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Abstract— In wireless cellular networks and wireless local area
networks, nonlinear network utility maximization need to be
conducted over both user rates and transmit powers. For each of
the three cases considered in this paper, we present an algorithm
that converges to the jointly optimal pair of rate vector and power
vector.

For the simple case when data rates are not limited by
interferences, for example in single-cell downlink transmissions,
Algorithm 1 we propose is an iterative bidding mechanism
between the base station and mobile users, where knowledge
about channel conditions and individual user utility functions
is only needed locally at each user butnot needed at the base
station.

In the case when data rates are limited by interferences, the
utility maximization problem is complicated both by nonlinear
coupling between powers and rates, and by interference among
powers. Through centralized iterative steps, Algorithm 2 we
propose converges to a joint and global optimum over the solution
space of rates and powers.

We then consider end-to-end transmissions in cellular net-
works, which traverse both wireless fading channels and many
hops of wired links shared by other traffic. There is a tradeoff
between attaining air-interface capacity in the wireless hop and
controlling congestion in the wired backbone wide area network.
We formulate this end-to-end resource allocation problem in such
hybrid networks, and present Algorithm 3 to obtain the Pareto
optimal tradeoff between attaining wireless multi-access fading
channel capacity and maximizing global network utility.

Keywords: Convex optimization, Lagrange duality, Power control,
Rate allocation, Transport Control Protocol, Utility maximization,
Wireless local area networks, Wireless cellular networks.

I. I NTRODUCTION

Communication system performance is sometimes best mea-
sured not by a weighted sum of attainable rates, but by some
nonlinear utility functions of rates. Each user has a utility func-
tion that is assumed to be continuously differentiable, concave,
and increasing, and the sum of all users’ utility functions is
called the network utility. Network utility maximization under
linear flow constraints is an important class of problems in
wired networks and has been extensively studied.

In wireless networks, rate feasibility is often affected by
channel conditions and adaptive resource allocations like
power control. Power control mechanisms determine the band-
width ‘supply’: how much throughput can be attained on each

wireless link, while rate allocation algorithms regulate the
bandwidth ‘demand’: how much throughput should be given to
each user. Total network utility must now be maximized over
the joint solution space of powers and rates. The nonlinear
dependency of rates on channel conditions and powers, as well
as possible interference among the transmit powers, are the
main challenges of solving utility maximization problems in
wireless networks. Utility maximization over powers and rates
in wirelessad hocnetworks with multihop wireless transmis-
sions has been studied in the context of joint congestion control
and power control,e.g., in [4]. This paper investigates three
different cases in wirelesscellular networks.

Fig. 1. Single-cell downlink case without interference.

In section II, we first consider the simpler case where
rates are not limited by interference, for example in wireless
downlinks in a single cell as depicted in Figure 1. Unlike
[17] where the rate is assumed to be a linear function of the
received power, here we assume that rate is proportional to
the logarithm of the received power. We present a pricing
algorithm through an iterative bidding mechanism that solves
the problem even when the base station has no knowledge
about each individual user’s channel condition and utility
function.

Then in section III, we turn to the general case of up-
link/downlink transmission in a multi-cell CDMA system as
depicted in Figure 2. Intended transmissions, either downlink
or uplink, are shown in solid lines, and some of the unintended
interferences are shown in dashed lines. In addition to the
nonlinear dependency of rates on transmit powers and channel
conditions, due to signal interference, the attainable rate on
each link now becomes a global function of all the transmit
powers. Foschini and Miljanic [6] propose an iterative power
control that finds a set of transmit powers to achieve somefixed
target rates. Here we propose a complementary rate control



Fig. 2. Multi-cell uplink/downlink case with interference.

algorithm that couples with Foschini and Miljanic power
control to maximize network utility over thejoint solution
space of powers and rates.
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Fig. 3. End-to-end connections in a hybrid network.

Contrary to its name, wireless cellular networks in fact
consist primarily ofwired links. In section IV, we consider
a hybrid wireless-wired network depicted in Figure 3, and
upload transmission using uplinks in the wireless air-interface.
There are two distinct parts in the network: a wireless multiple-
access channel (MAC) and a wired mesh backbone. This
models a cellular wireless network, where the wireless MAC is
from mobile users to a base station, and the wired backbone is
from base stations through mobile switching centers and ATM
switches to either the PSTN or an IP wide area network. It
also models a wireless local area network (LAN), where the
wireless MAC is from laptops to an access point, and the wired
backbone is from access points through an Ethernet LAN to an
IP wide area network. A unique feature of resource allocation
in such hybrid networks is that the effect of channel variations
at the wireless hop is coupled with the effect of congestion
on various wired links in the backbone network. Section IV
presents Algorithm 3 as an end-to-end resource allocation for
such hybrid networks to trace out the Pareto optimal tradeoff
between attaining local MAC capacity and maximizing global

network utility.

II. SINGLE-CELL DOWNLINK CASE

A. Background

Consider a general multihop network, where some nodes
are sources of transmission, and sequences of connected links
form routes. We user, s and l as the indexing variables
for routes, sources and links, respectively. Letxs be the
transmission rate of sources, yr be the total flow along route
r, andcl as the capacity in terms of supportable data rate on
link l. There are two0 − 1 incidence matrices:H = {Hsr}
and A = {Alr}. Entry Hsr = 1 iff route r serves sources,
and entryAlr = 1 iff link l is on router.

The standard problem of network utility maximization for
elastic traffic source (e.g., in [10], [5]) is to maximize the
sum of individual sources’ utilities represented through dif-
ferentiable, increasing, and concave functionsUs(xs), subject
to flow conservation constraintHy = x and link capacity
constraintAy ¹ c:

maximize
∑

s Us(xs)
subject to Hy = x,

Ay ¹ c,
x,y º 0

(1)

where the variables arex andy (º denotes component-wise
inequality).

Kelly et al. [10], [11] showed that problem (11) can be
decomposed into two sets of problems. First are subproblems
SOURCEs, one for each sources, to be solved locally over
ms:

maximizems≥0

[
Us

(
ms

µs

)
−ms

]
. (2)

Second is subproblemNETWORKto be solved for the entire
network overx andy:

maximize
∑

s ms log xs

subject to Hy = x,
Ay ¹ c,
x,y º 0.

(3)

To state that utility maximization (1) can be decomposed
into the above subproblems is equivalent to the following
statement [10], [11]: there exist{ms}, {µs}, {xs}, {yr} such
thatms = µsxs, ∀s, {ms} solve theSOURCEs problem, and
{xs}, {yr} solve theNETWORKand utility maximization (1).

One of the important advantages gained through the above
decomposition is that theNETWORKproblem can be dis-
tributively solved and does not require the knowledge of each
individual user’s utility functionUs.

The simple linear flow constraints in (1) can be extended
for wireless cellular systems to take into account the nonlinear
dependencies of link rates on channel conditions and adaptive
resource allocations.



• In [17], the flow constraints are made to depend on local
channel conditions and resources (time or power) linearly,
which is an appropriate model for TDMA systems or
CDMA systems in the wide-band regime. It is shown that
as channel quality varies across the users, the base station
should charge different users different prices based in part
on their channel qualities. The optimal pricing requires
the knowledge about each user’s utility function at the
base station. A suboptimal scheme that does not require
this knowledge is shown to be asymptotically optimal.

• In this section, the flow constraints are made to depend
on local channel conditions and transmit powers loga-
rithmically, which is an appropriate model for CDMA
systems in the high SIR regime. We will show that
the optimal algorithm can be interpreted as an iterative
bidding mechanism that does not require the knowledge
of each user’s utility function or channel condition at
the base station. It turns out that this is possible in part
because of the logarithmic dependency of rates on powers
and channel conditions.

Note that, although not treated in this paper, the network
utility function in general does not have to be a function of user
rates, or a concave function (e.g., [7], [9], [25]), or separable
into each individual user’s utility function.

B. Problem formulation

Consider the single cell downlink case in Figure 1 withM
logical users, and assume CDMA transmission with orthogonal
codes. The base station has a total transmit power ofP̄ that
is divided into Pi ≥ 0 for transmitting to useri such that∑M

i=1 Pi ≤ P̄ . The channel gain is denoted asGi for channel
i, and the received power isGiPi. The attainable rate is
modelled asL log(1+SNR) whereL is a constant. Assuming

high SNR, user rate is upper bounded byRi ≤ L log
(

GiPi

Ni

)

whereNi is the noise. Without loss of generality, normalize
over L and let gi = Gi

Ni
, we have the nonlinear constraint

Ri ≤ log(giPi).

Therefore, we need to solve the following problem of
network utility maximization over both transmit powersP and
user ratesR:

maximize
∑

i Ui(Ri)
subject to Ri ≤ log(giPi), ∀i,∑

i Pi ≤ P̄ ,
P º 0

(4)

where the variables areP and R, and g º 0 is a constant
vector.

Note that the underlying model for (4) is not the
information-theoretic optimal one for multi-user fading chan-
nels [13], [22], [23], which will be discussed in section IV. The
focus of this section is to show how to maximize the nonlinear
objective under nonlinear constraints as in (4), through an
iterative pricing algorithm that does not require the knowledge
of {gi} and{Ui} at the base station.

C. Algorithm

We will show that the following Algorithm 1 solves (4). The
algorithm can be interpreted as an iterative pricing mechanism.
Based on only local information: channel conditiongi and its
own utility functionUi, each useri in turn calculates a ‘bid’λi

to submit to the base station. The base station simply updates
the sum of the ‘bids’ without knowinggi or Ui. After the
(guaranteed) convergence of the iterative bidding process, base
station allocates powerPi proportional to the (normalized)
equilibrium bidλ∗i .

Algorithm 1
Given accuracy toleranceε > 0. Counterk = 0.
Base station initiate a vectorλ0.
repeat

Base station passesI =
∑

j
λ

(k)
j

P̄
to user1.

for i = 1 : M

User i computesλ(k+1)
i such that

giλ
(k+1)
i

exp(U ′−1
i

(λ
(k+1)
i

))
= I and

passesλ(k+1)
i to base station.

Base station passesI =
∑i

j=1
λ

(k+1)
j

+
∑M

j=i+1
λ

(k)
j

P̄
to useri+1.

end
k = k + 1.
until |λ(k+1)

i − λ
(k)
i | ≤ ε, ∀i.

P ∗i = λ∗i∑
j

λ∗
j

P̄ .

It will be shown that the above power control leads to the
following rate allocation:R∗i = U ′−1

i (λ∗i ), ∀i.
As an example of Algorithm 1, if the utility functions are

weighted log:Ui(Ri) = βi log Ri, βi ≥ 0, ∀i, the equation
to be solved forλi by useri is giλi

exp(
βi
λi

)
= I.

Different pricing mechanisms have been used for wireless
power control,e.g., in [17], [20], [23]. The novelty of Al-
gorithm 1 is in using a (provably convergent) iteration of
bidding process to maximizenonlinearutility undernonlinear
constraintswithout the knowledge of{gi} and {Ui} at the
base station. This extends the results by Kelly et al. [10],
[11] for utility maximization in wired networks without global
knowledge about individual utility functions{Ui}.

Several propositions can be proved on the properties of
Algorithm 1. We focus on the most important one in this paper:

Theorem 1:Algorithm 1 converges to a globally optimal
(P∗,R∗) of utility maximization (4).

D. Proof of Theorem 1

Since Ui are increasing functions, it is obvious that at
optimum, the first constraint in (4) must be tight. Sincelog is
an increasing function, the second constraint in (4) must also
be tight at optimum. Therefore, without loss of generality, we
can replace these inequality constraints in (4) with equalities,
and write the Lagrangian as

L(P,R, λ, γ, σ) =
∑

i Ui(Ri) +
∑

i λi(log(giPi)−Ri)



+γ(P̄ −∑
i Pi) +

∑
i σiPi

whereσ º 0, λ, andγ are the Lagrange multipliers associated
with the three constraints.

Maximizing L over R, we obtain:

∂L

∂Ri
= U ′

i(Ri)− λi = 0, ∀i

which implies the following optimality condition:

R∗i = Vi(λi), ∀i (5)

whereVi = U ′−1
i is defined as the inverse of the derivative of

utility function.

Maximizing L over P, we obtain:

∂L

∂Pi
=

λi

Pi
− γ + σi, ∀i,

which implies the following optimality condition:

Pi =
λi

γ − σi
, ∀i. (6)

Substituting (5) and (6) intoL, we obtain the following
Lagrange dual function:

g(λ, γ, σ) =
∑

i Ui(Vi(λi)) +
∑

i λi

(
log

(
giλi

γ−σi

)
− Vi(λi)

)

+γP̄ − γ
∑

i
λi

γ−σi
+

∑
i

σiλi

γ−σi
.

In (4), the objective is maximizing a concave function, the
first constraintlog(giPi) − Ri ≥ 0 is concave in(P,R), the
second and third constraints are affine, and there obviously
exists an interior point in the feasible set. Therefore, duality
gap is zero and solving (4) is equivalent to solving its Lagrange
dual problem: minimizing the Lagrange dual function over the
Lagrange multipliers:

minimize g(λ, γ, σ)
subject to σ º 0.

(7)

Notice that becauseλ andγ correspond to equality constraints
in the primal problem (4), they are unconstrained in the
Lagrange dual problem (7).

Obviously, the last two terms ofg(λ, γ, σ) add up to

become−∑
i λi. This leaveslog

(
giλi

γ−σi

)
as the only terms

in g(λ, γ, σ) involving σ. Since each of such terms is an
increasing function ofσi, to minimizeg(λ, γ, σ) overσ º 0,
we should simply letσ = 0. Thus the Lagrange dual problem
becomes an unstrained optimization of minimizing

g(λ, γ) =
∑

i Ui(Vi(λi)) +
∑

i λi

(
log

(
giλi

γ

)
− Vi(λi)

)

+γP̄ −∑
i λi.

over λ andγ. We first minimizeg(λ, γ) over γ:

∂g

∂γ
= −

∑
j λj

γ
+ P̄ = 0,

which implies that at optimum,

γ∗ =

∑
j λj

P̄
. (8)

Substituting (8) intog(λ, γ) and simplifying the expression,
we have:

g(λ) =
∑

i Ui(Vi(λi)) +
∑

i λi (log(giλi)− Vi(λi))
+(log P̄ )(

∑
i λi)− (

∑
i λi) log(

∑
i λi),

which we must minimize overλ. Taking derivative and
simplifying the expression, we obtain:

∂g
∂λi

= U ′
i(Vi(λi))V ′

i (λi)− λiV
′
i (λi) + log(giλi)

−Vi(λi) + log P̄ − log(
∑

j λj).

SinceU ′
i and Vi are inverse functions,U ′

i(Vi(λi)) = λi and
the first two terms cancel. The optimality condition∂g

∂λi
= 0

is reduced to:

log(giλi)− Vi(λi) + log P̄ − log


∑

j

λj


 = 0.

An equivalent and more illuminating expression is:

giλi

exp(Vi(λi))
=

∑
j λj

P̄
, ∀i. (9)

Notice that as desired, the right hand side doesnot depend on
the local channel conditiongi or utility function Ui at each
useri, and the left hand side containsonly information(gi, Ui)
and variableλi local to useri. Furthermore, substituting (8)
into (6) and usingσ = 0, we have

P ∗i =
λ∗i∑
j λ∗j

P̄ .

The rest of proof follows readily from the convexity prop-
erties and known results on the successive realization of the
nonlinear Gauss-Siedel algorithm [2].

E. Numerical example

Results from an illustrative numerical example is summa-
rized in this subsection. We consider a cellular system with
one base station and six downlink users, each with a different
channel gain and a weighted logarithmic utility function with
a different weight. Total transmit power at the base station
is 6 units and all bids are initialized to be 1. Figures 4, 5
and 6 show the bids from the six users through the first eight
iterations according to Algorithm 1. It can be seen that the
bids quickly converge in about 4 rounds, and Figure 7 shows
the resulted power and rate allocation after convergence for
the six users.
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Fig. 4. Algorithm 1 example: Bidding from users 1 and 2.
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Fig. 5. Algorithm 1 example: Bidding from users 3 and 4.

III. M ULTI -CELL GENERAL CASE

A. Problem formulation

In this section, we consider the general case of multi-cell
up or downlink transmissions with interference in Figure 2.
Signal to Interference Ratio (SIR) for theith logical link is
defined as

SIRi(P) =
PiGii∑N

j 6=i PjGij + Ni

(10)

where Gij is the path loss from the transmitter on logical
link j to the receiver on logical linki, taking into account
propagation loss and normalization factors, andGii is the path
gain for the intended transmission on logical linki, taking into
account propagation loss and other factors such as spreading
gain and the effect of beamforming. For a large class of
modulations, the attainable data rate can be written as

Ri =
1
T

log(1 + KSIRi)

whereT is the symbol time andK is a constant depending
on modulation type and desired bit error probability. Due
to high spreading gain,KSIRi is usually much larger than
1 for medium to high SIR environments, and we make an
approximation to writeRi = 1

T log(KSIRi). Throughput of
most CDMA cellular systems are interference limited, where
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Fig. 6. Algorithm 1 example: Bidding from users 5 and 6.
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Fig. 7. Algorithm 1 example: Power and rate allocation for six users.

noiseNi is much smaller than the total interference and SIR is
approximated as SIRi = PiGii∑N

j 6=i
PjGij

. For notational simplicity

and without loss of generality, we takeT to be 1 time unit
and absorbK into the SIR formula (10). We now have the
functional dependence of link data rate on SIR, which is in
turn a nonlinear, global function of transmit power vectorP:
Ri(P) = log SIRi(P).

A user demanding a certain data rate is requesting that the
SIR of her link be high enough to sustain the desired rate.
This request, however, is limited by competing rate demands
from other users. This interference-limited nature of wireless
CDMA system is captured by defining the feasible rate-power
region RP as the set of pairs of power vectors and the
associated feasible rate vectors:

RP = {(R,P) ∈ R2n
+ |R ¹ log SIR(P)}.

There can be an infinite number of(R,P) pairs in the
feasible rate-power region. As a general design problem,
we would like to pick the one that maximizes the network
utility U(R) =

∑
i Ui(Ri). Therefore, we need to solve the

following network utility maximization problem constrained
in the feasible rate-power region:

maximize
∑

i Ui(Ri)
subject to (R,P) ∈ RP,

(11)



where the optimization variables are both rate allocation vector
R and power allocation vectorP. Nonlinear relationship
betweenR and P, as well as interference amongP, make
this problem difficult to solve.

B. Background

Given a rate vectorR, we define a diagonal matrixD as a
function of R: D(R) = diag

(
eRi

Gii

)
. Given a gain matrixG,

we construct a matrix̃G: G̃ij = Gij , i 6= j and G̃ii = 0.

Foschini and Miljanic [6] proposed a simple and distributive
power control algorithm to achieve a set of rate requirements.
The given rate demandsRtarget is equivalent to a set of SIR
requirements SIRtarget, and at each iteration, each transmitter
i adjusts its power so that the resulted SIR would equal
SIR

target
i if all other competing users kept their transmit

powers constant. This power update can be written as [6]:

Pk+1 = DG̃Pk. (12)

By Perron Frobenius theory of positive matrix [8], it is
known [6] that, whenever the SIR requirement is feasible (i.e.,
required rate vector insideRP), the iterative power update
in (12) will converge to a Pareto optimal power vector that
achieves the desired SIR.

C. Algorithm

In this section, we present an algorithm to solve the utility
maximization problem (11). Note that, unlike Algorithm 1,
knowledge of{Ui} is needed in the following centralized
computation.

Algorithm 2
Input : Gain matrix G of the cellular network and utility
functions{Ui}.
Output : Optimal pair of rate-power vectors(R∗,P∗).
Algorithm :
Given an initial rate vectorR0, accuracy toleranceε, and step
sizeα > 0. Counterk = 0.
Compute the largest modulus eigenvalueλ and the associated
eigenvectorsp,q of D(R0)G̃.

Compute δR, where δRi =
(

1
piqi

) (
U ′i∑
j

U ′
j

)
− 1, i =

1, 2, . . . , N .
while ‖δR‖ > ε
ComputeR̃k = Rk + αδR.
ComputeRk+1 = R̃k − (log λ(D(R̃k)G̃))1T .
Use power control in [6] to update power:Pk+1 =
D(Rk+1)G̃Pk.
Compute the largest modulus eigenvalueλ and the associated
eigenvectorsp,q of D(Rk+1)G̃.

ComputeδR, whereδRi =
(

1
piqi

) (
U ′i∑
j

U ′
j

)
− 1.

k = k + 1.
end

We prove the following main theorem for the above algo-
rithm:

Theorem 2:Algorithm 2 converges to the a globally opti-
mal (R∗,P∗) of utility maximization (11).

D. Proof of Theorem 2

Using a change of variables̃Pi = log Pi, we have

Ri ≤ log SIRi ⇔ 1
SIRi

≤ e−Ri

⇔ G−1
ii e−P̃i

∑

j 6=i

Gije
P̃j ≤ e−Ri

⇔ log
∑

j 6=i

eP̃j−P̃i+Ri+log Gij−log Gii ≤ 0.

By second derivative test, it can be verified that
log

∑
ef(x) is convex in x for all affine f . Therefore,

log
∑

j 6=i eP̃j−P̃i+Ri+log Gij−log Gii is convex in(P̃,R), and
its sublevel setRPi = {(P,R) ∈ R2n

+ |Ri ≤ log SIRi(P)}
is a convex set. Since the intersection of convex sets is also
convex,RP is a convex set in(P̃,R). Since logarithmic
mapping is injective, we can recoverP from P̃. Because the
objective function in (11) is concave inR and the constraint
set can be turned into convex in(R,P), it is a convex
optimization problem in(R,P), and a local maximum is also
a global maximum.

Since Ri ≤ log SIRi(P) is equivalent to Pi ≥
eRi

Gii

∑
j 6=i GijPj , we can rewrite (11) as

maximize
∑

i Ui(Ri)
subject to D(R)G̃P ¹ P,

R º 0, P º 0.
(13)

Consider the joint rate-power control problem (13). If the
variablesR are fixed, the problem reduces to a feasibility prob-
lem of finding a power allocationP such that the constraints
D(R)G̃P ≤ P are satisfied. This feasibility problem may not
have a solution, but if solutions exist, one can be found by the
iterative power control algorithm (12).

We now decompose (13) into two parts: a power control
part that uses the algorithm in [6] to update powerPk+1 =
D(R)G̃Pk, and a rate allocation part to be solved in the rest
of this subsection. We will show how to update the target rate
vector toward an optimum, which also drives the power vector
toward a joint optimum.

First recall [21], [8] that the Perron Frobenius eigenvalue
λ(A) is the largest modulus eigenvalue of an element-wise
positive matrixA, and the associated right eigenvectorp(A)
and left eigenvectorq(A) are called Perron Frobenius eigen-
vectors. It is a standard fact from Perron Frobenius theory
[21], [8] that for a positive matrixA with Perron Frobenius
eigenvalueλ, there is anx such thatAx ¹ x if and only
if λ ≤ 1. Therefore, the rate allocation subproblem is now



reformulated as the following optimization overR:

maximize
∑

i Ui(Ri)
subject to λ(D(R)G̃) ≤ 1,

R º 0.
(14)

The inequality constraintsD(R)G̃P ¹ P in (13) will
be met with equality at optimality, because otherwiseR
can be increased without violating the constraints and, by
monotonicity of U(R), produce a larger objective value for
(13). In order forD(R)G̃P = P to hold, there must be an
eigenvalue ofD(R)G̃ that is at least 1. Since Perron Frobenius
eigenvalueλ is the largest modulus eigenvalue of(D(R)G̃),
we must haveλ ≥ 1. Earlier arguments also showλ ≤ 1.
Thus the constraint in (14) can be written asλ = 1:

maximize
∑

i Ui(Ri)
subject to λ(D(R)G̃) = 1,

R º 0.
(15)

We denote byP (P for Pareto) the set of ratesR such that
λ(D(R)G̃) = 1. Geometrically,P represents Pareto optimal
surface of the feasible rate regionR under a given power
allocation P. It is the boundary of the feasible rate region
because any rate vectorR outside this surface is obviously not
achievable, and anyR inside or on it can be achieved by some
power allocationP. It is Pareto optimal because any two points
R1,R2 on P cannot dominate each other, ifR1,i > R2,i for
somei, there must be anj such thatR2,j > R1,j . The global
maximizerR∗ of (11) must be a point onP.

By KKT optimality condition of equality constrained op-
timization, solving (15) is equivalent to optimizing the La-
grangianU(R)− ρλ(D(R)G̃) whereρ is the Lagrange mul-
tiplier, i.e., solving the following nonlinear system of equations
for R:

∇U(R) = ρ∇λ(R).

Given the network utility functionU(R) =
∑

i Ui(Ri), its
gradient∇U(R) can be readily computed. We also need to
find ∇λ(R). We start by writing the definitions of right and
left Perron Frobenious eigenvectorsp,q of DG̃, normalized
to have inner product1:

DG̃p = λp

qT DG̃ = λqT

qT p = 1.

Now differentiating both sides of the right eigenvector
equationDG̃p = λp with respect toR, we obtain

(∇DG̃)p + DG̃∇p = λ∇p + (∇λ)p.

Multiplying both sides byqT , and using the left eigenvector
equation and the normalization equation, we have

qT (∇DG̃)p + qT DG̃∇p = qT λ∇p + qT∇λp

qT (∇DG̃)p + qT λ∇p = qT λ∇p + qT∇λp

qT (∇DG̃)p = ∇λ.

Continuing with the calculation of each component in the
gradient vector∇λ, and using log SIRi = Ri on Pareto
optimal surfaceP, we have

∇iλ(R) = qT (R)∇i(D(R)G̃)p(R)

= qT∇i

(
diag

(
eRj

Gjj

)
G̃

)
p

=
∑

j 6=i

qie
Ripj

Gij

Gii

= qi
SIRi

Gii

∑

j 6=i

Gijpj

= qipi,

where the last equality comes from realizing that the power
vectorP is the same as the right Perron-Frobenious eigenvec-
tor p [6], [3]. Therefore, the normal toP is

∇λ(D(R)G̃) = [q1p1, q2p2, . . . , qnpn]T , (16)

where p,q are the right and left eigenvectors ofD(R)G̃
respectively, normalized such that1T∇λ = 1. We now find
ρ in the equality∇U = ρ∇λ: ρ = ρ1T∇λ = 1T∇U . The
optimality condition becomes:

U ′
i∑

j U ′
j

= qipi, ∀i. (17)

Now consider a pointRk on P. We would like to move
along P to a point where the resultedU(R) is larger. The
tangent toP at Rk is a good local approximation toP. So
we move a small stepα > 0 along the tangent{R|(R −
Rk)T∇λ(R) = 0} to R̃k to increaseU , i.e.,

R̃k = Rk + αδRk,

where(δRk)T∇λ(R) = 0 is orthogonal to the normal, such
that U(R̃k) > U(Rk). In the following, we simplify the
notation by suppressing indexk for δR.

Due to concavity of U(R), a positive δRi decreases
∇iU(R) and aligns the vectors∇U and ∇λ. Therefore,
moving along the direction of U ′i∑

j
U ′

j

−∇λ increasesU(R).

We diagonally scale it by 1
piqi

:

δR = diag
(

1
piqi

) (
U ′

i∑
j U ′

j

−∇λ

)
,

so that the resulted point is on the tangent:

∇λT δR =
∑

i

[
U ′

i∑
j U ′

j

− piqi

]

= 1−
∑

i

piqi

= 0,

since right and left Perron Frobenious eigenvectorsp,q of
DG̃ are normalized:qT p = 1.



The pointR̃k in general is not onP and may be infeasible.
We now projectR̃k on P to obtain Rk+1 as the next rate
allocation vector. We subtract a constant termlog λ(D(R̃k)G̃)
in each component of̃Rk. This scales theD = diag(eRi)
matrix by 1

λ(D(R̃k)G̃)
. Therefore, the new rate vector:

Rk+1 = R̃k − (log λ(D(R̃k)G̃))1T

is on Pareto optimal surfaceP, as verified below:

D(Rk+1)G̃P =
1

λ(D(R̃k)G̃)
D(R̃k)G̃P

=
1

λ(D(R̃k)G̃)
λ(D(R̃k)G̃)P

= P

⇒ λ(D(Rk+1)G̃) = 1.

The sequence of rate allocation adaptationRk → R̃k →
Rk+1 through movement along the tangent and projection
to P produces an iteration of feasible rate vectors, which
by the optimality condition of (15) converges to an optimal
rate allocationR∗ for any possible power control. As rate
vector R adapts, power vectorP changes according to the
Perron Frobenius update in [6], which converges since{Rk}
are feasible. In particular, becauseR∗ is on the boundary of
the feasible rate region, there is a corresponding power control
P∗ that producesR∗. By convexity properties shown, this pair
of (R∗,P∗) is indeed a globally and jointly optimal rate and
power vectors for utility maximization (11).

Note that each component of the gradient∇λ:

∂λ(D(R)G̃)
∂Ri

= piqi,

is only a function of right Perron Frobenius eigenvectorp
and left Perron Frobenius eigenvectorq, but not of individual
interferers’ powers. It is known [6] thatp is equivalent to the
transmit power vectorP. Left Perron Frobenius eigenvector
also has an intuitive interpretation: it is a ‘summary’ of the
effect of all the global interferences on utility maximization.
Either a higher powerpi or a higher ‘summary’qi of the inter-
ference effect implies a higher ‘price’ for utility maximization.

E. Numerical example

An illustrative example of Algorithm 2 is shown through a
simulation summarized below. We simulate a cellular system
with five users connecting to a base station. The path loss
is based on the randomly generated distances and specified
coding gain. We then randomly generate an initial set of rate
requirements,i.e., R0 in Algorithm 2. The objective is to
maximize the total sustainable data rate of the network. As
the algorithm proceeds, transmit power and allocated rate for
each user is shown in Figures 8 and 9. It is observed in Figure
10 that the sum rate of the system increases as the algorithm
converges.
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Fig. 8. Algorithm 2 example: rate adaptation.
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Fig. 9. Algorithm 2 example: power adaptation.

IV. END-TO-END HYBRID NETWORK CASE

A. Introduction

Each end-to-end path in a wireless cellular network consists
of a wireless air-interface and a wired backbone network.
We have considered only the air-interface part thus far, using
physical layer models that assume simple, sub-optimal coding
and modulation schemes. In this section, we consider the end-
to-end problem across both the air-interface and the backbone.
We will also use the information-theoretic fading channel
capacity region for the air-interface model. We only discuss
the case for data upload from the wireless users,i.e., the air-
interface is a multiple access channel (MAC). For the case of
data download to the wireless users,i.e., the air-interface is a
broadcast channel (BC), the results developed in this section
can be easily extended.

The wireless MAC is often modelled as time-varying fading
channels, and the main issue is how to make the most efficient
use of the available bandwidth and power. In particular, assum-
ing that both the transmitters and receiver have channel state
information, power control at the transmitters can increase
the achievable data rates on the wireless hop. Tse and Hanly
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Fig. 10. Algorithm 2 example: sum rate increases.

[23] showed a greedy algorithm for optimal rate and power
allocation, which attains the boundary of the channel capacity
region of a multiaccess fading channel. The algorithm makes
use of a rate reward vector and a power price vector [23].

In the wired backbone network where the links provide
transmission ‘pipes’ of fixed ‘sizes’, the main issue is to avoid
overloading the links. End-to-end congestion control mecha-
nisms, such as those in TCP, are usually used to regulate the
allowed rate from each source node. The goal is to prevent any
source node from ‘pumping’ so much data into the network
that the total flow on any link exceeds its available capacity.
Kelly et. al. [11] showed that distributed rate allocation can
be viewed as primal-dual algorithms implicitly maximizing a
network utility under link capacity constraints. Recent papers
(e.g., [15], [16]) further established the equivalence between
TCP congestion control algorithms and different network
utility maximization problems, where congestion signals, such
as queuing delays, act as pricing variables. These congestion
prices are updated at routers and fed back to the sources.

In our hybrid network model in Figure 3, which accu-
rately depicts the end-to-end connections in wireless cellular
networks, there is an interesting tradeoff between rate-power
allocation local to the wireless MAC and congestion control in
wired links that regulate both wireless source nodes and other
source nodes in the network. Indeed, other source nodes,e.g.,
DSL connected servers, may share a backbone link with a
source nodeA connected through a wireless LAN. Suppose at
a particular time, the congestion control mechanism informs
the wireless source nodeA to increase its transmission rate,
possibly because other sources sharing a bottleneck link with
A are transmitting less and the congestion price becomes
favorable toA. However, due to a particular fading state, the
local wireless MAC power price may dictate thatA should not
be allowed to increase its rate, for otherwise a boundary point
on the multiaccess fading capacity region cannot be obtained.
Wireless source nodeA must resolve this conflict between
maximizing ‘global utility’ for end-to-end transmissions and
achieving ‘local capacity’ at the wireless MAC. This conflict

is most apparent when laptops in a wireless LAN upload files
using TCP as the transport layer protocol, because then the
bandwidth requirements from wireless source nodes represent
significant portions at some wired backbone links. This section
presents an algorithm to trace the Pareto optimal tradeoff curve
between these two competing objectives.

B. Background

We index bys the source nodes connected by wired links
to the backbone and denote their allowed transmission rates
by {xs}. We index by i the source nodes connected by
the wireless hop and denote their allowed rates by{Ri}
and their transmit powers by{Pi}. We consider end-to-end
transmission from both types of sources, assuming fixed and
known routing, whereL(i) denotes the set of linksl traversed
by the connection originating from sourcei. Let L be the
set of links that are shared by traffic from both types of
source nodes,i.e., links in the backbone experiencing the
coupling effects between wireless-hop channel variations and
wired backbone congestion. The wireless uplink is modelled
as a standard multiaccess fading Gaussian channel with the
fading processes{Hi} known at the transmitters and receiver.
Wired backbone is assumed to have fixed-capacity links for
given coding/modulation schemes (in contrast to the wireless
ad hoc networks considered in [4]). For notational simplicity,
we assume there is only one wireless air-interface withM
source nodes using the backbone network.

If we focus only on the wireless MAC, Tse and Hanly [23]
showed that the multiaccess fading Gaussian channel capacity
boundary is the closure of allR that are the optimizers of the
following optimization problem:

maximize
∑

i µiRi

subject to R ∈ R(P),
R,P º 0

(18)

where the variables areR andP, andµ is a given rate reward
vector. The setR(P) in the first constraint contains allR such
that

∑

i∈S
Ri ≤ E

[
1
2

log

(
1 +

1
σ2

∑

i∈S
HiPi(H)

)]
, ∀S ⊂ {1, . . . , M}.

Utilizing the polymatroid structure of the constraint set and
introducing a ‘power price’ vectorλ to coordinateR and
P, Tse and Hanly [23] presented a greedy rate and power
allocation algorithm that solves the above problem.

If we instead assume that the entire network consists of only
wired links with fixed capacities{cl}, Kelly et al. [11] showed
that distributed rate allocation across the network is implicitly
solving a network utility maximization problem:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs ≤ cl, ∀l,

x º 0
(19)



where the variables arex. Low et al. [15] further showed
how to obtain the utility maximization implicitly being solved
for based on a congestion control protocol, as well as how
to design a congestion control mechanism starting from some
given utility functions. For example, TCP Vegas [16] is implic-
itly maximizing a weighted logarithmic utility using queuing
delays{γl} as the congestion prices to regulate{xs}.

C. Problem formulation

In our hybrid network, both wireless MAC and wired
backbone network are present and they are coupled in two
ways. They are coupled in the constraints because those
links l ∈ L in the backbone are shared by traffic due to
both {xs} and {Ri}. They are also coupled in the objective
function, because the wireless first-hop is often the end-to-end
performance bottleneck and we would like to attain a point on
the capacity region’s boundary, yet the global network utility
should also be maximized. How should(R,P) be chosen
to balance the two? And how mayx be adapted to induce
a favorable congestion condition in the backbone so that it
becomes feasible forR to be varied in order to reach the
wireless MAC capacity boundary?

These intuitive questions are formulated in the following
problem of end-to-end resource allocation in hybrid networks,
essentially a ‘weighted sum’ of (18) and (19), with the second
constraint coupling across the wireless and wired parts:

maximize
∑

s Us(xs) + θ
∑

i µiRi

subject to
∑

s:l∈L(s) xs ≤ cl, ∀l /∈ L,∑
i:l∈L(i) Ri +

∑
s:l∈L(s) xs ≤ cl, ∀l ∈ L,

R ∈ R(P),
x,R,P,º 0

(20)
where the variables are the wired source ratesx, wireless
source ratesR, and wireless transmit powersP. The constant
parameters include weighting coefficientθ, rate reward vector
µ, and wired link capacitiesc. Due to concavity of the
objective and convexity of the constraints, varyingθ ∈ (0,∞)
and solving (20) for eachθ traces out the entire Pareto optimal
curve between the local and global objectives in end-to-end
resource allocation in hybrid networks.

D. Algorithm

We provide the following distributed algorithm to solve (20).

Algorithm 3

First, initiate αl ≥ 0 on links l ∈ L and feed it back to
all sources using linkl, then repeat in parallel the following
iterations until convergence:

1. Apply the congestion control algorithm in [15] but use
the following modified utility functionsU ′

s(xs):

U ′
s(xs) =

{
Us(xs)−

∑
l∈L(s) αl if s shares links with somei

Us(xs) otherwise
(21)

2. Apply the greedy rate and power allocation algorithm in
[23] but use the following modified rate vectorµ′:

µ′i =
{

θµi −
∑

l∈L(i) αl if i shares links with somes
θµi otherwise

(22)
3. Update a ‘virtual buffer’hl on each linkl ∈ L (note that
{xs} and {Ri} are resulted from items 1 and 2 above, and
they are functions ofα):

hl(α) = cl −

 ∑

s:l∈L(s)

xs(α) +
∑

i:l∈L(i)

Ri(α)


 . (23)

4. Updateαl and feed it back to all sources using linkl (where
β > 0 is a constant):

α
(k+1)
l =

[
α

(k)
l − βh

(k)
l

]+

. (24)

In essence,α acts as an additional set of ‘coupling’ prices
that affects the existing algorithms in [15] and [23] by modify-
ing utility functions and rate rewards, thus coupling congestion
pricesγ and power pricesλ. There are several propositions
we can make about the performance and practical issues of
this algorithm. Due to space limit in this summary, we focus
on the most important issue in the following theorem that will
be proved in the next section:

Theorem 3:Algorithm 3 (21,22,23,24) converges to a
global optimum(P∗,R∗,x∗) of utility maximization (20).

Numerical examples that trace out the desired Pareto op-
timal tradeoff curve using the solution above, as well as
theoretical corollaries utilizing the result of modified{U ′

s}
and{µ′i}, easily follow from Algorithm 3. For example, [27]
showed that for Poisson arrival traffic to the wireless source
nodes, letting the rate reward{µi} be the queue sizes{qi} and
then using the Tse-Hanly algorithm is ‘throughput optimal’
for multiaccess fading channels. Our result on modified rate
rewardµ′ implies that, for end-to-end consideration in hybrid
networks, the rate reward should now be a weighted sum of
local buffer size and all the ‘virtual buffer’ sizes along the path
in the wired backbone:µi = 1

θ (qi +
∑

l∈L(i) αl), ∀i.

E. Proof of Theorem 3

We first rewrite problem (20) by introducing dummy vari-
ablestl for l ∈ L:

maximize
∑

s Us(xs) + θ
∑

i µiRi

subject to
∑

s:l∈L(s) xs ≤ cl, ∀l /∈ L,

cl −
∑

s:l∈L(s) xs = tl, ∀l ∈ L,

tl ≥
∑

i:l∈L(i) Ri, ∀l ∈ L,

R ∈ R(P),
x, t,R,P º 0.

(25)

We now introduce Lagrange multipliersαl for l ∈ L, and
write the partial Lagrangian:

L(x, t,R,P, α) =
∑

s

Us(xs)+θ
∑

i

µiRi+
∑

l∈L
αl(tl−

∑

i:l∈L(i)

Ri).



We can maximize the partial Lagrangian to obtain the
Lagrange dual function:

g(α) = supx,t,R,P {L(x, t,R,P,α)|other constraints in (25)} .

It is easy to see that the Lagrange dual function can be
obtained by a partial Lagrangian decomposition:

g(α) = gnet(α) + gmac(α)

wheregnet(α) and gmac(α) are, respectively, the optimized
value of the objective function in the following subproblem of
NET:

maximize
∑

s Us(xs) +
∑

l∈L αltl
subject to

∑
s:l∈L(s) xs ≤ cl, ∀l /∈ L,

tl +
∑

s:l∈L(s) xs = cl, ∀l ∈ L,

x, t º 0

(26)

where the variables arex and t only, and the subproblem of
MAC:

maximize θ
∑

i µiRi −
∑

l∈L αl

∑
i:l∈L(i) Ri

subject to R ∈ R(P),
R,P º 0

(27)

where the variables areR andP only.

Notice that, as desired for decoupling problem (20), in
the NET subproblem, the wireless transmit powers and rates
are not being optimized. Similarly, in theMAC subproblem,
the source rates from the non-wireless nodes are not being
optimized.

Since utility functions are concave, the multiaccess fading
constraint is convex [23], and all other terms in the objective
and constraint functions are affine, (20) is a convex opti-
mization problem (with strictly feasible solutions). Therefore,
solving (20) is equivalent to solving its Lagrange dual problem
over α:

maximize gnet(α) + gmac(α)
subject to αl ≥ 0, ∀l ∈ L.

(28)

In order to solve (28), we need to first know how to solve
(26) and (27) to obtaingnet andgmac as functions ofα, and
then how to maximize the sum ofgnet and gmac over α.
We show below that (26) can be distributively solved using
existing congestion control algorithms over the network by a
simple modification of the utility functions, and that (27) can
be locally solved using Tse and Hanly’s greedy algorithm [23]
with a simple modification of the rate reward vector.

First, substituting the second constraint in theNET sub-
problem (26), we can rewrite the objective function of (26) as∑

s Us(xs) +
∑

l∈L αl(cl −
∑

s:l∈L(s) xs). Since
∑

l∈L αlcl

is a constant term, the objective function can be equivalently
written as

∑
s

Us(xs)−
∑

s:L(s)
⋂
L6=φ


 ∑

l∈L(s)

αl


xs.

We thus define modified utility functionsU ′
s for all sources{s :

L(s)
⋂L 6= φ} (i.e., those sharing some links in the backbone

with a wireless source node):U ′
s(xs) = Us(xs)−

∑
l∈L(s) αl.

The utility functions for other sources remain the same. The
NET problem (26) now becomes

maximize
∑

s U ′
s(xs)

subject to
∑

s:l∈L(s) xs ≤ cl, ∀l /∈ L,

x º 0.
(29)

This is now in exactly the same form as the network utility
maximization problem (19) that can be distributively solved
by TCP congestion control mechanisms in [11], [15], [16].

Similarly for theMAC subproblem (27), we can modify the
rate rewardµ′i = θµi−

∑
l∈L(i) αl for all wireless source nodes

i sharing some links with non-wireless source nodes, andµ′i =
θµi for all other i. Problem (27) can now be expressed as:

maximize
∑

i µ′iRi

subject to R ∈ R(P),
R,P º 0.

(30)

This is now in exactly the same form as the optimization
problem (18) that characterizes the boundary of multiaccess
fading channels, which can be solved by the greedy algorithm
in [23].

Now that we have reduced both subproblems into the forms
that can be solved with existing algorithms, we proceed to
solve the ‘master’ dual problem (28) by optimizing over
α. Due to non-strict concavity and convexity in the primal
problem (20), the objective function in (28) may not be
differentiable, and we have to use the subgradient method
[1], [24], which extends the gradient descent method to non-
differentiable functions. Subgradient method can be made
distributive in this case. It can be verified that the following
vectorh is a subgradient tognet(α) + gmac(α):

hl(α) = cl −

 ∑

s:l∈L(s)

xs(α) +
∑

i:l∈L(i)

Ri(α)


 .

This subgradient can be interpreted as ‘virtual buffers’: the
difference between bandwidth supplycl and bandwidth de-
mand from both wireless and non-wireless source nodes,
which can be measured locally on each link. Then at time
instantk, variablesα are updated by the subgradient method:

α
(k+1)
l =

[
α

(k)
l − βh

(k)
l

]+

, ∀l ∈ L where β > 0 is
a constant step size. Using a similar argument as in [4], it
can be shown that for a small enoughβ, the subgradient
iterations converge. Convergence for both subproblemNET
(26) and subproblemMAC (27) can be established after the
transformation to (29) and (30), respectively. Because the
problems are convex optimization problems, the convergence
is toward a global optimum of (28), or equivalently, of (20).

We conclude this section by mentioning that for end-to-end
resource allocation for data download to (instead of upload
from) wireless users, similar modifications of rate rewards



can be made to the algorithm of power and rate allocation
to achieve the broadcast fading channel capacity in [13], [22].

V. CONCLUSIONS

Compared to wired networks, utility maximization problems
in wireless cellular networks have additional challenges:

• Utility maximization depends on the channel conditions.
• Flow constraints on rates become constraints coupled

between powers and rates.
• Linear flow constraints become nonlinear, and may be

globally coupled due to interference.
• For end-to-end consideration, there is a conflict between

attaining air-interface capacity and maximizing global
utility.

This paper presents three algorithms that are provably
convergent to the joint and globally optimal pair of rates and
powers for three cases of utility maximization in wireless
cellular networks:

1) When the rate is a nonlinear and global function of all
transmit powers, Algorithm 2 iteratively updates powers
and rates, and converges to a globally optimal rate-power
pair for utility maximization.

2) When the rate is a nonlinear but local function of
the transmit power, the bidding mechanism in Algo-
rithm 1 maximizes network utility without requiring the
knowledge of channel conditions and individual utility
functions at the base station, thus extending a similar
conclusion for wired networks in Kelly et al. [11] to the
case of wireless downlink transmissions.

3) For the problem of end-to-end resource allocation for
wireless cellular networks formulated in this paper, it is
solved distributively by using coupling prices and virtual
buffers, and by modifying source utility functions in [11]
and rate reward vectors in [23].

Constrained nonlinear optimization theory and Lagrange
duality have been the important tools to solve these problems,
and convexity properties of the optimization problems are
crucial to the proofs. The proof of Theorem 1 also utilizes
the special structure of the Lagrange dual problem that leads
to a successive Gauss-Siedel algorithm where channel con-
ditions and local utilities can be decoupled from the base
station updates. The proof of Theorem 2 relies on Perron
Frobenius theory of non-negative matrices to characterize the
KKT optimality condition. The proof of Theorem 3 uses
partial Lagrangian decomposition and subgradient method for
distributed implementation.
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