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Abstract—In wireless cellular networks and wireless local area wireless link, while rate allocation algorithms regulate the
networks, nonlinear network utility maximization need to be pandwidth ‘demand’: how much throughput should be given to
conducted over both user rates and transmit powers. For each of each user. Total network utility must now be maximized over

the three cases considered in this paper, we present an algorithm the ioint soluti f d rat Th i
that converges to the jointly optimal pair of rate vector and power € Jjoint solution space of powers and rates. € nonlinear

vector. dependency of rates on channel conditions and powers, as well
For the simple case when data rates are not limited by &S possible interference among the transmit powers, are the

interferences, for example in single-cell downlink transmissions, mMain challenges of solving utility maximization problems in
Algorithm 1 we propose is an iterative bidding mechanism wireless networks. Utility maximization over powers and rates
between the base station and mobile users, where knowledgejn wirelessad hocnetworks with multihnop wireless transmis-

about channel conditions and individual user utility functions — q;nq has heen studied in the context of joint congestion control
is only needed locally at each user buhot needed at the base . . . ;
station. and power controle.g, in [4]. This paper investigates three

In the case when data rates are limited by interferences, the different cases in wirelessellular networks.

utility maximization problem is complicated both by nonlinear

coupling between powers and rates, and by interference among

powers. Through centralized iterative steps, Algorithm 2 we

propose converges to a joint and global optimum over the solution o
space of rates and powers.

We then consider end-to-end transmissions in cellular net-
works, which traverse both wireless fading channels and many o
hops of wired links shared by other traffic. There is a tradeoff
between attaining air-interface capacity in the wireless hop and Fig- 1. Single-cell downlink case without interference.
controlling congestion in the wired backbone wide area network.
We formulate this end-to-end resource allocation problem in such

hybrid networks, and present Algorithm 3 to obtain the Pareto In section Il, we first consider the simpler case where
optimal tradeoff between attaining wireless multi-access fading rates are not limited by interference, for example in wireless
channel capacity and maximizing global network utility. downlinks in a single cell as depicted in Figure 1. Unlike

I[17] where the rate is assumed to be a linear function of the
teceived power, here we assume that rate is proportional to
the logarithm of the received power. We present a pricing
algorithm through an iterative bidding mechanism that solves
the problem even when the base station has no knowledge
about each individual user's channel condition and utility
Communication system performance is sometimes best méaction.
sured not by a weighted sum of attainable rates, but by somerpen in section Ill, we turn to the general case of up-

nonlinear utility functions of rates. Each user has a utility fungk/downlink transmission in a multi-cell CDMA system as
tion that is assumed to be continuously differentiable, concaygyicted in Figure 2. Intended transmissions, either downlink
and increasing, and the sum of all users’ utility functions gy plink, are shown in solid lines, and some of the unintended
called the network utility. Network utility maximization underjnterferences are shown in dashed lines. In addition to the
linear flow constraints is an important class of problems {fonjinear dependency of rates on transmit powers and channel
wired networks and has been extensively studied. conditions, due to signal interference, the attainable rate on
In wireless networks, rate feasibility is often affected bgach link now becomes a global function of all the transmit
channel conditions and adaptive resource allocations likewers. Foschini and Miljanic [6] propose an iterative power
power control. Power control mechanisms determine the barmdntrol that finds a set of transmit powers to achieve sfixeel
width ‘supply’: how much throughput can be attained on eadhrget rates. Here we propose a complementary rate control

Keywords: Convex optimization, Lagrange duality, Power contro
Rate allocation, Transport Control Protocol, Utility maximization
Wireless local area networks, Wireless cellular networks.
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network utility.

Il. SINGLE-CELL DOWNLINK CASE
A. Background

Consider a general multihop network, where some nodes
are sources of transmission, and sequences of connected links
form routes. We user,s and ! as the indexing variables
for routes, sources and links, respectively. Let be the
transmission rate of souree y,- be the total flow along route
r, and¢; as the capacity in terms of supportable data rate on
link {. There are twd) — 1 incidence matricesH = {H,, }

and A = {A,.}. Entry H,, = 1 iff route r serves source,
Fig. 2. Multi-cell uplink/downlink case with interference. and entryAlr — 1 iff link 1 is on router.

The standard problem of network utility maximization for
elastic traffic sourceeg(g, in [10], [5]) is to maximize the
algorithm that couples with Foschini and Miljanic powelsum of individual sources’ utilities represented through dif-
control to maximize network utility over thgint solution ferentiable, increasing, and concave functidhgz, ), subject
space of powers and rates. to flow conservation constrailily = x and link capacity
constraintAy < c:

Wireless Air-Interface L.
maximize Us(x
Backbone link share Zs s ( S)

by both wirdless anc subject to Hy = x, )
on-wireless Ay < c,
source nodes N
x,y =0

where the variables are andy (> denotes component-wise
inequality).

Kelly et al. [10], [11] showed that problem (11) can be
decomposed into two sets of problems. First are subproblems
SOURCE, one for each source, to be solved locally over

Non-wireless
Source Node s

Wired Network

maximize,,, >o [US (T) - ms} : )

Fig. 3. End-to-end connections in a hybrid network. s

Second is subprobleMETWORKto be solved for the entire
Contrary to its name, wireless cellular networks in fagietwork overx andy:

consist primarily ofwired links. In section IV, we consider

a hybrid wireless-wired network depicted in Figure 3, and
upload transmission using uplinks in the wireless air-interface.
There are two distinct parts in the network: a wireless multiple-
access channel (MAC) and a wired mesh backbone. This
models a_cellular wireless netwo_rk, where the v_vireless MAC iS_ To state that utility maximization (1) can be decomposed
from mobile users to a base station, and the wired backbon
from base stations through mobile switching centers and AT,
switches to eithgr the PSTN or an IP wide area network.t atm, = poas, Vs, {m,} solve theSOURCE problem, and
also models a wireless local area network (LAN), where t s}, {yr} solve theNETWORKand utility maximization (1).
wireless MAC is from laptops to an access point, and the wir § ) .

backbone is from access points through an Ethernet LAN to af©n€ of the important advantages gained through the above
IP wide area network. A unique feature of resource allocati§lfcomposition is that th&lETWORK problem can be dis-

in such hybrid networks is that the effect of channel variatiof@outively solved and does not require the knowledge of each
at the wireless hop is coupled with the effect of congestidRdividual user’s utility functionU,.

on various wired links in the backbone network. Section IV The simple linear flow constraints in (1) can be extended
presents Algorithm 3 as an end-to-end resource allocation for wireless cellular systems to take into account the nonlinear
such hybrid networks to trace out the Pareto optimal tradeafépendencies of link rates on channel conditions and adaptive
between attaining local MAC capacity and maximizing globaksource allocations.

maximize ) mlogx,

subject to Hy = x, 3)
Ay =c,
x,y = 0.

the above subproblems is equivalent to the following
Matement [10], [11]: there exigtns}, {ps}, {xs}, {y-} such



o In [17], the flow constraints are made to depend on loc@l. Algorithm

channel conditions and resources (time or power) linearly, . . .
( P ) Y We will show that the following Algorithm 1 solves (4). The

which is an appropriate model for TDMA systems or i ) . . o .
CDMA systems in the wide-band regime. It is shown thaﬁlgonthm can be interpreted as an iterative pricing mechanism.
8ﬁed on only local information: channel conditignand its

as channel quality varies across the users, the base staﬁ

should charge different users different prices based in p8¥¥” Ut'“?y functionl, each usef in turn calcu_lates_a bidA;
on their channel qualities. The optimal pricing require submit to the base station. The base station simply updates

the knowledge about each user’s utility function at th e sum of the “bids’ without knpwmg;i or U’ After the
base station. A suboptimal scheme that does not requ-%granteed) convergence of the |_terat|ve bidding Process, base
this knowledge is shown to be asymptotically optimal. station allocates poweP; proportional to the (normalized)

« In this section, the flow constraints are made to depeﬁ&u'“b”um bid A7
on local channel conditions and transmit powers loga- Algorithm 1
rithmically, which is an appropriate model for CDMAGiven accuracy tolerance> 0. Counterk = 0.
systems in the high SIR regime. We will show thaBase station initiate a vectox’.
the optimal algorithm can be interpreted as an iterativepeat "
bidding mechamsm that do.es not require the kn.o_wled@edse station passds— ij i to userl.
of each user’s utility function or channel condition a,, ;, — 1. 5/
the base station. It turns out that this is possible in LU 8

gAY

o eri computes\" ™ such that— 2% — T and
because of the logarithmic dependency of rates on powers ‘ P ¢ exp(U, 71 (AFFY))
and channel conditions. passeskgk“) to base station.
_ _ S NGO )
Note that, although not treated in this paper, the netwoBase station passés= ==~ Sz I to useri+1.

utility function in general does not have to be a function of usend
rates, or a concave functioe.(, [7], [9], [25]), or separable k = k + 1.

into each individual user’s utility function. until |A§k+1) - Agk)| <e, Vi
Pr = <P,
D MY

B. Problem formulation It will be shown that the above power control leads to the

Consider the single cell downlink case in Figure 1 with following rate allocation:R; = U; "' (\}), Vi.
logical users, and assume CDMA transmission with orthogonalag gn example of Algorithm 1, if the utility functions are
codes. The base station has a total transmit powedp dfiat weighted log:U;(R;) = 3;log R;, B; > 0, Vi, the equation
is divided into P, > 0 for transmitting to user such that 5 pe solved for\; by useri is —%2i =
S"M P, < P. The channel gain is denoted &s for channel exp(5%)
i, and the received power i€;P;. The attainable rate is Different pricing mechanisms have been used for wireless
modelled ag log(1+ SNR) where L is a constant. Assuming power control,e.g, in [17], [20], [23]. The novelty of Al-

high SNR, user rate is upper bounded By < L log ( S gorithm 1 is in using a (provably convergent) iteration of

where N; is the noise. Without loss of generality, norimaliz@idding process to maximizeonlinearutility undernonlinear

over L and letg, — S:, we have the nonlinear constrainconstraintswithout the knowledge of{g;} and {U;} at the
R; < log(g; P)). Ni base station. This extends the results by Kelly et al. [10],
‘- o 11] for utility maximization in wired networks without global

nowledge about individual utility function§U, }.
Several propositions can be proved on the properties of

Therefore, we need to solve the following problem
network utility maximization over both transmit powdPsand

user rateR: . ) S
maximize . Us(R:) Algorithm 1. We focus on the most important one in this paper:
subject to Riz<zlogl(gi}%-), Vi, Theorem 1:Algorithm 1 converges to a globally optimal

Z_}i <P, (4)  (P*,R*) of utility maximization (4).
P>0

where the variables arP and R, andg > 0 is a constant D. Proof of Theorem 1

vector.

. . Since U; are increasing functions, it is obvious that at
. Note _that the _unde_rlylng model for_ (4) Is _not theoptimum, the first constraint in (4) must be tight. Sircg is
information-theoretic o_pt|ma_l one for multl—gser fa_dmg chang increasing function, the second constraint in (4) must also
nels [13], [22], [23], which will be discussed in section V. Theoe tight at optimum. Therefore, without loss of generality, we

fo‘?“S .Of this section IS to show hOW. to maximize the nonllne@én replace these inequality constraints in (4) with equalities,
objective under nonlinear constraints as in (4), through an 4\ ite the Lagrangian as

iterative pricing algorithm that does not require the knowledge
of {g;} and{U;} at the base station. L(P,R,X,y,0)=>,Ui(R;) + >, Ni(log(g: P;) — Ry)



+y(P =3, P)+ >, 0P which implies that at optimum,
whereo = 0, A, and~ are the Lagrange multipliers associated S
. . N ==L (8)
with the three constraints. P

Maximizing L over R, we obtain:
Substituting (8) intgy(A, v) and simplifying the expression,

L _ . A P ; we have:
57 = UlR) =2 =0, vi
which implies the following optimality condition: g(A) =22, Ui(Vi(h)) + 22, Ai (log(gihi) — Vi(Ai))
+(log PY(D2, N) — (02, M)l i),
RE = Vi(\), Vi 5) (log P)(3_2; Ai) — (22 Ai) log (D2, Ai)

whereV, = Ufl is defined as the inverse of the derivative o‘f\{h'dll. we tr;]]USt minimize overi;i _Tz.iklng derivative and
utility function. simplifying the expression, we obtain:
Maximizing L over P, we obtain: daf = U/ Vi)V (\) — AV (\) + log(gihe)
oL N\ , —Vi(Ai) +log P —log(3=; Aj)-
8PfL - P'L fy + O, VZ,
which implies the following optimality condition:

SinceU! and V; are inverse functiong//(V;(X;)) = A; and
the first two terms cancel. The optimality condititﬁ% =0

; is reduced to:
P, = Ai , Vi (6)
Yo
Substituting (5) and (6) intd., we obtain the following log(g:Xi) = Vi(\i) +log P—log [ Y~ A; | =0.
Lagrange dual function: J
gy, 0) =S U(Vi(A)) + 325 A <log (3_1) _ V¢(>\i)> An equivalent and more illuminating expression is:
VP =y Y, A+ Y, 2 gihi Zg;)‘j Vi ©)

exp(Vi(\)) P’
In (4), the objective is maximizing a concave function, the
first constraintiog(g; P;) — R; > 0 is concave in(P,R), the Notice that as desired, the right hand side deetsdepend on
second and third constraints are affine, and there obviou8ilg local channel conditio; or utility function U; at each
exists an interior point in the feasible set. Therefore, dualijgeri, and the left hand side contaiosly information(g;, U;)
gap is zero and solving (4) is equivalent to solving its Lagran@é‘d variable)\; local to useri. Furthermore, substituting (8)
dual problem: minimizing the Lagrange dual function over théto (6) and usingr = 0, we have
Lagrange multipliers: \*
P =<t P

minimize g(A, v, 0) ) DY P
subject to o > 0.

The rest of proof follows readily from the convexity prop-

Notice that becausk and~ correspond to equality constraintSgrties and known results on the successive realization of the
in the primal problem (4), they are unconstrained in th§yniinear Gauss-Siedel algorithm [2].
Lagrange dual problem (7).

Obviously, the last two terms ofi(A,~v,o0) add up to

become— 3. \;. This leaveslog (% as the only terms E. Numerical example

in g(\,~,0) involving o. Since each of such terms is an ) ) _ _
increasing function of;, to minimizeg(X, v, o) overo = 0, Res_ults from an |II.ustrat|ve numencal example is summa-
we should simply let = 0. Thus the Lagrange dual problem”zed in this s_ubsect|or_1. We cqnsnder a cellular .syster.n with
becomes an unstrained optimization of minimizing one base station and six downlink users, each with a different
channel gain and a weighted logarithmic utility function with
—S™ LUV (s BV G\ V(N a different weight. Total transmit power at the base station
9] =2 UZ(VZ()\Z))_JFZl A (log< K ) VZ(M)) is 6 units and all bids are initialized to be 1. Figures 4, 5
TP =32 N and 6 show the bids from the six users through the first eight
iterations according to Algorithm 1. It can be seen that the
bids quickly converge in about 4 rounds, and Figure 7 shows
_ the resulted power and rate allocation after convergence for
Iy ~y +P =0, the six users.

over XA and~y. We first minimizeg(\, ) over~:

@: Zj)\j




Bidding from user 1 Bidding from user 2 Bidding from user 5 Bidding from user 6
T T T 1 T T T

0ol 1 45
08l 1 4
i 1 07f 1 ' 35

0.6 9 3
08f 4 0.8
05f 4 25
0.6 4 0.6
0.4t 4 »

0.4 03 1 04 15

0.2t i .

0.2f 4 0.2
01 4 05

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Fig. 4. Algorithm 1 example: Bidding from users 1 and 2. Fig. 6. Algorithm 1 example: Bidding from users 5 and 6.
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Fig. 5. Algorithm 1 example: Bidding from users 3 and 4. Fig. 7. Algorithm 1 example: Power and rate allocation for six users.
I1l. M ULTI-CELL GENERAL CASE noiseN; is much smaller than the total interference and SIR is
approximated as SIR= £ For notational simplicity

A. Problem formulation ] g DiGlid _ _
and without loss of generality, we take to be 1 time unit

In this section, we consider the general case of multi-celhd absorbK into the SIR formula (10). We now have the
up or downlink transmissions with interference in Figure Functional dependence of link data rate on SIR, which is in
Signal to Interference Ratio (SIR) for thé&" logical link is turn a nonlinear, global function of transmit power veckr
defined as R;(P) = log SIR;(P).

SIR(P) = — (10) A user demanding a certain data rate is requesting that the

252 LiGij + Ni SIR of her link be high enough to sustain the desired rate.

where G;; is the path loss from the transmitter on logicalhis request, however, is limited by competing rate demands
link j to the receiver on logical link, taking into account from other users. This interference-limited nature of wireless
propagation loss and normalization factors, ahgdis the path  CDMA system is captured by defining the feasible rate-power
gain for the intended transmission on logical lipkaking into region RP as the set of pairs of power vectors and the
account propagation loss and other factors such as spreadiagociated feasible rate vectors:
gain and the effect of beamforming. For a large class of . on
modulations, the attainable data rate can be written as RP ={(R,P) € RY|R = log SIR(P)}

There can be an infinite number ¢éR,P) pairs in the
feasible rate-power region. As a general design problem,
whereT is the symbol time andy is a constant depending'Ve would like to pick the one that maximizes the network
on modulation type and desired bit error probability. DuBt'“ty,U(R) =2 Uz;(_Ri)- Th_er'efor'e, we need to solvg the
to high spreading gaink SIR; is usually much larger than following network utility maximization problem constrained
1 for medium to high SIR environments, and we make df the feasible rate-power region:
approximation to writeR; = %log(KSIRi). Throughput of maximize Y, U;(R;)
most CDMA cellular systems are interference limited, where subject to (R,P) € RP,

R, = %log(l + KSIR;)

(11)



where the optimization variables are both rate allocation vectorWe prove the following main theorem for the above algo-
R and power allocation vectoP. Nonlinear relationship rithm:

betweenR and P, as well as interference amor, make  Thegrem 2:Algorithm 2 converges to the a globally opti-
this problem difficult to solve. mal (R*,P*) of utility maximization (11).

B. Background D. Proof of Theorem 2

Given a rate vectoR, we define a diagonal matri® as a
function of R: D(R) = diag (ER ) Given a gain matrixG,

i
it

Using a change of variableB, = log P;, we have
1

we construct a matrixG: Gy; = G;,i # j andGy; = 0. R, <logSIR, < —— < ¢ Ri
Foschini and Miljanic [6] proposed a simple and distributive SIR; _ _
power control algorithm to achieve a set of rate requirements. < Gi_ileipi Z Gijepj <e Ml
The given rate demand&@!@9€lis equivalent to a set of SIR J#i
requirements SIR™9®! and at each iteration, each transmitter & log Y ePimPrtRitlosGi—logsGu < g,
1 adjusts its power so that the resulted SIR would equal i
Sl target if all other competing users kept their transmi

by second derivative test, it can be verified that
log>"ef(®) is convex inz for all affine f. Therefore,
P! = DGP*. (12) log} el FitRitlosGiy—los G s convex in(P,R), and

_ . _ . its sublevel seRP; = {(P,R) € R%"|R; < logSIR;(P)}

By Perron Frobenius theory of positive matrix [8], it iSg 5 convex set. Since the intersection of convex sets is also
known [6] that, whenever the SIR requirement is feasibée, ( convex, RP is a convex set in(P,R). Since logarithmic

.required _rate vector insid&®P), the itgrative power update mapping is injective, we can recov from P. Because the
n PE_lZ) WI”h cczjnve;rgs to a Pareto optimal power vector tha&bjective function in (11) is concave R and the constraint
achieves the desired SIR. set can be turned into convex ifR,P), it is a convex
optimization problem iR, P), and a local maximum is also

C. Algorithm a global maximum.

In thi i ‘ laorithm ve the utilit Since R; < logSIR;(P) is equivalent to P, >

n this section, we present an algorithm to solve the utility®: <~ =~ 5\ o 21 rewrite (11) as
maximization problem (11). Note that, unlike Algorithm 1,5 i GisPis (11)

powers constant. This power update can be written as [6]:

knowledge of {U;} is needed in the following centralized maximize 3, Ui(R;)
computation. subject to D(R)GP <P, (13)

Algorithm 2 R>0, P>0.
Input: Gain matrix G of the cellular network and utility
functions{U; }. Consider the joint rate-power control problem (13). If the
Output: Optimal pair of rate-power vecto®*, P*). variablesR are fixed, the problem reduces to a feasibility prob-
Algorithm : lem of finding a power allocatio#” such that the constraints
Given an initial rate vectoR", accuracy tolerance and step D(R)GP < P are satisfied. This feasibility problem may not
sizea > 0. Counterk = 0. have a solution, but if solutions exist, one can be found by the
Compute the largest modulus eigenvaluand the associated iterative power control algorithm (12).
eigenvectoryp, q of D(R?)G. We now decompose (13) into two parts: a power control
Compute 0R, where §R; = (pvlq’_) < Uf(ﬂ) — 1,7 = partthat uses the algorithm in [6] to update pod®f™! =

o i7d D(R)GP*, and a rate allocation part to be solved in the rest

1,2,...,N. - . .

T of this subsection. We will show how to update the target rate
while |[dR|| > ¢

vector toward an optimum, which also drives the power vector

Rk _ k
ComputeR " = R” + adR. toward a joint optimum.

ComputeR**! = R¥ — (log \(D(R*)G))17.

Use power control in [6] to update poweP*+! = First recall [21], [8] that the Perron Frobenius eigenvalue
D(R*1)GPP. A(A) is the largest modulus eigenvalue of an element-wise
Compute the largest modulus eigenvaluand the associated Positive matrixA, and the associated right eigenvectgiA )
eigenvectorsp, q of D(R*1)G. and left eigenvectog(A) are called Perron Frobenius eigen-

1 U’ vectors. It is a standard fact from Perron Frobenius theory
ComputedR, wheredR; = (W) <Z:U]> -1 [21], [8] that for a positive matrixA with Perron Frobenius
k=k+1. T eigenvalue), there is anx such thatAx < x if and only
end if A\ < 1. Therefore, the rate allocation subproblem is now



reformulated as the following optimization ovR: Continuing with the calculation of each component in the
maximize 3, Ui(R,) gradient vectorV), and usinglogSIR; = R; on Pareto
LA optimal surfaceP, we have

subject to A(D(R)G) < 1, (14)
R=0. VAAR) = q"(R)V;(D(R)G)p(R)
~ Ri\
The inequality constraintdD(R)GP =< P in (13) will = q'Vv; <diag<2 )G) p
be met with equality at optimality, because otherwiBe Ji
can be increased without violating the constraints and, by — ZqieRipj &
monotonicity of U(R), produce a larger objective value for o Gii
(13). In order forD(R)GP = P to hold, there must be an SIR;
eigenvalue oD(R)G thatis at least 1. Since Perron Frobenius = G- Z Gijp;
eigenvalue\ is the largest modulus eigenvalue @(R)G), B "ot
we must have\ > 1. Earlier arguments also show < 1. B
Thus the constraint in (14) can be written &s- 1: where the last equality comes from realizing that the power
maximize Y, U;(R;) vectorP is the same as the right Perron-Frobenious eigenvec-
subject to /\(D(R)é) =1, (15) torp [6], [3]. Therefore, the normal t@ is
R >0. =
- VADR)G) = [g1p1, 3202, - - -, gnpn] ", (16)

\ VDVGS%QNE k;yPG(P for Ffarcato) the set of ra}:()R such th_at IWhere p.q are the right and left eigenvectors ®(R)G

( f( ) f) T] 'f eql;?etrlca y,P_(rjeapresO(Iants a'reto optima respectively, normalized such that VA = 1. We now find
suracg of the 'eaS| e rate regioR under q given powgr in the equalityVlU = pVX: p = p17VA = 17VU. The
allocation P. It is the boundary of the feasible rate region .. . e .

: . . ; ptimality condition becomes:

because any rate vectBr outside this surface is obviously not
achievable, and anR inside or on it can be achieved by some Ui — . Vi (17)
power allocatiorP. It is Pareto optimal because any two points > ; U; @ibi, V-
Ri,R; on P cannot dominate each other, if; ; > R, ; for
somei, there must be ap such thatR, ; > R; ;. The global ~ Now consider a poinlR* on P. We would like to move
maximizerR* of (11) must be a point ofP. along P to a point where the resultetl(R) is larger. The

By KKT optimality condition of equality constrained op-tangent toP at R* is a good local approximation t®. So
timization, solving (15) is_equivalent to optimizing the LaWVe move a small Stge: > 0 along the tangen{R/[(R —
grangianU (R) — pA(D(R)G) wherep is the Lagrange mul- R")” VA(R) = 0} to R" to increasel, i.e,,

]tcig)rlig,_ i.e., solving the following nonlinear system of equations RF = R* + adR”,

VU(R) = pVA(R). where (JR*)TVA(R) = 0 is orthogonal to the normal, such
that U(R*) > U(RF). In the following, we simplify the

gradientVU(R) can be readily computed. We also need to

find VA(R). We start by writing the definitions of right and
left Perron Frobenious eigenvectgssq of DG, normalized
to have inner product:

Due to concavity ofU(R), a positive 6R; decreases
V:U(R) and aligns the vector&/U and V). Therefore,

moving along the direction 0% — VA increased/(R).

DGp = Ap We diagonally scale it by}%
q'DG = A" . 1 Ul
p = 1 0R = diag (pi%’) S U7 - VA,
Now differentiating both sides of the right eigenvectogo that the resulted point is on the tangent:
equationDGp = Ap with respect toR, we obtain
. . Ul
(VDG)p + DGVp = AVp + (VA)p. VNOR = |5~ iqj]
i 3
Multiplying both sides byq”, and using the left eigenvector o Z o
equation and the normalization equation, we have o : Pid
af(VDG)p+q'DGVp = q'AVp+ql'Vap = 0,
q"(VDG)p+q'AVp = q"AVp+q'Vip since right and left Perron Frobenious eigenvectors of

q"(VDG)p = VA DG are normalizedgq”p = 1.
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The pointR* in general is not orP and may be infeasible.
We now projectR* on P to obtainR**! as the next rate
allocation vector. We subtract a constant téem\(D(R*)G)
in each component oR*. This scales thédD = diag(e") 25

matrix by m. Therefore, the new rate vector:

R = R* — (log A(D(R*)G))17”

Link rates (Mbps)

b I
is on Pareto optimal surfacg, as verified below: | // |
~ 1 [ Yy —
DRMHGP = ——D(R"GP I
A(D(RFG) s
) o
= — = . = _ )\ (D (Rk ) G ) P 0& 1&0 2(‘)0 3&0 AL‘)O 51‘30 6&0 7(‘)0 81;0 9(‘)0 1000
A(D(Rk)G_) Time
N = P Fig. 8. Algorithm 2 example: rate adaptation.
= \DR"NHG) = 1
The sequence of rate allocation adaptatRh — RF — os

RF*+1 through movement along the tangent and projection
to P produces an iteration of feasible rate vectors, which
by the optimality condition of (15) converges to an optimal
rate allocationR* for any possible power control. As rate
vector R adapts, power vectoP changes according to the
Perron Frobenius update in [6], which converges sifieé}

are feasible. In particular, becauRe is on the boundary of
the feasible rate region, there is a corresponding power control
P* that produce® *. By convexity properties shown, this pair

Transmit powers (mW)

of (R*,P*) is indeed a globally and jointly optimal rate and e
power vectors for utility maximization (11).
Note that each component of the gradi®&m: Fig. 9. Algorithm 2 example: power adaptation.
IND(R)G)
— 5 = DPili,
OR;

is only a function of right Perron Frobenius eigenvector V. END-TO-END HYBRID NETWORK CASE

and left Perron Frobenius eigenvectgrbut not of individual A. Introduction

interferers’ powers. It is known [6] that is equivalent to the

transmit power vectolP. Left Perron Frobenius eigenvector Each end-to-end path in a wireless cellular network consists
also has an intuitive interpretation: it is a ‘summary’ of th&f @ wireless air-interface and a wired backbone network.
effect of all the global interferences on utility maximizationWe have considered only the air-interface part thus far, using
Either a higher powep; or a higher ‘summary; of the inter- Physical layer models that assume simple, sub-optimal coding
ference effect implies a higher ‘price’ for utility maximization.2nd modulation schemes. In this section, we consider the end-
to-end problem across both the air-interface and the backbone.
We will also use the information-theoretic fading channel
capacity region for the air-interface model. We only discuss

An illustrative example of Algorithm 2 is shown through g€ case for data upload from the wireless usees, the air-
simulation summarized below. We simulate a cellular systeffferface is a multiple access channel (MAC). For the case of
with five users connecting to a base station. The path Igidt@ download to the wireless useis,, the air-interface is a
is based on the randomly generated distances and specifiifdcast channel (BC), the results developed in this section
coding gain. We then randomly generate an initial set of rat@n Pe easily extended.
requirements,.e, R° in Algorithm 2. The objective is to  The wireless MAC is often modelled as time-varying fading
maximize the total sustainable data rate of the network. &kannels, and the main issue is how to make the most efficient
the algorithm proceeds, transmit power and allocated rate fme of the available bandwidth and power. In particular, assum-
each user is shown in Figures 8 and 9. It is observed in Figung that both the transmitters and receiver have channel state
10 that the sum rate of the system increases as the algoritimfiormation, power control at the transmitters can increase
converges. the achievable data rates on the wireless hop. Tse and Hanly

E. Numerical example



is most apparent when laptops in a wireless LAN upload files
using TCP as the transport layer protocol, because then the
bandwidth requirements from wireless source nodes represent
significant portions at some wired backbone links. This section
presents an algorithm to trace the Pareto optimal tradeoff curve
between these two competing objectives.

Sum rate (Mbps)

B. Background

We index bys the source nodes connected by wired links
to the backbone and denote their allowed transmission rates

o w0 w0 aw w0 w0 ew w0 a0 s oo by {z;}. We index byi: the source nodes connected by
the wireless hop and denote their allowed rates {l;}
Fig. 10. Algorithm 2 example: sum rate increases. and their transmit powers byP;}. We consider end-to-end

transmission from both types of sources, assuming fixed and
known routing, wherd.(i) denotes the set of linkistraversed

. . by the connection originating from sourde Let £ be the
[23] showed a greedy algorithm for optimal rate and powegt of links that are shared by traffic from both types of

allocation, which attains the boundary of the channel capacﬁ

region of a multiaccess fading channel. The algorithm makSESurCe nodesi.e, links in the backbone experiencing the
9 9 ' > &g ggupling effects between wireless-hop channel variations and
use of a rate reward vector and a power price vector [23].

wired backbone congestion. The wireless uplink is modelled
In the wired backbone network where the links providgs a standard multiaccess fading Gaussian channel with the

transmission ‘pipes’ of fixed ‘sizes’, the main issue is to avoifhding processe§H;} known at the transmitters and receiver.

overloading the links. End-to-end congestion control mech@fired backbone is assumed to have fixed-capacity links for

nisms, such as those in TCP, are usually used to regulate §ifan coding/modulation schemes (in contrast to the wireless

allowed rate from each source node. The goal is to prevent &gy hoc networks considered in [4]). For notational simplicity,

source node from ‘pumping’ so much data into the netwokle assume there is only one wireless air-interface wifth

that the total flow on any link exceeds its available CapaCityource nodes using the backbone network.

Kelly et. al. [11] showed that distributed rate allocation can

be viewed as primal-dual algorithms implicitly maximizin If we focus only on the wireless MAC, Tse and Hanly [23]
asp . gori plicitly Y &howed that the multiaccess fading Gaussian channel capacity
network utility under link capacity constraints. Recent papefs

(e.0. [15], [16]) further established the equivalence betWe(?goundary is the closure of aik that are the optimizers of the

. : . llowin imization problem:
TCP congestion control algorithms and different networ0 owing optimization proble

utility maximization problems, where congestion signals, such maximize . u;R;
as queuing delays, act as pricing variables. These congestion subject to R € R(P), (18)
prices are updated at routers and fed back to the sources. R,P>0

In our hybrid network model in Figure 3, which acClyyhere the variables a® andP, andp is a given rate reward

rately depicts the end-to-end connections in wireless cellu ctor. The seR(P) in the first constraint contains ak such
networks, there is an interesting tradeoff between rate-powgL; '

allocation local to the wireless MAC and congestion control in

wired links that regulate both wireless source nodes and ot}"if

source nodes in the network. Indeed, other source nedgs, - Ri< B
DSL connected servers, may share a backbone link with’&
source noded connected through a wireless LAN. Suppose attilizing the polymatroid structure of the constraint set and
a particular time, the congestion control mechanism infornistroducing a ‘power price’ vectoi\ to coordinateR and

the wireless source nodé to increase its transmission rateP, Tse and Hanly [23] presented a greedy rate and power
possibly because other sources sharing a bottleneck link watltocation algorithm that solves the above problem.

A are transmitting less and the congestion price becomesy e instead assume that the entire network consists of only

favorable toA. However, due to a particular fading state, th@;req |inks with fixed capacitiege; }, Kelly et al. [11] showed
local wireless MAC power price may dictate thatshould not 4t gistributed rate allocation across the network is implicitly
be allowed to increase its rate, for otherwise a boundary po%lving a network utility maximization problem:

on the multiaccess fading capacity region cannot be obtained.

Wireless source nodel must resolve this conflict between maximize > U,(xs)

maximizing ‘global utility’ for end-to-end transmissions and subjectto > cr(s Ts <, Vi, (19)
achieving ‘local capacity’ at the wireless MAC. This conflict x>0

%1og <1+ ;ZHZ-H(H)N VS c{1,...,M}.

i€S



where the variables are. Low et al. [15] further showed 2. Apply the greedy rate and power allocation algorithm in
how to obtain the utility maximization implicitly being solved[23] but use the following modified rate vectpr:
for based on a congestion control protocol, as well as how {

Ou; — g if ¢ shares links with some
to design a congestion control mechanism starting from somg, =4 Lier()

given utility functions. For example, TCP Vegas [16] is implic- O otherwise (22)
itly maximizing a weighteq Iogar_ithmic utility using queuings Update a ‘virtual buffer’,; on each linkl € £ (note that
delays{y} as the congestion prices to reguldte, }. {z,} and {R;} are resulted from items 1 and 2 above, and

they are functions o&):
C. Problem formulation

In our hybrid network, both wireless MAC and wired hu(a)=c — Z zs(ar) + Z Ri(a) | . (23)
backbone network are present and they are coupled in two s:l€L(s) :l€L(3)
ways. They are coupled in the constraints because thas@Jpdaten; and feed it back to all sources using lihkwhere
links I € £ in the backbone are shared by traffic due tg@ > 0 is a constant):
both {z,} and{R;}. They are also coupled in the objective (k1) *) w1+
function, because the wireless first-hop is often the end-to-end Q = [al — Bhy ] : (24)
performance bottleneck and we would like to attain a point on - ] ]
the capacity region’s boundary, yet the global network utility N €SSencee acts as an additional set of ‘coupling’ prices
should also be maximized. How shoul®,P) be chosen fthat aff_ects the_ existing algorithms in [15] and [23] by modlfy—
to balance the two? And how may be adapted to induce "9 utility functions and. rate rewards, thus coupling congestion
a favorable congestion condition in the backbone so thatPfices~y and power prices\. There are several propositions

becomes feasible foR. to be varied in order to reach theW€ can make about the performance and practical issues of
wireless MAC capacity boundary? this algorithm. Due to space limit in this summary, we focus

N . . __on the most important issue in the following theorem that will
These intuitive questions are formulated in the followmge proved in the next section:

problem of end-to-end resource allocation in hybrid networks, ]
essentially a ‘weighted sum’ of (18) and (19), with the second Theorem 3:Algorithm 3 (21,22,23,24) converges to a
constraint coupling across the wireless and wired parts: ~ 9lobal optimum(P*, R*, x*) of utility maximization (20).

maximize Y, Us(zs) + 05, piR; . Numerical examples 'Fhat trace out. the desired Pareto op-
subject to Z‘“GL“) zs <, V¢ L, timal tradeoff curve usmg.the solution above, as well as
Zi.‘ f Ry 2. <. ViEL, theoretical cqrollanes utilizing th_e result of modifigd/!}
Rlél%((ll))) sleL(s) s = and {u;}, easily follow from Algorithm 3. For example, [27]
< R.P, >’0 showed that for Poisson arrival traffic to the wireless source

(20) nodes, letting the rate rewafd:; } be the queue sizdg; } and

then using the Tse-Hanly algorithm is ‘throughput optimal’
for multiaccess fading channels. Our result on modified rate
rewardp’ implies that, for end-to-end consideration in hybrid
networks, the rate reward should now be a weighted sum of
local buffer size and all the ‘virtual buffer’ sizes along the path
jn the wired backbonex; = (g + Dier(y ), Vi

where the variables are the wired source ratgswireless
source rateR, and wireless transmit powels. The constant
parameters include weighting coefficightrate reward vector
u, and wired link capacitiexc. Due to concavity of the
objective and convexity of the constraints, varythg (0, o)

and solving (20) for each traces out the entire Pareto optima
curve between the local and global objectives in end-to-end

resource allocation in hybrid networks. E. Proof of Theorem 3
_ We first rewrite problem (20) by introducing dummy vari-
D. Algorithm ablest; for [l € L:
We provide the following distributed algorithm to solve (20). maximize > Us(zs) + 03, il

subject to 3 e ®s <, VIE L,
- Zs:lEL(s) Ts =t Vi E’
t1> 2 e Bi» V€L,

R e R(P),
x,t,R,P >~ 0.

Algorithm 3

First, initiate o; > 0 on links [ € £ and feed it back to
all sources using link, then repeat in parallel the following
iterations until convergence:

(25)

1. Apply the congestion control algorithm in [15] but use
the following modified utility functions! (z): We now introduce Lagrange multipliers; for / € £, and

Us(xs) — ZleL(s) ay if s shares links with somvgrlte the partial Lagrangian:

/ —
Usles) = { U () otherwise L(x,t,R,P,a) =Y Us(w)+0> Rty ou(ti— Y Ri).
(22) s i lec i:le L(3)



We can maximize the partial Lagrangian to obtain th@/e thus define modified utility functiori$, for all sourceqs :
Lagrange dual function: L(s)( L # ¢} (i.e, those sharing some links in the backbone
o with a wireless source node;(z,) = Us(@s) = > _jep () -
g(a) = sup, s r p {L(x,t, R, P, a)|other constraints in (2%he utility functions for other sources remain the same. The

) ) NET problem (26) now becomes
It is easy to see that the Lagrange dual function can be

obtained by a partial Lagrangian decomposition: maximize »_ U, (zs)
subject to 3 ey Ts <, VIE L, (29)
g(a) = gnet(a) + g'mac(a) x = 0.

where g,.:(a) and g,...(cx) are, respectively, the optimizedThis is now in exactly the same form as the network utility
value of the objective function in the following subproblem ofmaximization problem (19) that can be distributively solved

NET: by TCP congestion control mechanisms in [11], [15], [16].
maximize ) Us(xs) + > ey cut Similarly for the MAC subproblem (27), we can modify the
subjectto > ,cp s <, VIEL, (26) rate re'warcpg = QM—ZIEL@ ay for all wireless source nodes

t + ES'leL(s) Tz, =c¢, VlEL, i sharing some links with non-wireless source nodes,gnd
x,t > 0 Ou; for all otheri. Problem (27) can now be expressed as:
where the variables are andt only, and the subproblem of maximize ;iR

MAC: subjectto R € R(P), (30)

- R,P > 0.
maximize 03, uiRi — 3 o ou Zi:lGL(i) R; L . N
subject to R € R(P), 27) This is now in exactly the same form as the optimization
R.P>0 problem (18) that characterizes the boundary of multiaccess
T fading channels, which can be solved by the greedy algorithm
where the variables af® andP only. in [23].

Notice that, as desired for decoupling problem (20), in Now that we have reduced both subproblems into the forms
the NET subproblem, the wireless transmit powers and rat@sat can be solved with existing algorithms, we proceed to
are not being optimized. Similarly, in thAC subproblem, solve the ‘master’ dual problem (28) by optimizing over
the source rates from the non-wireless nodes are not be®gDue to non-strict concavity and convexity in the primal
optimized. problem (20), the objective function in (28) may not be

Since utility functions are concave, the multiaccess fadirdifferentiable, and we have to use the subgradient method
constraint is convex [23], and all other terms in the objectiMd], [24], which extends the gradient descent method to non-
and constraint functions are affine, (20) is a convex op#lifferentiable functions. Subgradient method can be made
mization problem (with strictly feasible solutions). Thereforedistributive in this case. It can be verified that the following
solving (20) is equivalent to solving its Lagrange dual problei¥ectorh is a subgradient t@;.c:(a) + gmac(e):
over o

maximize  gnet (@) + gmac(c) _
subject to oy = 0, Vi & L. (28) hi(a) = — IEL:( )xs(a) + IEL:( )Ri(a)
s:ileL(s w:leL(q

In order to solve (28), we need to first know how to solvehis subgradient can be interpreted as ‘virtual buffers’: the
(26) and (27) to obtaig,.; and gma. as functions ofx, and difference between bandwidth supply and bandwidth de-
then how to maximize the sum @f.c; and gmac Over .. mand from both wireless and non-wireless source nodes,
We show below that (26) can be distributively solved usinghich can be measured locally on each link. Then at time
existing congestion control algorithms over the network by igstantk, variablese are updated by the subgradient method:
simple modification of the utility functions, and that (27) can (x+1) _ al(k) B Bhl(kj+7 Vi € £ where > 0 is

be locally solved using Tse and Hanly's greedy algorithm [23]! ) , L i )
constant step size. Using a similar argument as in [4], it

with a simple modification of the rate reward vector. )
) o o can be shown that for a small enough the subgradient
First, substituting the second constraint in tNET SUb- jierations converge. Convergence for both subprobNET
problem (26), we can rewrite the objective funcnon of (26) 426) and subproblenMAC (27) can be established after the
2o Us(@s) + 2 cpauler = Xogier(s) Ts)- SINCRY i ouct  transformation to (29) and (30), respectively. Because the

is a constant term, the objective function can be equivalenlyoplems are convex optimization problems, the convergence
written as is toward a global optimum of (28), or equivalently, of (20).

We conclude this section by mentioning that for end-to-end
ZUS('TS) - Z Z ap | Zs. resource allocation for data download to (instead of upload
s s:L(s) [ L#6 \IEL(5) from) wireless users, similar modifications of rate rewards
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