
CMSC ��� Advanced Algorithms
Lecturer� Samir Khuller

Lecture �
Th� Mar� �� ���	

Notes by Samir Khuller�

� Assignment Problem

We spent some time discussing the stable marriage problem� I am not writing any notes for that since it
was purely for your entertainment�

Consider a complete bipartite graph� G�X�Y�X � Y �� with weights w�ei� assigned to every edge� �One
could think of this problem as modeling a situation where the set X represents workers� and the set Y

represents jobs� The weight of an edge represents the �compatability� factor for a �worker�job� pair� We
need to assign workers to jobs such that each worker is assigned to exactly one job�� The Assignment
Problem is to �nd a matching with the greatest total weight� i�e�� the maximum	weighted perfect matching
�which is not necessarily unique�� Since G is a complete bipartite graph we know that it has a perfect
matching�

An algorithm which solves the Assignment Problem is due to Kuhn and Munkres� We assume that all
the edge weights are non	negative�

w�xi� yj� � 
�

where
xi � X� yj � Y�

We de�ne a feasible vertex labeling l as a mapping from the set of vertices in G to the real numbers� where

l�xi� � l�yj� � w�xi� yj��

�The real number l�v� is called the label of the vertex v�� It is easy to compute a feasible vertex labeling as
follows�

��yj � Y � 
l�yj� � 
��

and
l�xi� � max

j
w�xi� yj��

We de�ne the Equality Subgraph� Gl� to be the spanning subgraph of G which includes all vertices of
G but only those edges �xi� yj� which have weights such that

w�xi� yj� � l�xi� � l�yj��

The connection between equality subgraphs and maximum	weighted matchings is provided by the fol	
lowing theorem�

Theorem ��� If the Equality Subgraph� Gl� has a perfect matching� M�� then M� is a maximum�weighted

matching in G�

Proof�

Let M� be a perfect matching in Gl� We have� by de�nition�

w�M�� �
X

e�M�

w�e� �
X

v�X�Y

l�v��

Let M be any perfect matching in G� Then

w�M � �
X

e�M

w�e� �
X

v�X�Y

l�v� � w�M���



Hence�
w�M � � w�M���

�

High�level Description�
The above theorem is the basis of an algorithm� due to Kuhn and Munkres� for �nding a maximum	

weighted matching in a complete bipartite graph� Starting with a feasible labeling� we compute the equality
subgraph and then �nd a maximummatching in this subgraph �now we can ignore weights on edges�� If the
matching found is perfect� we are done� If the matching is not perfect� we add more edges to the equality
subgraph by revising the vertex labels� We also ensure that edges from our current matching do not leave
the equality subgraph� After adding edges to the equality subgraph� either the size of the matching goes up
�we �nd an augmenting path�� or we continue to grow the hungarian tree� In the former case� the phase
terminates and we start a new phase �since the matching size has gone up�� In the latter case� we grow the
hungarian tree by adding new nodes to it� and clearly this cannot happen more than n times�
Some More Details�

We note the following about this algorithm�

S � X � S�

T � Y � T�

jSj � jT j�

There are no edges from S to T � since this would imply that we did not grow the hungarian trees
completely� As we grow the Hungarian Trees in Gl� we place alternate nodes in the search into S and T � To
revise the labels we take the labels in S and start decreasing them uniformly �say by ��� and at the same
time we increase the labels in T by �� This ensures that the edges from S to T do not leave the equality
subgraph �see Fig� ���

T

Only edges in Gl are shown

����

S T

S

Figure �� Sets S and T as maintained by the algorithm�

As the labels in S are decreased� edges �in G� from S to T will potentially enter the Equality Subgraph�
Gl� As we increase �� at some point of time� an edge enters the equality subgraph� This is when we stop

�



and update the hungarian tree� If the node from T added to Gl is matched to a node in S� we move both
these nodes to S and T � which yields a larger Hungarian Tree� If the node from T is free� we have found an
augmenting path and the phase is complete� One phase consists of those steps taken between increases in
the size of the matching� There are at most n phases� where n is the number of vertices in G �since in each
phase the size of the matching increases by ��� Within each phase we increase the size of the hungarian tree
at most n times� It is clear that in O�n�� time we can �gure out which edge from S to T is the �rst one to
enter the equality subgraph �we simply scan all the edges�� This yields an O�n�� bound on the total running
time� Let us �rst review the algorithm and then we will see how to implement it in O�n�� time�
The Kuhn�Munkres Algorithm �also called the Hungarian Method��

Step �� Build an Equality Subgraph� Gl by initializing labels in any manner �this was discussed earlier��

Step �� Find a maximummatching in Gl �not necessarily a perfect matching��

Step �� If it is a perfect matching� according to the theorem above� we are done�

Step �� Let S � the set of free nodes in X� Grow hungarian trees from each node in S� Let T � all nodes in
Y encountered in the search for an augmenting path from nodes in S� Add all nodes from X that
are encountered in the search to S�

Step �� Revise the labeling� l� adding edges to Gl until an augmenting path is found� adding vertices to S

and T as they are encountered in the search� as described above� Augment along this path and
increase the size of the matching� Return to step ��

More E�cient Implementation�
We de�ne the slack of an edge as follows�

slack�x� y� � l�x� � l�y� �w�x� y��

Then
� � min

x�S�y�T

slack�x� y�

Naively� the calculation of � requires O�n�� time� For every vertex in T � we keep track of the edge with
the smallest slack� i�e��

slack
yj � � min
xi�S

slack�xi� yj�

The computation of slack
yj � requires O�n�� time at the start of a phase� As the phase progresses� it is
easy to update all the slack values in O�n� time since all of them change by the same amount �the labels of
the vertices in S are going down uniformly�� Whenever a node u is moved from S to S we must recompute
the slacks of the nodes in T � requiring O�n� time� But a node can be moved from S to S at most n times�

Thus each phase can be implemented in O�n�� time� Since there are n phases� this gives us a running
time of O�n���

�


