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Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC). Sensor observations
are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is
only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown
parameter. We require the decentralized estimator to have a mean-squared error (MSE) that is within a constant factor to that
of the best linear unbiased estimator (BLUE). We minimize the total sensor transmitted energy by selecting sensor quantization
levels using the knowledge of noise covariance matrix while meeting the target MSE requirement. Computer simulations show
that our designs can achieve energy savings up to 70% when compared to the uniform quantization strategy whereby each sensor
generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are ideal for environmen-
tal monitoring applications because of their low implemen-
tation cost, agility, and robustness to sensor failures. A pop-
ular WSN architecture consists of a fusion center (FC) and a
large number of spatially distributed sensors. The FC can be
either a standard base station or a mobile access point such
as an unmanned aerial vehicle hovering over the sensor field.
Each sensor in a WSN is responsible for local data collection
as well as occasional transmission of a summary of its ob-
servations to the FC via a wireless link. In a practical WSN,
each sensor has only limited computation and communica-
tion capabilities due to various design considerations such as
small size battery, bandwidth, and cost. As a result, it is diffi-
cult for sensors to send their entire real-valued observations
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to the FC. Instead, a more practical decentralized estima-
tion scheme is to let each sensor quantize its real-valued local
measurement to an appropriate length and send the result-
ing discrete message (typically short) to the FC, while the
latter combines all the received messages to produce a final
estimate of the unknown parameter. Naturally, the message
lengths are dictated by the power and bandwidth limitations,
sensor noise characteristics as well as the desired final esti-
mation accuracy.

Recently, several decentralized estimation schemes (DES)
[1, 2, 3, 4] have been proposed for parameter estimation
in the presence of additive sensor noise. These DESs re-
quire each sensor to send only a few bits to the fusion cen-
ter, with the message length determined by the sensor’s lo-
cal SNR. Performance of the resulting estimator is shown to
be within a constant factor of the best linear unbiased esti-
mator (BLUE) performance. While the designs suggested by
[1, 2, 3, 4] give a guaranteed estimation performance with
low bandwidth requirement, the effect of wireless channel
distortion and the important issue of total sensor energy
minimization were not directly modelled.
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In a practical WSN, the wireless links from sensors to the
FC may have different qualities, depending on the sensor lo-
cations relative to the FC. Intuitively, local message length
should depend not only on the quality of sensor’s observa-
tion (i.e., local SNR), but also on the quality of its wireless
link to the FC. In particular, even if a sensor has a high-
quality observation, it should not perform any local quan-
tization or transmission when its wireless link to the FC is
weak, in order to conserve sensor energy. In general, min-
imizing the total sensor energy consumption for a decen-
tralized estimation task is essential to ensure long lifespan
of a WSN. Motivated by these considerations, the authors
of [5, 6] proposed optimal coded and uncoded transmis-
sion strategies for sensor networks which can minimize the
required energy per transmitted bit, although no consider-
ation was given to the quantization effect and the accuracy
of final estimation. In the recent work of [7, 8], the authors
considered the problem of optimal energy scheduling for de-
centralized estimation where sensor measurements are cor-
rupted by additive noises, while communication links from
sensors to the fusion center differ in quality. In particular,
[7] used an adaptive modulation scheme with an exponen-
tial dependence of energy on the transmitted message size,
and then derived optimal sensor power and quantization lev-
els via convex optimization.

The aforementioned results all require an important as-
sumption that sensor observation noises are spatially uncor-
related. Unfortunately, this assumption can be restrictive in a
practical WSN, especially when sensors are densely deployed.
In this paper, we consider distributed parameter estimation
in situations where sensor observations are corrupted by cor-
related additive noises. Assuming a standard energy model
[5, 6], uniform quantization at sensors, and the knowledge
of sensor noise correlation matrix, we use convex optimiza-
tion techniques to derive a nearly-optimal (modulo a minor
relaxation) energy scheduling strategy with a mean-squared
error performance guaranteed to be within a constant factor
to that of the centralized BLUE estimator. Computer simula-
tions show that our designs can achieve energy savings up to
70% when compared to the uniform bit allocation strategy
whereby each sensor generates the same number of bits.

Our sensor energy scheduling strategy is suitable for di-
rect application when the sensor noise correlation matrix is
available at the FC. In practice, the sensor noise correlation
matrix may have to be determined in the sensor network cal-
ibration phase, possibly with the help of training signals. In
the absence of this knowledge, our scheme is also useful as
it provides an upper bound on the performance of all other
energy scheduling schemes, both centralized and distributed.
In fact, our scheme gives an estimate of the amount of energy
“wasted” due to the lack of sensor noise correlation knowl-
edge. The power schedules generated by our design also give
insight into the design of distributed energy scheduling algo-
rithms.

Our paper is organized as follows. In Section 2 we de-
scribe the DES and formulate total energy minimization
problem. In Section 3 we present a convex relaxation of
the energy minimization problem and give a nearly-optimal
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Figure 1: Decentralized estimation scheme.

solution in closed form. The performance of our energy-
efficient design is analyzed in Section 4 by numerical simu-
lation. Section 5 contains an extension of the work where we
formulate an alternative problem of minimizing maximal in-
dividual sensor energy and present an analytic solution. Final
remarks are given in Section 6.

Throughout, we use the following notations. Matrices
and vectors are denoted by boldface letters, capital and small
correspondingly, whereas same regular letters with indices
denote their elements. Diagonal matrix with nonzero ele-
ments a1, . . . , aN is denoted by diag(a1, . . . , aN ). Logarithms
denoted by log(·) are taken to the base 2; for natural loga-
rithms notation ln(·) is used. For any real number x ∈ R,
we use �x� to denote the smallest integer greater or equal to
x. For any random variable R, we use Ex R to denote the ex-
pected value of R taken with respect to random variable x,
while Ex|y R denotes the expected value of R with respect to
x given y. Finally, varR denotes the variance of random vari-
able R.

2. PROBLEM FORMULATION

Consider the problem of estimating an unknown parameter
θ by a sensor network consisting of N sensors. Measurement
of each sensor xi is corrupted by additive noise ni so that

xi = θ + ni, i = 1, . . . ,N. (1)

We assume that both θ and ni have finite range, so that all
xi belong to a common finite interval [−U ,U], with U >
0 a known constant. The noises ni are assumed to be zero
mean and correlated across sensors with covariance matrix
C, but otherwise unknown. We assume C is known at the
FC. Measurements xi are quantized to produce messages mi

to be passed on to the fusion center; the latter then combines
received messages in order to estimate θ, see Figure 1. The
exact form of mi will be detailed later.

We assume that each sensor sends messages to FC using
a separate channel. This can be achieved by using a multi-
ple access technique such as TDMA or FDMA. Each channel
is corrupted by additive white Gaussian noise (AWGN) with
power spectral density N0/2:

m̂i = d−κ/2i mi + vi, (2)
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where m̂i is the received message at FC and vi is the AWGN.
The signal power received at the FC is assumed to be inversely
proportional to dκi where di is the distance between sensor i
and the FC, and κ is the path loss exponent. Suppose that
message mi has length bi bits. We will assume that energy Wi

required for transmission of mi is proportional to the num-
ber of bits in the message. This is the case, for example, if
sensors use M-QAM or M-PSK modulation to transmit mes-
sages. For example, if M-QAM is used, Wi can be found as
follows [5, 6]:

Wi = 2
3
Nf N0G0d

κ
i

(
2s − 1

)
ln

(
4
(
1− 2−s

)
sPb

)
bi
s
≡ wibi, (3)

where s = logM is the number of bits per symbol, Nf is the
receiver noise figure, Pb is the required bit error probability,
and G0 is the system constant defined as in [5].

2.1. Quantization strategy

Suppose that sensor observation xi is bounded to a finite in-
terval [−U ,U]. Suppose further that we wish to quantize xi
in such a way that resulting message mi has length bi bits,
where bi is to be determined later. We therefore have Ki = 2bi

quantization points {a(i)
j ∈ [−U ,U], j = 1, . . . ,Ki}. These

points are uniformly spaced so that a(i)
1 = −U < a(i)

2 < · · · <
a(i)
Ki
= U and a(i)

k+1−a(i)
k = ∆i for every k. Since end points {aij}

divide the observation range into Ki − 1 intervals, it follows
that ∆i = 2U/(Ki − 1). Quantization is done in the following

probabilistic manner. Suppose that xi ∈ [a(i)
k , a(i)

k+1). Then xi
is quantized to either a(i)

k+1 or a(i)
k according to

P
(
mi = a(i)

k+1

)
= xi − a(i)

k

∆i
,

P
(
mi = a(i)

k

)
= a(i)

k+1 − xi
∆i

.

(4)

This probabilistic quantization produces a message mi whose
expected value equals the observation itself:

Epi mi = a(i)
k+1 Pr

(
mi = a(i)

k+1

)
+ a(i)

k Pr
(
mi = a(i)

k

)

= a(i)
k+1

(
xi − a(i)

k

)
∆i

+ a(i)
k

(
a(i)
k+1 − xi

)
∆i

= xi
a(i)
k+1 − a(i)

k

∆i
= xi,

(5)

where the expectation Epi is taken with respect to the proba-
bilistic quantization noise model (4).

Next, we consider any fixed observation value of xi, and
bound the variance varmi (taken with respect to the quan-
tization noise) as follows. Suppose xi falls in the interval

[a(i)
k , a(i)

k+1). We denote r = a(i)
k+1 − xi and pi = (xi − a(i)

k )/∆i ∈
[0, 1]. Then, we have

varmi = Epi

(
mi − xi

)2

= (∆i − r
)2(

1− pi
)

+ r2pi

= ∆2
i

((
1− pi

)2
pi + p2

i

(
1− pi

))

= ∆2
i pi
(
1− pi

)
.

(6)

Thus, the maximum variance of mi is equal to ∆2
i /4 and is

achieved when the observation xi falls in the middle of quan-
tization interval [a(i)

k , a(i)
k+1).

2.2. A linear fusion rule

The classical best linear unbiased estimator (BLUE) for θ is
given by [9]

θ̂ = 1TC−1x
1TC−11

, (7)

where x = (x1, . . . , xN )T and 1 is the vector of all ones. Es-
timation performance is characterized by the variance of the
estimator

var θ̂ = (1TC−11
)−1

. (8)

To implement BLUE exactly in a WSN setup, we must
have mi = xi (i.e., real-valued message) and assume that the
channel is distortion-less, both of which are unrealistic in
practice. Nonetheless, BLUE estimator serves as a good per-
formance benchmark for the DES to be designed. Motivated
by the centralized BLUE, we adopt the following fusion rule:
upon receiving sensor messages mi, the FC combines them
into an estimator θ̄ given by

θ̄ = 1TC−1m
1TC−11

, (9)

where m = (m1, . . . ,mN )T . Equation (5) gives us an impor-
tant property of θ̄: it is an unbiased estimator for θ. Indeed,
we have

Ep,x
1TC−1m
1TC−11

= Ex
1TC−1 Ep m

1TC−11
= Ex

1TC−1x
1TC−11

= θ, (10)

where Ep denotes expectation taken with respect to all sensor
quantization noises, and the last step is due to Ex x = θ1. The
mean-squared error (MSE) of θ̄ can be expanded as follows:

MSE(θ̄) = E(θ̄ − θ)2 = E(θ̄ − θ̂ + θ̂ − θ)2

= E(θ̄ − θ̂)2 + E(θ̂ − θ)2 + 2 E(θ̄ − θ̂)(θ̂ − θ).
(11)
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Consider the third term in the last expression. We have

Em,x(θ̄ − θ̂)(θ̂ − θ) = Ex
(
Em|x

[
(θ̄ − θ̂)(θ̂ − θ)

])
= Ex

[
(θ̂ − θ)Em|x(θ̄ − θ̂)

] = 0,
(12)

where the second step is due to the fact that θ̂ is independent
of m for any fixed x, and the last step follows from (10). Thus,
we can write

MSE(θ̄)

= E(θ̄ − θ̂)2 + E(θ̂ − θ)2

= E

(
1TC−1(m− x)

1TC−11

)2

+ var θ̂

=
(

1
1TC−11

)2

1TC−1 E(m− x)(m− x)TC−11

+
1

1TC−11

=
(

1TC−1QC−11
1TC−11

+ 1

)
var θ̂,

(13)

where

Q = E(m− x)(m− x)T (14)

is the quantization noise correlation matrix.
In our formulation, we seek an energy-efficient DES

which can deliver an MSE performance that is comparable
to that of the centralized BLUE estimator. Specifically, we
will minimize the transmission energy while maintaining the
MSE(θ̄) to be within a constant factor of the BLUE perfor-
mance, that is, MSE(θ̄) ≤ (1 + α) var θ̂ for some constant
α > 0. Therefore, the following condition must hold:

1TC−1QC−11
1TC−11

≤ α. (15)

The total sensor transmission energy is equal to

W =
N∑
i=1

Wi =
N∑
i=1

wibi, (16)

where wi is the energy required for transmission of a single
bit from sensor i to the FC; see (3). Therefore, the minimum
energy DES design problem becomes

minimize W =
N∑
i=1

wibi

subject to
1TC−1QC−11

1TC−11
≤ α, bi ∈ N,

(17)

where N denotes the set of nonnegative integers.

To complete the formulation, we need to make explicit
the dependence of Q on bi. The unbiasedness of our quanti-
zation strategy leads to the following important property on
the quantization noise correlation matrix Q.

Lemma 1. The quantization noise matrix Q is diagonal.

Proof. Consider any (i, j)th element of the matrix Q, with
i �= j. We have

Qij = E
(
mi − xi

)(
mj − xj

)

= Exi,xj

(
E
pi,pj

∣∣xi,xj
(
mi − xi

)(
mj − xj

)∣∣xi, xj)

= Exi,xj

(
E
pi
∣∣xi
(
mi − xi

)
E
pj

∣∣xj
(
mj − xj

)|xi, xj) = 0.

(18)

Here we use the fact that random variables mi and mj are
conditionally independent given corresponding observations
xi and xj , which together with (5) gives the desired result.

Lemma 1 states that all the off-diagonal entries of Q must
be zero. Let Qii be the ith diagonal element of Q. Recalling
(6), we obtain the following important bound on the diago-
nal entries of Q:

Qii = varmi ≤ U2(
2bi − 1

)2 , (19)

where bi is the number of bits in mi. This bound will be use-
ful in our final formulation of the energy minimization prob-
lem.

2.3. Total energy minimization

We introduce the notation c = C−11 and β = α/ var θ̂. Since
var θ̂ = 1/1TC−11, we can rewrite the MSE condition (15) as

cTQc ≤ β. (20)

This constraint ensures that the MSE performance of the
DES is within a factor of α to the BLUE performance. Since
the distribution of x is unknown in general, we enforce a
stronger condition, namely

max
x,p

cTQc ≤ β. (21)

Recalling that Q is diagonal (cf. Lemma 1), we can use the
bound (19) to rewrite the above condition as

max
x,p

cTQc = max
x,p

N∑
i=1

Qiic
2
i =

N∑
i=1

U2c2
i(

2bi − 1
)2 ≤ β. (22)
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Now we can reformulate the original energy minimization
problem (17) explicitly as follows:

minimize
N∑
i=1

wibi

subject to
N∑
i=1

c2
i

(2bi − 1)2
≤ β

U2
, bi ∈ N, i = 1, . . . ,N.

(23)

To relate this formulation to physical parameters, we note
that the wireless channel conditions, the choice of modula-
tions/BER, and so forth will determine the values of weight-
ing factors wi, as shown in (3). The values of ci are deter-
mined by the noise correlation matrix C. Without loss of
generality we assume ci �= 0 for all i. In case ci = 0 for some
sensors, we can exclude corresponding mi from fusion con-
sideration, as it does not contribute to the fusion estimate θ̄.

3. CONVEX RELAXATION WITH A CLOSED-FORM
NEARLY-OPTIMAL SOLUTION

Since bi can only take integer values, problem (23) is actually
a nonlinear integer program whose computational complex-
ity is typically NP-hard. To make this problem computation-
ally tractable, we relax the integer constraints on bi to allow
them to take real nonnegative values:

minimize
N∑
i=1

wibi

subject to
N∑
i=1

c2
i

(2bi − 1)2
≤ β

U2
, bi ≥ 0, i = 1, . . . ,N.

(24)

The relaxed problem (24) has a linear objective function and
convex inequality constraints. Therefore, solution to prob-
lem (24) can be efficiently found by the fusion center using
convex optimization techniques such as the interior point
methods [10]. Once the optimal bi’s are found, the fusion
center can round this solution to the nearest greater integer
and broadcast it to the sensors for power adjustment.

In what follows, we will present an approximately-
optimal solution to the problem (24) in closed form. Such a
closed-form solution not only simplifies the energy schedul-
ing process, but also provides valuable insight into the opti-
mal power-scheduling scheme. To begin, we first note that,
by a simple monotonicity argument, the main MSE con-
straint will be active (i.e., holds with equality) at any opti-
mum point,1 while the remaining nonnegativity constraints
on bi will be inactive since bi = 0 for some i would vio-
late the main MSE constraint. Therefore, we can ignore the

1Indeed, the left-hand side of MSE constraint is monotonically decreas-
ing in terms of bi function. Therefore, if at the optimum the inequality is
strict, we could change bk in the optimal solution to b̃k < bk for some k to
decrease the objective function.

nonnegativity constraints (since the Lagrangian multipliers
associated with these constraints will be zero). Associating a
multiplier λ with the MSE constraint, we can write the La-
grangian for the problem (24) as follows:

L
(
bi, λ

) = N∑
i=1

wibi + λ

( N∑
i=1

c2
i(

2bi − 1
)2 −

β

U2

)
. (25)

At the point of optimum we must have ∂L/∂bi = 0 for i =
1, . . . ,N , yielding the following set of conditions:

∂L

∂bi
= wi − 2λ ln 2

2bi c2
i(

2bi − 1
)3 = 0, (26)

or alternatively

2bi(
2bi − 1

)3 =
wiλ′

c2
i

, (27)

where λ′ = 1/2λ ln 2. Also, the main MSE constraint holds
with equality at optimum point (as noted above), yielding

N∑
i=1

c2
i(

2bi − 1
)2 =

β

U2
. (28)

The optimal solutions {bi, λ′} can be found from the non-
linear equations (27) and (28) which unfortunately cannot
be solved in the closed form. To facilitate a closed-form so-
lution, we consider a slightly modified system in variables
{b∗i , λ∗}:

N∑
i=1

c2
i(

2b
∗
i − 1

)2 =
β

U2
, (29)

2b
∗
i − 1(

2b
∗
i − 1

)3 =
1(

2b
∗
i − 1

)2 =
wiλ∗

c2
i

. (30)

The above system is almost identical to the original Karush-
Kuhn-Tucker (KKT) system (27) and (28) except for the
small change in the numerators of the left-hand sides of (30)
and (27). Simple algebraic manipulation shows that (29) and
(30) can be solved analytically, yielding

λ∗ = β

U2

( N∑
i=1

wi

)−1

. (31)

Substituting this λ∗ into (30) gives the following feasible so-
lution to the original energy scheduling problem (24):

b∗i = log
(

1 +

∣∣ci∣∣√
λ∗wi

)
. (32)

It remains to quantify the performance of this particular en-
ergy scheduling strategy. This is the content of next two lem-
mas.
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Lemma 2. Let {bi, λ′} be the optimal solution to the problem
(24) such that bi ≥ 1 for all i, and let {b∗i , λ∗} be its approxi-
mation defined by (29) and (30). Then

λ∗ ≤ λ′ ≤ 2λ∗. (33)

Proof. Since

2bi(
2bi − 1

)3 =
1(

2bi − 1
)2 +

1(
2bi − 1

)3 , (34)

an upper bound on λ′ can be found using (27) as follows:

λ′
( N∑

i=1

wi

)
=

N∑
i=1

2bi c2
i(

2bi − 1
)3 ≥

N∑
i=1

c2
i(

2bi − 1
)2 =

β

U2
, (35)

and we conclude that λ∗ ≤ λ′. On the other hand, if all bi ≥ 1
we can write

1(
2bi − 1

)2 ≤
2bi(

2bi − 1
)3 ≤

2(
2bi − 1

)2 , (36)

therefore λ′ ≤ 2λ∗, and the result of the lemma follows.

We now bound the difference |bi − b∗i |.

Lemma 3. Under the conditions of Lemma 2,

b∗i −
1
2
< bi < b∗i +

1
2

∀ i = 1, 2, . . . ,N. (37)

Proof. Using left-hand side of (36) and right-hand side of
(33) we can write

1(
2bi − 1

)2 ≤
2bi(

2bi − 1
)3 ≤

wi

c2
i

2λ∗, (38)

which gives the lower bound on bi:

bi ≥ log

(
1 +

∣∣ci∣∣√
2λ∗wi

)
= log

(√
2 +

∣∣ci∣∣√
λ∗wi

)
− 1

2
> b∗i −

1
2
.

(39)

By analogy, from right-hand side of (36) and left-hand side
of (33) we have

2(
2bi − 1

)2 ≥
2bi(

2bi − 1
)3 ≥

wi

c2
i

λ∗, (40)

which further implies

bi ≤ log

(
1 +

√
2
∣∣ci∣∣√
λ∗wi

)
= log

(
1√
2

+

∣∣ci∣∣√
λ∗wi

)
+

1
2
<b∗i +

1
2
.

(41)

This completes the proof.

Lemma 3 implies that |bi − b∗i | < 1. Thus, rounded opti-
mal solution �bi� is at most one bit away from �b∗i �. We can
interpret this result as follows: in situation when bi are suf-
ficiently large, for example, when high estimation precision
is required, the optimal solution behaves approximately as
log(1 + |ci|/

√
λ∗wi). Notice that ci = eTi C−11 (ei denotes the

ith unit vector), so ci signifies the inverse of “noisiness” of
signal xi in relation to the other sensor observations. Recall-
ing the definition of λ∗ we note that product λ∗wi is propor-
tional to the relative energy per bit wi/

∑
wj and the value

of 1/
√
λ∗wi can be interpreted as being proportional to the

relative quality of wireless link between sensor i and the FC.
Thus, the local message length b∗i can be intuitively inter-
preted as being proportional to the logarithm of the product
of signal quality and channel quality at sensor i.

We now consider a special case when the use of {b∗i } is
especially appealing. Suppose that covariance matrix C has a
block-diagonal structure

C =




C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cn


 . (42)

This situation may occur when sensors in the network are
partitioned into several clusters in such a way that sensors
within each group are placed relatively close to each other
and far from the rest of the sensors. Thus, sensor observa-
tions are uncorrelated unless they are generated from the
same cluster. In this case matrix C−1 is also block-diagonal:

C−1 =




C−1
1 0 · · · 0
0 C−1

2 · · · 0
...

...
. . .

...
0 0 · · · C−1

n


 . (43)

We assume further that sensors within each group can co-
operate to learn the corresponding covariance submatrix C j .
Value of λ∗ can be computed by the fusion center and broad-
casted back to the sensors. Thus, each sensor can easily com-
pute ci = [C−1

j 1]i and independently find its own quantiza-
tion level b∗i . The advantage of this method is that the fusion
center needs to broadcast only one universal message for all
sensors.

To conclude this section we observe that our strategy can
be applied even if sensor noises have infinite range. Indeed,
with an appropriate choice of U , that is, if tails of the noise
pdf are negligible, the pdf can be approximated by a finite
support function. However, the estimator (9) will no longer
be unbiased and cross terms E(θ̄ − θ̂)(θ̂ − θ) in the MSE ex-
pression will no longer be zero. Thus, inequality (15) only
defines a lower bound on estimation performance for some
α, and the gap between left-hand side of (15) and actual MSE
is determined by the noise pdf. Therefore, the full pdf knowl-
edge will be required in order to specify constants U and α
and quantify the estimation bias.
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4. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to compare
the transmission energy requirement for two energy schedul-
ing strategies: (i) quantization using the closed-form approx-
imate solution (32); (ii) uniform bit allocation when all sen-
sors quantize their observations to the same number of bits
to achieve the same MSE. We denote by b the number of bits
used in case of uniform bit allocation. We can find the mini-
mum of b from the MSE constraint

N∑
i=1

c2
i(

2b − 1
)2 ≤

β

U2
, (44)

which gives

b ≥ log


1 +

√√√√√U2

β

N∑
i=1

c2
i


. (45)

The number of bits can only take integer values, so the total
minimal energy is given by

Wuniform =

 log


1 +

√√√√√U2

β

N∑
i=1

c2
i






N∑
i=1

wi. (46)

Recall that we have relaxed bi to take real values to make
the problem convex. Therefore, the optimal energy obtained
by allowing bi to take on real values is a lower bound on the
actual optimal energy. If we round bi up to the closest integer
�bi�, we can obtain an upper bound (denoted by Wopt) on
the actual energy. Even though we use �b∗i � to approximate
the actual optimal solution, significant energy can be saved
when compared with the uniform bit allocation strategy in
order to achieve the same target distortion. The percentage
of saving is defined as

Wuniform −Wopt

Wuniform
× 100. (47)

For a positive random variable R we define

normalized deviation of R =
√

varR
ER

, (48)

which will be used as a measure of the absolute heterogeneity
of R. The sensor noise variances {σ2

i } are taken to be σ2
i =

1 +a2Zi, where Zi are i.i.d. random variables with Zi ∼ χ2
1(z).

As can be easily verified, {σ2
i } are also i.i.d. with σi ∼ χ2

1((x−
1)/a2). We control heterogeneity of sensor noise variances by
varying the parameter a. In Figure 2a, we suppose that sensor
noises have tri-diagonal correlation matrix

C =diag
(
σ1, σ2, . . . , σN

)



1 ρ · · · 0 0
ρ 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 ρ
0 0 · · · ρ 1




diag
(
σ1, σ2, . . . , σN

)
, (49)

where ρ = 0.2. In Figure 2b, we suppose that sensor noises
have correlation matrix

C
= diag

(
σ1, σ2, . . . , σN

)[
(1−ρ)I+ρ 11T

]
diag

(
σ1, σ2, . . . , σN

)
.

(50)

In all simulations, the total number of sensorsN = 200. Since
all coefficients wi are scaled by a common factor, in our sim-
ulation, {wi} are taken to be channel path losses

wi = dκi . (51)

Assume that the target estimation performance is fixed.
From Figure 2 we can see that the amount of energy sav-
ing becomes significant when the local noise variances be-
come more and more heterogeneous, assuming that all sen-
sors have identical wi. In Figure 3, we plot the percentage
of energy savings versus the heterogeneity of channel gains,

supposing that sensors have same observation noise vari-
ances with tri-diagonal structure as in (49) where σ2

i = 1
for all i, and ρ = 0.2. Here we suppose that all sensors are
uniformly distributed inside a unitary disk whose center is at
the FC. It is easy to show that in this case normalized devi-
ation of wi depends only on κ (cf. (51)). In our simulation,
we choose 1 ≤ κ ≤ 8. We observe that percentage of saving
depends more on the heterogeneity of sensor noise variances
than that of channel gains. This can be understood regarding
expression (32) for b∗i , where in the logarithm, the quantity
depends on the distribution of ci, but only on the distribu-
tion of 1/

√
wi.

5. AN EXTENSION: MINIMAX FORMULATION

Minimizing total transmission energy results in sensors hav-
ing different lifetimes. This may induce frequent changes in
the network topology. An alternative approach is to minimize
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Figure 2: Percentage of energy saving increases when sensor noise variances become more heterogeneous.

maximal energy Wi which leads to maximum network life-
time. Relaxing {bi} as in (24), we can state the problem as
follows:

minimize max
i

wibi

subject to
N∑
i=1

c2
i(

2bi − 1
)2 ≤

β

U2
, bi ≥ 0, i = 1, . . . ,N ,

(52)

or alternatively

minimize max t

subject to wibi ≤ t
N∑
i=1

c2
i(

2bi − 1
)2 ≤

β

U2
, bi ≥ 0, i=1, . . . ,N.

(53)

As in Section 3, we assume that ci �= 0 for all i and ignore the
nonnegativity constraints bi ≥ 0 (which must be inactive at
optimum). The Lagrangian for problem (53) is found to be

L
(
t, bi,µi, λ

)= t+
N∑
i=1

µi
(
wibi − t

)
+λ

( N∑
i=1

c2
i(

2bi − 1
)2 −

β

U2

)
.

(54)

Differentiating L with respect to primal variables we obtain
the following conditions:

∂L

∂t
= 1−

N∑
i=1

µi = 0,

∂L

∂bi
= −2λ ln 2

2bi c2
i(

2bi − 1
)3 + µiwi = 0,

(55)

which give

N∑
i=1

µi = 1, (56)

λ′µi = 2bi c2
i(

2bi − 1
)3
wi

, (57)

where as before λ′ = 1/2λ ln 2. Taking sum of (57) over all i
we obtain

λ′ =
N∑
i=1

c2
i

wi

2bi(
2bi − 1

)3 . (58)

Since each term in the right-hand side sum in (58) is positive,
we conclude that λ > 0, therefore µi > 0, and complimentary
slackness condition gives

N∑
i=1

c2
i(

2bi − 1
)2 =

β

U2
,

wibi = t.

(59)

Thus, the optimal value topt can be found as a solution to the
following equation:

N∑
i=1

c2
i(

2t/wi − 1
)2 =

β

U2
. (60)

The solution topt is unique due to the monotonicity of the
left-hand side function in (60). The FC can solve (60) and
broadcast topt to the sensors, which in turn can determine
their quantization levels locally. In this case sensor lifetime is
not affected by transmitted power.
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Figure 3: Percentage of energy saving increases when channel gains
become more heterogeneous.

6. CONCLUSION

In this paper we have shown that total energy consumption
required for transmission in a sensor network can be min-
imized if number of quantization levels for each sensor is
determined jointly by the fusion center using information
about correlation of sensor observations. We have also pre-
sented a nearly-optimal solution in closed form to the energy
minimization problem which can achieve the same target es-
timation performance as the optimal solution. It is shown by
numerical simulations that to attain the same MSE perfor-
mance our energy-efficient quantization scheme can achieve
energy saving up to 70% when compared to simple uniform
bit allocation scheme. We plan to consider various exten-
sions of this work in our future work. These include joint
estimation of a common vector signal by a WSN, and dis-
tributed least squares and target tracking for dynamic tar-
gets.
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