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Abstract

We consider decentralized estimation of a noise-corrupted deterministic parameter by a band-
width constrained sensor network with a fusion center. The sensor noises are assumed to be
additive, zero mean, spatially uncorrelated, but otherwise unknown and possibly different across
sensors due to varying sensor quality and inhomogeneous sensing environment. The classical
Best Linear Unbiased Estimator (BLUE) linearly combines the real-valued sensor observations to
minimize the Mean Square Error (MSE). Unfortunately, such a scheme cannot be implemented in
a practical bandwidth constrained sensor network due to its requirement to transmit real-valued
messages. In this paper, we construct a decentralized estimation scheme (DES) where each sensor
compresses its observation to a small number of bits with length proportional to the logarithm
of its local Signal to Noise Ratio (SNR). The resulting compressed bits from different sensors
are then collected and combined by the fusion center to estimate the unknown parameter. The
proposed DES is universal in the sense that each sensor compression scheme requires only the
knowledge of local SNR, rather than the noise probability distribution functions (pdf), while the
final fusion step is also independent of the local noise pdfs. We show that the MSE of the pro-
posed DES is within a constant factor of 25/8 to that achieved by the classical centralized BLUE
estimator.

1 Introduction

Recent technological advances have led to the emergence of small, low-power, and possibly mobile
devices with limited on-board processing and wireless communication capabilities. When deployed
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in large numbers, these devices have the ability to form an intelligent network which can measure
aspects and identities of the physical environment in unprecedented scale and precision. In this paper,
we focus on a star-like sensor network whereby each sensor in the network collects an observation,
computes a local message (either real-valued or discrete) and then sends it to a fusion center, while
the latter combines the received sensor messages to produce a final estimate of the environment.
We assume that sensor nodes do not communicate with each other, and there is no feedback from
fusion center to local sensors. Sensor networks of this type are well-suited for situation awareness
applications such as environmental monitoring (air, water, and soil), smart factory instrumentation,
military surveillance, precision agriculture, intelligent transportation and space exploration, to name
a few.

To reduce the communication requirement from sensors to the fusion center, local data quantiza-
tion/compression at each sensor site is needed. In fact, a central problem in sensor network research
is to design discrete local message functions and the final fusion function in a way that minimizes the
total bandwidth requirement while satisfying an overall system performance requirement. Clearly,
optimal design of these functions will depend on the underlying sensor noise distributions. Unfor-
tunately, characterizing the exact noise probability distributions for a large number of sensors is
impractical, especially for applications in a dynamic sensing environment. What is more realistic in
these scenarios is to let each sensor estimate its local signal to noise ratio (SNR) which can be accom-
plished by simply measuring the received signal power in the presence and absence of the incoming
signal. Motivated by these considerations, we are led to the design of bandwidth efficient decentral-
ized estimation schemes (DES) which only depend on the local SNRs, rather than the knowledge
of noise pdfs. Throughout this paper, such a DES will be called universal with respect to the noise
distribution.

The problem of decentralized estimation has been studied first in the context of distributed con-
trol [1, 12] and tracking [14], later in data fusion [2, 9], and most recently in wireless sensor networks
[10]. Among these studies, the prevailing assumption has been that the joint distribution of the
sensor observations is known, with some also making the additional assumption that the communi-
cation links can transmit real values and are distortionless. In the case where the communication
links can only transmit discrete signals, the work of [4, 10, 11] addressed various design and imple-
mentation issues using the knowledge of joint distribution of sensor data. Without the knowledge
of noise distribution, the work of [13] proposed to use a training sequence to aid the design of
local data compression strategies. Recently, several new universal DES [7, 8] were proposed for dis-
tributed parameter estimation in the presence of unknown, additive sensor noises that are bounded
and identically distributed. These universal decentralized estimation schemes have a low bandwidth
requirement: each observation is compressed to exactly one binary bit per sensor. In particular, 1

2 of
the sensors will send to the fusion center the first most significant bit of their observations, 1

4 of the
sensors will send the second most significant bit of their observations, and so on. When properly
combined at the fusion center, these bits can be used to estimate the unknown parameter, resulting
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in a mean squared errors (MSE) that is within a constant factor of 4 to the minimum achievable.
However, the results of [7, 8] are based on the restrictive assumption that the sensor noises are
identically distributed. For applications where the sensors either have varying quality/resolution or
are at different distances from the unknown target being monitored, the sensor noise distributions
cannot be identical. In fact, the local SNRs will be different across sensors. In such scenarios, a
major problem is: How should a sensor with a high SNR compress its data differently from a sensor
with a low SNR?

In this paper, we extend the work of [7, 8] to the inhomogeneous sensing environment. When the
local message functions are allowed to be real-valued and the sensor noise variances are known by
the fusion center, the classical Best Linear Unbiased Estimator (BLUE) can be used to minimize the
Mean Square Error (MSE) by linearly combining the (real-valued) sensor observations with weights
inversely proportional to sensor noise variances. We show that the same MSE performance (up
to a small multiplicative constant) can be achieved by a universal DES with low communication
requirement (measured in bits). In particular, we let each sensor first compress its observation to a
discrete message with length proportional to the logarithm of its local Signal to Noise Ratio (SNR),
and then transmit the resulting message to the fusion center. The final estimate of the unknown
parameter is computed at the fusion center by combining the received bits according to a universal
fusion rule. It is shown that the MSE of the proposed universal DES is within a constant factor of
25/8 to that achieved by the classical centralized BLUE estimator.

Our paper is organized as follows. In Section 2, we formulate the decentralized estimation
problem. Section 3 studies the design of DES for the case where the noise pdf is known, under
the assumption that the sensor messages must be one binary bit. The design of DES for unknown
noise with bounded range is considered in Section 4 where an universal decentralized linear unbiased
estimator is presented. This DES is extended to the case of unbounded sensor noises in Section 5.
The final section (Section 6) contains some concluding remarks.

2 Problem Formulation

Consider a set of K distributed sensors, each making observations on an unknown parameter θ ∈
[−V, V ], with V > 0 a given constant. The observations are corrupted by additive noises and are
described by

xk = θ + nk, k = 1, 2, ..., K. (2.1)

We assume the noises {nk : k = 1, 2, ...,K} are zero mean, spatially uncorrelated with a probability
density function (or pdf for short) fk(x) and variance σ2

k.

Suppose the sensors and the fusion center wish to jointly estimate θ based on the spatially
distributed observations {xk : k = 1, 2, ...,K}. This can be accomplished as follows (see Figure 1).
First, each sensor computes a local message mk(xk) based on its observation xk and on the outcome
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Figure 1: A decentralized estimation scheme.

of a local random variable, where mk is a discrete probabilistic message function to be designed. The
local random variable plays the role of “coin tossing” at each sensor which effectively randomizes
the sensor message. This framework of randomized message functions also includes deterministic
message functions as a special case in which the local random variables are chosen as constants.
Second, all the sensor messages are transmitted to the fusion center where they are combined to
produce a final estimate of θ using a real-valued fusion function Γ

θK = Γ(m1(x1),m2(x2), ..., mK(xK)).

We will refer {Γ,mk : k = 1, 2, ...,K} as a decentralized estimation scheme (DES). The problem of
decentralized estimation is then to design the local message functions {mk : k = 1, 2, ..., K} and the
fusion function Γ so that θK is as close to θ as possible in a statistical sense. In this paper, we shall
adopt the Mean Squared Error (MSE) criterion to measure the quality of an estimator for θ:

MSE = E(|θK − θ|2),

where the expectation is taken with respect to the sensor noises, as well as the local random variables
if mk(xk) are randomized.

If the fusion center has knowledge of the sensor noise variances, and the communication links
between the sensors and the fusion have sufficient bandwidth, the sensors can send their accurate
observations {xk : k = 1, 2...,K} to the fusion center. In other words, we can set the message
functions as mk(xk) = xk for all k = 1, 2, . . . , K. Upon receiving these real-valued messages, the
fusion center can simply perform the linear minimum MSE estimation to recover θ by combining
xk with weights inversely proportional to σ2

k. This leads to the following Best Linear Unbiased
Estimator (BLUE estimator) [5]

θK(x1, x2, . . . , xK) =

(
K∑

k=1

1
σ2

k

)−1 K∑

k=1

xk

σ2
k

. (2.2)
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A simple calculation shows that this estimator has a MSE of

E(θK − θ)2 =

(
K∑

k=1

1
σ2

k

)−1

. (2.3)

The above scheme requires infinite bandwidth since real-valued messages have to be transmit-
ted. This makes it impractical for implementation in sensor networks. In the remainder of this
paper, we assume the communication channels between sensors and the fusion center are bandwidth-
constrained, and we will design a DES which can achieve essentially the same MSE as (2.3) while
requiring only a small amount of communications from sensors to the fusion center. We will consider
two cases depending on whether the noise pdfs are known or unknown. In the former case, we make
use of the noise pdfs in designing the message functions {mk} and the final fusion function f , while
in the latter case, the DES is universal (i.e., independent of the sensor noise pdfs). The message
lengths (measured in binary bits) are chosen to be proportional to the logarithm of local maximal
SNRs. Both schemes yield a MSE that is within a constant factor of that achieved by the BLUE
estimator (cf. (2.3)), with the constant factor depending on the noise pdfs in the former case, and
bounded by 25/8 in the latter case.

3 A Decentralized Estimator with Known PDF

In this section, we assume that that the noise pdfs {fk(x) : k = 1, 2, ..., K} are known. The noise
variances are {σ2

k : k = 1, 2, ..., K}. For convenience we define the normalized noise pdf:

pk(x) = σkfk (σkx) (3.1)

which has variance 1, and signifies the distribution type of xk. We let Fk(x) and Pk(xk) denote the
noise cumulative density functions of fk(x) and px(x) respectively. Then it follows that

Pk(x) =
∫ x

−∞
pk(y)dy =

∫ x

−∞
σkfk(σky)dy =

∫ σkx

−∞
fk(z)dz = Fk(σkx). (3.2)

Furthermore, we impose the constraint that the local message functions {mk : k = 1, 2, ..., K} must
be binary, taking values of either 0 or 1. As a result, a natural local quantization scheme is to choose
mk(x) to be the sign detector:

mk(xk) =

{
1, if xk ≥ 0,
0, if xk < 0.

(3.3)

It is easy to see that

E(mk) = P(xk > 0) =
∫ ∞

0
fk(x− θ)dx = 1− Fk(−θ), (3.4)

where Fk(x) is continuous whenever fk(x) is Riemann-integrable.
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Let us define a function

G(x) :=
K∑

k=1

1− Fk(−x)
σk

.

Then it is easy to see that G(−∞) = 0, G(+∞) =
∑K

k=1 σ−1
k , and G(x) is continuous and monoton-

ically increasing. It follows from (3.4) that

G(θ) =
K∑

k=1

1− Fk(−θ)
σk

=
K∑

k=1

E(mk)
σk

. (3.5)

Therefore, upon receiving the one-bit messages {mk : k = 1, 2...,K}, the fusion center can first solve
the equation (in x)

G(x) =
K∑

k=1

1− Fk(−x)
σk

=
K∑

k=1

mk

σk
. (3.6)

Equation (3.6) has at least one solution since mk ∈ {0, 1} and hence 0 ≤ ∑K
k=1

mk
σk

≤ ∑K
k=1 σ−1

k .
The solution is unique if we further assume that {fk(x) : k = 1, 2, ..., K} do not vanish on a common
interval in R. If the solution is not unique, we can simply pick one of the solutions, and denote it by
θ∗. The fusion center generates the final estimator θK by projecting θ∗ onto the interval [−V, V ], i.e.

θK = max{min(θ∗, V ),−V } =





V, if θ∗ ≥ V ,
θ∗, if −V < θ∗ < V ,
−V, if θ∗ ≤ −V .

(3.7)

Finding θK can be easily accomplished numerically through bisection search in the interval [−V, V ].
The following theorem provides an estimate of the MSE performance for this DES.

Theorem 3.1. The DES estimator specified by (3.3), (3.6) and (3.7) achieves an MSE of

E
(∣∣θK − θ

∣∣2
)
≤ 1

4µ2

(
K∑

k=1

1
σ2

k

)−1

,

where
µ = min

1≤k≤K
inf

x∈[−V,V ]
pk(x) (3.8)

with the normalized pdf pk defined by (3.1).

Proof. Notice that θK is the projection of θ∗ to [−V, V ], which implies G(θK) is the projection
of G(θ∗) to [G(−V ), G(V )] because G(x) is monotonically increasing. Also, G(θ) ∈ [G(−V ), G(V )]
whenever θ ∈ [−V, V ], which further implies

∣∣G(θK)−G(θ)
∣∣ ≤ |G(θ∗)−G(θ)| . (3.9)

Meanwhile, the fact that θ∗ is a solution of the equation (3.6) implies

G(θ∗) =
K∑

k=1

1− Fk(−θ∗)
σk

=
K∑

k=1

mk

σk
. (3.10)
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Therefore we have

E
(∣∣G(θK)−G(θ)

∣∣2
)

(a)
≤ E

(
|G(θ∗)−G(θ)|2

)
(b)
= E




∣∣∣∣∣
K∑

k=1

mk

σk
−

K∑

k=1

E(mk)
σk

∣∣∣∣∣

2



(c)
=

K∑

k=1

E (mk − E(mk))
2

σ2
k

(d)
≤

K∑

k=1

1
4σ2

k

, (3.11)

where (a) follows from (3.9), (b) follows from (3.5) and (3.10), (c) follows from the fact that for any
1 ≤ i 6= j ≤ K, mi and mj are uncorrelated given θ, so

E ((mi − E(mi)) (mj − E(mj)) |θ) = E (mimj |θ)− E(mi|θ)E(mj |θ) = 0,

and E ((mi − E(mi)) (mj − E(mj))) = 0. In (d), we have used the fact that mk is a 0-1 binary random
variable whose variance is at most 1/4.

On the other hand, we have

E
(∣∣G(θK)−G(θ)

∣∣2
)

= E




∣∣∣∣∣
K∑

k=1

1− Fk(−θK)
σk

−
K∑

k=1

1− Fk(−θ)
σk

∣∣∣∣∣

2



= E




∣∣∣∣∣
K∑

k=1

Fk(−θ)− Fk(−θK)
σk

∣∣∣∣∣

2



(a)
= E




∣∣∣∣∣∣

K∑

k=1

Pk(− θ
σk

)− Pk(− θK
σk

)

σk

∣∣∣∣∣∣

2


(b)
≥ E




∣∣∣∣∣
K∑

k=1

(θK − θ)µ
σ2

k

∣∣∣∣∣

2



=

(
K∑

k=1

µ

σ2
k

)2

E
((

θK − θ
)2

)
, (3.12)

where (a) follows from (3.2), and the inequality in (b) follows from the definition of µ in (3.8).
Combining (3.11) and (3.12) completes the proof.

Notice that the MSE bound in Theorem 3.1 is within a constant factor to that achieved by
the centralized BLUE estimator (cf. (2.3)). This suggests that the finite bandwidth constraint (one
bit per sample per node) results in only a constant factor increase in the MSE performance. Also,
Theorem 3.1 suggests that the MSE performance can degrade significantly when the factor µ is small.
This will be confirmed by computer simulations later in Section 5 (see Figure 7).

It is worth noting that the DES (3.3)–(3.7) not only requires the knowledge of noise pdf fk, but
also lets each sensor send exactly one-bit information regardless of sensor qualities (measured by
local SNRs). In Section 4 and 5, we will propose a universal DES which allows higher SNR sensors
to send more bits. Such a variable-length quantization scheme achieves a MSE performance that is
independent of µ.
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4 A Universal DES for the Bounded Noise Case

Suppose the noises {nk : k = 1, 2, ..., K} have a bounded range in the interval [−U,U ], and θ is
bounded to the interval [−V, V ]. Let W = U + V , then sensor observations xk ∈ [−W,W ] for
1 ≤ k ≤ K. We normalize xk to the range [0, 1] by a linear transformation yk = (W + xk)/2W .
Consider the binary expansion of yk:

yk =
W + xk

2W
=

∞∑

i=1

bi2−i, where bi = 0, 1.

We call bi the i-th most significant bit (MSB) of yk.

In a homogeneous sensing environment where all sensors have the same noise variance σ2
k = σ2

for all 1 ≤ k ≤ K, it is natural to let each local sensor generate same amount of information (say one
bit) to the fusion center. For applications where the sensors either have varying quality/resolution
or are at different distances from the unknown target being monitored, the sensor noise distributions
cannot be identical. In fact, the local SNRs will be different across sensors. In such scenarios, a
sensor with a high SNR should compress its data differently from a sensor with a low SNR. One
strategy might be to let high SNR sensors quantize their observations to the more significant MSBs.
Unfortunately, this does not work in general. For example, if θ = 0 and all the noise pdfs are
symmetric with respect to the origin, then P(b1 = 0) = P(b1 = 1) = 1/2 for any σ. This suggests
that, when θ = 0, the quality of the first MSB of each sensor is the same irrespective of its local
SNR (see Figure 2). This implies that the strategy of simply letting high SNR sensors quantize their
observations to the more significant MSBs cannot work.

To extend the existing results of [7, 8] to the inhomogeneous sensing environment, we will allow
each sensor to send a multiple-bit message, the length of which will be made dependent on the local
SNRs, with high SNR sensors sending more bits than local SNR sensors. To this end, we will need
to use a simple probabilistic scheme to quantize a random variable. This is outlined next.

−W 0 W

P(b
1
=0)=1/2,

P(b
1
=1)=1/2.

For all σ, 

Figure 2: Distribution of xk when θ = 0.
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4.1 Probabilistic Quantization of a Bounded Random Variable

Suppose x = θ + n ∈ [−W,W ], where W is a known constant, θ is an unknown parameter to be
estimated, and n is a real-valued noise random variable with mean zero and variance σ2. Consider
the binary expansion of y = (x + W )/2W :

y =
∞∑

i=1

bi2−i, with bi = 0 or 1,

and define an auxiliary random variable a as

P(a = i) = 2−i, i = 1, 2, 3, . . . . (4.1)

We define a randomized (M + 1)-bit message function m as follows:

m(x, a, M) =
M∑

i=1

bi2−i + 2−MbM+a. (4.2)

Basically, m consists of the first M MSBs of y, plus an extra bit of y whose position is determined
by the auxiliary random variable a. It is easy to see that m assumes 2M + 1 discrete values {2−Mj :
j = 0, 1, 2, . . . , 2M}. The next lemma shows that this message function is an unbiased estimator of
θ, with a variance approaching σ2 at an exponential rate as M increases.

Lemma 4.1. Let m be defined as above. Then, z = W (2m− 1) is an unbiased estimator of θ and




E
(
(z − θ)2

)
= W 2 − θ2, if M = 0,

E
(
(z − θ)2

) ≤ W 2

22M
+ σ2, if M ≥ 1.

(4.3)

Proof. Let r = 2M
∞∑

i=M+1

bi2−i, then 0 ≤ r ≤ 1, and

y =
M∑

i=1

bi2−i + 2−Mr. (4.4)

From the definition of bM+a in (4.2), we obtain

E(bM+a|y) =
∞∑

i=1

bM+i2−i = 2M
∞∑

i=M+1

bi2−i = r. (4.5)

It follows that given y, bM+a is a Bernoulli random variable with

P {bM+a = 1} = r,

P {bM+a = 0} = 1− r.
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We also see from (4.2) and (4.4) that

m− y = 2−MbM+a − 2−Mr = 2−M (bM+a − r). (4.6)

Therefore, it immediately follows from (4.5) that E(m|y) = y. Further from the definition of z, we
obtain E(z|x) = x and E(z) = E(x) = θ. We have shown that z is an unbiased estimate of θ.

Next, we estimate the MSE of z:

E
(
(z − θ)2

)
= E

(
(z − x)2

)
+ E

(
(x− θ)2

)
+ 2E ((x− θ)(z − x))

(a)
= 4W 2E

(
(m− y)2

)
+ σ2

(b)
= 2−2M+2W 2E

(
(bM+a − r)2

)
+ σ2

(c)
≤ 2−2MW 2 + σ2, for all M ≥ 0, (4.7)

where (a) follows from E((x− θ)(z − x)) = E ((x− θ)E(z − x|x)) = 0, (b) is due to (4.6), and in (c),
we have used the fact that the variance of any 0-1 valued binary random variable is no more than
1/4.

Specifically when M = 0, m = bM+a (c.f. (4.2)) which is a binary message taking values from
{0, 1}, E(m|y) = y, and E

(
(m− y)2|y)

= y(1 − y). In this case, we can tighten the bound in (4.7)
by calculating

E
(
(m− y)2

)
= E

(
E(m− y)2|y)

= E(y(1− y)) = E

(
W 2 − x2

4W 2

)
=

W 2 − θ2 − σ2

4W 2
,

and

E
(
(x− θ)2

)
= 4W 2E

(
(m− y)2

)
+ σ2 = W 2 − θ2, for M = 0. (4.8)

Combining (4.7) with (4.8) yields (4.3), as desired.

Lemma 4.1 can be readily used to design a universal DES for the estimation of θ in a homogeneous
sensing environment. In particular, if sensor noises are i.i.d. with variance σ2, then we can let each
sensor quantize its observation using the same message function (4.2), except with independent copies
of a. Let {mk : k = 1, 2, . . . , K} denote the set of message functions and zk = W (2mk − 1), then the
fusion center can estimate θ by simply averaging {zk : k = 1, 2, . . . , K}:

θK =
1
K

K∑

k=1

zk =
K∑

k=1

W (2mk − 1).

It can be seen from Lemma 4.1 that this DES achieves a MSE of



E
((

θK − θ
)2

)
=

W 2 − θ2

K
≤ W 2

K
, if M = 0,

E
((

θK − θ
)2

)
≤ 1

K

(
W 2

22M
+ σ2

)
, if M ≥ 1.
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When M = 0, each sensor sends a 1-bit message, and the MSE performance is the same as that
obtained in [7, 8]. When M ≥ 1, the MSE of θK converges to the best achievable MSE performance
σ2/K exponentially as M →∞. Moreover, if we pick a fixed finite message length of M = dlog W/σe,
then the MSE is bounded by 2σ2/K which is a factor of 2 away from the centralized BLUE (c.f.
(2.3) when σ2

k = σ2 for all k).

4.2 A Universal DES for Bounded Inhomogeneous Noises

When sensor noise levels are different, the centralized BLUE scheme (2.2) differentiates observations
by multiplying them with different weights (σ−2

k to be specific). How should we design a DES in
which sensors with different noise variances can only send discrete messages to the fusion center?
Intuitively, if a sensor has low sensor noise, we have a number of options: (i) let this sensor quantize
their observations to the more significant bits; (ii) let this sensor send more bits to the fusion center;
(iii) let the fusion center weigh this sensor’s message more in the fusion process. As discussed in the
beginning of Section 4, simply following any one of these three approaches does not work. It turns
out that a good strategy involves a combination of all three approaches. In particular, motivated by
Lemma 4.1 and by the discussion at the end of Section 4.1, we will let each sensor send a multiple-bit
message with length Mk approximately proportional to the logarithm of the local SNR:

Mk =
⌈
log

W

σk

⌉
. (4.9)

In this way, a better quality sensor sends more bits to the fusion center, and the message length
Mk can be used by the fusion center to recover the local noise variance σ2

k and use it as a weighting
factor in the final fusion process. Since the noise range is bounded by W , it follows that σk < W for
all k. This implies that Mk ≥ 1, for all k.

Remark 4.2. The message length Mk admits an intuitively appealing interpretation: Mk can be
roughly viewed as the Shannon capacity of a “virtual channel” from Mother nature to the local
sensor k, with θ as the channel input and with xk = θ + nk as the channel output. In particular, the
channel capacity, maximized over all possible choices of θ ∈ [−V, V ] and all noise distributions with
variance bounded by σ2

k, is

Ck =
1
2

log
(

1 +
V 2

σ2
k

)
.

A simple calculation yields

Ck ≤ Mk < Ck +
1
2

log
(

1 +
V

U

)
+ 1.

Therefore, the message length of sensor k is approximately Ck, especially when σk is small. Since
Ck can be viewed as the maximum average number of bits of information carried by the sensor
observation xk, it is therefore quite natural not to let sensor k send more than Ck bits of information
to the fusion center.
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Now we are ready to construct the universal DES which consists of the local message functions
{mk : k = 1, 2, ..., K} and the fusion function Γ. The design is outlined in two steps.

• With the knowledge of W and the local noise variance σ2
k, sensor k determines Mk according to

(4.9). After collecting the observation xk ∈ [−W,W ], sensor k generates a message mk which
is a random (Mk + 1)-bit discrete message

mk(xk, ak,Mk) =
Mk∑

i=1

bi2−i + 2−MkbMk+ak
, (4.10)

where {bi : i = 1, 2, . . .} are the binary bits associated to the binary expansion of yk =
(xk + W )/2W , and ak local random variable with distribution defined by (4.1). (Thus, all
sensors in the network use i.i.d. local random variables.)

• The final estimator in the fusion center is

θK = Γ(m1,m2, . . . ,mK) =

(
K∑

k=1

22Mk

)−1 K∑

k=1

22MkW (2mk − 1). (4.11)

Notice that in the above DES, each sensor only needs to know its own noise level (or equivalently
local SNR), while the final fusion step (4.11) is completely determined by the received messages
{mk : k = 1, 2, ...,K}, and thus independent of noise pdfs. Thus, this DES is universal with respect
to the noise pdfs. The following theorem shows that the MSE performance of this universal DES
is within a small constant factor of 25/8 to that achieved by the centralized BLUE estimator (cf.
(2.2)–(2.3)).

Theorem 4.3. The estimator θK in (4.11) is an unbiased estimate of θ, i.e. E(θK) = θ, and θK

has an MSE

E(θK − θ)2 ≤ 25
8

(
K∑

k=1

1
σ2

k

)−1

,

which is optimal (up to a factor of 25/8) when compared to the BLUE estimator (2.2)–(2.3).

Proof. The unbiasedness of θK follows from

E(θK) =

(
K∑

k=1

22Mk

)−1 K∑

k=1

22MkE (W (2mk − 1)) =

(
K∑

k=1

22Mk

)−1 K∑

k=1

22Mkθ = θ,

where second last step is due to Lemma 4.1. To estimate the MSE of the estimator θK , we note
from (4.9) that

log
W

σk
≤ Mk < log

W

σk
+ 1,

12



which implies

σ2
k

4
<

W 2

22Mk
≤ σ2

k, ∀ k. (4.12)

This, together with Lemma 4.1, further implies

Var (W (2mk − 1)) ≤ W 2

22Mk
+ σ2

k ≤ 2σ2
k, ∀ k.

Therefore, we obtain

E
(
(θK − θ)2

)
=

(
K∑

k=1

22Mk

)−2 K∑

k=1

24MkVar (W (2mk − 1))

≤ 2

(
K∑

k=1

22Mk

)−2 K∑

k=1

24Mkσ2
k

≤ 25
8

(
K∑

k=1

1
σ2

k

)−1

, (4.13)

where the proof of last inequality is tedious and is relegated to the appendix.

Similar to the BLUE estimator (2.2), the universal DES (4.10)–(4.11) also linearly combines the
sensor messages with optimal weights to minimize the MSE. However, unlike the BLUE estimator
(2.2) which requires the knowledge of noise variances to determine the weights, the weights used by
the DES (4.10)–(4.11) are completely determined by the lengths of the sensor messages. The latter
makes the DES (4.10)–(4.11) universal. Moreover, Theorem 4.3 shows that the new DES achieves
an MSE performance that is within a factor of 25/8 to that achieved by the BLUE estimator. Thus,
the strategy of allowing higher SNR sensors to send more bits not only eliminates the need for the
fusion center to know the individual sensors’ local SNRs, but also helps to ensure the universal DES
(4.10)–(4.11) achieves an (almost) optimal overall estimation accuracy.

Notice that when a sensor’s local SNR is too low, the corresponding real-valued observation can
be too noisy to be useful. Thus, from a practical implementation point of view, it may be desirable
to let each sensor have the option of not sending any message to the fusion center when its local SNR
falls below a given threshold. Such an option is also attractive from the power efficiency point of
view. Similar to the proof of Theorem 4.3, we can analyze the MSE performance of the DES (4.10)–
(4.11) with this option added. Also, notice that the proposed scheme will require more bandwidth
for sensors having access to a high SNR observation, leading to possibly unbounded message lengths.
This suggests that, in practical implementations, we will need to constrain the maximum message
length for sensors with excessively high SNRs so that their message lengths do not grow unbounded.
This restriction on the maximum message length will result in a final MSE which is still a constant
factor of that of the BLUE, albeit the constant factor will now depend on the maximum allowed
message length.

13



4.3 Simulation

We now present some simulations to compare the performances of the universal DES (4.10)–(4.11)
and the BLUE estimator. As shown earlier, the MSE of these estimation schemes are of the order(∑K

k=1 1/σ2
k

)−1
, where {σ2

k : k = 1, 2, . . . ,K} denote sensor noise variances. This motivates us to
define, similar to [9], the asymptotic efficiency of a DES as

asymptotic efficiency =
1

MSE ·∑K
k=1 1/σ2

k

. (4.14)

Thus, the asymptotic efficiency is 1 for the BLUE estimator (cf. (2.2)–(2.3)), and is lower bounded by
8/25 = 0.32 for the universal DES (4.10)–(4.11) (cf. Theorem 4.3). Clearly, the larger the asymptotic
efficiency, the more efficient is the estimation scheme.
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Figure 3: Distribution of sensor noise standard deviations.

In all the simulation runs, we have chosen θ = 1, V = 3, and U = 6. Sensor noises are assumed
to be uniformly distributed with standard deviations in Figure 3 which are randomly generated
according to a central F -distribution with parameters ν1 = 10, ν2 = 10 (see [6], Ch. 2). The
simulations are performed for various sizes of sensor networks: K = 30, 60, 120, 250, 500, 1000. At
each choice of K, the MSE is obtained by repeating the experiments for 5000 times and averaging
the corresponding squared estimation errors.

Figure 4 (left) plots the MSE curves of various schemes. The overall lower bound denotes(∑K
k=1 1/σ2

k

)−1
, which is the best achievable MSE for linear unbiased estimators, and the universal

DES upper bound is 25
8

(∑K
k=1 1/σ2

k

)−1
as given by Theorem 4.3. We can see that the universal

DES and the BLUE estimator both have MSE converging to 0 as the number of sensors increases.
Figure 4 (right) shows that the asymptotic efficiency of our universal DES is about 0.6 for all K.
This suggests that in these simulations, the universal DES has a MSE performance which is about
1/0.6 ≈ 1.67 of that achieved by the BLUE estimator. This shows that the new universal DES
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Figure 4: Comparison of MSE and asymptotic efficiencies for bounded noise case.

(4.10)–(4.11), which has a substantially lower communications requirement (see Figure 5), achieves
essentially the same MSE performance as the centralized BLUE estimator.
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Figure 5: Distribution of Mk + 1 (number of bits transmitted by local sensors).

To examine the communications requirement, we recall that the universal DES lets each sensor
compress its observation to a message of length Mk + 1 = dlog W/σke + 1 (cf. (4.10)). With W =
U + V = 9, and the noise variances specified in Figure 3, the distributions of the number of bits
transmitted by all K sensors are plotted in Figure 5. The number of bits sent by each sensor is
between 2 and 7 for all simulated cases. Moreover, the mean value of Mk (averaged among all K

sensors) are {3.80, 3.88, 3.83, 3.78, 3.77, 3.77} for K = {30, 60, 120, 250, 500, 1000} respectively. Thus,
sensors only need to transmit fewer than 4 bits per sample on average to the fusion center to guarantee
the MSE performance specified in Theorem 4.3.
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5 Design of Universal DES for the Unbounded Noise Case

When the noise range is unbounded (i.e., U = +∞), the values of observations {xk : k = 1, 2, . . . , K}
range over the entire real line R. Our design strategy remains to first construct discrete message
functions which are unbiased quantizations of sensor observations, with average message lengths
determined by the local SNRs. Then, these message functions are weighted at the fusion center to
obtain a final estimator. In what follows, we will consider two separate cases: (i) the fusion center
knows all the sensor SNRs; (ii) the fusion center has no information on local SNRs.

5.1 A DES for the Known Sensor Variances Case

Assume that fusion center knows sensor noise variances {σ2
k : k = 1, 2, . . . , K}. In this case, we

simply let each sensor send to the fusion center a randomly rounded version of xk/(2σk), with xk

denoting the sensor’s observation. The fusion center then weighs these random discrete messages
optimally with weights inversely proportional to σ2

k. The whole scheme is outlined as follows.

• Suppose xk ∈ R denotes the observation of sensor k. Let x′k = xk/(2σk) and write x′k =
sign(x′k)(ik + rk), where ik and rk are the integer and decimal parts of |x′k| respectively. Then
0 ≤ rk < 1. We construct sensor k’s message function as

mk(xk, σk) = sign(x′k)(ik + dk), (5.1)

where dk is a 0-1 binary random variable with P(dk = 1) = rk and P(dk = 0) = 1− rk .

• The final estimator of θ at the fusion center is

θK = Γ(m1, m2, . . . , mK) =

(
K∑

k=1

1
σ2

k

)−1 K∑

k=1

2mk

σk
. (5.2)

Theorem 5.1. For the DES (5.1)–(5.2), θK is an unbiased estimator of θ, and the MSE

E
((

θK − θ
)2

)
≤ 2

(
K∑

k=1

1
σ2

k

)−1

.

Moreover, for all 1 ≤ k ≤ K, the average message length of mk is no more than log 6+0.5 log(1+γk)
binary bits, where γk = θ2/σ2

k denotes the local SNR.

Proof. It is easy to see that E(mk|x′k) = x′k = xk/(2σk). So E(mk) = E(xk)/(2σk) = θ/(2σk). Thus,
it follows from (5.2) that θK is an unbiased estimator of θ. Also,

E
(
(2σkmk − θ)2

) (a)
= E

(
(2σkmk − xk)2

)
+ E

(
(xk − θ)2

)

≤ 4σ2
kE

(
(mk − x′k)

2
)

+ σ2
k

(b)
≤ 2σ2

k,
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where in (a), we have applied that E(2σkmk|xk) = xk, so E ((2σkmk − xk)(xk − θ)|xk) = 0, and
E ((2σkmk − xk)(xk − θ)) = 0. The inequality (b) follows from the definition of mk in (5.1), and
E

(
(mk − x′k)

2
)

= E
(
(dk − rk)2

)
= Var(dk) ≤ 1/4 since dk is a random variable taking values from

{0, 1}. Hence, we obtain

E
(
(θK − θ)2

)
= E







(
K∑

k=1

1
σ2

k

)−1 K∑

k=1

2σkmk

σ2
k

−
(

K∑

k=1

1
σ2

k

)−1 K∑

k=1

θ

σ2
k




2


=

(
K∑

k=1

1
σ2

k

)−2

E




(
K∑

k=1

2σkmk − θ

σ2
k

)2



=

(
K∑

k=1

1
σ2

k

)−2 K∑

k=1

E
(
(2σkmk − θ)2

)

σ4
k

≤ 2

(
K∑

k=1

1
σ2

k

)−1

,

where in the second step, we have applied that E (2σkmk) = θ, and for any 1 ≤ i 6= j ≤ K, mi and
mj are uncorrelated given θ, so E ([2σimi − θ] [2σjmj − θ]) = 0.

Next, we estimate the average length of the discrete message function mk. From (5.1), we know
that |mk| ≤ d|x′k|e < |xk|

2σk
+ 1. Hence, mk has length Lk ≤ 1 +

⌈
log

(
1 + |xk|

2σk

)⌉
, where the first term

accounts for the sign bit of mk, and the second term
⌈
log

(
1 + |xk|

2σk

)⌉
bounds the binary length of

integer |mk|. Thus, the average length of mk is bounded as follows:

E (Lk) ≤ E

(
1 +

⌈
log

(
1 +

|xk|
2σk

)⌉)
≤ 2 + E

(
log

(
1 +

|xk|
2σk

))

(a)
≤ 2 + log

(
1 +

E (|xk|)
2σk

)
(b)
≤ 2 + log

(
1 +

1
2σk

√
θ2 + σ2

k

)

= 1 + log
(

2 +
1
σk

√
θ2 + σ2

k

)
≤ 1 + log 3 + log

(
1
σk

√
θ2 + σ2

k

)

= log 6 +
1
2

log (1 + γk) ,

where (a) follows from Jensen’s inequality, and (b) is due to (E(|xk|))2 ≤ E(x2
k) = θ2 +σ2

k. The proof
is complete.

Similar to Remark 4.2, we can think of Ck = 1
2 log (1 + γk) as the Shannon capacity of a “virtual

AWGN channel” from nature to sensor k, with SNR given by γk. By Theorem 5.1, the average length
of message mk is upper bounded by log 6 + Ck. This once again reveals that the message length
is decided by the number of “useful” bits contained in xk as measured by the channel capacity Ck.
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Theorem 5.1 shows that this choice of message length results in a DES whose MSE performance is
within a constant factor of 2 to that of an optimal BLUE estimator.

Notice that Theorem 5.1 does not assume bounded noise range. However, it does require that
the noise variances are known at the fusion center. In what follows, we will remove this restrictive
assumption.

5.2 A Universal DES

We now consider a more practical scenario whereby the fusion center does not have any a priori

information on the local SNRs of sensor nodes. Again, the local SNR (or equivalently the local
sensor noise variance) is assumed known at each sensor.

Our approach is to first choose a positive number W (similar to the range parameter used in
Section 4), and then decompose xk/2W into an integer plus a decimal part, where xk denotes the
sensor k’s observation. The integer part will be communicated to the fusion center, whereas the
decimal part will be quantized according to the universal DES described in Section 4.2. The overall
message length will be a function of W , though the estimation quality is always upper bounded by
25/8 times that of the BLUE estimator (see Theorem 5.2).

We will consider several different choices of W later. For the time being, we simply assume W is
chosen, and

Mk =
⌈
log+ W

σk

⌉
≥ 0, for all 1 ≤ k ≤ K, (5.3)

where log+ x = max{log x, 0}. It is easy to see that if σk < W , then Lk ≥ 1, and sensor k will
transmit a message. Otherwise, if σk is so large that Mk is negative, then sensor k’s observation is
“too noisy” and can simply be discarded. We now describe the universal DES as follows:

• For sensors with σk ≥ W , their observations are discarded and no messages are transmitted.
For the remaining sensors with σk < W , let xk denote the observation. Then x′k = xk/2W is
decomposed as x′k = sign(x′k)(ik + y′k), with ik ≥ 0 and 0 ≤ y′k < 1 representing the integer
and decimal parts of |x′k| respectively. Consider the binary expansion of y′k

y′k =
∞∑

i=1

bi2−i.

The message function mk of sensor k is

mk(xk, ak,Mk) = sign(x′k)
(
ik + m′

k

(
x′k, ak,Mk

))
, (5.4)

where ak is an auxiliary random variable with distribution defined by (4.1) and

m′
k(xk, ak,Mk) =

Mk∑

i=1

bi2−i + 2−MkbMk+ak
.

18



• The final estimator of θ at the fusion center is

θK = Γ(m1,m2, . . . , mK) =

(
K∑

k=1

22Mk

)−1 K∑

k=1, Mk≥1

22MkW (2mk − 1). (5.5)

The performance of above universal DES is summarized in the following theorem.

Theorem 5.2. For the universal DES (5.4)–(5.5), the final estimator θK is an unbiased estimate of
θ, and its MSE is bounded by

E
((

θK − θ
)2

)
≤ 25

8




K∑

k=1, σk<W

1
σ2

k



−1

. (5.6)

Moreover, each sensor transmits at most Mk = dlog(W/σk)e bits for the decimal part of mk, plus on
average at most Nk = 1 + log

(
2 +

√
θ2 + σ2

k/W
)

extra bits to transmit the integer part of mk.

The proof of (5.6) can be modeled after that of Theorem 4.3, and the calculation of Nk, which is
an upper bound of the average number of bits represensting the integer part of mk, can be established
in the same way as the proof of Theorem 5.1. For brevity, we omit the details of the analysis.

There are a number of choices of W that are worth special consideration.

1. If we want all sensors to send a message, i.e., Mk ≥ 1, we need to choose W = maxk{σk}.

2. If a sensor has a large noise variance, its observation may be too noisy to be useful, and
therefore can be discarded to save bandwidth. For example, if we take W = V , then sensors
with σk > V should simply discard its observation. In this way, Mk ≤ 1+ log γk < 1+Ck, and
Nk ≤ 1 + log(2 +

√
2). The corresponding MSE performance is (5.6) with W = V . Clearly,

this strategy is useful when there are enough high SNR sensors so that the performance (5.6)
is acceptable.

3. If σmax ≤ 1, then we can simply take W = 1/2. In this case, x′k = xk/(2W ) = xk and the
message mk consists of the integer part of xk, together with the first Mk = dlog (1/2σk)e most
significant bits of the decimal part of xk, plus an extra random bit.

In practice, the threshold value W should be chosen according to the final MSE requirement
and the observation qualities. Case 1 above gives the largest W which will allow every sensor to
participate in the estimation process. Decreasing W may “silence” some sensors with “poor” quality
observations (σk > W ), resulting in energy saving for the corresponding sensors. The issue of
adjusting W to minimize total energy consumption, possibly with the help of appropriate information
feedback from fusion center, is a topic of future research.
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5.3 Simulation

In this section, we present simulation results to illustrate the performances of three estimation
schemes: the universal DES (Section 5.2), the DES using known sensor variances (Section 5.1), and
the DES using known pdf (Section 3). All these DESs allow sensor noises to be unbounded. In
all the simulations, we choose θ = 0.6 and V = 3. The noise sources are Gaussian with variances
specified in Figure 3. For the universal DES, we choose W = V = 3. In this case, a small portion of
sensors with σk ≥ 3 have their observations discarded for K = {60, 120, 250, 500, 1000}.
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Figure 6: Comparison of MSE performance.

Figure 6 (left) shows the MSE curves of various DESs, while Figure 6 (right) shows the asymptotic

efficiency curves. The overall lower bound
(∑K

k=1 1/σ2
k

)−1
is the best achievable MSE by any

linear unbiased estimator, and the universal DES upper bound is 25
8

(∑K
k=1,σk<3 1/σ2

k

)−1
as given

in Theorem 5.2. We can see that all three estimators have the same asymptotic MSE performances.
Notice that each of the simulated DES has a different bandwidth requirement. Specifically, in the
DES using known pdf (Section 3), each sensor transmits exactly 1-bit binary message; the DES using
known sensor noise variances (Section 5.1) requires on average {2.13, 2.11, 2.08, 2.09, 2.08, 2.07}
binary bits per sensor for K = {30, 60, 120, 250, 500, 1000} respectively in the simulations; while the
universal DES (Section 5.2) requires on average {4.73, 4.76, 4.70, 4.67, 4.65, 4.65} bits per sensor for
K = {30, 60, 120, 250, 500, 1000} respectively.

We have also plotted in Figure 7 the asymptotic efficiencies of the universal DES and the DES
with known pdf when K = 250 and θ ∈ [−3, 3]. Recall that the DES with known pdf has an
asymptotic efficiency that is lower bounded by 4µ2 (Theorem 3.1). Thus, this DES has a good
performance when θ is small. However, as θ moves away from the origin, the vanishing tail of the
Gaussian noise pdf leads to small µ, resulting in very low asymptotic efficiencies (see Figure 7). In
contrast, the universal DES has a stable MSE performance with respect to changing θ (and the noise
pdf as well), as expected.
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Figure 7: Asymptotic efficiencies v.s. θ.

6 Conclusion

Motivated by the limited channel capacities between sensors and fusion center and by the difficulty
to characterize sensor noise distributions, we have proposed in this paper a decentralized estimation
scheme which has low communication requirement and is universal to the sensor noise distributions.
The local data compression is probabilistic, with each sensor’s observation compressed to a binary
string whose length is proportional to the logarithm of its local SNR. This DES is isotropic in the
sense that all sensors in the network operate identically using the same local compression algorithm.
This isotropic property greatly simplifies the deployment of a large sensor network. In addition, the
proposed DES is robust to sensor failures since all sensors operate independently from each other and
the fusion center only needs to linearly combine all of its received messages. In fact, the fusion center
is completely oblivious of sensor identities. Furthermore, for the problem of estimating an unknown
parameter corrupted by spatially inhomogeneous additive noise, the proposed DES achieves an MSE
performance that is within a constant factor of 25/8 to being optimal.

Notice that our current work does not impose a fixed bandwidth constraint on each sensor node as
was done in [7] for homogeneous sensor networks. Instead, we have adopted an adaptive quantization
strategy in our universal DES design where the local message lengths are used as weighting factors
at the fusion center as well. We believe this variable bandwidth scheme is more appropriate for
the inhomogeneous sensing environment since sensors with more accurate information are allowed
to send more bits, resulting in a final estimation performance that is within a constant factor to
that of the centralized BLUE. To implement this adaptive quantization scheme in a practical sensor
network, the fusion center can use standard carrier-sensing techniques to detect the message lengths
Mk. Alternatively, the sensors can simply add the message length Mk as part of their information
payload. If the sensing environment changes slowly in a quasi-static manner, the values of {Mk}
(once acquired) can be re-used multiple times at the fusion center.
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The proposed universal DES can be extended to the ad hoc sensor networks in which no central
coordinating fusion center is available, and to universal decentralized detection of detecting deter-
ministic signals by remote sensors. Such extensions can be made in a similar fashion as in [8] and [16].
Moreover, our current work can be used to minimize total energy consumption in sensor networks.
Indeed, in a follow-up work [15], we have incorporated the proposed universal DES with energy
consumption models of [3], and have obtained a power scheduling strategy of universal decentralized
estimation to minimize the total transmit power, while ensuring a given mean squared error perfor-
mance. The power scheduling strategy suggests that sensors with bad channels or poor observation
qualities should decrease their quantization resolutions or simply become inactive in order to save
power. Finally, as a future work, we plan to apply the proposed DES to universal decentralized
tracking where each sensor has a vector observation model xk = Hkθ + nk. By multiplying the
pseudo-inverse H†

k to the observation, we obtain x̃k = θ + ñk. Since each components of the noise
ñi = H†

knk have different variances, the problem is reduced to the one considered in this paper where
sensors are allowed to have different noise levels.

Appendix: Proof of inequality (4.13)

We first show the following lemma.

Lemma 6.1. Suppose {α1, α2, . . . , αK} and {β1, β2, . . . , βK} are positive real numbers and

C1βk ≤ αk ≤ C2βk, for all 1 ≤ k ≤ K, (6.1)

where C2 ≥ C1 > 0 are constants. Then
(

K∑

k=1

αk

)−2 K∑

k=1

α2
k

βk
≤ (C1 + C2)

2

4C1C2

(
K∑

k=1

βk

)−1

.

This is the usual Cauchy-Schwartz inequality with opposite inequality sign.

Proof. Suppose {β1, β2, . . . , βK} are fixed. Let f(α1, α2, . . . , αK) =

(
K∑

k=1

αk

)−2 K∑

k=1

α2
k

βk
. We calcu-

late

∂f

∂αj
= 2

(
K∑

k=1

αk

)−3 (
αj

βj

K∑

k=1

αk −
K∑

k=1

α2
k

βk

)

= 2

(
K∑

k=1

αk

)−3

αj

K∑

k=1,k 6=j

αk

βj
−

K∑

k=1,k 6=j

α2
k

βk


 .

It is easy to see that ∂f
∂αj

= 0 has one unique solution

α′j =




K∑

k=1,k 6=j

αk

βj



−1

K∑

k=1,k 6=j

α2
k

βk
.
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In addition 



∂f

∂αj
> 0, if αj > α′j ,

∂f

∂αj
< 0, if αj < α′j .

(6.2)

Hence, if we fix other variables, and only let αj vary, then g(αj) = f(α1, α2, . . . , αK) reaches the
minimum at αj = α′j . From (6.2), we know that the maximum of g(αj) for αj ∈ [C1βj , C2βj ] reaches
at the two end points, i.e., either αj = C1βj or αj = C2βj . The same arguments hold for all the other
αk whenever 1 ≤ k ≤ K. Thus, when f(α1, α2, . . . , αK) reaches its maximum at (α∗1, α

∗
2, . . . , α

∗
K), we

can find two index sets I1 and I2 with I1 ∪ I2 = {1, 2, . . . ,K} and I1 ∩ I2 = ∅, such that for k ∈ I1,
α∗k = C1βk, and for k ∈ I2, α∗k = C2βk. Let

S1 =
∑

k∈I1

βk, S2 =
∑

k∈I2

βk.

Then, for {αk, βk : 1 ≤ k ≤ K} satisfying (6.1), we have that

max
α1,α2,...,αK




(
K∑

k=1

αk

)−2 K∑

k=1

α2
k

βk

K∑

k=1

βk


 =

(
K∑

k=1

α∗k

)−2 K∑

k=1

α∗k
2

βk

K∑

k=1

βk

=
(C2

1S1 + C2
2S2)(S1 + S2)

(C1S1 + C2S2)2
= 1 +

(C1 − C2)2S1S2

(C1S1 + C2S2)2

≤ 1 +
(C1 − C2)2

4C1C2
=

(C1 + C2)
2

4C1C2
.

This concludes the proof of the lemma.

Now we are ready to establish the inequality (4.13).

Proof. Notice that from (4.12), we have

1
σ2

k

≤ 22Mk

4W 2
<

4
σ2

k

.

Invoking Lemma 6.1 with

αk =
22Mk

W 2
, βk =

1
σ2

k

, C1 = 1, and C2 = 4,

we obtain
(

K∑

k=1

22Mk

)−2 K∑

k=1

24Mkσ2
k =

(
K∑

k=1

22Mk

W 2

)−2 K∑

k=1

24Mk

W 4
σ2

k

≤ (1 + 4)2

4 · 1 · 4

(
K∑

k=1

1
σ2

k

)−1

=
25
16

(
K∑

k=1

1
σ2

k

)−1

.

This proves the inequality (4.13).
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