104 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Balancing Transport and Physical Layers in Wireless
Multihop Networks: Jointly Optimal Congestion
Control and Power Control

Mung Chiang

Abstract—In a wireless network with multihop transmissions
and interference-limited link rates, can we balance power control
in the physical layer and congestion control in the transport layer
to enhance the overall network performance while maintaining
the architectural modularity between the layers? We answer this
question by presenting a distributed power control algorithm
that couples with existing transmission control protocols (TCPs)
to increase end-to-end throughput and energy efficiency of the
network. Under the rigorous framework of nonlinearly con-
strained utility maximization, we prove the convergence of this
coupled algorithm to the global optimum of joint power control
and congestion control, for both synchronized and asynchronous
implementations. The rate of convergence is geometric and a
desirable modularity between the transport and physical layers
is maintained. In particular, when congestion control uses TCP
Vegas, a simple utilization in the physical layer of the queueing
delay information suffices to achieve the joint optimum. Analytic
results and simulations illustrate other desirable properties of
the proposed algorithm, including robustness to channel outage
and to path loss estimation errors, and flexibility in trading off
performance optimality for implementation simplicity.

This paper presents a step toward a systematic understanding
of “layering” as “optimization decomposition,” where the overall
communication network is modeled by a generalized network
utility maximization problem, each layer corresponds to a decom-
posed subproblem, and the interfaces among layers are quantified
as the optimization variables coordinating the subproblems. In the
case of the transport and physical layers, link congestion prices
turn out to be the optimal ‘“layering prices.”

Index Terms—Congestion control, convex optimization, cross-
layer design, energy-aware protocols, Lagrange duality, power
control, transmission control protocol, utility maximization, wire-
less ad hoc networks.

I. INTRODUCTION

E CONSIDER wireless networks with multihop trans-

missions and interference-limited link rates. In order
to achieve high end-to-end throughput in an energy efficient
manner, congestion control and power control need to be
jointly designed and distributively implemented. Congestion
control mechanisms, such as those in transmission control
protocol (TCP), regulate the allowed source rates so that the
total traffic load on any link does not exceed the available
capacity. At the same time, the attainable data rates on wireless
links depend on the interference levels, which in turn depend on
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the power control policy. This paper proposes and analyzes a
distributed algorithm for jointly optimal end-to-end congestion
control and per-link power control. The algorithm utilizes the
coupling between the transport and physical layers to increase
end-to-end throughput and energy efficiency in a wireless
multihop network.

Congestion avoidance mechanisms in TCP variants have re-
cently been shown to approximate distributed algorithms that
implicitly solve network utility maximization problems. Tradi-
tionally, this class of optimization problems are linearly con-
strained by link capacities that are assumed to be fixed quan-
tities. However, network resources can sometimes be allocated
to change link capacities, therefore change TCP dynamics, and
the optimal solution to network utility maximization. For ex-
ample, in code-division multiple-access (CDMA) wireless net-
works, transmit powers can be controlled to induce different
signal-to-interference ratios (SIRs) on the links, changing the
attainable throughput on each link.

This formulation of network utility maximization with
“elastic” link capacities leads to a new approach of congestion
avoidance in wireless multihop networks. The current approach
of congestion control in the Internet is to avoid the development
of a bottleneck link by reducing the allowed transmission rates
from all the sources using this link. Intuitively, an alternative
approach is to build, in real-time, a larger transmission “pipe”
and “drain” the queued packets faster on a bottleneck link (i.e.,
a link where traffic load is larger than capacity). Indeed, a smart
power control algorithm would allocate just the “right” amount
of power to the “right” nodes to alleviate the bottlenecks, which
may then induce an increase in end-to-end TCP throughput.
However, there are two major difficulties in making this idea
work: defining which link constitutes a bottleneck a priori is
infeasible, and changing the transmit power on one link also af-
fects the data rates available on other links. Due to interference
in wireless CDMA networks, increasing the capacity on one
link reduces those on other links. We need to find an algorithm
that distributively and adaptively detects the bottleneck links
and optimally “shuffles” them around in the network.

This intuitive approach is made precise and rigorous in this
paper. After reviewing the background materials in Section II
and specifying the problem formulation in Section III, we pro-
pose in Section IV a distributed power control algorithm that
couples with existing TCP algorithms to solve the joint problem
of congestion control and power control. The joint algorithm
can be distributively implemented on a multihop network, de-
spite the fact that the data rate on a wireless link is a global
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function of all the interfering powers. Interpretations in terms
of data rate demand-supply coordination through shadow prices
are presented, as well as numerical examples illustrating that
end-to-end throughput and energy efficiency of the network can
indeed be significantly increased.

Itis certainly not a surprise that performance can be enhanced
through a cross-layer design. The more challenging task is to
analyze the algorithm rigorously and to make it attractive ac-
cording to other important design criteria. In Section VI, we
prove that, under very mild conditions, the proposed algorithm
converges to the joint and global optimum of the nonlinear con-
gestion-power control problem. In Section VII-A, we provide
the sufficient conditions under which convergence to the global
optimum is maintained despite errors in path loss estimation or
packet losses due to channel outage. Cross-layer designs usu-
ally improve performance at the expense of higher complexity in
communication and computation. In Section VII-B, we propose
a suite of simplified versions of the optimal algorithm to flex-
ibly tradeoff performance with complexity. In Section VII-C,
we prove that the algorithm converges under any finite asyn-
chronism in practical implementation, and characterize a condi-
tion under which asynchronous implementation does not induce
a reduction in convergence speed. In Section VII-D, we show
that the rate of convergence of the algorithm is geometric, and
provide a simple bound on convergence speed. Further sugges-
tions on choosing algorithm parameters and achieving conver-
gence speedup are made in Section VII-E. Even after crossing
the layers, architectural modularity is desirable for practical im-
plementation and future network evolution. In this paper, the de-
sirable convergence is achieved as power control uses the same
link prices that are already generated by TCP for regulating dis-
tributed users. Performance enhancement from the jointly op-
timal design is achieved without modifying the existing TCP
protocol stack.

Assumptions behind the models and limitations on the results
are stated throughout the paper, while extensions are outlined
in Section V. This paper presents a step towards understanding
“layering” as “optimization decomposition,” where the overall
communication network is modeled by a generalized utility
maximization problem, each layer corresponds to a decomposed
subproblem, and the interfaces among layers are quantified as
the optimization variables coordinating the subproblems. In the
case of the transport and physical layers, link congestion prices
turn out to be the optimal “layering prices.” Future research
directions are discussed in Section VIII.

II. BACKGROUND AND RELATED WORK

Both power control in CDMA wireless networks and con-
gestion control in the Internet are extensively researched topics.
Many power control algorithms have been proposed in the lit-
erature, but the effects of power control on source rate reg-
ulation through end-to-end congestion control have not been
characterized.

TCP is one of the two widely used transport layer protocols
on the Internet. A main function performed by TCP is network
congestion control and end-to-end rate allocation. Roughly
speaking, there are two phases of TCP congestion control:

slow start and congestion avoidance. Long-lived flows spend
most of the time in congestion avoidance. Similar to recent
work on utility maximization models of TCP, we assume a
deterministic fluid model for the average equilibrium behavior
of the congestion avoidance phase. TCP uses sliding windows
to adjust the allowed transmission rate in each source based on
implicit or explicit feedback of the congestion signals generated
by Active Queue Management (AQM). Among the variants of
TCP, such as Tahoe, Reno, Vegas, and FAST, some use loss
as congestion signal and others use delay. Most of this paper
focuses on delay-based congestion signal because of the nice
properties on convergence, stability, and fairness [22], and the
simulation examples use TCP Vegas [5] at the sources.

The basic rate allocation mechanism of TCP Vegas is as fol-
lows. Let d be the propagation delay along the path originating
from source s, and Dy be the propagation plus congestion-in-
duced queueing delay. Obviously, d; = D, when there is no
congestion on all the links used by source s. The window size
wy is updated at each source s according to whether the differ-
ence between the expected rate (ws)/(ds) and the actual rate
(ws)/(Ds), where Dy is estimated by the timing of acknowl-
edgment (ACK) packets, is smaller than a parameter o
if =) _ gi((jg < a,
if g — 2l > -
else

ws(t) + 5.
1

ws(t) ~ D.()
ws (),

ws(t+1) =

The end-to-end throughput for each path is the allowed
source rate zs, which is proportional to the window size
z5(t) = (ws())/(Ds(1)-

Following the seminal work by Kelly et al. [16], [17] that
analyze network rate allocation as a distributed solution of
utility maximization, TCP congestion control mechanisms have
recently been analyzed as approximated distributed algorithms
solving appropriately formulated network utility maximization
problems (e.g., [18], [21]-[23], and [25]). The key innovation
in this series of work is to interpret source rates as primal
variables, link congestion measures as dual variables, and a
TCP-AQM protocol as a distributed algorithm over the Internet
to implicitly solve the following network utility maximization
problem. Consider a wired communication network with L
links, each with a fixed capacity of ¢; b/s, and S sources, each
transmitting at a source rate of x; b/s. Each source emits one
flow, using a fixed set L(s) of links in its path, and has an
increasing, strictly concave, and twice differentiable utility
function Ug(x5). Network utility maximization is the problem
of maximizing the total utility ) U,(x,) over the source rates
X, subject to linear flow constraints ZS:IGL(S) s < ¢ for all
links [

maximize Z Us(zs)
El

Z s <c¢, Vi

s:leL(s)
x >~ 0. (D

subject to

Different TCP-AQM protocols solve for different utility func-
tions using different types of congestion signals. For example,
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TCP Vegas is shown [23] to be implicitly solving (1) for loga-
rithmic utility functions U, (zs) = a.ds log x4, using queueing
delays as the dual variables. Although TCP and AQM protocols
were designed and implemented without regard to utility maxi-
mization, now they can be reverse-engineered to determine the
underlying utility functions and to rigorously characterize many
important properties.

An underlying assumption in the utility maximization
models of TCP is that each communication link is a fixed-size
transmission “pipe” provided by the physical layer. This as-
sumption is invalid when the sizes of the “pipes” depend on
time-varying channel conditions and adaptive physical layer
resource allocation, such as transmit power control in inter-
ference-limited wireless networks. Different cases of utility
maximization jointly over rates and powers have been studied
for wireless cellular networks, e.g., in [9] and [24], and, in
general, optimization-theoretic or game-theoretic studies of
wireless network resource allocation using the utility frame-
work have been reported, e.g., in [20], [26]-[28], [32], and
[33]. This paper focuses on jointly optimal congestion control
and power control in wireless multihop networks.

Augmenting the utility maximization framework to include
layers other than the transport layer may lead to a general
methodology for cross-layer design. Cross-layer issues in
communication networks have attracted the attention of many
researchers, forming a literature that is too large to be ex-
haustively reviewed here. Complementing these cross-layer
investigations, we examine the balance between the transport
and physical layers and provide a quantitative framework of
joint design across layers 1 and 4, under which theorems of
global convergence can be proved for nonlinearly coupled
dynamics. This cross-layer issue is particularly interesting be-
cause congestion control is conducted end-to-end while power
control is link-based. The resulting jointly optimal congestion
control and power control algorithm increases end-to-end
throughput and energy efficiency in wireless multihop net-
works. Echoing some of the cautionary notes on cross-layer
designs, we also put special emphasis on the practical imple-
mentation issues of robustness, asynchronism, complexity, and
the rate of convergence.

We note that there are at least two possible interpretations of
the phrase “balancing transport and physical layers in wireless
networks.”

* Characterize the impacts of physical layer resource alloca-
tion on TCP throughput, which is the focus of this paper.

 Characterize the impacts of wireless channel variations
on TCP throughput and try to distinguish between packet
losses due to congestion and those due to fading. This
problem, which has been actively researched in both
academia and industry, is not the subject of this paper.
However, we will investigate the robustness of our al-
gorithm to fading. The nonlinear convex optimization
methods used here, as well as in [14], can also be used for
power control to guarantee certain levels of packet loss
necessary to sustain a desired TCP throughput.

It should be noted that we do not consider joint optimization
over routing or medium-access control in this paper. However, a

generalized utility maximization problem is proposed at the end
of this paper as a possible vehicle to rigorously and systemati-
cally study “layering” as “optimization decomposition.”

III. PROBLEM FORMULATION

Consider a wireless multihop network with N nodes and an
established logical topology, where some nodes are sources of
transmission and some nodes act as “voluntary” relay nodes. A
sequence of connected links [ € L(s) forms a route originating
from source s. Let x, be the transmission rate of source s, and
c; be the “capacity,” in terms of the attainable data rate rather
than the information-theoretic multiterminal channel capacity,
on logical link /. Note that each physical link may be regarded
as multiple logical links. Source nodes are indexed by s and
logical links by [.

Revisiting the network utility maximization formulation (1),
for which TCP congestion control solves, we observe that in an
interference-limited wireless network, data rates attainable on
wireless links are not fixed numbers c as in (1), and instead can
be written, for a large family of modulations, as a global and
nonlinear function of the transmit power vector P and channel
conditions

(P) = %bg(l + KSIR/(P)).

Here, constant 7' is the symbol period, which will be assumed
to be one unit without loss of generality, and constant K =
(—¢1)/(log(¢$2BER)), where ¢1, ¢p2 are constants depending
on the modulation and BER is the required bit-error rate [13].
The signal-to-interference ratio for link / defined as SIR; =
(PlGll)/(Zk;u PG + ny) for a given set of path losses G,
(from the transmitter on logical link k to the receiver on logical
link /) and a given set of noises n; (for the receiver on logical
link 7). The Gy, factors incorporate propagation loss, spreading
gain, and other normalization constants. Notice that Gy; is the
path gain on link [ (from the transmitter on logical link [ to
the intended receiver on the same logical link). With reason-
able spreading gain, G; is much larger than G,k # [, and
assuming that not too many close-by nodes transmit at the same
time, K SIR is much larger than 1. In this case, ¢; can be approx-
imated as log(SIR;), where K is absorbed into Gy; in log(SIR;).
This wireless channel model has several limitations. First,
it assumes fixed target decoding error probabilities and coding
modulation schemes. Transmit power is the only resource that
is being adapted. Second, the assumption that K'SIR is much
larger than 1 is not always true. With this assumption, it will
be shown that while log( K'SIR;(P)) is a nonlinear noncon-
cave function of P, it can be converted into a nonlinear con-
cave function through a log transformation, leading to a critical
convexity property that establishes the global optimality of the
proposed algorithm. The important role played by convexity in
utility maximization will be further discussed in Section VIII.
Last but not least, simple decoding is not the only option for a
wireless channel. Either multiuser decoding that does not treat
all interferences as noise or simple “amplify-and-forward” sig-
naling strategies will lead to different physical layer models.
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The network model is also limited by the assumptions on
fixed nodes, fixed single-path routing, and perfect CDMA-based
medium access. In addition to rate and power controls, two
other mechanisms to reduce bottleneck congestion are sched-
uling over different time slots and routing through alternate
paths. Indeed, adaptive routing for mobile networks, and
scheduling or contention-based medium access for broadcast
wireless transmissions are important research topics in their
own rights. While neither will be optimized jointly with the
algorithm in this paper, a preliminary framework to incorporate
these networking aspects will be presented in Section VIII.

With the above assumptions, we have specified the following
network utility maximization with “elastic” link capacities:

maximize Z Us(zs)
s

subject to Z zs < ¢(P), Vi
s:l€L(s)
x,P >0 ()

where the optimization variables are both source rates x and
transmit powers P. The key difference from the standard utility
maximization (1) is that each link capacity ¢; is now a func-
tion of the new optimization variables: the transmit powers P.
The design space is enlarged from x to both x and P, which
are clearly coupled in (2). Linear flow constraints on x become
nonlinear constraints on (x, P). In practice, problem (2) is also
constrained by the maximum and minimum transmit powers al-
lowed at each transmitter on link I: Py min < P; < P max, VI.

The nonlinearly constrained optimization problem (2) may
be solved by centralized computation using the interior-point
method for convex optimization [4], after the log transformation
that converts it into a convex optimization problem as will be
shown in Section VI. However, in the context of wireless ad
hoc networks, new distributive algorithms are needed to solve
(2). Thus, the major challenges are the two global dependencies
in (2).

* Source rates x and link capacities c are globally coupled
across the network, as reflected in the range of summation
{s:1 € L(S)} in the constraints in (2).

* Each link capacity ¢;(P), in terms of the attainable data
rate under a given power vector, is a global function of all
the interfering powers.

Our primary goal in this paper is to distributively find the
joint and globally optimal solution (x*, P*) to problem (2) by
breaking down these two global dependencies.

IV. OPTIMAL ALGORITHM, PRICING INTERPRETATION,
AND NUMERICAL EXAMPLE

We propose the following distributive algorithm and later
prove that it converges to the joint and global optimum of (2)
and possesses several other desirable properties of a cross-layer
design. We first present the ideal form of the algorithm, as-
suming synchronized discrete time slots, no propagation delay,
and full-scale message passing. Practical issues on asynchro-
nism, propagation delay, complexity, robustness, and the rate of

convergence will be investigated in Section VII. To make the al-
gorithm and its analysis concrete, we will focus on delay-based
price and TCP Vegas window update (as reflected in items 1
and 2 in the algorithm, respectively) and the corresponding
logarithmic utility maximization over (x, P)

maximize Z asds log xg
Z zs < ¢(P), Vi

s:leL(s)
x,P = 0. (3)

subject to

Similar to the general problem (2), in practice problem (3) is also
constrained by the maximum and minimum transmit powers al-
lowed at each transmitter on link /. Extensions to other TCP
variants and congestion prices will be discussed in Section V.

Jointly Optimal Congestion-Control and Power-Control
(JOCP) Algorithm: During each time slot ¢, the following four
updates are carried out simultaneously until convergence.

1) Ateach intermediate node, a weighted queueing delay \;

is implicitly updated,! where v > 0 is a constant

+

TS am-a))| @

cl(t) s:leL(s)

2) At each source, total delay Dy is measured and used
to update the TCP window size ws. Consequently, the
source rate x5 is updated

A(t+1) = [ N(t) +

ws(t + 1) = ’U)s(t) - Dsl(t) if 'lu;Et) — Z;Eg > O
ws(t) else
s(t+1

ot +1) = 2D )

Di(t) -

3) Each transmitter j calculates a message m;(t) € Ry
based on locally measurable quantities, and passes the
message to all other transmitters by a flooding protocol

A; (1)SIR;(t)
i (1)Gij
4) Each transmitter updates its power based on locally mea-
surable quantities and the received messages, where >
0 is a constant
Ii)\l (f)
P(t)

P(t+1)=P(t) + — kY Gym;(t). (6
J#l

With the maximum and minimum transmit power con-

straint (P min, P, max) o0 each transmitter, the updated
power is projected onto the interval [Pl,miru Pl,max].

We present some intuitive arguments on this algorithm be-

fore proving the convergence theorem and discussing the prac-

tical implementation issues. Item 2 is simply the TCP Vegas

window update [5]. Item 1 is a modified version of queueing

I'This is using an average model for deterministic fluids. The difference be-
tween the total ingress flow intensity and the egress link capacity, divided by the
egress link capacity, gives the average time that a packet needs to wait before
being sent out on the egress link.
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Fig. 1. Nonlinearly coupled dynamics of joint congestion and power control.

delay price update [23] (and the original update [5] is an ap-
proximation of item 1). Items 3 and 4 describe a new power con-
trol using message passing [7]. Taking in the current values of
(X;(¢)SIR;(t))/(P;(t)G,;) as the messages from other trans-
mitters indexed by 7, the transmitter on link / adjusts its power
level in the next time slot in two ways: first increase power
directly proportional to the current price (e.g., queueing delay
in TCP Vegas) and inversely proportional to the current power
level, then decreases power by a weighted sum of the messages
from all other transmitters, where the weights are the path losses
Gy;. Intuitively, if the local queueing delay is high, transmit
power should increase, with more moderate increase when the
current power level is already high. If queueing delays on other
links are high, transmit power should decrease in order to re-
duce interference on those links.

Note that to compute m, the values of queueing delay A;,
signal-interference-ratio SIR ;, and received power level P;G ;
can be directly measured by node j locally. This algorithm only
uses the resulting message m; but not the individual values of
A;,8IR;, P;, and G'j;. Each message is simply a real number.
To conduct the power update, Gj; factors are assumed to be es-
timated through training sequences. In practical wireless ad hoc
networks, G;; are stochastic rather than deterministic and path
loss estimations can be inaccurate. The effects of the fluctua-
tions of G;; will be discussed in Section VII-A.

We also observe that the power control part of the joint algo-
rithm can be interpreted as the selfish maximization of a local
utility function of power by the transmitter of each link /

maximizep, U;(P)
where UZ(PI) = /\lcl — ,[31Pl and [3[ = Zj;él Gljﬂ’Lj. This
complements the standard interpretation of congestion control
as the selfish maximization of a local utility function Us(z ) by
each source s.

The known source algorithm (5) and queue algorithm (4) of
TCP-AQM, together with the new power control algorithm (6),
form a set of distributed, joint congestion control and resource
allocation in wireless multihop networks. As the transmit
powers change, SIR and, thus, data rate also change on each
link, which in turn change the congestion control dynamics. At
the same time, congestion control dynamics change the dual
variables A(t), which in turn change the transmit powers. Fig. 1
shows this nonlinear coupling of “supply” (regulated by power
control) and “demand” (regulated by congestion control),
through the shadow prices A that are currently used by TCP to
regulate distributed demand. Now A serves the second function
of cross-layer coordination in the JOCP algorithm. Theorem
1 in Section VI proves that this globally coupled, nonlinear
dynamic converges to the jointly optimal (x*, P*).

Fig. 2. Logical topology and connections for an illustrative example.

It is important to note that there is no need to change the
existing TCP congestion control and queue management algo-
rithms. All that is needed to achieve the joint and global op-
timum of (3) is to utilize the values of weighted queueing delay
in designing power control algorithm in the physical layer. This
approach is complementary to some recent suggestions in the
Internet community to pass physical layer information for a
better control of routing and congestion in upper layers. Notice
that the problem we seek to solve is jointly optimal transport
and physical layer design. The conclusion that physical layer
algorithm needs to adapt according to transport layer prices is
reached after the derivation, rather than presumed as a restric-
tive assumption before the derivation.

Much recent work has been done on opportunistic scheduling
at the MAC layer based on the physical layer channel condi-
tions. The JOCP algorithm complements such work by consid-
ering how can physical layer resource allocation be adapted to
enhance the end-to-end utilities. Transport layer utilities guide
how power control should be conducted, using very little in-
formation exchange across the layers and requiring no change
within the transport layer.

Using the JOCP algorithm (4)—(6), we simulated the above
joint power and congestion control for various wireless net-
works with different topologies and fading environments. The
advantage of such a joint control can be captured even in a
small illustrative example, where the logical topology and routes
for four multihop connections are shown in Fig. 2. Sources at
each of the four flows use TCP Vegas window updates with a
ranging from 3 to 5. The path loss G;; = Gj; is determined
by the relative physical distance d;;, which we vary in different
experiments, by G;; = di_j4. The target BER is 10~ on each
logical link.

Transmit powers, as regulated by the proposed distributed
power control, and source rates, as regulated through TCP Vegas
window update are shown in Fig. 3. The initial conditions of the
graphs are based on the equilibrium states of TCP Vegas with
fixed power levels of 2.5 mW. With power control, the transmit
powers P distributively adapt to induce a “smart” capacity c
and queueing delay A configuration in the network, which in
turn increases end-to-end throughput as indicated by the rise in
all the allowed source rates. Notice that some link capacities ac-
tually decrease, while the capacities on the bottleneck links rise
to maximize the total network utility. This is achieved through a
distributive adaptation of power, which lowers the power levels
that cause most interference on the links that are becoming a bot-
tleneck in the dynamic demand-supply matching process. Con-
firming our intuition, such a “smart” allocation of power tends to
reduce the spread of queueing delays, thus preventing any link
from becoming a bottleneck. Queueing delays on the four links
do not become the same though, due to the asymmetry in traffic
load on the links and different weights «sd; in the logarithmic
utility objective functions.
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A typical numerical example of joint TCP Vegas congestion control and power control. The top left graph shows the primal variables P. The lower

left graph shows the dual variables A. The lower right graph shows the primal variables x, i.e., the end-to-end throughput. In order of their y axis values after
convergence, the curves in the top left, top right, and bottom left graphs are indexed by the third, first, second, and fourth links in Fig. 2. The curves in the bottom

right graph are indexed by flows 1, 4, 3, and 2.

We indeed achieve the primary goal of this joint design across
the transport and physical layers. The end-to-end throughput
per watt of power transmitted, i.e., the throughput power ratio
(TPR), is 82% higher with power control. A series of simu-
lations are conducted based on different fading environments
and TCP Vegas parameter settings. Based on the resulting sta-
tistics of TPR, we see that power control (6) increases TCP
throughput and TPR in all experiments, and in 78% of the in-
stances, energy efficiency rises by 75%—115%, compared with
TCP without power control. Power control and congestion con-
trol, each running distributively and coordinated through the
dual variables, work together to enhance the energy efficiency
of multihop transmissions across a wireless multihop networks.

V. EXTENSIONS

The last section only describes the basic version of the JOCP
algorithm. Many variations can be readily accommodated
without substantial changes in the algorithm and its analysis.

For example, the source utilities can be any increasing,
strictly concave functions U other than the logarithm function.
Different utilities represent different types of TCP variants.
As will be shown in the proof in Section VI, (5) and (6) are
solving two decomposed subproblems that are coordinated by
the congestion prices A. Instead of updating A after moving
only one step along the solution path in these two subproblems,
we could have waited for the convergence of the subproblems
for a given A. In that case, each source would be solving
the following problem: z%(A) = U;fl(zleL(s) A1), and the

power update in (6) would be allowed to converge before A
are updated by (4) (which is more practical if the time scale of
power update is much smaller than that of link price update).
The convergence theorem in Section VI remains valid with the
above generalizations.

If metrics other than queueing delay are used as congestion
price, e.g., packet loss in TCP Reno, then the price update (4)
will look different. Any link prices with the following equilib-
rium property can act as the dual variables coordinating con-
gestion control and power control: A7 (3_, ;e 1.(5) #2 —c(P*)) =
0, Vl. However, depending on the specific price update equation,
convergence may not be guaranteed.

If energy efficiency is desired to be modeled explicitly in
the objective function, we can subtract a sum of increasing,
convex power cost functions ., V;(F;) from the network utility
> Us(z), and accordingly modify the power update equation.

In addition to end-to-end rate allocation over a fixed
single-path route, multicommodity flow type of routing can
easily be jointly optimized with power control (6) [33]. If the
relay nodes require incentives to help relay traffic originating
from the source nodes, joint optimization over source rate,
total relay rate, incentive pricing, and transmit power can be
conducted using a similar message passing approach.

The balance between the transport and physical layers is im-
portant not only for wireless ad hoc or cellular networks, but
also to the wired Internet. For example, physical layer resource
allocation, in terms of adaptation of coding, modulation, and in-
terleaving parameters, in digital subscriber lines (DSLs) at the
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access part of the network can also be optimized based on TCP
parameters and variables, in order to enhance the end-to-end
performance [19].

VI. PERFORMANCE EVALUATION: CONVERGENCE THEOREM
AND EQUILIBRIUM STATE

It is not too surprising that allowing cross-layer interactions
improves the performance of wireless multihop networks.
The rest of this paper is devoted to the more interesting and
challenging task of proving that the JOCP algorithm also has
the following desirable properties: global convergence to the
jointly optimal (x*, P*), robustness to parameter perturbation
and asynchronism, graceful tradeoff between complexity and
performance, and geometric rate of convergence.

We first show that convergence of the nonlinearly coupled
system, formed by the JOCP algorithm and shown in Fig. 1, is
guaranteed under two mild assumptions. First, P, are within a
range between P pin > 0 and P nax < oo for each link [.
Second, when link prices are high enough, source rates can be
made very small: for any € > 0, there exists a Ayax such that if
Al > Amax, then z4(X) < e for all sources s that use link /. To
make the analysis concrete, we again focus on the case of TCP
Vegas with logarithmic source utilities. But the proof technique
is applicable to the interaction between other TCP sources with
different utilities and the power control algorithm (6), as long as
the congestion price update converges.

It is also interesting to note that the two decomposed prob-
lems in the proof are both geometric programming problems, a
class of nonlinear optimization that was invented in the 1960s
[12] and recently found many applications in communication
systems, e.g., in [8], [10], [14], and [15]. The JOCP algorithm
can be viewed as a distributed solution to a class of geometric
programs.

Theorem 1: For small enough positive constants v and &,
the distributed JOCP algorithm (4)—(6) converges to the global
optimum of the joint congestion control and power control
problem (3).

Proof: We first associate a Lagrange multiplier A; for
each of the constraints - .7 ) Zs < c(P). Using the KKT
optimality conditions for convex optimization [2], [4], solving
problem (3) [or (2)] is equivalent to satisfying the complemen-
tary slackness condition and finding the stationary points of the
Lagrangian.

Complementary slackness condition states that at optimality,
the product of each dual variable and the associated primal con-
straint must be zero. This condition is satisfied since the equilib-
rium queueing delay must be zero if the total equilibrium ingress
rate at a router is strictly smaller than the egress link capacity.

We now find the stationary points of the Lagrangian
Isystem<x~, P, A) = (Zs U~<($S> Zl Al Zs :AeL(s) x@) +
(3>, Aici(P)). By linearity of the differentiation operator, this
can be decomposed into two separate maximization problems

maximize x E Us(zs) — E E AT
s s leL(s)
maximizepyo  Ipower(P,A) E Aiei(P

The first maximization is already implicitly solved by the
congestion control mechanism for different U (such as TCP
Vegas for Us(zs) = asdslogaxs), but we still need to solve
the second maximization, using the Lagrange multipliers A as
the shadow prices to allocate exactly the right power to each
transmitter, thus increasing the link data rates and reducing con-
gestion at the network bottlenecks. For scalability in ad hoc
networks, this power control must also be implemented distribu-
tively, just like the congestion control part. Since the data rate on
each wireless link is a global function of all the transmit powers,
the power control problem cannot be nicely decoupled into local
problems for each link as in [32]. However, we show that dis-
tributed solution is still feasible, as long as an appropriate set of
limited information is passed among the nodes.

We first establish that, if the algorithm converges, the
convergence is indeed toward the global optimum. We
will show that the partial Lagrangian to be maximized
Ipower(P) = 3, Milog(SIRy(P)) is a strictly concave
function of a logarithmically transformed power vector. Let
[51 = log P;, VI, we have

GHBIND’
=> Mlog —————
>ow Guels +my

1
=D N |log (G”epl) — log <Z Gire™ + nz)
l k
= A log| G e
; ! ( il >
— log (Z exp(Py + log Gii) + nl)
k

Ipowor (f))

The first term in the square bracket is linear in 15, and the second
term is concave in P because the log of a sum of exponentials
of linear functions of P is convex, as verified below.

Taking the derivative of I,ower (f’) with respect to P, we have

. A:GloeP
vleower(P) = )\l - Z . jlef)
71 2y Gine™ +n;
— AiGii .
o Zk;ﬁj G]kpk + U
Taking derivatives again, for each of the nonlinear

-Ailog(3>o, exp(f’k + log Gix) + my) terms in Ipowcr(f’), we
obtain the Hessian

-\
H=_—" - zie +my | diag(z)) — iz
(X zn + 1)’ ((Zk:
where 2, = exp(l5k + log Gix) and z; is a column vector
[zllvzﬂ? e 7ZIN]T-

Matrix H' is indeed negative definite: for all vectors v

vIHYy

N ((Zk 2 +m) (g vize) — (g Ukzzk)Q) 0

(X 2 +m)?

)
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This is because of the Cauchy Schwarz inequality
(a’a)(bTb) > (a’'b)?, where ay, = vj\/zix and by = \/zii,
and the fact that n; > 0. Therefore, Ipower(f’) is a strictly
concave function of f’, and its Hessian is a negative definite
block diagonal matrix diag(H!,H?, ..., H%). Interestingly,
some of the statements in later propositions depend on the
invertibility of H, which are provided for by the nonzero noise
terms.

Coming back to the P solution space instead of P, itis easy
to verify that the derivative of I,ower (P) with respect to P, is

Al AiGji
Vo P) = 31 = 3 s
l G#l k#j Jjktk J
Therefore, the logarithmic change of variables simply

scales each entry of the gradient by P Vilpower(P) =
(1)/(P)Vi1, power (P). Power update can be conducted in either
P or P domain.

We now use the gradient method [4], with a constant step size

K, to maximize I,ower(P)
Pl(t + 1) = Pl(f) + Kflepower(P)

moea (30

Ai(t)Gi
oy >t GiePu(t) +nj

Simplifying the equation and using the definition of SIR, we
can write the gradient steps as the following distributed power
control algorithm with message passing:

At
Pl(t + 1) = Pl(t) + r l( ) — HZGljmj(t)
Pi(t) :
J#l
where m;(t) are messages passed from node j
A;(¢)SIR;(t)
m(t) = 20PN
! P;(t)Gj;

These are exactly items 3 and 4 in the JOCP algorithm.

It is known [2] that when the step size along the gradient
direction is optimized, the gradient-based iterations converge.
Such an optimization of step size « in (6) would require global
coordination in a wireless ad hoc network, and is undesirable or
infeasible. However, in general, gradient-based iterations with a
constant step size may not converge.

By the descent lemma [2], convergence of the gradient-based
optimization of a function f(x), with a constant step size ,
is guaranteed if f(x) has the Lipschitz continuity property:
IV f(x1) — Vf(x2)|| < L||x1 — x2|| for some L > 0, and the
step size is small enough: € < x < (2 —¢)/(L) for some € > 0.
It is known that f(x) has the Lipschitz continuity property if it
has a Hessian bounded in /5 norm.

The Hessian H of ), A\;¢;(P) can be verified to be

2
G A
Hy=S" ) : 2L ®
2N <Zk;ﬁj GjkPi +n; P

il
Hi=Y AiGiGii

5
J#EL (Zk;éj ijplc + TL]')

The second assumption for Theorem 1 leads to the conclusion
that A are upper bounded [30], which, together with the first

i1 ©)

assumption for Theorem 1, shows that ||H]||5 is upper bounded.
The upper bound can be estimated by the following inequality:

H]l2 < VH[l1]|Hlloo

where ||H]||; is the maximum column-sum matrix norm of H,
and ||H||» is the maximum row-sum matrix norm.

Therefore, the power control part (6) converges for a small
enough step size k

2—c¢
L/

e< k<
where
2
1 j#li (Zk;ﬁj ijPk + ’I’Lj)

2
G At
+ b J _
2N (Zk;ﬁj ijPk+"j> P

il

(L')? =max

K2

x| 3030 NG

2
i gL (Zk# GinPr + nj)

2
G Al

+ 13N i _ A
Z ! <Zk¢j ijpk"‘“y’) p?

il

and e can be any small positive number < (2)/(1 + L').

It is known [23] that TCP Vegas converges for a small enough
step size 0 < 7 < (20min@minCmin)/ (LmaxSmax® 2.y )» Where
Qmin and dp;, are the smallest TCP source parameters «; and
ds among the sources, respectively, Tmax i the largest possible
number of source rates, cp,;, is the smallest link data rate, L.
is the largest number of links any path has, and Sy,.x is the
largest number of sources sharing a link.

Convergence of TCP Vegas assumes that ¢y, 7# 0. Since
SIR[ is lower bounded by (Pl-,minG”)/(Zj;él Pj,maxGlj + nl),
each ¢; is lower bounded by a strictly positive number. (In fact,
the formulation in (2) assumes high SIR in the first place.) Con-
sequently, TCP Vegas (4) and (5) also converge. By the con-
vergence result of simultaneous gradient-method to the saddle
point of minmax problems [3], [29] (in this case, minimizing the
Lagrangian over dual variables and the maximizing it over the
primal variables to the saddle point of the Lagrangian, which is
the optimal (x*, P*)), the JOCP algorithm converges.

Since ¢; can be turned into a concave function in 13, each
constraint 3, 7(,) s — ¢(P) < 01in (2) is an upper bound
constraint on a convex function in (x, f’) So problem (2) can
be turned into maximizing a strictly concave objective function
over a convex constraint set. The established convergence is to-
wards the global optimum. ]

In addition to convergence guarantee, total network utility
>, Us(zs) with power control can never be smaller than that
without power control, because by allowing power adaptation,
we are optimizing over a larger constraint set. Note that an in-
crease in network utility ) _ U,(x) is not equivalent to a higher
total throughput > _ x, since the utility functions are not iden-
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Fig. 4. Robustness of joint power control and TCP Vegas. Top left graph is the baseline performance of the four end-to-end throughput (the same as in Fig. 3).
Top right graph shows that a larger step size in the algorithm accelerates convergence but also leads to larger variances. Bottom left graph shows that the algorithm
is robust to wrong estimates of path losses. Bottom right graph shows robustness to packet losses on links with wireless channel outage.

tity functions, but strictly concave functions. However, empir-
ical evidence from simulation suggests that, at least in the log-
arithmic utility case of TCP Vegas, both throughput and energy
efficiency will indeed rise significantly after power control (6)
regulates data rate supply, and dual variables A coordinate data
rate demand with supply.

VII. SOME PRACTICAL ISSUES: ROBUSTNESS, COMPLEXITY
REDUCTION, ASYNCHRONOUS IMPLEMENTATION,
AND CONVERGENCE SPEED

We use various tools from nonlinear optimization, distributed
algorithm, and linear algebra to rigorously study other important
properties of the JOCP algorithm. Some proofs of the proposi-
tions can be found in [6].

A. Robustness

Robustness is often as important as optimality of an algo-
rithm. We focus on the following robustness properties of the
JOCP algorithm.

1) The effects of inaccurate estimation of the path losses
at various nodes. Even with an accurate estimation, mo-
bility of the nodes and fast variation of the fading process
may lead to a mismatch between the G;; used in the
power update algorithm and the G5;; that actually appear
in the link data rate formula.

2) The effects of packet loss due to wireless channel outage
during deep fading.

First, it is assumed in the power control algorithm (6) that the

pass loss factors Gi;; are perfectly estimated by the receivers. It
is useful to know how much error in the estimation of G;; can be

tolerated without losing the convergence of joint power control
and TCP congestion control.

Denoting the error in the estimation of Gj; at time
t as AG;;(t), and suppressing the time index on
A(t), P(t),SIR(t), AG;;(t), we provide a sufficient condition
using results about gradient algorithm with errors in gradient
circulation [2].

Proposition 1: Convergence to the global optimum of (3) is
achieved through the JOCP algorithm (4)—(6) with G';; estima-
tion errors, if there exists a 7" such that for all times ¢ > 1, the
following inequality holds:

A A, SIR;SIR,
SN (GiGr — AGAGK) P; e u
1 £l kel k5 kk

NG A7
2 J° ST
> ZZ lpG”SR p2

While Proposition 1 gives an analytic condition of conver-
gence with inaccurate estimations of G;; for any network,
numerical experiments can also be carried out in simulations,
where the G;; factors in (6) are perturbed randomly within
a range. Results of one typical experiment are shown in the
lower left graph in Fig. 4, for the same network topology and
connections as in Fig. 2. In this simulation, the G;; factors are
generated at random between +25% and —25% of their true
values. The algorithm converge to the same global optimum
after a much longer and wider transient period.

Another peculiar feature of wireless transmissions is that
during deep fading, SIR on a link may become too small for
correct decoding at the receiver. This channel outage induces
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packet losses on the link. Consequently, the queue buffer sizes
become smaller than they should have been. Analysis of TCP in
such a lossy environment has been carried out, for example, in
[1]. In our framework of nonlinear optimization, since queueing
delays are implicitly used as the dual variables A in TCP Vegas,
such channel variations lead to incorrect values of the dual
variables. Sources will mistake the decreases in total queueing
delay as indications of reduced congestion levels and boost their
source rates through TCP update accordingly. Having incorrect
pricing on the wireless links may, thus, prevent the joint system
from converging to the global optimum. We have the following
sufficient condition for convergence, where outage-induced
packet loss on link [ is denoted as Ay;.

Proposition 2: Convergence to the global optimum of (3)
is achieved through the JOCP algorithm (4)-(6) with packet
losses, if there exists a 1" such that for all times ¢ > T, the
following inequality holds:

>

Ay 2 G ;iSIR; 2
2 E: J J
P ()\ < ¢ ) ) : < Gj;ibj
l il

Ay;\? AyAy;\ GiSIR;
_ (=2 2 .
(A] ( ¢j > g ;Z MA acj ) GjjPb;

J#l

Because the chance of having simultaneous channel outages
at all links is small, it is reasonable to expect that only a few
Ay, are nonzero at any time. We again numerically experiment
with channel outage induced packet loss on various links and a
typical result is shown in the lower right graph in Fig. 4, where
the underlying outage probability is 20%. The convergence is
much slower but still maintained toward the optimal solution.

B. Complexity Reduction

Another practical issue concerning the JOCP algorithm is the
tradeoff between performance optimality and implementation
simplicity. The increases in TCP throughput and energy effi-
ciency have been achieved with a rise in the communication
complexity of message passing. There can be many terms in
the 3, Gijm;(t) sum in (6) as the number of transmitters in-
creases. Fortunately, those transmitters farther away from trans-
mitter [ will have their messages be correspondingly multiplied
by a much smaller G; dl_jo‘, where « ranges between 2 and
6. Their messages m; will, therefore, be given much smaller
weights in the power update.

This leads to a simplified power control algorithm, where
each transmitter [ uses the path loss estimations to form a small
set .J; of neighbors whose messages will be needed and used in
the power update. Naturally, if there are V' elements in set .Jj,
they should correspond to the nodes with the V' largest Gy; to-
ward node [. The power update equation becomes

Z Gljm]

JEJ

Pl(t + 1) = P[(t)

(10)

The following sufficient condition of convergence with the
simplified algorithm can be shown.

Proposition 3: Convergence to the global optimum of (3) is
achieved through the simplified version of the JOCP algorithm
(4), (5), and (10), if there exists a I" such that for all time ¢ > T,
the following inequality holds:

AN G A7
S5 () 22X S pEetsm - g

1A SIR; )
1 jeJ; 1 j#l

G;;P;

The reduction in complexity can be measured by the ratio

> 1]

ACOM = wrai—n

where M is the total number of transmitters in the network. Ob-
viously, 0 < ACOM < 1, and a smaller ACOM represents
a simpler and less optimal message passing and power update.
The effectiveness of complexity reduction through partial mes-
sage passing depends on the path loss matrix G. While the intu-
ition is clear: the reduced-complexity versions do not work well
for network topologies where nodes are evenly spread out, we
do not yet have an analytic characterization on the tradeoff be-
tween ACOM and energy efficiency enhancement or the max-
imized network utility.

C. Asynchronous Implementation

The algorithmic analysis thus far has been limited to the case
where propagation delay is insignificant and all the local clocks
are synchronized, which is not practical in large wireless ad hoc
networks. In this subsection, we investigate the convergence of
the algorithm under asynchronous implementation, with vari-
able propagation delays and clock asynchronism.

Suppose each source updates x; and each transmitter updates
P, atasynchronous time slots, using possibly outdated variables,
such as A; and m;, in their update. At least one local update is
carried out sometime within a window of D time slots, and the
variables used in the update can be outdated by up to D time
slots. We have the following.

Proposition 4: The asynchronous JOCP algorithm con-
verges if and only if D is finite.

This result shows that the proposed algorithm is able to sup-
port asynchronous implementation as long as the constants «, y
are small enough. An adverse effect of asynchronism is the re-
duction of the maximum step sizes allowed for convergence to
be maintained, which reduces the convergence speed. However,
in the case of sufficiently small asynchronism

/ 2
L Lmaxsmaxxmax }

2—¢€ 2Olmindmincmin

ngin{

we can show that propagation delay, delay in message passing,
and clock asynchronism in rate-power updates become the loose
constraints on the maximum step sizes, and do not cause a re-
duction in the rate of convergence.

D. Rate of Convergence

So far, we have focused on the equilibrium behaviors of the
JOCP algorithm. In general, very little is understood on the tran-
sient behaviors of the dynamics of JOCP algorithm, or of just



114 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

TCP congestion control alone. This section provides a prelimi-
nary analysis on the rate of convergence of the power control
algorithm. The rate of convergence for any distributive algo-
rithm on wireless ad hoc networks is particularly important be-
cause the network topology and source traffic are dynamic and
source traffic may exhibit a low degree of stability. A key ques-
tion for practical implementation of the proposed cross-layer de-
sign is whether the coupled nonlinear dynamics between TCP
and power control can proceed close to the equilibrium before
the network topology, routing, and source characteristics change
dramatically.

Convergence analysis for distributive nonlinear optimization
can take several different approaches. We focus on the more
practical local analysis approach, which investigates the rate of
convergence after the algorithm reaches a point reasonably close
to the optimum. Because our algorithm nonlinearly depends on
the path loss matrix G, exact and closed-form results on the
rate of convergence are very difficult to obtain. Nonetheless, the
following result on the geometric convergence property and a
loose bound on the convergence speed can be proved.

Let U*) be the network utility at the kth iteration of the JOCP
algorithm, and U* be the maximized network utility. Let e(¥) =
|U®) — U*| be the error. Let P(*) be the power vector at the
kth iteration, and P* be the optimizer. Assume that the limit of
the Hessian Ipowor(P(k)) as k — oo exist and is denoted by
H = {H;;}.

Using local analysis that characterizes the rate of conver-
gence in terms of Hessian matrix eigenvalues [2], and the Gers-
gorin Theorem on eigenvalue location [34], we can show the
following result.

Proposition 5: The JOCP algorithm converges geometri-
cally, i.e., there exist ¢ > 0 and 8 € (0,1) such that for all
k,e®) < ¢pB*. With an appropriate constant parameter £,
the rate of convergence (of the power control part) is at least
(M’ —m/)/(M'+ m'), where

M = m%‘:LX H;; + Z |Hij
J#i

m' = mjn H” — Z |HL]|
‘ i

A similar result holds for the rate of convergence of the con-
gestion control part. However, we add the cautionary note that
the above lower bound on the rate of convergence is based on
the worst case scenario and can be orders of magnitude loose,
depending on the path loss environment in the network. Numer-
ical simulations show that the actual convergence speed is much
faster than the bound in Proposition 5.

E. Further Algorithmic Enhancements

In concluding our performance analysis of the JOCP algo-
rithm, we briefly outline a couple of algorithmic enhancements
that can be readily accomplished.

It is desirable to choose a constant step size that is neither so
large that the algorithm diverges (e.g., violating the conditions
in Section IV), nor so small that the convergence is too slow.

One way to accomplish this is to let each source and each trans-
mitter autonomously decrease the step sizes at each time slot ¢
according to the following rule:

() = K(H) = =,

Such a diminishing sequence of step sizes also makes the al-
gorithm even more robust: errors in queueing delays A and path
losses G that are proportional to the magnitudes of A and G can
be tolerated.

It is also possible to speed up the convergence of the algo-
rithm by diagonally scaling the distributed gradient method

P[(t + 1) = Pl(t) + vallpower(P)

where W ideally should be the inverse of the Hessian H of
Iyower(P). Since forming this inverse will require extensive
global coordination and centralized computation, we approxi-
mate the inverse by letting

W = diag (H;;") .

w > 0.

Substituting the expression for H;; in (8) and simplifying the
expressions, we arrive at the following accelerated algorithm:

(¢
#Eg - Z#l Gijm;(t)

0] Gy O
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Therefore, by passing an additional message: the explicit value
of price A;(¢) from node j, the jointly optimal congestion con-
trol and power control algorithm can converge faster.

P(t+1)=P{t)+r

VIII. To LAYER OR NOT TO LAYER: LAYERING AS
OPTIMIZATION DECOMPOSITION

Like [9], [19], [27], [31], and [32], this paper can be viewed
as a case study of the “layering as optimization decomposition”
approach, which may allow us to integrate many layers in wired
and wireless networks, and to rigorously quantify the general
architectural principles and inherent tradeoffs of layering. If
a mapping can be found from different decompositions of a
generalized utility maximization problem to different layering
schemes, and from primal or Lagrange dual variables coordi-
nating the subproblems to the inferfaces among the layers, then
we can tackle the question “how to and how not to layer” by in-
vestigating the pros and cons of decomposition techniques. By
comparing the objective values under optimal decompositions,
suboptimal decompositions, and decompositions with some
layering variables fixed, we can seek “separation theorems”
among layers: conditions under which strict layering incurs no
loss of optimality. Robustness of these separation theorems can
be further characterized by sensitivity analysis in optimization
theory: how much will the differences in the objective value
(between different layering schemes) fluctuate as constant pa-
rameters in the utility maximization problem are perturbed. In
addition to “vertical decomposition” across layers of functional
modules, “horizontal decomposition” across geographically
diverse nodes may also be conducted via functions of the
layering variables.

If layering schemes are viewed as decompositions of some
global optimization problems, the price of layering or relay-
ering, the price of no layering, and the price of cross-layering
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may be quantified in both reverse and forward engineering
directions.

* Reverse engineering: Given a layered protocol stack, what
is the optimization problem that it implicitly solves?

» Forward engineering: Given a utility maximization formu-
lation, how to decompose it into subproblems, solve each
subproblem individually, then solve the overall problem?

In the case of wireless networks, the transmission medium
is an untethered, unshielded, broadcast one, with time-varying
channels that have attenuation, shadowing, and fading. A wire-
less network is essentially a space with electromagnetic energy
propagating in it. There is no a priori definition of “link ca-
pacity” or even of “link.” Therefore, all of the following issues
complicate the utility maximization model substantially: signal
interference and power control, packet collision and medium
access control (MAC), rate-reliability tradeoff and coding, and
spatial diversity and multiple-antenna transmissions. For ex-
ample, the following utility maximization problem and its de-
composition and distributed algorithms needs to be studied:

maximize Z Us(zs, Pes) + Z Vi(w;)
s J

Rx < c(w,P,),

x € C1(P.)[)Ca(F),
ReR, FeF, weWw.

subject to

(1)

Here, x; denotes the rate for source s and w; denotes the phys-
ical layer resource at network element j. The utility functions
Us and V; may be any nonlinear, monotonic functions. R is
the routing matrix and c are the logical link capacities as func-
tions of both physical layer resources w and the desired de-
coding error probabilities P.. The issue of signal interference
and power control can be captured in this functional depen-
dency. The rates must also be constrained by the interplay be-
tween physical layer decoding reliability and upper layer error
control mechanisms like ARQ in the link layer. This constraint
set is denoted as C;(P.), and captures the issue of rate-relia-
bility tradeoff and coding. Constraint on the rates by the medium
access success probabilities is represented by the constraint set
Co(F), where F is the contention matrix [26]. The issue of
packet collision and MAC is captured in this constraint. The set
of possible physical layer resource allocation schemes is repre-
sented by W, that of possible scheduling or contention based
medium access schemes by F, and that of single-path or mul-
tipath routing schemes by R. The optimization variables are
x,w,P.,R,F.

Five layers in the current standard protocol stack are modeled
in (11), although the decompositions of (11) do not have to be
along the lines dictated by the current layering structure.

* Application Layer: Utility functions U; and V; model the
application needs.

* Transport Layer: The end-to-end throughput is repre-
sented as the source rate xz, for each end user s.

* Network Layer: The routing matrix can be designed by
varying R within the constraint set R.

» Link Layer: Through scheduling, antenna beamforming,
and spreading code assignment, the contention matrix F

can be designed within the constraint set 7. The rates are
then constrained by contention-free or contention-based
access schemes as described by the constraint set Cs.

* Physical Layer: Adaptive resource allocations, e.g., power
control, adaptive modulation, coding with embedded di-
versity, will lead to different logical link capacities c as
functions of decoding error probabilities P, and the phys-
ical layer resources w.

The generic formulation (11) can be specialized in different
cases. The two most difficult issues are time-scale and nonzero
duality gap. In this paper, we have assumed that the time scale
of power control and congestion control is longer than the time
scale needed for channel coding to achieve ¢;, and shorter than
the time scale of dynamic changes in network topology and
routing. Using the approximation that K'SIR is much larger than
1 and a log transformation, we have turned problem (2) into a
convex optimization with strictly feasible solutions, thus having
zero duality gap.

Finally, this paper balances the transport and physical layers
only from a network performance viewpoint. Other than the
discussion on how the JOCP algorithm maintains the modu-
larity between the two layers, this paper is not examining the
most important reason for layering. Layering, like many other
networking principles, is not established only for efficiency of
performance metrics in terms of throughput, latency, distortion,
or energy efficiency, but also for robustness in terms of impor-
tant X-ities: evolvability, scalability, verifiability, manageability,
deployability, adaptability ... Compared with standard perfor-
mance metrics, these X-ities are much less well-understood,
often without any theoretical foundations, quantitative frame-
works, or even units of measurement. Yet, X-ities are crucial if
we are to analyze current layering and design future ones prop-
erly. Initial results on quantifying some basic aspects of evolv-
ability have recently been obtained [11]. It will be most inter-
esting and challenging to investigate how the X-ities aspects
may be understood through the general framework of “layering
as optimization decomposition.”

IX. CONCLUSION

We present a distributed power control algorithm that cou-
ples with the existing TCP congestion control algorithms to in-
crease end-to-end throughput and energy efficiency of multihop
transmissions in wireless multihop networks. No modification
to TCP is needed to achieve the optimal balancing between
data rate demand (regulated through TCP) and supply (regulated
through power control). We prove that the nonlinearly coupled
system converges to the global optimum of the joint congestion
control and power control problem. The convergence is geo-
metric and can be maintained under finite asynchronism. The
proposed algorithm is robust to wireless channel variations and
path loss estimation errors. Suboptimal but much simplified ver-
sions of the algorithm are presented for scalable architectures.

As a step toward “layering as optimization decomposition,”
this paper expands the scope of the network utility maximization
methodology to handle nonlinear, elastic link capacities. This
extension enables us to rigorously prove that the proposed JOCP
algorithm has the above desirable properties in achieving the
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optimal balance between the transport and physical layers in
wireless multihop networks.
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