or 11, respectively, then the next state will be
the 0th, 64th, 8th, or 72nd state, respectively. The 64th state means that the
bottom-left memory register in the diagram contains the value 1, while the
other six memory registers contain zeros.

See Also istrellis, convenc, vitdec

qaskdeco

3-157

3qaskdecoPurpose Demap a message from a QASK square signal constellation

Syntax msg = qaskdeco(inphase,quadr,M);
msg = qaskdeco(inphase,quadr,M,mnmx);

Description msg = qaskdeco(inphase,quadr,M) demaps the message signal msg from the
M-ary quadrature amplitude shift keying (QASK) square signal constellation
points given in the vectors inphase and quadr. Here inphase lists the in-phase
components of the points and quadr lists the corresponding quadrature
components. M must be a power of 2. qaskdeco uses the default
minimum/maximum value of the in-phase component and quadrature
component. The defaults corresponding to small values of M are in the table on
the reference page for the function qaskenco.

Note To see how symbols are mapped to the constellation points, generate a
constellation plot using qaskenco(M).

msg = qaskdeco(inphase,quadr,M,mnmx) is the same as the syntax above,
except that mnmx specifies the minimum and maximum in-phase and
quadrature component values. mnmx is a 2-by-2 matrix of the form shown below.

Examples The commands below show that qaskdeco and qaskenco are inverse
operations.

msg = [0 3 5 3 2 5]'; M = 8;
[inphase,quadr] = qaskenco(msg,M); % Map the message.
newmsg = qaskdeco(inphase,quadr,M) % Demap to recover data.

newmsg =

 0
 3
 5

mnmx in-phase minimum in-phase maximum
quadrature minimum quadrature maximum

=

qaskdeco

3-158

 3
 2
 5

See Also qaskenco, decode, demodmap

qaskenco

3-159

3qaskencoPurpose Map a message to a QASK square signal constellation

Syntax qaskenco(M)
qaskenco(msg,M)
[inphase,quadr] = qaskenco(M)
[inphase,quadr] = qaskenco(msg,M)

Description qaskenco(M) plots the square signal constellation for M-ary quadrature
amplitude shift keying (QASK) modulation, labeling the M points with numbers
in the range [0, M-1]. M must be a power of 2. If M is a perfect square, then
qaskenco labels the constellation points so as to implement Gray code.

qaskenco(msg,M) is the same as the syntax above, except that only those
points with labels in the vector msg are plotted. The elements in msg must be
integers in the range [0, M-1].

[inphase,quadr] = qaskenco(M) returns vectors inphase and quadr that
represent the coordinates of the points in the signal constellation for M-ary
QASK modulation. inphase gives the in-phase component of each point and
quadr gives the quadrature component of each point. M must be a power of 2.

[inphase,quadr] = qaskenco(msg,M) is the same as the syntax above, except
that inphase and quadr represent only those constellation points with labels in
the vector msg. (These labels are the same number labels that appear in the plot
that the command qaskenco(msg,M) produces.) The elements in msg must be
integers in the range [0, M-1].

The table below shows the maximum value of inphase and quadr, for several
small values of M.

M Maximum of inphase and
quadr

M Maximum of inphase and
quadr

2 1 32 5

4 1 64 7

8 3 (maximum of quadr is 1) 128 11

16 3 256 15

qaskenco

3-160

Examples The command below displays that part of the 8-ary QASK square constellation
that corresponds to the points in the digital message signal [0 3 4 3 2 5].

qaskenco([0 3 4 3 2 5],8)

The commands below capture the same information in vectors inphase and
quadr instead of in a plot.

[inphase,quadr] = qaskenco([0 3 5 3 2 5],8);
inphase'

ans =

 1 -1 -3 -1 1 -3

quadr'

qaskenco

3-161

ans =

 1 -1 1 -1 -1 1

The command below captures in inphase and quadr the coordinates of all eight
points in the 8-ary QASK square constellation.

[inphase2,quadr2] = qaskenco(8);

See Also encode, modmap, qaskdeco

quantiz

3-162

3quantizPurpose Produce a quantization index and a quantized output value

Syntax index = quantiz(sig,partition);
[index,quants] = quantiz(sig,partition,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);

Description index = quantiz(sig,partition) returns the quantization levels in the real
vector signal sig using the parameter partition. partition is a real vector
whose entries are in strictly ascending order. If partition has length n, then
index is a column vector whose kth entry is:

• 0 if

• m if

• n if

[index,quants] = quantiz(sig,partition,codebook) is the same as the
syntax above, except that codebook prescribes a value for each partition in the
quantization and quants contains the quantization of sig based on the
quantization levels and prescribed values. codebook is a vector whose length
exceeds the length of partition by one. quants is a row vector whose length is
the same as the length of sig. quants is related to codebook and index by

quants(ii) = codebook(index(ii)+1);

where ii is an integer between 1 and length(sig).

[index,quants,distor] = quantiz(sig,partition,codebook) is the same
as the syntax above, except that distor estimates the mean square distortion
of this quantization data set.

Examples The command below rounds several numbers between 1 and 100 up to the
nearest multiple of ten. quants contains the rounded numbers, and index tells
which quantization level each number is in.

[index,quants] = quantiz([3 34 84 40 23],10:10:90,10:10:100)

index =

 0
 3

sig k() partition 1()≤
partition m() sig k()< partition m 1+()≤
partition n() sig k()<

quantiz

3-163

 8
 3
 2

quants =

 10 40 90 40 30

See Also lloyds, dpcmenco, dpcmdeco

randerr

3-164

3randerrPurpose Generate bit error patterns

Syntax out = randerr(m);
out = randerr(m,n);
out = randerr(m,n,errors);
out = randerr(m,n,errors,state);

Description For all syntaxes, randerr treats each row of out independently.

out = randerr(m) generates an m-by-m binary matrix, each row of which has
exactly one nonzero entry in a random position. Each allowable configuration
has an equal probability.

out = randerr(m,n) generates an m-by-n binary matrix, each row of which has
exactly one nonzero entry in a random position. Each allowable configuration
has an equal probability.

out = randerr(m,n,errors) generates an m-by-n binary matrix, where
errors determines how many nonzero entries are in each row:

• If errors is a scalar, then it is the number of nonzero entries in each row.

• If errors is a row vector, then it lists the possible number of nonzero entries
in each row.

• If errors is a matrix having two rows, then the first row lists the possible
number of nonzero entries in each row and the second row lists the
probabilities that correspond to the possible error counts.

Once randerr determines the number of nonzero entries in a given row, each
configuration of that number of nonzero entries has equal probability.

out = randerr(m,n,prob,state) is the same as the syntax above, except that
it first resets the state of MATLAB’s uniform random number generator rand
to the integer state.

Examples To generate an 8-by-7 binary matrix, each row of which is equally likely to have
either zero or two nonzero entries, use the command below.

out = randerr(8,7,[0 2])

randerr

3-165

out =

 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 1 0 0 0 1
 1 0 1 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 1 1 0
 1 0 1 0 0 0 0

To alter the scenario above by making it three times as likely that a row has
two nonzero entries, use the command below instead. Notice that the second
row of the error parameter sums to one.

out2 = randerr(8,7,[0 2; .25 .75])

out =

 0 0 0 0 0 0 0
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 0 0 0 1 0 1 0
 0 0 0 0 0 0 0
 0 1 0 0 0 0 1
 0 0 0 0 0 0 0
 1 0 0 0 1 0 0

See Also rand, randsrc, randint

randint

3-166

3randintPurpose Generate matrix of uniformly distributed random integers

Syntax out = randint
out = randint(m);
out = randint(m,n);
out = randint(m,n,rg);
out = randint(m,n,rg,state);

Description out = randint generates a random scalar that is either zero or one, with equal
probability.

out = randint(m) generates an m-by-m binary matrix, each of whose entries
independently takes the value zero with probability 1/2.

out = randint(m,n) generates an m-by-n binary matrix, each of whose entries
independently takes the value zero with probability 1/2.

out = randint(m,n,rg) generates an m-by-n integer matrix. If rg is zero, then
out is a zero matrix. Otherwise, the entries are uniformly distributed and
independently chosen from the range:

• [0, rg-1] if rg is a positive integer

• [rg+1, 0] if rg is a negative integer

• Between min and max, inclusive, if rg = [min,max] or [max,min]

out = randint(m,n,rg,state) is the same as the syntax above, except that it
first resets the state of MATLAB’s uniform random number generator rand to
the integer state.

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed in the
range from 0 to 7, you can use either of the following commands.

out = randint(10,10,[0,7]);
out = randint(10,10,8);

See Also rand, randsrc, randerr

randsrc

3-167

3randsrcPurpose Generate random matrix using prescribed alphabet

Syntax out = randsrc;
out = randsrc(m);
out = randsrc(m,n);
out = randsrc(m,n,alphabet);
out = randsrc(m,n,[alphabet; prob]);
out = randsrc(m,n,...,state);

Description out = randsrc generates a random scalar that is either -1 or 1, with equal
probability.

out = randsrc(m) generates an m-by-m matrix, each of whose entries
independently takes the value -1 with probability 1/2, and 1 with probability
1/2.

out = randsrc(m,n) generates an m-by-n matrix, each of whose entries
independently takes the value -1 with probability 1/2, and 1 with probability
1/2.

out = randsrc(m,n,alphabet) generates an m-by-n matrix, each of whose
entries is independently chosen from the entries in the row vector alphabet.
Each entry in alphabet occurs in out with equal probability. Duplicate values
in alphabet are ignored.

out = randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix, each of
whose entries is independently chosen from the entries in the row vector
alphabet. Duplicate values in alphabet are ignored. The row vector prob lists
corresponding probabilities, so that the symbol alphabet(k) occurs with
probability prob(k), where k is any integer between one and the number of
columns of alphabet. The elements of prob must add up to one.

out = randsrc(m,n,...,state); is the same as the two preceding syntaxes,
except that it first resets the state of MATLAB’s uniform random number
generator rand to the integer state.

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed
among members of the set {-3,-1,1,3}, you can use either of these commands.

randsrc

3-168

out = randsrc(10,10,[-3 -1 1 3]);
out = randsrc(10,10,[-3 -1 1 3; .25 .25 .25 .25]);

To skew the probability distribution so that -1 and 1 each occur with
probability .3, while -3 and 3 each occur with probability .2, use this command.

out = randsrc(10,10,[-3 -1 1 3; .2 .3 .3 .2]);

See Also rand, randint, randerr

rcosfir

3-169

3rcosfirPurpose Design a raised cosine FIR filter

Syntax b = rcosfir(R,n_T,rate,T);
b = rcosfir(R,n_T,rate,T,filter_type);
rcosfir(...);
rcosfir(...,colr);
[b,sample_time] = rcosfir(...);

Optional
Inputs

Description The rcosfir function designs the same filters that the rcosine function
designs when the latter’s type_flag argument includes 'fir'. However,
rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

b = rcosfir(R,n_T,rate,T) designs a raised cosine filter and returns a
vector b of length(n_T(2) - n_T(1))*rate + 1. The filter’s rolloff factor is R,
where . T is the duration of each bit in seconds. n_T is a length-two
vector that indicates the number of symbol periods before and after the peak
response. rate is the number of points in each input symbol period of length T.
rate must be greater than one. The input sample rate is T samples per second,
while the output sample rate is T*rate samples per second.

The order of the FIR filter is

(n_T(2)-n_T(1))*rate

The arguments n_T, rate, and T are optional inputs whose default values are
[-3,3], 5, and 1, respectively.

Input Default Value

n_T [-3,3]

rate 5

T 1

h t() sin πt T⁄()
πt T⁄()

--------------------------- πRt T⁄()cos
1 4R2t2 T2⁄–()

---⋅=

0 R 1≤ ≤

rcosfir

3-170

b = rcosfir(R,n_T,rate,T,filter_type) designs a square-root raised
cosine filter if filter_type is 'sqrt'. If filter_type is ’normal’ then this
syntax is the same as the previous one.

The impulse response of a square root raised cosine filter is

rcosfir(...) produces plots of the time and frequency responses of the raised
cosine filter.

rcosfir(...,colr) uses the string colr to determine the plotting color. The
choices for colr are the same as those listed for the plot function.

[b,sample_time] = rcosfir(...) returns the FIR filter and its sample time.

Examples The commands below compare different rolloff factors.

rcosfir(0);
subplot(211); hold on;
subplot(212); hold on;
rcosfir(.5,[],[],[],[],'r-');
rcosfir(1,[],[],[],[],'g-');

See Also rcosiir, rcosflt, rcosine, firrcos, rcosdemo

References Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold,
1985.

h t() 4r

1 r+()πt T⁄()cos 1 r–()πt T⁄()sin

4r t
T

---+

π T 4rt T⁄()2 1–()
---=

rcosflt

3-171

3rcosfltPurpose Filter the input signal using a raised cosine filter

Syntax y = rcosflt(x,Fd,Fs);
y = rcosflt(x,Fd,Fs,'filter_type’,r,delay,tol);
y = rcosflt(x,Fd,Fs,'filter_type/Fs’,r,delay,tol);
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den);
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay);
y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...);
[y,t] = rcosflt(...);

Optional
Inputs

Description The function rcosflt passes an input signal through a raised cosine filter. You
can either let rcosflt design a raised cosine filter automatically or you can
specify the raised cosine filter yourself using input arguments.

Designing the Filter Automatically

y = rcosflt(x,Fd,Fs) designs a raised cosine FIR filter and then filters the
input signal x using it. The sample frequency for the digital input signal x is
Fd, and the sample frequency for the output signal y is Fs. The ratio Fs/Fd must
be an integer. In the course of filtering, rcosflt upsamples the data by a factor
of Fs/Fd, by inserting zeros between samples. The order of the filter is
1+2*delay*Fs/Fd, where delay is 3 by default. If x is a vector, then the sizes of
x and y are related by this equation.

length(y) = (length(x) + 2 * delay)*Fs/Fd

Otherwise, y is a matrix, each of whose columns is the result of filtering the
corresponding column of x.

Input Default Value

filter_type fir/normal

r 0.5

delay 3

tol 0.01

den 1

rcosflt

3-172

y = rcosflt(x,Fd,Fs,'filter_type',r,delay,tol) designs a raised cosine
FIR or IIR filter and then filters the input signal x using it. The ratio Fs/Fd
must be an integer. r is the rolloff factor for the filter, a real number in the
range [0, 1]. delay is the filter’s group delay, measured in input samples. The
actual group delay in the filter design is delay/Fd seconds. The input tol is the
tolerance in the IIR filter design. FIR filter design does not use tol.

The characteristics of x, Fd, Fs, and y are as in the first syntax.

The fourth input argument, 'filter_type', is a string that determines the type
of filter that rcosflt should design. Use one of the values in the table below.

y = rcosflt(x,Fd,Fs,'filter_type/Fs',r,delay,tol) is the same as the
previous syntax, except that it assumes that x has sample frequency Fs. This
syntax does not upsample x any further. If x is a vector, then the relative sizes
of x and y are related by this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)

As before, if x is a nonvector matrix, then y is a matrix each of whose columns
is the result of filtering the corresponding column of x.

Specifying the Filter Using Input Arguments

y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den) filters the input
signal x using a filter whose transfer function numerator and denominator are
given in num and den, respectively. If filter_type includes fir, then omit den.
This syntax uses the same arguments x, Fd, Fs, and filter_type as explained
in the first and second syntaxes above.

Table 3-18: Values of filter_type to Determine the Type of Filter

Type of Filter Value of opt

FIR raised cosine filter fir or fir/normal

IIR raised cosine filter iir or iir/normal

Square-root FIR raised cosine filter fir/sqrt

Square-root IIR raised cosine filter iir/sqrt

rcosflt

3-173

y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay) uses delay
in the same way that the rcosine function uses it. This syntax assumes that
the filter described by num, den, and delay was designed using rcosine.

As before, if x is a nonvector matrix, then y is a matrix each of whose columns
is the result of filtering the corresponding column of x.

y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...) is the same
as the earlier syntaxes, except that it assumes that x has sample frequency Fs
instead of Fd. This syntax does not upsample x any further. If x is a vector, then
the relative sizes of x and y are related by this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)

Additional Output

[y,t] = rcosflt(...) outputs t, a vector that contains the sampling time
points of y.

See Also rcosine, rcosfir, rcosiir, rcosdemo, grpdelay

References Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold,
1985.

rcosiir

3-174

3rcosiirPurpose Design a raised cosine IIR filter

Syntax [num,den] = rcosiir(R,T_delay,rate,T,tol);
[num,den] = rcosiir(R,T_delay,rate,T,tol,filter_type);
rcosiir(...);
rcosiir(...,colr);
[num,den,sample_time] = rcosiir(...);

Optional
Inputs

Description The rcosiir function designs the same filters that the rcosine function
designs when the latter’s type_flag argument includes 'iir'. However,
rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

[num,den] = rcosiir(R,T_delay,rate,T,tol) designs an IIR
approximation of an FIR raised cosine filter, and returns the numerator and
denominator of the IIR filter. The filter’s rolloff factor is R, where . T
is the symbol period in seconds. The filter’s group delay is T_delay symbol
periods. rate is the number of sample points in each interval of duration T.
rate must be greater than one. The input sample rate is T samples per second,
while the output sample rate is T*rate samples per second. If tol is an integer
greater than one, then it becomes the order of the IIR filter; if tol is less than
1, then it indicates the relative tolerance for rcosiir to use when selecting the
order based on the singular values.

The arguments T_delay, rate, T, and tol are optional inputs whose default
values are 3, 5, 1, and 0.01, respectively.

Input Default Value

T_delay 3

rate 5

T 1

tol 0.01

h t() sin πt T⁄()
πt T⁄()

--------------------------- πRt T⁄()cos
1 4R2t2 T2⁄–()

---⋅=

0 R 1≤ ≤

rcosiir

3-175

[num,den] = rcosiir(R,T_delay,rate,T,tol,filter_type) designs a
square-root raised cosine filter if filter_type is 'sqrt'. If filter_type is
’normal’ then this syntax is the same as the previous one.

rcosiir(...) plots the time and frequency responses of the raised cosine
filter.

rcosiir(...,colr) uses the string colr to determine the plotting color. The
choices for colr are the same as those listed for the plot function.

[num,den,sample_time] = rcosiir(...) returns the transfer function and
the sample time of the IIR filter.

Examples The script below compares different values of T_delay.

rcosiir(0,10);
subplot(211); hold on;
subplot(212); hold on;
col = ['r-';'g-';'b-';'m-';'c-';'w-'];
R = [8,6,4,3,2,1];
for ii = R

rcosiir(0,ii,[],[],[],[],col(find(R==ii),:));
end;

This example shows how the filter’s frequency response more closely
approximates that of the ideal raised cosine filter as T_delay increases.

See Also rcosfir, rcosflt, rcosine, rcosdemo, grpdelay

References Kailath, Thomas. Linear Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1980.

Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold,
1985.

rcosine

3-176

3rcosinePurpose Design a raised cosine filter

Syntax num = rcosine(Fd,Fs);
[num,den] = rcosine(Fd,Fs,type_flag);
[num,den] = rcosine(Fd,Fs,type_flag,r);
[num,den] = rcosine(Fd,Fs,type_flag,r,delay);
[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol);

Description num = rcosine(Fd,Fs) designs a finite impulse response (FIR) raised cosine
filter and returns its transfer function. The digital input signal has sampling
frequency Fd. The sampling frequency for the filter is Fs. The ratio Fs/Fd must
be a positive integer greater than one. The default rolloff factor is .5. The filter’s
group delay, which is the time between the input to the filter and the filter’s
peak response, is three input samples. Equivalently, the group delay is 3/Fd
seconds.

[num,den] = rcosine(Fd,Fs,type_flag) designs a raised cosine filter using
directions in the string variable type_flag. Filter types are listed in the table
below, along with the corresponding values of type_flag.

The default tolerance value in IIR filter design is 0.01.

[num,den] = rcosine(Fd,Fs,type_flag,r) specifies the rolloff factor, r. The
rolloff factor is a real number in the range [0, 1].

[num,den] = rcosine(Fd,Fs,type_flag,r,delay) specifies the filter’s group
delay, measured in input samples. delay is a positive integer. The actual group
delay in the filter design is delay/Fd seconds.

Table 3-19: Types of Filter and Corresponding Values of type_flag

Type of Filter Value of type_flag

Finite impulse response (FIR) 'default' or 'fir/normal'

Infinite impulse response (IIR) 'iir' or 'iir/normal'

Square-root raised cosine FIR 'sqrt' or 'fir/sqrt'

Square-root raised cosine IIR 'iir/sqrt'

rcosine

3-177

[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol) specifies the
tolerance in the IIR filter design. FIR filter design does not use tol.

See Also rcosflt, rcosiir, rcosfir, rcosdemo, grpdelay

References Korn, Israel. Digital Communications. New York: Van Nostrand Reinhold,
1985.

rsdeco

3-178

3rsdecoPurpose Reed-Solomon decoder

Syntax msg = rsdeco(code,n,k);
msg = rsdeco(code,n,k,fmt);
msg = rsdeco(code,field,...);
[msg,err] = rsdeco(...);
[msg,err,ccode] = rsdeco(...);
[msg,err,ccode,cerr] = rsdeco(...);

Description For All Syntaxes
The encoding counterpart for this function is rsenco.

In all cases, the codeword length n must have the form 2m-1 where m is an
integer greater than or equal to 3.

The matrix code, which contains the code words to be decoded, can have one of
several formats. The table below shows the formats for msg, how the optional
argument fmt should reflect the format of msg, and how the format of the
output code depends on these choices. If fmt is not specified as input, then its
default value is binary.

Table 3-20: Information Formats for Reed-Solomon Decoding

Format of code Value of fmt Argument Format of msg

Binary matrix with m columns 'binary' Binary matrix with m
columns

Example: code = [0 0 0; 0 1 1; 0 1 1; 1 1 0; 1 0 1; 1 0 0; 0 1 1]

Binary column vector 'binary' Binary column vector

Example: code = [0 0 0, 0 1 1, 0 1 1, 1 1 0, 1 0 1, 1 0 0, 0 1 1]';

rsdeco

3-179

For Specific Syntaxes

msg = rsdeco(code,n,k) decodes code using the Reed-Solomon decoding
method. n is the codeword length and k is the message length. code has either
of the two binary formats described in Table 3-20, Information Formats for
Reed-Solomon Decoding.

msg = rsdeco(code,n,k,fmt) is the same as the syntax above, except that fmt
specifies the format of code. Table 3-20, Information Formats for
Reed-Solomon Decoding, lists the possible values for fmt, as well as the
corresponding shape and contents of code.

msg = rsdeco(code,field,...) is a faster variation of the syntaxes above.
field is a matrix that lists all elements of GF(2m) in the format described in
“List of All Elements of a Galois Field” on page 2-91. The size of field
determines n.

[msg,err] = rsdeco(...) outputs the number err, which specifies the
number of errors that occurred in the decoding.

[msg,err,ccode] = rsdeco(...) outputs ccode, a corrected version of code.
The format of ccode matches the format of code in the input.

[msg,err,ccode,cerr] = rsdeco(...) outputs the number cerr, which
specifies the number of errors found in the ccode column.

Matrix of integers in the range
[0, 2m-1], with n columns

'decimal' Matrix of integers in the
range [0, 2m-1], with k
columns

Example: code = [0, 6, 6, 3, 5, 1, 6]

Matrix of integers in the range
[-1, 2m-2], with n columns

'power' Matrix of integers in the
range [-1, 2m-2], with k
columns

Example: code = [-1, 5, 5, 2, 4, 0, 5]

Table 3-20: Information Formats for Reed-Solomon Decoding (Continued)

Format of code Value of fmt Argument Format of msg

rsdeco

3-180

Examples This example creates and decodes a noisy code. Although some codewords
contain errors, the decoded message contains no errors.

L = 1000; % Number of bits in the computation
m = 4;
n = 2^m - 1; % Codeword length
k = n - 4; % Message word length
rand('state',9876); % Initialize random number generator.
msg = randint(L,1); % L bits of data
field = gftuple([-1 : n-1]',m); % List of elements in GF(2^m)
[code,added] = rsenco(msg,field,k); % Encode the data.
msg = [msg; zeros(added,1)]; % Pad msg for later comparison.

% Add burst errors of length m to the code.
noi = rand(length(code)/m,1) < .03; % Three percent noise
noi = (noi*ones(1,m))'; noi = noi(:);
code_noi = rem(code + noi,2);

% Decode the noisy code.
[dec,err,ccode,err_c] = rsdeco(code_noi,field,k);
err_c = reshape(err_c,n,length(err_c)/n)';
% Number of code symbols that contain at least one error
num_err_codesyms = sum(err_c(:,1) > 0)
% Number of bit errors after decoding
num_err_decbits = sum(abs(dec-msg))

num_err_codesyms =

 36

num_err_decbits =

 0

See Also rsenco, rsencode, rsdecode, rspoly

rsdecode

3-181

3rsdecodePurpose Reed-Solomon decoding using the exponential format

Syntax msg = rsdecode(code,k);
msg = rsdecode(code,k,m);
msg = rsdecode(code,k,field);
[msg,err] = rsdecode(...);
[msg,err,ccode] = rsdecode(...);

Description For All Syntaxes
The encoding counterpart for this function is rsencode.

rsdecode uses the exponential format to represent elements of GF(2m). For
example, an entry of 2 represents the element , where is a primitive
element of GF(2m). If field is not used as an input argument, then the
exponential format is relative to a root of MATLAB’s default primitive
polynomial for GF(2m).If field is used as an input argument, then its format
and the formats in msg and code are all relative to the same primitive element
of GF(2m). See “Representing Elements of Galois Fields” on page 2-90 for more
information about these formats.

Since GF(2m) has 2m elements, each codeword represents 2m(2m−1) bits of
information. Each decoded message represents 2m*k bits of information.

For Specific Syntaxes

msg = rsdecode(code,k) decodes code using the Reed-Solomon method. k is
the message length. The codeword length n must have the form 2m-1 for some
integer m greater than or equal to 3. code is a matrix with n columns. Each row
of code represents one codeword. Each entry of code represents an element of
GF(2m) in exponential format. msg is a matrix with k columns. Each row of msg
represents one message. Each entry of msg is the exponential format of an
element of GF(2m).

msg = rsdecode(code,k,m) is the same as the first syntax when the matrix
code has 2m-1 columns. This syntax is faster than the first.

msg = rsdecode(code,k,field) is the same as the first syntax, except that
field is a matrix that lists the elements of GF(2m) in the format described in

α2 α

rsdecode

3-182

“List of All Elements of a Galois Field” on page 2-91. This syntax is faster than
the first two.

[msg,err] = rsdecode(...) returns a column vector err that gives
information about error correction. A nonnegative integer in err(r) indicates
the number of errors corrected in the rth codeword; a negative integer indicates
that there are more errors in the rth codeword than can be corrected.

[msg,err,ccode] = rsdecode(...) returns the corrected code in ccode.

Examples The script below continues the example from the reference page for rsencode.
After corrupting some symbols from the code, it tries to recover the message.

m = 3; n = 2^m-1; % Codeword length is 7.
field = gftuple([-1:2^m-2]',m,2); % List of elements in GF(2^m)
msg = [5 0 1; 2 3 4];
k = size(msg,2); % Message length = number of columns of msg
genpoly = rspoly(n,k,field); % Generator polynomial
code = rsencode(msg,genpoly,n,field);
% Change up to three of the code symbols.
noisycode = code;
noisycode(1,2) = randint(1,1,[-1,n-1]);
noisycode(2,1) = randint(1,1,[-1,n-1]);
noisycode(2,5) = randint(1,1,[-1,n-1]);
% Try to decode.
[newmsg,err,ccode] = rsdecode(noisycode,k,field);
if ccode==code
 disp('All errors were corrected.')
end
if newmsg==msg
 disp('The message was recovered perfectly.')
end

Unless one of the random integers was zero, err is the matrix [1;2], which
reflects the fact that we put one error in the first row of noisycode and two
errors in the second row. Since this code’s error-correction capability is
floor((n-k)/2), or 2, all errors are corrected in this example.

See Also rsencode, encode, decode, rsdeco

rsdecof

3-183

3rsdecofPurpose Decode an ASCII file that was encoded using Reed-Solomon code

Syntax rsdecof(file_in,file_out);
rsdecof(file_in,file_out,err_cor);

Description This function is the inverse process of the function rsencof in that it decodes a
file that rsencof encoded.

rsdecof(file_in,file_out) decodes the ASCII file file_in that was
previously created by the function rsencof using an error-correction capability
of 5. The decoded message is written to file_out. Both file_in and file_out
are string variables.

Note If the number of characters in file_in is not an integer multiple of
127, then the function appends char(4) symbols to the data it must decode. If
you encode and then decode a file using rsencof and rsdecof, respectively,
then the decoded file might have char(4) symbols at the end that the original
file does not have.

rsdecof(file_in,file_out,err_cor) is the same as the first syntax, except
that err_cor specifies the error-correction capability for each block of 127
codeword characters. The message length is 127 - 2∗err_cor. The value in
err_cor must match the value used in rsencof when file_in was created.

Examples An example is on the reference page for rsencof.

See Also rsencof

rsenco

3-184

3rsencoPurpose Reed-Solomon encoder

Syntax code = rsenco(msg,n,k);
code = rsenco(msg,n,k,fmt);
code = rsenco(msg,n,k,fmt,genpoly);
code = rsenco(msg,field,...);
[code,added] = rsenco(...);

Description For All Syntaxes
The decoding counterpart for this function is rsdeco.

In all cases, the codeword length n must have the form 2m-1 where m is an
integer greater than or equal to 3.

The matrix msg, which contains the messages to be encoded, can have one of
several formats. Table 3-21, Information Formats for Reed-Solomon Encoding,
shows which formats are allowed for msg, how the optional argument fmt
should reflect the format of msg, and how the format of the output code depends
on these choices. If fmt is not specified as input, then its default value is
’binary’.

Table 3-21: Information Formats for Reed-Solomon Encoding

Format of msg Value of fmt Argument Format of code

Binary matrix with m columns 'binary' Binary matrix with m
columns

Example: msg = [1 1 0; 1 0 1; 1 0 0; 0 1 1; 1 1 0; 1 0 1; 1 0 0; 0 1 1]

Binary column vector 'binary' Binary column vector

Example: msg = [1 1 0, 1 0 1, 1 0 0, 0 1 1, 1 1 0, 1 0 1, 1 0 0, 0 1 1]'

rsenco

3-185

For Specific Syntaxes

code = rsenco(msg,n,k) encodes msg using the Reed-Solomon encoding
method. k is the message length. msg has either of the two binary formats
described in Table 3-21, Information Formats for Reed-Solomon Encoding. The
generator polynomial for the code is the output of the function rspoly.

code = rsenco(msg,n,k,fmt) is the same as the syntax above, except that fmt
specifies the format of msg. Table 3-21, Information Formats for Reed-Solomon
Encoding, lists the possible values for fmt, as well as the corresponding shape
and contents of msg.

code = rsenco(msg,n,k,fmt,genpoly) is the same as the syntax above,
except that genpoly is a row vector that gives the coefficients, in order of
ascending powers, of the generator polynomial for the code. Each coefficient is
an element of GF(2m) expressed in exponential format. For a description of
exponential format, see “Exponential Format” on page 2-90.

code = rsenco(msg,field,...) is a faster variation of the syntaxes above.
field is a matrix that lists all elements of GF(2m) in the format described in
“List of All Elements of a Galois Field” on page 2-91. The size of field
determines n.

Matrix of integers in the range
[0, 2m-1], with k columns

'decimal' Matrix of integers in the
range [0, 2m-1], with n
columns

Example: msg = [3, 5, 1, 6; 3, 5, 1, 6]

Matrix of integers in the range
[-1, 2m-2], with k columns

'power' Matrix of integers in the
range [-1, 2m-2], with n
columns

Example: msg = [2, 4, 0, 5; 2, 4, 0, 5]

Table 3-21: Information Formats for Reed-Solomon Encoding (Continued)

Format of msg Value of fmt Argument Format of code

rsenco

3-186

[code,added] = rsenco(...) returns the additional variable added. added is
the number of zeros that were placed at the end of the message matrix before
encoding, in order for the matrix to have the appropriate shape.

Algorithm rsenco invokes the function rsencode, which processes data in power format.
If msg has decimal or binary format, then rsenco converts it to the power
format, passes it to rsencode, and converts the code back to the original format
of msg. Binary data has the longest processing time. For information about the
conversions among formats, see “Reed-Solomon Coding Using Decimal
Format” on page 2-29 and “Exponential Format (Reed-Solomon Code Only)” on
page 2-30.

See Also rsdeco, rsencode, rsdecode, rspoly

rsencode

3-187

3rsencodePurpose Reed-Solomon encoding using the exponential format

Syntax code = rsencode(msg,genpoly,n);
code = rsencode(msg,genpoly,n,m);
code = rsencode(msg,genpoly,n,field);

Description For All Syntaxes
The decoding counterpart for this function is rsdecode.

rsencode uses the exponential format to represent elements of GF(2m). For

example, an entry of 2 represents the element , where is a primitive

element of GF(2m). If field is not used as an input argument, then the
exponential format is relative to a root of MATLAB’s default primitive

polynomial for GF(2m).If field is used as an input argument, then its format
and the formats in msg and code are all relative to the same primitive element

of GF(2m). See “Representing Elements of Galois Fields” on page 2-90 for more
information about these formats.

Since GF(2m) has 2m elements, each codeword represents 2m(2m−1) bits of
information. Each decoded message represents 2m*k bits of information.

For Specific Syntaxes

code = rsencode(msg,genpoly,n) encodes the message msg using the
Reed-Solomon coding method. n, the codeword length, must have the form 2m-1
for some integer m greater than or equal to 3. If the message length is k, then
msg is a matrix having k columns. Each entry of msg represents an element of
GF(2m) in exponential format. Each row of msg is treated as a separate
message. Each row of code represents a codeword, and each entry is the
exponential format of an element of GF(2m). The last k columns of code are just
msg; that is, the parity bits are at the beginning of each codeword. genpoly is a
row vector that gives the coefficients, in order of ascending powers, of the
generator polynomial. Each coefficient is specified in exponential format.

code = rsencode(msg,genpoly,n,m) is the same as
code = rsencode(msg,genpoly,2^m-1) when m is an integer greater than or
equal to 3. Specifying m as a fourth input argument speeds the execution.

α2 α

rsencode

3-188

code = rsencode(msg,genpoly,n,field) is the same as the first syntax,
except that field is a matrix that lists the elements of GF(2m) in the format
described in “List of All Elements of a Galois Field” on page 2-91. This syntax
is faster than the first one.

Examples The commands below use the third syntax of rsencode to encode two messages.

m = 3; n = 2^m-1; % Codeword length is 7.
field = gftuple([-1:2^m-2]',m,2); % List of elements in GF(2^m)
msg = [5 0 1; 2 3 4];
k = size(msg,2); % Message length = number of columns of msg
genpoly = rspoly(n,k,field); % Generator polynomial
code = rsencode(msg,genpoly,n,field);

The reference page for rsdecode continues this example by corrupting the code
and then decoding it.

See Also rsdecode, rspoly, rsenco, encode

rsencof

3-189

3rsencofPurpose Encode an ASCII file using Reed-Solomon code

Syntax rsencof(file_in,file_out);
rsencof(file_in,file_out,err_cor);

Description rsencof(file_in,file_out) encodes the ASCII file file_in using (127, 117)
Reed-Solomon code. The error-correction capability of this code is 5 for each
block of 127 codeword characters. This function writes the encoded text to the
file file_out. Both file_in and file_out are string variables.

rsencof(file_in,file_out,err_cor) is the same as the first syntax, except
that err_cor specifies the error correction capability for each block of 127
codeword characters. The message length is 127-2*err_cor.

Note If the number of characters in file_in is not an integer multiple of
127-2*err_cor, then the function appends char(4) symbols to file_out.

Examples The file matlabroot/toolbox/comm/comm/oct2dec.m contains text help for the
oct2dec function in this toolbox. The commands below encode the file using
rsencof and then decode it using rsdecof.

file_in = [matlabroot '/toolbox/comm/comm/oct2dec.m'];
file_out = 'encodedfile'; % Or use another filename
rsencof(file_in,file_out) % Encode the file.

file_in = file_out;
file_out = 'decodedfile'; % Or use another filename
rsdecof(file_in,file_out) % Decode the file.

To see the original file and the decoded file in the MATLAB workspace, use the
commands below (or similar ones if you modified the filenames above).

type oct2dec.m

type decodedfile

See Also rsdecof

rspoly

3-190

3rspolyPurpose Produce Reed-Solomon code generator polynomial

Syntax genpoly = rspoly(n,k);
genpoly = rspoly(n,k,m);
genpoly = rspoly(n,k,field);
[genpoly,t] = rspoly(...);

Description genpoly = rspoly(n,k) finds the generator polynomial of a Reed-Solomon
code with codeword length n and message length k. genpoly is a row vector that
represents the coefficients of the generator polynomial in order of ascending
powers. Each coefficient is an element of GF(2m) represented in exponential
format, as described in the section “Representing Elements of Galois Fields” on
page 2-90.

genpoly = rspoly(n,k,m) is the same as genpoly = rspoly(2^m-1,k), but
faster. If n does not equal 2m-1, then an error results.

genpoly = rspoly(n,k,field) is the same as the first syntax listed, except
that field indirectly specifies the primitive element for GF(2m) relative to
which the coefficients in genpoly are expressed. field is a matrix that lists the
elements of GF(2m) in the format described in “List of All Elements of a Galois
Field” on page 2-91. Both field and genpoly use exponential formats relative
to the same primitive element. This syntax is faster than the first syntax listed.

[genpoly,t] = rspoly(...) returns in t the error-correction capability of the
Reed-Solomon code.

Examples The command below shows that the (15, 11) Reed-Solomon code generator

polynomial is .

genpoly = rspoly(15,11,4)

genpoly =

 10 3 6 13 0

The syntax below uses field as the third input argument in rspoly and
obtains the same result.

α10 α3X α6X2 α13X3 X4
+ + + +

rspoly

3-191

m = 4;
field = gftuple([-1:2^m-2]',m,2);
genpoly2 = rspoly(15,11,field)

genpoly2 =

 10 3 6 13 0

See Also encode, decode, rsenco, rsdeco

scatterplot

3-192

3scatterplot Purpose Generate a scatter plot

Syntax scatterplot(x);
scatterplot(x,n);
scatterplot(x,n,offset);
scatterplot(x,n,offset,plotstring);
scatterplot(x,n,offset,plotstring,h);
h = scatterplot(...);

Description scatterplot(x) produces a scatter plot for the signal x. The interpretation of
x depends on its shape and complexity:

• If x is a real two-column matrix, then scatterplot interprets the first
column as in-phase components and the second column as quadrature
components.

• If x is a complex vector, then scatterplot interprets the real part as
in-phase components and the imaginary part as quadrature components.

• If x is a real vector, then scatterplot interprets it as a real signal.

scatterplot(x,n) is the same as the first syntax, except that the function
plots every nth value of the signal, starting from the first value. That is, the
function decimates x by a factor of n before plotting.

scatterplot(x,n,offset) is the same as the first syntax, except that the
function plots every nth value of the signal, starting from the (offset+1)st
value in x.

scatterplot(x,n,offset,plotstring) is the same as the syntax above,
except that plotstring determines the plotting symbol, line type, and color for
the plot. plotstring is a string whose format and meaning are the same as in
the plot function.

scatterplot(x,n,offset,plotstring,h) is the same as the syntax above,
except that the scatter plot is in the figure whose handle is h, rather than a new
figure. h must be a handle to a figure that scatterplot previously generated.
To plot multiple signals in the same figure, use hold on.

h = scatterplot(...) is the same as the earlier syntaxes, except that h is the
handle to the figure that contains the scatter plot.

scatterplot

3-193

Examples See “Example: Scatter Plots” on page 2-12 or the example on the reference page
for demodmap. Both examples illustrate how to plot multiple signals in a single
scatter plot.

For an online demonstration, use scattereyedemo.

See Also eyediagram, plot, scattereyedemo, scatter

symerr

3-194

3symerrPurpose Compute number of symbol errors and symbol error rate

Syntax [number,ratio] = symerr(x,y);
[number,ratio] = symerr(x,y,flg);
[number,ratio,loc] = symerr(...)

Description For All Syntaxes
The symerr function compares binary representations of elements in x with
those in y. The schematics below illustrate how the shapes of x and y determine
which elements symerr compares.

The output number is a scalar or vector that indicates the number of elements
that differ. The size of number is determined by the optional input flg and by
the dimensions of x and y. The output ratio equals number divided by the total
number of elements in the smaller input.

For Specific Syntaxes

[number,ratio] = symerr(x,y) compares the elements in x and y. The sizes
of x and y determine which elements are compared:

• If x and y are matrices of the same dimensions, then symerr compares x and
y element-by-element. number is a scalar. See schematic (a) in the figure.

• If one is a row (respectively, column) vector and the other is a
two-dimensional matrix, then symerr compares the vector
element-by-element with each row (resp., column) of the matrix. The length
of the vector must equal the number of columns (resp., rows) in the matrix.

y

y

(b) Compares column vector y with
each column of matrix x

(c) Compares row vector y with
each row of matrix x

x x

y1 y4

y2 y5

y3 y6

(a) Compares x1 with y1,
x2 with y2, and so on.

x1 x4

x2 x5

x3 x6

x1 x4

x2 x5

x3 x6

symerr

3-195

number is a column (resp., row) vector whose mth entry indicates the number
of elements that differ when comparing the vector with the mth row (resp.,
column) of the matrix. See schematics (b) and (c) in the figure.

[number,ratio] = symerr(x,y,flg) is similar to the previous syntax, except
that flg can override the defaults that govern which elements symerr
compares and how symerr computes the outputs. The values of flg are
’overall’, ’column-wise’, and ’row-wise’. The table below describes the
differences that result from various combinations of inputs. In all cases, ratio
is number divided by the total number of elements in y.

[number,ratio,loc] = symerr(...) returns a binary matrix loc that
indicates which elements of x and y differ. An element of loc is zero if the
corresponding comparison yields no discrepancy, and one otherwise.

Examples On the reference page for biterr, the last example uses symerr.

Table 3-22: Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of Comparison number

Two-
dimensional
matrix

’overall’
(default)

Element-by-element Total number of symbol errors

'column-wise' mth column of x vs. mth
column of y

Row vector whose entries count
symbol errors in each column

'row-wise' mth row of x vs. mth
row of y

Column vector whose entries count
symbol errors in each row

Column
vector

’overall’ y vs. each column of x Total number of symbol errors

'column-wise'
(default)

y vs. each column of x Row vector whose entries count
symbol errors in each column of x

Row vector ’overall’ y vs. each row of x Total number of symbol errors

’row-wise’
(default)

y vs. each row of x Column vector whose entries count
symbol errors in each row of x

symerr

3-196

The command below illustrates how symerr works when one argument is a
vector and the other is a matrix. It compares the vector [1,2,3]' to the
columns

of the matrix.

num = symerr([1 2 3]',[1 1 3 1;3 2 2 2; 3 3 8 3])

num =

 1 0 2 0

As another example, the command below illustrates the use of flg to override
the default row-by-row comparison. Notice that number and ratio are scalars.

format rat; [number,ratio,loc] = symerr([1 2; 3 4],...
[1 3],'overall')

number =

 3

ratio =

 3/4

loc =

 0 1
 1 1

See Also biterr

1
3
3

1
2
3

3
2
8

 and
1
2
3

, , ,

syndtable

3-197

3syndtablePurpose Produce syndrome decoding table

Syntax t = syndtable(parmat);

Description t = syndtable(parmat) returns a decoding table for an error-correcting
binary code having codeword length n and message length k. parmat is an
(n-k)-by-n parity-check matrix for the code. t is a 2n-k-by-n binary matrix. The
rth row of t is an error pattern for a received binary codeword whose syndrome
has decimal integer value r-1. (The syndrome of a received codeword is its
product with the transpose of the parity-check matrix.) In other words, the
rows of t represent the coset leaders from the code’s standard array.

When converting between binary and decimal values, the leftmost column is
interpreted as the most significant digit. This differs from the default
convention in the bi2de and de2bi commands.

Examples An example is in the section “Decoding Table” on page 2-34.

See Also decode, hammgen, gfcosets

References Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

vec2mat

3-198

3vec2matPurpose Convert a vector into a matrix

Syntax mat = vec2mat(vec,matcol);
mat = vec2mat(vec,matcol,padding);
[mat,padded] = vec2mat(...);

Description mat = vec2mat(vec,matcol) converts the vector vec into a matrix with
matcol columns, creating one row at a time. If the length of vec is not multiple
of matcol, then extra zeros are placed in the last row of mat. The matrix mat has
ceil(length(vec)/matcol) rows.

mat = vec2mat(vec,matcol,padding) is the same as the first syntax, except
that the extra entries placed in the last row of mat are not necessarily zeros.
The extra entries are taken from the matrix padding, in order. If padding has
fewer entries than are needed, then the last entry is used repeatedly.

[mat,padded] = vec2mat(...) returns an integer padded that indicates how
many extra entries were placed in the last row of mat.

Note vec2mat is similar to the built-in MATLAB function reshape. However,
given a vector input, reshape creates a matrix one column at a time instead of
one row at a time. Also, reshape requires the input and output matrices to
have the same number of entries, whereas vec2mat places extra entries in the
output matrix if necessary.

Examples vec = [1 2 3 4 5];
[mat,padded] = vec2mat(vec,3)

mat =

 1 2 3
 4 5 0

padded =

 1

vec2mat

3-199

[mat2,padded2] = vec2mat(vec,4)

mat2 =

 1 2 3 4
 5 0 0 0

padded2 =

 3

mat3 = vec2mat(vec,4,[10 9 8; 7 6 5; 4 3 2])

mat3 =

 1 2 3 4
 5 10 7 4

See Also reshape

vitdec

3-200

3vitdecPurpose Convolutionally decode binary data using the Viterbi algorithm

Syntax decoded = vitdec(code,trellis,tblen,opmode,dectype);
decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec);
decoded = vitdec(...,'cont',...,initmetric,initstates,initinputs);
[decoded finalmetric finalstates finalinputs] =...
 vitdec(...,'cont',...);

Description decoded = vitdec(code,trellis,tblen,opmode,dectype) decodes the
vector code using the Viterbi algorithm. The MATLAB structure trellis
specifies the convolutional encoder that produced code; the format of trellis
is described in “Trellis Description of a Convolutional Encoder” on page 2-46
and the reference page for the istrellis function. code contains one or more
symbols, each of which consists of log2(trellis.numOutputSymbols) bits.
Each symbol in the vector decoded consists of
log2(trellis.numInputSymbols) bits. tblen is a positive integer scalar that
specifies the traceback depth.

The string opmode indicates the decoder’s operation mode and its assumptions
about the corresponding encoder’s operation. Choices are in the table below.

Table 3-23: Values of opmode Input

Value Meaning

'trunc' The encoder is assumed to have started at the all-zeros state.
The decoder traces back from the state with the best metric.

'term' The encoder is assumed to have both started and ended at the
all-zeros state. The decoder traces back from the all-zeros
state.

'cont' The encoder is assumed to have started at the all-zeros state.
The decoder traces back from the state with the best metric. A
delay equal to tblen symbols elapses before the first decoded
symbol appears in the output.

vitdec

3-201

The string dectype indicates the type of decision that the decoder makes, and
influences the type of data the decoder expects in code. Choices are in the table
below.

Syntax for Soft Decision Decoding

decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec) decodes the
vector code using soft-decision decoding. code consists of integers between 0
and 2nsdec-1, where 0 represents the most confident 0 and 2nsdec-1 represents
the most confident 1.

Additional Syntaxes for Continuous Operation Mode

decoded = vitdec(...,'cont',...,initmetric,initstates,initinputs)
is the same as the earlier syntaxes, except that the decoder starts with its state
metrics, traceback states, and traceback inputs specified by initmetric,
initstates, and initinputs, respectively. Each real number in initmetric
represents the starting state metric of the corresponding state. initstates
and initinputs jointly specify the initial traceback memory of the decoder;
both are trellis.numStates-by-tblen matrices. initstates consists of
integers between 0 and trellis.numStates-1. If the encoder schematic has
more than one input stream, then the shift register that receives the first input
stream provides the least significant bits in initstates, while the shift
register that receives the last input stream provides the most significant bits
in initstates. The vector initinputs consists of integers between 0 and
trellis.numInputSymbols-1. To use default values for all of the last three
arguments, specify them as [],[],[].

Table 3-24: Values of dectype Input

Value Meaning

'unquant' code contains real input values, where 1 represents a logical
zero and -1 represents a logical one.

'hard' code contains binary input values.

'soft' For soft-decision decoding, use the syntax below. Note that
nsdec is required for soft-decision decoding.

vitdec

3-202

[decoded,finalmetric,finalstates,finalinputs] = ...
vitdec(...,'cont',...) is the same as the earlier syntaxes, except that the
final three output arguments return the state metrics, traceback states, and
traceback inputs, respectively, at the end of the decoding process. finalmetric
is a vector with trellis.numStates elements which correspond to the final
state metrics. finalstates and finalinputs are both matrices of size
trellis.numStates-by-tblen. The elements of finalstates have the same
format as those of initstates.

Examples The example below encodes random data and adds noise. Then it decodes the
noisy code three times to illustrate the three decision types that vitdec
supports. Notice that for unquantized and soft decisions, the output of convenc
does not have the same data type that vitdec expects for the input code, so it
is necessary to manipulate ncode before invoking vitdec.

trel = poly2trellis(3,[6 7]); % Define trellis.
msg = randint(100,1,2,123); % Random data
code = convenc(msg,trel); % Encode.
ncode = rem(code + randerr(200,1,[0 1;.95 .05]),2); % Add noise.
tblen = 3; % Traceback length
% Use hard decisions.
decoded1 = vitdec(ncode,trel,tblen,'cont','hard');
% Use unquantized decisions.
ucode = 1-2*ncode; % +1 & -1 represent zero & one, respectively.
decoded2 = vitdec(ucode,trel,tblen,'cont','unquant');
% Use soft decisions.
% To prepare for soft-decision decoding, map to decision values.
[x,qcode] = quantiz(1-2*ncode,[-.75 -.5 -.25 0 .25 .5 .75],...
[7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.
decoded3 = vitdec(qcode',trel,tblen,'cont','soft',3);

% Compute bit error rates, using the fact that the decoder
% output is delayed by tblen symbols.
[n1,r1] = biterr(decoded1(tblen+1:end),msg(1:end-tblen));
[n2,r2] = biterr(decoded2(tblen+1:end),msg(1:end-tblen));
[n3,r3] = biterr(decoded3(tblen+1:end),msg(1:end-tblen));
disp(['The bit error rates are: ',num2str([r1 r2 r3])])

The bit error rates are: 0.020619 0.020619 0.020619

vitdec

3-203

The example below illustrates how to use the final state and initial state
arguments when invoking vitdec repeatedly. Notice that
[decoded4;decoded5] is the same as decoded6.

trel = poly2trellis(3,[6 7]);
code = convenc(randint(100,1,2,123),trel);
% Decode part of code, recording final state for later use.
[decoded4,f1,f2,f3] = vitdec(code(1:100),trel,3,'cont','hard');
% Decode the rest of code, using state input arguments.
decoded5 = vitdec(code(101:200),trel,3,'cont','hard',f1,f2,f3);
% Decode the entire code in one step.
decoded6 = vitdec(code,trel,3,'cont','hard');
isequal(decoded6,[decoded4; decoded5])

ans =

 1

See Also convenc, poly2trellis, istrellis

References Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data
Communications Principles. New York: Plenum, 1992.

wgn

3-204

3wgnPurpose Generate white Gaussian noise

Syntax y = wgn(m,n,p);
y = wgn(m,n,p,imp);
y = wgn(m,n,p,imp,state);
y = wgn(...,powertype);
y = wgn(...,outputtype);

Description y = wgn(m,n,p) generates an m-by-n matrix of white Gaussian noise. p
specifies the power of y in decibels. The default load impedance is 1 Ohm.

y = wgn(m,n,p,imp) is the same as the previous syntax, except that imp
specifies the load impedance in Ohms.

y = wgn(m,n,p,imp,state) is the same as the previous syntax, except that
wgn first resets the state of MATLAB’s normal random number generator
randn to the integer state.

y = wgn(...,powertype) is the same as the previous syntaxes, except that the
string powertype specifies the units of p. Choices for powertype are 'dB', 'dBm',
and 'linear'.

y = wgn(...,outputtype) is the same as the previous syntaxes, except that
the string outputtype specifies whether the noise is real or complex. Choices
for outputtype are 'real' and 'complex'. If outputtype is 'complex', then the
real and imaginary parts of y each have a noise power of p/2.

Examples To generate a column vector of length 100 containing real white Gaussian noise
of power 0 dB, use this command:

y1 = wgn(100,1,0);

To generate a column vector of length 100 containing complex white Gaussian
noise, each component of which has a noise power of 0 dB, use this command:

y2 = wgn(100,1,0,'complex');

See Also randn, awgn

I-1

Index

A
addition in Galois fields 2-97
ademod 3-12
ademodce 3-16
A-law companders 2-22
amod 3-20
amodce 3-25
amplitude modulation (AM) sample code

for basic example 2-61
using demodulation offsets 3-14
using filters 2-63
using Hilbert filter 3-24
using Hilbert filter in baseband simulation

3-27
using single and double sidebands 3-22

amplitude shift keying (ASK) sample code
for mapping 2-68
to plot waveforms 3-81
using passband simulation 3-61

analog
signals, representing 2-59

analog-to-digital conversion 2-14
apkconst 3-28
arbitrary signal constellations 2-72
arithmetic

in Galois fields 2-97
sample code

using extension fields 2-98
using prime fields 2-97

awgn 3-32

B
baseband

modulated signal 2-60
simulation 2-58

BCH coding

discussion of 2-38
generatorpolynomial for 2-33
sample code 3-34

for tracking errors 3-71
using various coding methods 3-93

summary of tools for 2-26
bchdeco 3-34
bchenco 3-36
bchpoly 3-37
bi2de 3-41
binary

codes 2-25
matrix format for messages and codewords

2-27
in Reed-Solomon codes 2-28
sample code 3-92

numbers, order of digits and 2-28
vector format for messages and codewords

2-26
sample code 3-92

binary-to-decimal conversion 3-41
bipolar random numbers 2-4
bit error rates 2-7
biterr 3-43
bits

random 2-5
block coding 2-24

functions 2-26
techniques 2-25
See also specific coding techniques

Bose-Chaudhuri-Hocquenghem (BCH) coding
discussion of 2-38
generator polynomial for 2-33
sample code 3-34

for tracking errors 3-71
using various coding methods 3-93

Index

I-2

summary of tools for 2-26
burst errors 2-39

C
carrier frequency (Fc) 2-58

relative to sampling rate 2-58
carrier signal 2-58

initial phase
for analog modulation 2-62
for digital modulation 2-77

circle signal constellations 2-71
default values for 2-72
plotting 2-72

code generator matrices
converting to parity-check matrices 2-42

sample code 2-33
finding 2-41
representing 2-31

code generator polynomials
finding 2-40
representing 2-33

codebooks
optimizing 2-18

for DPCM 2-21
sample code 2-18
sample code for DPCM 2-21

representing 2-15
codewords

definition 2-26
representing 2-26

coding
block 2-24

functions 2-26
techniques 2-25

convolutional 2-43
examples 2-52

features of the toolbox 2-43
sample code 2-50
using polynomial description 2-43
using trellis description 2-46

source 2-14
features of the toolbox 2-14

compand 3-49
companders 2-22

sample code 2-22
complex envelope 2-60
compression

of data 2-14
compressors 2-22

sample code 2-22
conjugate elements of Galois fields 3-103
constellations, signal 2-70

arbitrary 2-72
circle 2-71

default values for 2-72
plotting 2-72

hexagonal, sample code 2-73
plots

interpreting 2-69
square 2-71

plotting 2-71
triangular, sample code 2-73

constraint length
of convolutional code 2-44

convenc 3-51
converting

analog to digital 2-14
binary to decimal 3-41
decimal to binary 3-67
exponential to polynomial format for Galois field

elements 2-94
sample code 2-95

Index

I-3

generator matrices to parity-check matrices
2-42

sample code 2-33
polynomial representations 3-125
polynomial to exponential format for Galois

field elements 2-96
sample code 2-96

sampling rates 3-85
vectors to matrices 3-198

convolutional coding 2-43
examples 2-52
features of the toolbox 2-43
sample code 2-50
using polynomial description 2-43

sample code 2-46
using trellis description 2-46

correction vector 2-35
correlation techniques

in demodulation 2-66
cosets, cyclotomic 3-103
Costas phase-locked loop

for analog modulation 2-62
for digital modulation 2-77

cyclgen 3-53
cyclic coding

discussion of 2-37
generator polynomial for 2-33
sample code 2-38, 3-93

using various coding methods 3-93
summary of tools for 2-26

cyclotomic cosets 3-103
cyclpoly 3-55

D
data compression 2-14
ddemod 3-57

ddemodce 3-62
de2bi 3-67
decimal format for messages and codewords 2-28

in Reed-Solomon coding 2-29
sample code 3-92

decision timing
and eye diagrams 2-8
sample code

for eye diagrams 2-10
for scatter plots 2-12

decode 3-69
decoding tables

representing 2-34
default

Galois field parameters, in error-control coding
2-34

primitive polynomials 2-93
delta modulation 2-19

sample code 2-20
See also differential pulse code modulation

demodmap 3-73
demodulation

definition of 2-56
digital 2-66

functions for 2-67
features of the toolbox 2-58
noncoherent 2-77

diagrams
eye 2-8

sample code 2-9
scatter 2-11

sample code 2-12
differential pulse code modulation (DPCM) 2-19

parameters, optimizing 2-21
sample code 2-21

parameters, representing 2-14
sample code 2-20

Index

I-4

digital
modulation 2-66

functions for 2-67
signals, representing 2-67

displaying polynomials 2-100
distortion

from DPCM, reducing 2-21
from quantization, reducing 2-18

division in Galois fields 2-97
dmod 3-78
dmodce 3-82
DPCM 2-19

parameters, optimizing 2-21
sample code 2-21

parameters, representing 2-14
sample code 2-20

dpcmdeco 3-86
dpcmenco 3-87
dpcmopt 3-88

E
encode 3-89
error

analysis, features of the toolbox 2-3
integers 2-5
patterns 2-5
predictive 2-19
rates

bit versus symbol 2-8
sample code 2-7

error-control coding
base 2 only 2-25
features of the toolbox 2-25
methods supported in toolbox 2-25
terminology and notation 2-26
with default Galois field parameters 2-34

error-correction capability
of BCH codes 2-42
of Hamming codes 2-34
of Reed-Solomon codes 2-42

error-rate analysis 2-7
expanders 2-22

sample code 2-22
exponential format

for Galois field elements 2-90
in Reed-Solomon coding 2-30

eye diagrams 2-8
sample code 2-9

eyediagram 3-95

F
features of the toolbox

error-analysis 2-3
error-control coding 2-25
modulation/demodulation 2-58
source coding 2-14

feedback connection polynomials 2-45
fields, finite 2-89

See also Galois fields
filtering data over Galois fields 3-110
filters

designing and applying raised cosine 2-83
designing Hilbert transform 2-80
designing raised cosine 2-87
using after analog demodulation 2-62

choosing cutoff frequency 2-63
resulting time lag 2-64

using after digital demodulation 2-77
using raised cosine 2-81
using square-root raised cosine 2-85

finite fields 2-89
See also Galois fields

Index

I-5

font when using gfpretty 3-118
format of Galois field elements 2-90

simplifying and converting to exponential
format 2-96

sample code 2-96
simplifying and converting to polynomial

format 2-94
sample code 2-95

formatting polynomials 2-100
formatting, of signals 2-14
frequency modulation (FM)

sample code 3-18
frequency shift keying (FSK) 2-66

sample code 3-85

G
Galois fields 2-89

in error-control coding 2-34
avoiding explicit reference to 2-34

representing elements of 2-90
Gaussian elimination

in gflineq 3-113
in gfrank 3-124

Gaussian noise, generating 2-3
gen2par 3-97
generator matrices

converting to parity-check matrices 2-42
sample code 2-33

finding 2-41
representing 2-31

generator polynomials
finding 2-40
for convolutional code 2-44
representing 2-33

gfadd 3-99
gfconv 3-101

gfcosets 3-103
gfdeconv 3-105
gfdiv 3-108
gffilter 3-110
gflineq 3-112
gfminpol 3-114
gfmul 3-116
gfplus 3-117
gfpretty 3-118
gfprimck 3-120
gfprimdf 3-121
gfprimfd 3-122
gfrank 3-124
gfrepcov 3-125
gfroots 3-126
gfsub 3-128
gftrunc 3-130
gftuple 3-131
gfweight 3-134

H
hammgen 3-135
Hamming coding 2-39

for single-error-correction 2-34
sample code 2-35

using various coding methods 3-93
using various formats 3-92

summary of tools for 2-26
Hamming weight 3-134
hank2sys 3-138
hard-decision decoding 2-50
Hilbert filters

designing 2-80
for amplitude modulation 2-62

sample code 3-24
for baseband amplitude modulation

Index

I-6

sample code 3-27
hilbiir 3-140

I
initial phases of carrier signal

for analog modulation 2-62
for digital modulation 2-77

in-phase/quadrature coordinates 2-69
inverses, multiplicative in Galois fields 3-108
irreducible polynomials 2-101

sample code 2-101
istrellis 3-143

L
length of polynomial representations

minimizing 2-100
linear block coding 2-36

sample code 2-36
linear equations over Galois fields 3-112

and filtering 3-110
linear predictors 2-19

optimizing 2-21
sample code 2-21

representing 2-19
list of elements of Galois fields 2-91

generating 2-96
sample code 2-92

in error-control coding, avoiding explicit
reference to 2-34

Lloyd algorithm, for optimizing quantization
parameters 2-18

lloyds 3-145

M
mapped signals

representing 2-67
for PSK and QASK 2-69

mapping
functions for 2-67
without modulating 2-76

marcumq 3-147
matrices over Galois fields

rank 3-124
messages

definition 2-26
representing

for coding functions 2-26
for modulation functions 2-67

minimal polynomials of Galois field elements
2-101

sample code 2-101
minimum distance 3-134
minimum shift keying (MSK) 2-66
modmap 3-148
modulated signals, representing 2-68
modulation

definition of 2-56
delta 2-19

sample code 2-20
See also differential pulse code modulation

differential pulse code. See differential pulse
code modulation

digital 2-66
functions for 2-67

features of the toolbox 2-58
methods supported in toolbox 2-57
of several signals 2-60

sample code 3-18
terminology 2-58
without mapping 2-76

Index

I-7

mu-law companders 2-22
sample code 2-22

multiple roots of polynomials over Galois fields
3-126

multiplication in Galois fields 2-97
multiplicative inverses in Galois fields 3-108

N
nonbinary codes 2-25

Reed-Solomon 2-39
noncausality of filters 2-78
noncoherent demodulation 2-77
Nyquist sampling theorem 2-58

O
oct2dec 3-153
optimizing

DPCM parameters 2-21
sample code 2-21

quantization parameters 2-18
sample code 2-18

order of digits in binary numbers 2-28
order, predictive 2-19

P
parity-check matrices

finding 2-41
representing 2-31

partitions
optimizing 2-18

for DPCM 2-21
sample code 2-18
sample code for DPCM 2-21

representing 2-14

passband
simulation 2-58

phase modulation (PM)
sample code 2-64

phase shift keying (PSK) sample code
for basic example 2-74
for demapping 3-76
for mapping 2-69
for plotting signal constellation 3-151

phase-locked loop, Costas
for analog modulation 2-62
for digital modulation 2-77

points, decision
and eye diagrams 2-8
sample code

for eye diagrams 2-10
for scatter plots 2-12

poly2trellis 3-154
polynomial

description of an encoder
sample code 2-46

description of encoder 2-43
format for Galois field elements 2-91

polynomials
displaying formatted 2-100
generator, finding 2-40

polynomials over Galois fields 2-99
adding 2-100
dividing 2-100
irreducible 2-101
minimal 2-101

sample code 2-101
multiplying 2-100
primitive 2-101

default 2-93
definition 2-89
finding 3-122

Index

I-8

representation choices for 3-125
roots of 2-102

sample code 2-102
subtracting 2-100
truncating 2-100

predictive
error 2-19
order 2-19

predictive quantization 2-19
features of the toolbox 2-14
parameters, optimizing 2-21

sample code 2-21
parameters, representing 2-14
sample code 2-20

predictors 2-19
linear 2-19
optimizing 2-21

sample code 2-21
representing 2-19

primitive
element, definition 2-89
polynomials 2-101

consistent use of 2-93
default 2-93
definition 2-89
finding 3-122
in error-control coding, avoiding explicit

reference to 2-34
sample code 2-101

punctured convolutional code 2-54

Q
QAM

representing signals for 2-60
sample code 2-60

QASK sample code

using eye diagram 2-9
using scatter plot and square constellation 2-12

qaskdeco 3-157
qaskenco 3-159
quadrature amplitude modulation (QAM)

representing signals for 2-60
sample code 2-60

quadrature amplitude shift keying (QASK) sample
code

using eye diagram 2-9
using scatter plot and square constellation 2-12

quantiz 3-162
quantization 2-14

coding 2-17
DPCM parameters, optimizing 2-21

sample code 2-21
features of the toolbox 2-14
parameters, optimizing 2-18

sample code 2-18
parameters, representing 2-14
predictive 2-19

sample code 2-20
sample code 2-15
vector 2-14

R
raised cosine filters

designing and applying 2-83
designing but not applying 2-87
filtering with 2-81
square-root 2-85

randerr 3-164
randint 3-166
random

bipolar symbols 2-4
bits 2-5

Index

I-9

in error patterns 2-5
integers 2-5
signals 2-3

features of the toolbox 2-3
symbols 2-4

randsrc 3-167
rank of matrices over Galois fields 3-124
rcosfir 3-169
rcosflt 3-171
rcosiir 3-174
rcosine 3-176
redundancy, reducing 2-14
Reed-Solomon coding

discussion of 2-39
generator polynomial for 2-33
summary of tools for 2-26

references
convolutional coding 2-55
error-control coding 2-42
Galois fields 2-103
modulation/demodulation 2-77

representation of polynomials, shortening 2-100
representing

analog signals 2-59
codebooks 2-15
codewords 2-26
decoding tables 2-34
digital signals 2-67
Galois field elements 2-90

in a list 2-91
in exponential format 2-90
in polynomial format 2-91

generator matrices 2-31
generator polynomials 2-33
mapped signals 2-67

for PSK and QASK 2-69
messages

for coding functions 2-26
for modulation functions 2-67

modulated signals 2-68
parity-check matrices 2-31
partitions 2-14
predictors 2-19
quantization parameters 2-14
signal constellations 2-70

roots of polynomials over Galois fields 2-102
sample code 2-102

rsdeco 3-178
rsdecode 3-181
rsdecof 3-183
rsenco 3-184
rsencode 3-187
rsencof 3-189
rspoly 3-190

S
sampling rate 2-58

change during mapping 2-66
individual 2-70
of signals, relative 2-67
relative to carrier frequency 2-58
significance of 2-70

scalar quantization
coding 2-17
features of the toolbox 2-14
parameters, representing 2-14
sample code 2-15

scatter plots 2-11
sample code 2-12

using modulation 2-74
scatterplot 3-192
signal constellations 2-70

arbitrary 2-72

Index

I-10

circle 2-71
default values for 2-72
plotting 2-72

hexagonal, sample code 2-73
plots

interpreting 2-69
square 2-71

plotting 2-71
triangular, sample code 2-73

signal formatting 2-14
features of the toolbox 2-14

Signal Processing Toolbox
for filter design 2-62

simplifying
exponential format of Galois field elements

2-96
sample code 2-96

polynomial format of Galois field elements
2-94

sample code 2-95
soft-decision decoding 2-51

sample code 2-51
source coding 2-14

features of the toolbox 2-14
square signal constellations 2-71

plotting 2-71
subtraction in Galois fields 2-97
symbol error rates 2-7
symerr 3-194
syndrome 2-35
syndtable 3-197

T
terminology

modulation/demodulation 2-58
timing, decision

and eye diagrams 2-8
sample code

for eye diagrams 2-10
for scatter plots 2-12

training data
for optimizing DPCM quantization parameters

2-21
for optimizing quantization parameters 2-18

trellis
description of encoder 2-46
structure 2-47

sample code 2-49
truncating polynomials over Galois fields 2-100

V
vec2mat 3-198
vector quantization 2-14
vitdec 3-200

W
weight, Hamming 3-134
wgn 3-204
white Gaussian noise, generating 2-3

	Preface
	What Is the Communications Toolbox?
	Related Products
	Using This Guide
	Expected Background
	Supplementing This Guide with Command-Line Help

	Configuration Information
	Technical Conventions
	Polynomials as Vectors
	Matrices

	Typographical Conventions

	Getting Started with the Communications Toolbox
	A Detailed Example
	What the Example Does
	Where to Find the Example
	How the Example Works
	Output from the Example

	Using the Communications Toolbox
	Random Signals and Error Analysis
	Error Analysis Features of the Toolbox
	Random Signals
	Error Rates
	Eye Diagrams
	Scatter Plots

	Source Coding
	Source Coding Features of the Toolbox
	Representing Quantization Parameters
	Quantizing a Signal
	Optimizing Quantization Parameters
	Implementing Differential Pulse Code Modulation
	Optimizing DPCM Parameters
	Companding a Signal
	Selected Bibliography for Source Coding

	Block Coding
	Block Coding Features of the Toolbox
	Block Coding Terminology
	Representing Messages and Codewords
	Representing Block Coding Parameters
	Creating and Decoding Block Codes
	Performing Other Block Code Tasks
	Selected Bibliography for Block Coding

	Convolutional Coding
	Convolutional Coding Features of the Toolbox
	Polynomial Description of a Convolutional Encoder
	Trellis Description of a Convolutional Encoder
	Creating and Decoding Convolutional Codes
	Examples of Convolutional Coding
	Selected Bibliography for Convolutional Coding

	Modulation
	Modulation Features of the Toolbox
	Modulation Terminology
	Representing Analog Signals
	Simple Analog Modulation Example
	Other Options in Analog Modulation
	Filter Design Issues
	Digital Modulation Overview
	Representing Digital Signals
	Significance of Sampling Rates
	Representing Signal Constellations
	Simple Digital Modulation Example
	Customizing the Modulation Process
	Other Options in Digital Modulation
	Selected Bibliography for Modulation

	Special Filters
	Special Filter Features of the Toolbox
	Noncausality and the Group Delay Parameter
	Designing Hilbert Transform Filters
	Filtering with Raised Cosine Filters
	Designing Raised Cosine Filters
	Selected Bibliography for Special Filters

	Galois Field Computations
	Galois Field Features of the Toolbox
	Galois Field Terminology
	Representing Elements of Galois Fields
	Default Primitive Polynomials
	Converting and Simplifying Element Formats
	Arithmetic in Galois Fields
	Polynomials over Prime Fields
	Other Galois Field Functions
	Selected Bibliography for Galois Fields

	Reference
	Functions by Category
	ademod
	ademodce
	amod
	amodce
	apkconst
	awgn
	bchdeco
	bchenco
	bchpoly
	bi2de
	biterr
	compand
	convenc
	cyclgen
	cyclpoly
	ddemod
	ddemodce
	de2bi
	decode
	demodmap
	dmod
	dmodce
	dpcmdeco
	dpcmenco
	dpcmopt
	encode
	eyediagram
	gen2par
	gfadd
	gfconv
	gfcosets
	gfdeconv
	gfdiv
	gffilter
	gflineq
	gfminpol
	gfmul
	gfplus
	gfpretty
	gfprimck
	gfprimdf
	gfprimfd
	gfrank
	gfrepcov
	gfroots
	gfsub
	gftrunc
	gftuple
	gfweight
	hammgen
	hank2sys
	hilbiir
	istrellis
	lloyds
	marcumq
	modmap
	oct2dec
	poly2trellis
	qaskdeco
	qaskenco
	quantiz
	randerr
	randint
	randsrc
	rcosfir
	rcosflt
	rcosiir
	rcosine
	rsdeco
	rsdecode
	rsdecof
	rsenco
	rsencode
	rsencof
	rspoly
	scatterplot
	symerr
	syndtable
	vec2mat
	vitdec
	wgn

	Index

