
CMSC ��� Advanced Algorithms
Lecturer� Samir Khuller

Lecture ��
Apr �� ����

Notes by Samir Khuller�

� The Min Cost Flow Problem

Today we discuss a generalization of the min weight perfect matching problem� the max �ow problem and
the shortest path problem called the min cost �ow problem� Here you have a �ow network� which is basically
a directed graph� Each edge �i� j� has a cost cij and capacity uij� This is denoted by a tuple �cij� uij� for
the edge �i� j�� Nodes v have supplies�demands b�v�� If b�v� � � then v is a supply vertex with supply value
b�v�� If b�v� � � then v is demand vertex with demand �b�v��

Our goal is to 	nd a �ow function f 
 E � � such that each vertex has a net out�ow of b�v� and the
total cost is minimized� As before� the �ow on an edge cannot exceed the corresponding capacity� The cost

of the �ow function is de	ned as
P

e�E f�e� � c�e�� �In other words� supply nodes have a net out�ow and
demand nodes have a net in�ow equal to their jb�v�j value��

We will assume that the total supply available is exactly equal to the total demand in the network� �In
general� for a feasible solution to exist we need to assume that the total supply is at least the total demand�
We can add a �dummy� vertex that absorbs the surplus �ow� and thus can assume that the total supply
and demand values are the same��

The reader can easily see that the shortest path problem is a very special case when we need to ship one
unit of �ow from s to t at min cost� where each edge has capacity one� The min weight perfect matching
problem is also a special case when each vertex on one side has b�i� 
 � and the vertices on the other side
have b�i� 
 ��� When all edges have cost zero� it clearly models the max �ow problem�

We 	rst discuss an application of this problem to show how powerful it is�
Caterer problem� A caterer needs to provide di napkins on each of the next n days� He can buy new
napkins at the price of � cents per napkin� or have the dirty napkins laundered� Two types of laundry
service are available
 regular and express� The regular service requires two working days and costs � cents
per napkin� the express service costs � cents per napkin and requires one working day� The problem is to
compute a purchasing�laundring policy at min total cost�

This problem can be formulated as a min cost �ow problem and can handle generalizations like inventory
costs etc�

The basic idea is to create a source vertex s that acts as a supply node of new napkins� For each day
i�� i � n� we create two vertices xi and yi� We set b�xi� 
 �di so this is a demand vertex with the
demand equal to the requirement for day i� We set b�yi� 
 di so this is a supply vertex that can provide
the dirty napkins to future days� We set b�s� 


Pn

i�� di� From vertex s there is an edge to each xi vertex
with parameters ��� di�� From yi� � � i � n � � there is an edge to xi�� with parameters ��� di�� From
yi� � � i � n� � there is an edge to xi�� with parameters ��� di�� These edges denote the fact that we can
launder napkins by using the express service and provide them after a gap of one day at cost � per napkin�
and launder napkins by using the regular service and provide them after a gap of two days at a cost of � per
napkin� The total number of such napkins is clearly upper bounded by di �number of dirty napkins on day
i�� Finding a min cost �ow� gives us the way to 	nd a min cost solution� A formal proof of this is left to the
reader� You should note that we need to create two vertices for each day since one node absorbs the �ow
�clean napkins� and one provides the �ow �used napkins�� We also create one sink vertex t that can absorb
the surplus napkins at zero cost� �Since the total supply in the network exceeds the demand��
Residual Graph
 We de	ne the concept of residual graphs Gf with respect to a �ow function f � The
capacity function is the same as before� The cost of the reverse edge is �cij if the cost of edge �i� j� is cij�
This corresponds to the fact that we can reduce the cost by pushing �ow along this edge� since this only
reduces the �ow that we were pushing in the forward direction�

We now discuss a very simple min cost �ow algorithm� We can 	rst compute a feasible solution� by
ignoring costs and solving a max �ow problem� We create a single source vertex s� add edges from s to each
supply node v with capacity b�v�� We create a single sink vertex t� and add edges from each demand vertex



v to t with capacity jb�v�j� If the max �ow does not saturate all the edges coming out of the source then
there is no feasible solution�

Unfortunately� this solution may have a very high cost� We now show how to reduce the cost of the
max �ow� Construct the residual graph� and check to see if this has a negative cost cycle �one can use a
Bellman�Ford shortest path algorithm for detecting negative cost cycles�� If it does have a negative cost
cycle we can push �ow around the cycle until we cannot push any more �ow on it� Pushing a �ow of � units
around the cycle reduces the total �ow cost by �jCj where C is the cost of the cycle� If there is no negative
cost cycle in Gf then we can prove that f is an optimal solution� Notice that pushing �ow around a cycle
does not change the net incoming �ow to any vertex� so all the demands are still satis	ed� We only reduce
the cost of the solution�

The next question is
 how do we pick a cycle around which to cancel �ow� Goldberg and Tarjan proved
that picking a min mean cycle� gives a polynomial bound on the total number of iterations of the algorithm�
One can also try to 	nd the cycle with the least cost� but then one might only be able to push a small
amount of �ow around this cycle� One could also try to identify the cycle which would reduce the cost by
the maximum possible amount�

Lemma ��� A �ow f is a min cost �ow if and only if Gf has no negative cost cycles in it�

Proof�

If Gf has a negative cost cycle� we can reduce the cost of �ow f � hence it was not an optimal �ow� If
Gf has no negative cost cycles� we need to argue that f is an optimal solution� Suppose f is not optimal�
then there is a �ow f� that has the same �ow value� but at lower cost� Consider the �ow f� � f � this is a
set of cycles in Gf � Hence f can be converted to f� by pushing �ow around this set of cycles� Since these
cycles are non�negative� this would only increase the cost� Hence c�f� � c�f��� Since f� is an optimal �ow�
the two must have the same cost� �

In the next lecture we will study a di�erent min cost �ow algorithm�

�A min mean cycle minimizes the ratio of the cost of the cycle to the number of edges on the cycle�

�


