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ABSTRACT
In peer-to-peer networks, each peer plays the role of client
and server. As server, it receives content requests made by
other peers and needs to decide on what basis and to what
extent it will satisfy these requests by uploading content to
others. As client, it addresses its own requests to appro-
priate peers to download desired content after resources are
granted. We consider a network of peers in a star topol-
ogy, where the bottleneck is the capacity of the access link
connecting a peer to the backbone. Different peers have dif-
ferent utility functions which are private information and
capture a peer’s selfishness or desire for content. The objec-
tive is to maximize the sum of utilities of peers. We intend
to answer the following questions in a peer-to-peer network:
what portions of its link capacity does each peer allocate to
upload flows from other peers and download flows for itself?
How does a peer decide which portion of bandwidth will be
allocated to each upload flow and download flow? How can
these decisions be taken in a decentralized autonomous fash-
ion? Although each peer directly obtains utility only from
downloads, in the presence of an incentive protocol it would
like to allow just enough capacity for uploads of others so
that it is not punished by the protocol. The global link
sharing problem of maximizing total utility is hard to solve
in a distributed fashion because of coupled utility functions
and constraints. That is, the utility of each peer depends
on allocation decisions of others. By defining auxiliary vari-
ables and constraints, we transform the problem into one
that is amenable to ”distributization” by dual decomposi-
tion. The iterative algorithm involves solving separate op-
timization problems by each peer and updating Lagrange
multipliers. Interestingly, the Lagrange multipliers corre-
sponding to the newly added constraints are interpreted as
reciprocals of pairwise reputation metrics. This leads us to
a meaningful reputation-driven protocol with the desirable
property that only the amounts of requested and granted
bandwidth are circulated, and not reputations. The proto-
col is lightweight in terms of computational complexity and
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overhead and converges to the globally optimal allocation.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
networks; G.1 [Numerical analysis]: Optimization, Con-
vex Programming

General Terms
Peer-to-peer networks, Algorithm, Protocol design

1. INTRODUCTION
The fundamental characteristic of the peer-to-peer net-

work paradigm is that each peer acts simultaneously as client
and as server. In peer-to-peer networks, peers form overlay
structures. A link in the overlay network graph link con-
nects two peers virtually, in the sense that it may corre-
spond to one or more multi-hop paths in the physical net-
work graph between the two peers. The overlay network
offers an abstraction of the physical network graph that fa-
cilitates the study of issues such as content request rout-
ing and neighbor selection. Once the overlay is constructed,
content traffic flows through the physical links. Peer-to-peer
networks are most commonly used for file sharing and dis-
tribution (e.g, Gnutella, KaZaA, eDonkey, BitTorrent), and
video and Television media distribution (e.g Joost) VoIP
(Skype). Other applications include distributed indexing
and directory services, web caching, streaming media, grid-
based computing. Recent applications include distributed
storage [1] and social networking.

In peer-to-peer networks, a set of peers is formed based
on declared interests of peers for content. For instance, in
BitTorrent, each peer has to pre-register its content with
a website, the tracker. A content request by a peer is fol-
lowed by an advertisement by the tracker of a random set of
peers that possess the content fully or partially. Each peer
subsequently generates content requests which are submit-
ted to other peers. The client problem faced by a peer is
to determine the peers to which a request for download will
be addressed. On the other hand, a peer as a server needs
to adopt a bandwidth allocation policy to serve incoming
requests with available upload link capacity. More funda-
mentally, each peer needs to decide the portion of its link
bandwidth that will be allocated to uploads of other peers
and downloads by that peer. These bandwidth sharing de-
cisions need to be fully decentralized since they should be
separate by each peer and should not imposed by a central
authority such as a central server.



Each peer is characterized by a utility function of the al-
located amount of resource, which quantifies the amount of
satisfaction received by a peer. Given an amount of resource,
a larger value of utility of a peer in a sense denotes the peer’s
willingness to obtain the resource. If the peer’s tendency to
take a selfish decision is driven by the aspired utility, then a
higher utility might also be an indication of higher amount
of selfishness. The network-wide objective is the enforce-
ment of an operating point (namely, vector of peer utilities)
with a desirable property such as fairness, Pareto optimality
etc. Nevertheless, this is a non-trivial issue in peer-to-peer
networks either due to limited amount of information in the
network (e.g. about peer individual utilities, link capaci-
ties or availability of content), or because of the inherent
inclination of peers to behave selfishly: since a peer obtains
direct utility only from downloads and not for uploads, it
is natural that a peer dedicate its bandwidth to downloads
while neglecting or even shutting down other peers’ uploads
from it. This selfish behavior is widely known as free rid-
ing and it turns out to have significant impact on the op-
erational point. Existing systems such as BitTorrent have
incorporated mechanisms to provide incentives for resource
provisioning to enhance peers’ willingness to cooperate and
improve overall system performance. In that context, the
basic dilemma faced by peers is the following: peers want
to act only as clients to maximize their derived benefit, yet
they know that such behavior may lead to a subsequent re-
duction of their utility because of the activated incentive
mechanism. In some contemporary peer-to-peer systems,
this tradeoff is not dynamically controlled. That is, the ra-
tio of download and upload bandwidth portions is either
fixed or manually configured by each peer. Yet, such solu-
tions are mainly based only on empirical rules that attempt
to provide a viable solution to the free riding problem.

A peer can be connected to the backbone network either
through an access link (cable modem or ADSL line), where
upstream and downstream links are separated, or through a
local hub with which it is connected with a wireless or non-
wireless link with an Ethernet-like protocol [2]. In the latter
case, both upload and download flows traverse the common
access link of finite capacity. This case captures the inter-
play between the amount of resource dedicated to downloads
from others and that granted to uploads to others. Increas-
ing the amount of bandwidth for uploads directly affects the
download bandwidth and thus the perceived utility. A typ-
ical scenario is when the underlying network infrastructure
is wireless, and each peer is connected to an access point or
gateway of the backbone network through a wireless link.
Upload and download flows take place through the same
wireless link between the peer and the access point. Es-
sentially, it is the Carrier Sense Multiple Access (CSMA)
protocol at the MAC layer that determines the portions of
time where the peer will get access to upload its content
through the backbone network to others, or the neighboring
access point will send data to the peer. These time portions
present themselves in the higher layers as portions of the
link capacity dedicated to uploading or downloading. The
high penetration of wireless devices and the proliferation of
wireless community based networks such as FON [3] neces-
sitate the adoption of methods that tackle problems arising
in peer-to-peer networks in a wireless environment.

In this paper we take a network optimization approach
and devise a resource allocation protocol that is specifically

applicable for the bandwidth sharing scenario above. We
start from the system-wide goal of identifying the upload /
download link shares for maximizing social welfare, namely
the sum of peer utilities. The utility of each peer depends
on its own upload decision but also on decisions of other
peers since the latter will determine the amount of down-
load for that peer. This optimization problem is difficult to
solve in a distributed fashion due to coupled utility func-
tions. By defining new auxiliary variables and introducing
additional constraints, we transform the original problem to
another one, which is amenable to distributed optimization
through decomposition to separate optimization problems
that are solved by each peer until convergence. Interestingly,
it turns out by our formulation that the Lagrange multipliers
that correspond to the newly introduced constraints can be
interpreted as reciprocals (inverses) of pairwise reputation
metrics and are updated with the gradient-like updates of
the dual problem. Another important and desirable feature
of our protocol is that only the amounts of requested and
granted resource are circulated, and not the reputation met-
rics or utilities which have to be private information. The
contributions of our work to the current literature are as fol-
lows: (i) we address the interplay between upload and down-
load decisions in a peer-to-peer network through a network
utility maximization approach; (ii) we show how to solve the
problem of maximizing social welfare in a distributed fash-
ion; (iii) we provide a meaningful interpretation of Lagrange
multipliers and their updates as reciprocals of pairwise rep-
utations which evolve according to the amounts of requested
and contributed resources by peers; (iv) we utilize the frame-
work above to design a lightweight protocol that provably
reaches the social optimum, in which resource allocation de-
cisions are driven by those reciprocal reputations. The rest
of the paper is organized as follows. In section 2 we review
the related work and in section 3 we present the system
model and problem statement. In section 4 we present the
problem analysis and the distributed algorithm. In section
5 we provide numerical results and in section 6 we conclude
our study.

2. RELATED WORK
In incentive systems, a peer attempts to estimate the be-

havioral profile of others, based on the results of its trans-
actions with them, and accordingly to impose certain re-
source allocation regimes. The authors in [4] present a sys-
tem where peers use direct and second-hand information
through weighted voting schemes to assess the behavior of
other nodes. The work in [5] proposes a mechanism with the
interesting property that the reputation of every peer con-
verges to its inherent tendency to cooperate and reveals its
true intentions. Once calculated, reputation values are used
by servers in allocating resources among requesting peers,
or by clients in order to select the most reputable among
the servers. In [6], resource allocation and server selection
policies are determined by local reputation values for differ-
ent types of offered services. It is shown that peers tend
to form coalitions and to cooperate by exchanging resources
and services while free riding behavior is discouraged. Other
sophisticated models have also been devised and studied,
[10], [11], [2]. For example in [11], peers distribute their
requests with the objective to minimize required download
time and in [2] peers organize auctions in order to allocate
their serving bandwidth. On a slightly different context,



Figure 1: An instance of peer topology that is cov-
ered by our model: the backbone network consists of
APs that communicate through wireline or wireless
links. Each peer belongs to an AP and is connected
to it through a wireless link.

the authors of [12] propose an algorithm for rate control in
peer-to-peer overlays, thus extending the TCP congestion
control mechanism. They formulate a network utility max-
imization (NUM) problem and derive a protocol based on
its distributed implementation. Client and server peers con-
sider link prices and make optimal routing and bandwidth
allocation decisions. In [16], we model the hidden intentions
of a peer to allow others’ uploads with a single scalar param-
eter: the level of dissatisfaction the peer intends to cause by
not fulfilling other peers’ requests.

Incentive-based mechanisms have also been studied for
wireless networks. For instance, in [7], the reputation metric
quantifies the cooperation level of each node, i.e its propen-
sity to provide packet routing. This is used when the node in
turn requests service itself in terms of having its packets for-
warded and routed. However, wireless channel impairments
such as packet collisions, interference and channel quality
variations may mislead peers and result in distorted repu-
tation estimates. In [8] the authors argue that a tolerance
threshold can be added to the pure Tit-for-Tat (TFT) strat-
egy, such that a few defections (naturally encountered due
to impairments) will not trigger any punishment. Another
model is presented in [9], where a node which has defected
is given a second opportunity to cooperate.

The framework of NUM has become very attractive in the
years that followed the seminal work by Kelly et.al [13] both
for wire-line and wireless networks for addressing and solving
utility maximization problems in a distributed manner and
designing novel protocols based on optimization theory. For
wireless networks, decomposition is mapped to cross-layer
design and placing emphasis on functionalities of a certain
layer, while the circulated parameters stand for the infor-
mation that needs to be exchanged among different layers
[14], [15]. Our work is in line with this direction, and, to
the best of our knowledge, this is the first work which ap-
plies network optimization to derive a protocol out of the

distributed solution of the problem.

3. SYSTEM MODEL AND PROBLEM STATE-
MENT

3.1 System model
We consider a set of N peers, each with some content

at its disposal. The system is static for the period of peer
interaction, namely we do not consider peers coming to or
leaving the system. The case of dynamics of peer arrivals
and departures may be incorporated in the formulation by
allowing a certain interval for adjusting information about
the system. This setting is similar to BitTorrent, where the
peers form groups (swarms), based on their declared inter-
est on a specific file. These groups are considered static
for a certain time period, and the peers inside each group,
interact by exchanging different fragments of the file. How-
ever, in this work, peers are not distinguished on the basis
of specific content they possess and thus the algorithm for
peer selection does not take requested content into account.
We assume that the requested content by a peer is always
available at other peers.

We consider peers in a star topology, where each peer
i is connected to the backbone network through an access
link of capacity Ci bits/sec. This can be wire-line or even
wireless. In the latter case, a peer can be associated with
a specific AP and is connected to the backbone network
through this AP, as shown in Figure 1. The backbone net-
work is assumed to be of high enough capacity such that it
does not create in-network congestion. We do not consider
any in-network related mechanisms such as overlay routing
and request scheduling at intermediate backbone nodes. We
assume that the last-mile wireless link between each peer i
and its corresponding AP is the performance bottleneck with
a capacity of Ci bits/sec that needs to be shared between
upload and download flows. The allocation of capacity por-
tions to these flows at the network layer is realized by regula-
tion through the CSMA MAC protocol of the time portions
when a peer gets access to the channel to upload content
or the access point transmits such that the peer downloads.
Link capacity Ci needs to be split to a portion related to
peer downloads and one for peer uploads. This upload to
download ratio is passed to the network layer through an
application software running at each peer, such as eMule
and BitTorrent clients. Then, it is communicated down to
the network and MAC layers and determines wireless link
usage.

A note about resource allocation is in place here. In the
case of wire-line network, each peer is connected through a
separate link of capacity Ci to the back-bone. In the case
of wireless link, it is possible for two or more peers to be
connected to the backbone network through the same AP.
However in that case, a scheduling mechanism should be
employed at the AP to specify the capacities dedicated to
the uploads and downloads of different peers. In this work,
we do not address this issue. Instead, we adopt the ab-
straction of a star topology with a fixed access link capacity
for each peer, which needs to be split between uploads and
downloads.

We assume a continuous backlog of arising content re-
quests at each peer that need to be satisfied. This case
arises for instance in continual requests for streaming con-



tent. Each peer as client addresses its content requests to
other peers. Content requests can be directly viewed as
amounts of requested bandwidth. Let us denote the re-
quests of peer i by the resource request vector xi = (xij :
j = 1, . . . , N, j 6= i), where xij is the amount of band-
width peer i requests from peer j. Each peer as server re-
ceives incoming requests and needs to serve them by grant-
ing them a certain amount of bandwidth. We denote the
bandwidth granted by peer i by a resource provisioning
vector yi = (yij : j = 1, . . . , N, j 6= i), where yij is the
amount of bandwidth that is granted from i to j. Denote by
ỹi = (yji : j = 1, . . . , N, j 6= i) the amounts of bandwidth
provided to peer i by other peers j 6= i. We assume that a
client always uses exactly the bandwidth it is granted. The
global network decision is represented by resource request
matrix X = (xi : i = 1, . . . , N) and resource provisioning
matrix Y = (yi : i = 1, . . . , N). Clearly, yi and ỹi are the
ith row and ith column of Y respectively. Although {xij}
are not present in the problem formulation, we choose to
define them here, as they will naturally emerge later on as
auxiliary variables in the solution of the problem.

3.2 Utility function
Each peer i is characterized by a differentiable utility func-

tion Ui(·), which quantifies the amount of satisfaction. In
the current setup we relate it to the acquired bandwidth.
In a different setup, it could also represent perceived peer
delay from downloads.

Option A. A first alternative for the utility function Ui(·)
of a peer i is that the received utility depends on the amounts
of granted bandwidth yji by other peers j 6= i, (namely
downloads of i), and on the amounts of uploads yij from
peer i to others. Specifically, a peer receives utility from
its downloads based on a rule of diminishing marginal re-
turns, captured by a non-decreasing, differentiable concave
function ui(·) of the download bandwidth from each other
peer. On the other hand, a peer experiences certain “dis-
satisfaction” due to the upload bandwidth of others: if that
bandwidth were not devoted to uploads, the peer might have
used it for its own downloads. Dissatisfaction is represented
by a non-decreasing, differentiable convex cost function wi(·)
of the upload bandwidth of each other peer. The convex-
ity accounts for increasing marginal dissatisfaction cost for
larger amounts of uploading. A reasonable choice of utility
function that captures the features above is:

Ui(yi, ỹi) =
X
j 6=i

[ui(yji)− wi(yij)] . (1)

Thus, Ui(·) is differentiable, non-increasing concave in yi

and concave non-decreasing in ỹi. In a way, Ui(·) is the net
utility of a peer. This type of utility function stems partially
from the theory of public goods and has been adopted in
similar forms in various works [17], [18], [2].

Option B. According to a second option, the utility func-
tion Ui(·) of a peer i depends only on the downloads of peer
i, i.e,

Ui(ỹi) =
X
j 6=i

ui(yji). (2)

While in option B, the utility of a peer depends on alloca-
tion decision of other peers which determine peer downloads,
in option A a peer can control to a certain extent its own
utility by regulating the amount of uploads of other peers.

A larger value of utility function of a peer in a sense denotes
the peer’s willingness to obtain the resource. If the peer’s
tendency to take a selfish decision is driven by the aspired
utility, then a higher utility might also be an indication of
higher amount of selfishness. The utility function is private
information for each peer.

3.3 Problem Statement
Following the round of submission of bandwidth requests,

each peer decides on the granted amounts of bandwidth in
response to those requests. Each peer selects the amount it
will upload to other peers based on maximizing its utility
function. In the case of (1), where a peer i can control its
derived utility, the obvious solution that maximizes Ui(·) is
yi = 0, namely the peer should not allow uploads from other
peers. Thus, in the absence of an incentive protocol, we are
led to the phenomenon of free-riding, where ultimately no
peer obtains utility.

In the presence of an incentive protocol, the resource al-
location decisions of a peer become more complicated, given
that both uploads and downloads are realized through a
common link. On the one hand, the peer would like to assign
a small portion of link bandwidth to other peers’ uploads so
as to have spare bandwidth for its own downloads that pro-
vide direct utility. On the other hand, however, the peer
would like to grant to other peers just enough bandwidth
so that it does not get punished by the incentive proto-
col. Otherwise, in the presence of the incentive mechanism
and due to reciprocity, other peers will not respond to this
peer’s request in the future, or they will allocate small por-
tion of their bandwidth, and the peer of interest will obtain
small utility in the future. A peer hopes that, by serving
with high bandwidth a peer that has served him well in the
past, it is likely to ensure an even better treatment in the
future. Addressing this tradeoff between instantaneous re-
ceived utility and future anticipated utility is the objective
of incentive mechanisms. In the context of a peer-to-peer en-
vironment and in the absence of centrally exercised control,
fundamental questions are: how can the optimization prob-
lem above be solved in a distributed fashion that accounts
for autonomous unsupervised operation of peers? How does
the incentive protocol naturally come into stage in this op-
timization? In the sequel, we attempt to shed light in these
two questions.

We start from the global, network-wide goal of maximizing
social welfare, namely the sum of peer utilities, subject to
link capacity constraints of each peer. The selection of this
objective will allow the identification of a globally optimal
operating point in terms of bandwidth sharing. For option
A of the utility function, this problem can be formulated as:

max
yi,i=1,...,N

NX
i=1

Ui(yi, ỹi), (3)

subject to: X
j 6=i

yij +
X
j 6=i

yji ≤ Ci, i = 1, . . . , N. (4)

with yi ≥ 0 and ỹi ≥ 0. We refer to this problem as problem
(P). In case of option B for the utility function, the objective
in (3) is replaced by Ui(ỹi).



4. DISTRIBUTED BANDWIDTH ALLOCA-
TION

Our aim is to devise distributed algorithms to solve this
problem. We consider dual decomposition methods as most
appropriate for solving the problem for reasons that will be-
come clear in the sequel. The distributed solution is attained
by the circulation of implicit signals in the network about
the behavior of peers, such that each peer solves separate
optimization problems. By the formulation above, it can be
observed first, that there exists coupling in the constraints.
For each i, the function on the left-hand side of (6) depends
on decisions {yji} of peers other than i. This fact per se does
not cause any difficulty in making the problem amenable
to distributed solution. In fact, relaxing link capacity con-
straints and assigning a Lagrange multiplier to each one of
them, allows for the decomposition of the original problem
to optimization problems, each of which can be solved sep-
arately by every peer. Lagrange multipliers updates enable
coordination among nodes [19], [13]. Note however that in
such cases, the utility of a node depends only on decisions
taken by that peer (e.g. in [19] is the source rate).

The challenge in our problem lies in the fact that, besides
the constraints, the objective functions of peers are coupled
as well. That is, the utility function of each peer i depends
on allocation decisions ỹi = (yji : j 6= i) of other peers, in
addition to local decisions yi.

In order to decouple peer utilities, we adopt an alternative
decomposition method in the spirit of the ones presented in,
[20]. For each peer i, and for each external variable yji of i,
we start by introducing auxiliary variables zij , whose role is
to turn the external (for peer i) variables, yji, into local ones
that can become part of the local optimization problem of
peer i. Let zi = ỹi denote the vector of auxiliary variables
for peer i. The introduction of these variables adds new con-
straints in the formulation and leads to a new maximization
problem (for utility option A), which we refer to as problem
(Q):

max
yi,zi,i=1,...,N

NX
i=1

Ui(yi, zi), (5)

subject to: X
j 6=i

yij +
X
j 6=i

yji ≤ Ci, i = 1, . . . , N. (6)

zij = yji, ∀ i, j, with i 6= j, (7)

with yi ≥ 0 and zi ≥ 0.
For the problem above, let u∗ denote its optimal value,

namely the value of the objective function at the optimal
solution. The utility of each peer becomes a function of
only local variables, and the coupling has been transferred
only to the constraints. Now the problem can be tackled by
classical decomposition methods. To proceed, we relax only
the problem’s constraints. Consider the Lagrangian function
for problem (Q),

L(Y,Z,R, λ) =

NX
i=1

Ui(yi, zi) +

NX
i=1

NX
j=1

rij(yji − zij)

+

NX
i=1

λi(Ci −
X
j 6=i

yij −
X
j 6=i

yji) (8)

where Z denotes the matrix of auxiliary variables Z = (zi :
i = 1, . . . , N), and λ ≥ 0 is the vector of Lagrange mul-
tipliers corresponding to capacity constraints. Also R =
(rij : i, j = 1, . . . , N) is the N × N matrix of Lagrange
multipliers (dual variables) rij corresponding to the newly
introduced equality constraints. Note that rii = 0 for all
i = 1, . . . , N . Let Ω = {(Y,Z) : yi ≥ 0, zi ≥ 0, ∀ i}, and
let Ωi = {(yi, zi) ≥ (0,0)}.

The dual function is defined as,

g(R, λ) = max
(Y,Z)∈Ω

L(Y,Z,R, λ) (9)

and the dual problem corresponding to the primal problem
(Q) is

min
λ≥0,R

g(R, λ). (10)

Let d∗ be the optimal value of the dual problem. Attempt-
ing to solve the original problem via its dual is a suitable
approach; the dual problem is always a convex optimiza-
tion problem since the objective to be minimized is always
convex. From weak duality, it is u∗ ≤ d∗. When solving
a problem through its dual, one is interested in exploring
whether strong duality holds, i.e, u∗ = d∗, so that by solv-
ing the dual, one can obtain the optimal solution. It turns
out that, for the presented problem this is the case, since it
falls within the context discussed in [21, pp.514-515], namely
the constraints are linear functions of variables and the util-
ity functions Ui(·) are concave over R2(N−1) (the dimension
of variables (yi, zi)).

4.1 Distributed algorithm
In dual decomposition, the basic idea is to come up with

the primal-dual optimal points of the Lagrangian, L(·). By
weak duality, we have

max
(Y,Z)∈Ω

min
λ≥0,R

L(Y,Z,R, λ)≤u∗≤ min
λ≥0,R

max
(Y,Z)∈Ω

L(Y,Z,R, λ).

Under strong duality, the inequality becomes equality. A
point (Y∗,Z∗,R∗, λ∗) is primal-dual optimal for the prob-
lem if and only if it is a saddle point of L(Y,Z,R, λ), namely
it satisfies

L(Y,Z,R∗, λ∗) ≤ L(Y∗,Z∗,R∗, λ∗) ≤ L(Y∗,Z∗,R, λ).

That is, (Y∗,Z∗) maximizes L(Y,Z,R∗, λ∗), while the pair
(R∗, λ∗) with λ∗ ≥ 0 minimizes L(Y∗,Z∗,R, λ).

4.1.1 Maximization of Lagrangian w.r.t. (Y,Z)

The dual function can be equivalently written as:

g(R, λ) =

NX
i=1

max
(yi,zi)∈Ωi

{Ui(yi, zi) (11)

+
1

2

X
j 6=i

[rij(yji − zij) + rji(yij − zji)]

− λi

X
j 6=i

yij −
X
j 6=i

λjyij}+

NX
i=1

λiCi.

Thus the maximization of the dual function can be decom-
posed into separate maximization problems, each of which
can be solved by each peer i in terms of its strategy (yi, zi).
Observe also that only the ith row, ri = (rij : j = 1, . . . , N)
and the ith column, r̃i = (rji, j = 1, . . . , N) of the Lagrange



multiplier matrix R arise in the optimization problem en-
countered by each peer i. For given vectors ri and r̃i and
for given multiplier vector λ, each peer i separately solves
the optimization problem,

max
(yi,zi)∈Ωi

{Ui(yi, zi) +
1

2

X
j 6=i

[rij(yji − zij) (12)

+rji(yij − zji)]− λi

X
j 6=i

yij −
X
j 6=i

λjyij}.

This is a convex optimization problem whose solution de-
pends on the form of utility function Ui(·). Consider stage

t of the algorithm, where vectors r
(t−1)
i , r̃

(t−1)
i and λ(t−1)

of the previous stage are known to peer i. Peer i comes up
with the optimal (for stage t) resource provisioning vector

y
(t)
i and the optimal vector z

(t)
i . Let us omit superscripts

(t − 1). Each peer i derives the optimal solution (for stage
t) by applying the KKT conditions to obtain the following
equations:

dui(zij)

dzij
− 1

2
rij = 0, (13)

−dwi(yij)

dyij
+

1

2
rji − λi − λj = 0,

for j = 1, . . . , N . Peer i can then determine yi and zi. These
vectors for i = 1, . . . , N are then fed into the dual problem
(10).

4.1.2 Minimization of Lagrangian w.r.t. (R, λ)

Let us fix now the values of (Y,Z). Next, the Lagrange
multiplier matrix R and multiplier vector λ that minimize
g(R, λ) need to be computed. First, note that the mini-
mization can be performed in two stages,

min
λ≥0,R

L(Y,Z,R, λ) = min
λ≥0

min
R

L(Y,Z,R, λ) (14)

and

min
λ≥0,R

g(R, λ) = min
λ≥0

min
R

g(R, λ). (15)

For given vectors y
(t)
i and z

(t)
i , the dual problem can be

seen to simplify as follows:

NX
i=1

X
j 6=i

�
[min

rij

rij(y
(t)
ji − z

(t)
ij )] + min

rji

[rji(y
(t)
ij − z

(t)
ji )]

	
+

NX
i=1

min
λi

λi(Ci −
X
j 6=i

y
(t)
ij −

X
j 6=i

y
(t)
ji ). (16)

Regarding multipliers R, a separate problem can be solved
for each pair of peers i, j. If the dual function g(·) is dif-
ferentiable, a typical approach is to perform one step of the
iteration of a gradient-based method for rij and rji:

r
(t)
ij = r

(t−1)
ij − st(y

(t)
ji − z

(t)
ij ), (17)

r
(t)
ji = r

(t−1)
ji − st(y

(t)
ij − z

(t)
ji ),

where ∂g(·)/∂rij = y
(t)
ji − z

(t)
ij , ∂g(·)/∂rji = y

(t)
ij − z

(t)
ji at

iteration t, and {st}t≥0 is a sequence of positive steps for
the gradient algorithm. Similarly, in order to update the
multipliers {λi}, one can perform a similar type of gradient

update for each λi,

λ
(t)
i =

24λ
(t−1)
i − st

0@Ci −
X
j 6=i

y
(t)
ij −

X
j 6=i

y
(t)
ji

1A35+

(18)

where x+ = x when x > 0, otherwise it is 0, and the projec-
tion accounts for maintaining non-negativity of λi.

4.2 The algorithm and various interpretations
We now proceed to the distributed algorithm for the prob-

lem in hand. We first explain various interesting attributes
of our approach. Consider the auxiliary variables zij of the
primal problem. The vector zi = (zij : j = 1, . . . , N, j 6= i)
can be computed by each peer i separately from (13). Each
variable zij can be interpreted as the amount of resource
(bandwidth) that peer i requests from peer j, j 6= i. Thus
at each round of the algorithm, and for given values of La-
grange multipliers, each peer specifies the amounts of re-
quested bandwidth zi from other peers and the amounts
of granted bandwidth to other peers yi that maximize its
utility. Therefore, for the auxiliary variables we have that
zi ≡ xi.

Now fix attention to the updates of multipliers {rij} and
{rji} for all (i, j) with i 6= j in (17). At each stage, each
peer i updates the multipliers {rij}j 6=i based on the amount
of bandwidth zij that i requested from j and the amount
of bandwidth yji that j granted to i. If yji < zij , that
is, peer j does not fully satisfy the request of i, then rij is
increased. On the other hand, if yji > zij , i.e. there is over-
provisioning of resources from j to i, then rij is decreased.
Intuitively, rij can be interpreted as the reciprocal of repu-
tation of peer j as perceived by peer i, or in other words,
the inverse of the opinion that i forms for j. The inverse
reputation metric rij here is viewed as the degree to which
peer j conforms to the requests of peer i and in some sense
it quantifies the tendency of each peer to cooperate through
resource provisioning. The dynamic update of metric rij is
straightforward and does not need any other information be-
sides the amounts of requested and provisioned bandwidth,
zij and yji. The former quantity is known and the latter can
be readily available by measurements of peer i on its access
link.

A note about the update of the reputation metric is in
place here. In case yji = zij , i.e peer j fully satisfies the

requests of peer i, we have reputation r
(t)
ij = r

(t−1)
ij . i.e the

reputation remains unchanged. Nevertheless, one could ar-
gue that rij should be decreased (so that its inverse, the
usual reputation, will increase), since j fully served i’s re-
quests. This issue can be taken into consideration simply
by changing the definition of auxiliary variables in (7) to
zij = yji +∆, where ∆ > 0. Then, the update of rij will be-

come r
(t)
ij = r

(t−1)
ij − st(y

(t)
ji +∆− z

(t)
ij ) and when y

(t)
ji = z

(t)
ij ,

the reputation will still decrease by ∆, so that its inverse,
which amounts to the usual notion of reputation, will in-
crease.

In the same spirit with rij , multiplier rji is also updated
by peer i. This metric can be interpreted as the reciprocal of
reputation of peer i as perceived by j. In other words, a peer
i updates its reciprocal reputation in the eyes of j based on
its response yij to peer j’s request zji. Again, the update is
straightforward and requires knowledge of only zji and yij .
Clearly, rij depends on peer j’s response yji to peer i’s re-



quest zij . Peer j may not fully satisfy peer i’s requests due
to various reasons such as different (high) reciprocal repu-
tation metrics rij or rji, limited capacity, large amount of
received requests or due to the fact that j needs to satisfy
peers other than i. Naturally, peer i is agnostic of the rea-
son it is not fully served and adjusts its reputation metrics
appropriately, so that future allocations are more suitable.

Finally, the dual variables {λi}i=1,...,N admit the (stan-
dard in literature) interpretation of prices of peer i’s access
link and serve as indicators of the congestion experienced in
peer i’s link. If the total load on each link increases, λi will
increase to denote that it is “expensive” to use that link. In
our framework, these variables are used by the peers simply
to regulate their own resource allocation decisions (both the
amounts of requested and provisioned resources). They are
also communicated in the network in order to signal poten-
tial congestion to other peers so that they appropriately con-
trol their own decisions. In particular, variables λi attempt
to balance the demand by discouraging peers from request-
ing resources from peers that are very likely to be extremely
popular and experience high request load. Through appro-
priate calibration of multipliers {λi}, peers are encouraged
to address requests to less loaded peers. However, in a differ-
ent setting with resource price advertisement and payments,
these variables may represent actual link usage prices.

Each peer i has a utility function Ui(·) and access link
bandwidth Ci. These are kept private for each peer, so that
peers other than i do not need to know this information.
The basic steps of the algorithm are as follows:

• Step 0: Initialization. Set t = 0. Set the multipliers to

initial values λ
(0)
i ≥ 0 and set the reciprocal reputation

matrix R(0) = αI, where I is the unit matrix and α >
0.

• Step 1: Each peer i, independently of others, solves
locally its separate optimization problem in (12) and

computes the optimal (for stage j) vectors y
(t)
i and z

(t)
i

with the help of (13). Subsequently, it communicates

each z
(t)
ij to peers j : z

(t)
ij > 0 and grants bandwidth

y
(t)
ij to other peers.

• Step 2: Each peer i measures {y(t)
ji }j 6=i and updates

the reciprocal reputation metrics {rij} and {rji} in
(17). These are kept as private information.

• Step 3: Each peer i updates its multiplier λi according
to (18) and broadcasts it to the network.

• Step 4: t ← t + 1. If a termination condition is satis-
fied, STOP. Else, go to Step 1.

While in usual distributed optimization methods the sig-
nals that are circulated in the network are the Lagrange
multipliers, in our formulation, the multipliers {rij} are not
circulated. Instead, it is the auxiliary variables {zij} that
are naturally circulated, as they denote resource requests of
peers. In addition, a peer j needs to know only the amounts
of resource requests {zij}i6=j addressed to itself by other

peers and not the amounts {zik}, i, k 6= j requested from
other peers. As mentioned above, vectors zi = (zij : j 6= i)
and ỹi = (yji : j 6= i) are readily available or easily measur-
able on the access link of a peer i. Interestingly, Lagrange
multipliers {rij} and {rji} that correspond to the auxiliary

variable constraints can be maintained as private informa-
tion stored locally at each peer and used for a peer’s own
resource allocation decisions. This attribute is highly desir-
able in our case, as these multipliers can be interpreted as
pairwise reputation metrics that should not be revealed in a
network.

If the utility functions Ui(·) are strictly concave, differ-
entiable and bounded, and the step size st for multiplier
updates is appropriately chosen, the algorithm above con-
verges to the optimal solution of the original problem (P).
The step sizes need to be diminishing with t and should
satisfy:

∞X
t=1

st = ∞,

∞X
t=1

s2
t < ∞. (19)

These requirements are satisfied for the sequence of steps
{st}t>0 with st = 1/t or st = (1+m)/(t+m), where m > 0
is a non-negative number.

If the utility functions Ui(·) are differentiable, the separate
optimization problems (12) by each peer i in Step 1 can be
solved by means of KKT conditions. Furthermore, the up-
dates of the Lagrange multipliers in (17) and (18) in Steps
2 and 3 are performed with the gradient descent method
outlined above since the gradient exists. If the utility func-
tions are non-differentiable, the gradient does not exist in
general, and the sub-gradient method [22], [15] needs to be
employed for the optimization in Steps 1,2 and 3. For a
function f(x) a sub-gradient ω at point x0 is a vector that
satisfies f(x) ≤ f(x0) + ωT (x− x0), for all x.

For iteration t of Lagrange multipliers in Step 3, we start
by computing a sub-gradient of g(·), ω(t) with respect to

λ at point λ(t−1). It can be easily shown that such a sub-
gradient is

ω(t) = C− σ(t) − σ̃(t), (20)

where σ, σ̃ are vectors of dimension N whose ith compo-
nent denotes the sum of elements of vector yi and the sum
of elements of vector ỹi respectively, and C = (C1, . . . , CN ).
Finally, an iteration similar to the one in (18) is obtained for
each λi separately. Using similar arguments for the iteration
of multipliers in Step 2, we can find a sub-gradient of g(·)
with respect to R at point R(t−1) and come up with itera-
tions similar to the ones in (17). For the separate optimiza-
tion problem (12) of Step 1, we again compute sub-gradients

of g(·) with respect to yi and zi at point y
(t−1)
i and z

(t−1)
i .

It turns out that a sub-gradient of g(·) with respect to yi

is 1
2
r̃
(t−1)
i − Λ(t−1) + ωu, where Λ is the vector whose kth

component is λi +λk, and ωu a sub-gradient of function u(·)
that appears in the utility function (1). Also, a sub-gradient

of g(·) with respect to zi is − 1
2
r
(t−1)
i + ωw with ωw a sub-

gradient of function w(·) that appears in the utility function
(1). The distributed algorithm with sub-gradient updates
also converges to the optimal solution of problem (P).

5. NUMERICAL RESULTS
We evaluate the performance of our approach in a simu-

lated system of 10 peers. We consider two different scenarios
for the utility U(·):

• Each peer differs from others in its function ui(·). We
consider ui(x) = Gi log(1+x) where Gi > 0 is a private
parameter that captures the valuation of bandwidth
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Figure 2: Utility vs. number of iterations in a sys-
tem with identical peers
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Figure 3: Utility vs. number of iterations in a sys-
tem with different link capacities

by each peer i. This choice of utility function models
peers with different bandwidth needs that places more
emphasis on the amount of download.

• Each peer differs in its function wi(·). We consider
wi(y) = Giy

2, where Gi > 0. In a sense, this choice
models selfish peers with different degree of “reluc-
tance” to let uploads through their link.

For these choices of utility functions, we obtain from (13),

zij =

�
2Gi

rij
− 1

�+

,

and yij =
1

2Gi

�
1

2
rji − λi − λj

�+

. (21)

We observe that a peer i aims at placing more requests to
peers j with low rij . This accounts for an intuitive selection
of peers as servers based on how much reputable they are
in the eyes of peer i. Also note that, the higher the value

of Gi of a peer i, the larger the amount of requests of that
peer. On the other hand, in deciding the amounts of granted
bandwidth, a peer i wishes to do that so that it satisfies
(and gains the attention of) peers which, according to its
perception, do not consider peer i to be reputable. This
can be seen from the fact that yij is proportional to rji,
the reciprocal reputation that of i in the eyes of j. Note
also, that a peer refrains from providing large amount of
bandwidth if its link or peer j’s link are signaled as being
congested, i.e the values of λi and λj are large.

The simulation model consists of N = 10 peers which
interact in successive rounds according to the proposed pro-
tocol. We assume that the communication is synchronous.
Thus, in each round, every peer’s requests and allocations
are successfully communicated to the intended receivers be-
fore the next round takes place. The basic attributes of each
peer are the capacity Ci of the access link through which it
is connected to the network and the parameter Gi which
differentiates, either through ui(·) or through wi(·), its util-
ity function. We consider the two different concave utility
functions:

(A1) : Ui(zi,yi) = Gi

X
j 6=i

log(1 + zij)− α1

X
j 6=i

y2
ij ,

and

(A2) : Ui(zi,yi) = α2

X
j 6=i

log(1 + zij)−Gi

X
j 6=i

y2
ij ,

where α1 and α2 are scaling parameters and do not affect
the conclusions.

First, we simulate a system in which all peers are de-
scribed by utility functions of type (A1) and have identical
profiles, i.e. they have equal link capacities, Ci = 100 units,
and the same utility functions, i.e. parameter Gi = 100.
In figure 2 the evolution of utility for every peer is shown.
The system is gradually driven to a steady state while the
utilization of each link is approximately 100%. Note that
for this case, when all peers are identical, exactly the same
results hold also for utility functions of type (A2). In figure
3 we simulate a system where a peer has link capacity equal
to 50 units, lower than the capacity of the rest, which is 100
units. This peer submit smaller requests, grants less band-
width to other peers, has worse reputation and eventually
obtains less utility.

The case where different peers have different utility func-
tions is studied in figures 4 and 5. In figure 4 we show the
evolution of utility for a system where peers have utility
functions of type (A1), equal link capacities, Ci = 100, but
different values of Gi. Specifically, G1 = 80, G2 = 120, and
Gi = 100 for every other peer. We observe that the utility is
proportional to the value of the G parameter. The peer with
the smallest G, submits the smallest requests, x1j = 4.68
(compared to x2j = 5.54), allocates the largest bandwidth,
y1j = 5.90 (compared to y2j = 5.22), and has the best rep-
utation as it is perceived by the other peers, rj1 = 29.76
(compared to rj2 = 32.58). Recall that r is the inverse rep-
utation. It is interesting to notice that the peers submit the
largest requests to the peer with the smallest G, xj1 = 5.71
while xj2 = 5.13, because they realize that this peer is more
willing to serve. Similar results hold for the case where the
peer utility functions are of type (A2). In this case, the peer
with the largest value of G, G1 = 0.08, submits the largest
amount of requests and receives more bandwidth than other
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tem with type (A) utility functions and different G
parameters.

peers. From the figures above, we observe that the peers
with the largest utility functions, i.e. larger G for type (A1)
or smaller G for type (A2), obtain more resources and finally
higher perceived utility.This is expected for our problem for-
mulation, (P ), as social welfare maximization.

6. DISCUSSION
We presented a distributed network utility optimization

framework for addressing the link bandwidth sharing prob-
lem that arises in peer-to-peer networks, where the finite-
capacity access link from each peer to the backbone network
is the bottleneck. Our algorithm allows dynamic and flexi-
ble control of the portions of bandwidth that are dedicated
to upload and download flows of different peers. Our opti-
mization framework leads to an insightful interpretation of
Lagrange multipliers as reciprocal pairwise reputation met-
rics whose temporal evolution reflects the extent to which a
peer responds to requests of others. This approach leads us
to a meaningful protocol for autonomous bandwidth shar-
ing among peers, which relies on readily available or mea-
surable quantities. The protocol is lightweight in terms of
computational complexity and overhead. Furthermore, it
does not require pairwise reputation metrics to be broad-
casted or circulated in the network; reputations as well as
utilities are hidden information for each peer. The proposed
protocol addresses the general case where uploads and down-
loads take place over the same link. The case where upload
and download streams flow over two separate links can also
be addressed by including in the formulation two separate
link capacity constraints, one for the upload and one for the
download traffic.

There exist several directions for future study. The selec-
tion of social welfare as our objective allows us to identify a
socially optimal operating point in terms of bandwidth allo-
cation and reach it by means of a distributed algorithm. As
revealed by the numerical results, peers with larger utility
function obtain more bandwidth; this is reasonable, due to
the social welfare objective of the problem. In that sense, the
reputation metrics do not have the impact of an incentive
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Figure 5: Utility vs. number of iterations in a sys-
tem with type (B) utility functions and different G
parameters.

mechanism that would reward cooperating peers and would
punish selfish ones. The role and interpretation of repu-
tations would actually be more insightful if we could alter
the objective function and/or the constraints of the origi-
nal problem such that some notion of fairness is enforced.
For instance, an additional constraint could be that the ob-
tained utility of a less collaborating or “selfish” peer at the
optimal operating point be no more than that of a more col-
laborating peer. It would be interesting to see how can such
a case become amenable to distributed implementation and
how a reputation mechanism essentially guides the system
to efficient operating points.

Our protocol does not distinguish among different content
items that are possessed by peers. The approach could be
extended to the more realistic situation of different items
such as files residing (fully or partially) at different peers in
the network. The obtained utility will then depend not only
on the amount of provisioned bandwidth, but also on differ-
ent items, in the sense that certain items may be valuated
more by certain peers than others. One way of addressing
this issue is through several classes of items with e.g. dif-
ferent popularity. Pairwise reputation will then depend on
individual exchanged items as well. This more general as-
pect gives rise to more generalized decision strategies. Now
each peer has to decide on the item it will grant besides
the bandwidth. In order to increase its reputation, it might
be meaningful for a peer to serve requests less frequently or
with less bandwidth, yet it can choose to provision very pop-
ular files. In that context, it would be interesting to study
the long-term temporal behavior of utility and reputation,
given that item popularity is itself time-varying, with very
high peaks for a while after being posted in the network and
decreasing later.

The model can be enhanced to account for a dynamic
population where peers enter or leave the system. It could
also include an average request load rate that each peer at-
tempts to satisfy or it could incorporate recommendations
from third parties in addition to pairwise experience. More-
over, it would be interesting to relax the synchronized (slot-
ted) operation assumption and investigate the impact of de-



layed message passing in the overall protocol efficacy. In
the case of wireless access links of peers, channel impair-
ments such as packet collisions or interference will cause the
amount of granted bandwidth as perceived by the grantee
to differ from the amount of truly granted bandwidth. This
will create discrepancies in the values of reciprocal pairwise
reputations {rij} and {rji} that are computed by involved
peers i and j that were not assumed in our approach. It
would be interesting to analyze the impact of such a phe-
nomenon on the convergence of the algorithm.

In the proposed algorithm, peers are rational, possibly
selfish, but honest in the sense that they decide on the re-
quested amounts based on (12). Thus, a peer is not pre-
vented from placing false requests in an effort to disorien-
tate the protocol. It would be interesting to devise rules
by which peers would be able to determine whether another
peer does not follow the protocol in terms of this aspect.
Finally, our approach can give rise to a class of protocols
with different definitions of auxiliary variables that in turn
result in different constraints and different modes of reputa-
tion metric update. This was briefly mentioned in the paper
in section 4.2 with parameter ∆. It would be interesting
to study the dependence of the operating point to which
the distributed algorithm converges from the definition of
auxiliary variables.
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