

Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων

Ασύρματα Δίκτυα Αισθητήρων

Link Layer και MAC Πρωτόκολλα

• Error control

- Framing
- Link management

Link layer tasks in general

- Framing group bit sequence into packets/frames
 - Important: format, size
- Error control make sure that the sent bits arrive and no other
 - Forward and backward error control
- Flow control ensure that a fast sender does not overrun its slow(er) receiver
- Link management discovery and manage links to neighbors
 - Do not use a neighbor at any cost, only if link is good enough

Error control

- Error control has to ensure that data transport is
 - Error-free deliver exactly the sent bits/packets
 - In-sequence deliver them in the original order
 - Duplicate-free and at most once
 - Loss-free and at least once
- Causes: fading, interference, loss of bit synchronization, ...
 - Results in bit errors, bursty, sometimes heavy-tailed runs (see physical layer chapter)
 - In wireless, sometimes quite high average bit error rates 10⁻² … 10⁻⁴ possible!
- Approaches
 - Backward error control ARQ
 - Forward error control FEC

Backward error control – ARQ

- Basic procedure (a quick recap)
 - Put header information around the payload
 - Compute a checksum and add it to the packet
 - Typically: Cyclic redundancy check (CRC), quick, low overhead, low residual error rate
 - Provide feedback from receiver to sender
 - Send *positive* or *negative acknowledgement*
 - Sender uses timer to detect that acknowledgements have not arrived
 - Assumes packet has not arrived
 - Optimal timer setting?
 - If sender infers that a packet has not been received correctly, sender can retransmit it
 - What is maximum number of retransmission attempts? If bounded, at best a semi-reliable protocols results

Standard ARQ protocols

- Alternating bit at most one packet outstanding, single bit sequence number
- Go-back N send up to N packets, if a packet has not been acknowledged when timer goes off, retransmit all unacknowledged packets
- Selective Repeat when timer goes off, only send that particular packet

How to use acknowledgements

- Be careful about ACKs from different layers
 - A MAC ACK (e.g., S-MAC) does not necessarily imply buffer space in the link layer
 - On the other hand, having both MAC and link layer ACKs is a waste
- Do not (necessarily) acknowledge every packet use cumulative ACKs
 - Tradeoff against buffer space
 - Tradeoff against number of negative ACKs to send

Forward error control

- Idea: Endow symbols in a packet with additional redundancy to withstand a limited amount of random permutations
 - Additionally: interleaving change order of symbols to withstand burst errors

Παν. Θεσσαλίας

Comparison: FEC vs. ARQ

t: error correction capacity • FEC 8 no FEC Constant overhead energy consumption t=2 for each packet t=4 t=6 Not (easily) t=8possible to adapt to t=10 changing channel characteristics ARQ **Overhead only** when errors Relative 2 occurred (expect for ACK, always needed) 0 Both schemes have 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

BCH + unlimited number of retransmissions

р

their uses ! hybrid

schemes

Power control on a link level

- Further controllable parameter: transmission power
 - Higher power, lower error rates less FEC/ARQ necessary
 - Lower power, higher error rates higher FEC necessary
- Tradeoff!

- Error control
- Framing
- Link management

Frame, packet size

 Small packets: low packet error rate, high packetization overhead Energy per useful bit

Energy per useful bit

- Large packets: high packet error rate, low overhead
- Depends on bit error rate, energy consumption per transmitted bit

11/19/2006

Dynamically adapt frame length

- For known bit error rate (BER), optimal frame length is easy to determine
- Problem: how to estimate BER?
 - Collect channel state information at the receiver (RSSI, FEC decoder information, ...)
 - Example: Use number of attempts T required to transmit the last M packets as an estimator of the packet error
 - Second problem: how long are observation valid/how should they be aged?
 - Only recent past is if anything at all somewhat credible

Putting it together: ARQ, FEC, frame length optimization

• Applying ARQ, FEC (both block and convolutional codes), frame length optimization to a Rayleigh fading channel

Παν. Θεσσαλίας

- Error control
- Framing
- Link management

Link management

- Goal: decide to which neighbors that are *more or less* reachable a link should be established
 - Problem: communication quality fluctuates, far away neighbors can be costly to talk to, error-prone, quality can only be estimated
- Establish a *neighborhood table* for each node
 - Partially automatically constructed by MAC protocols

Link quality characteristics

- Expected: simple, circular shape of "region of communication" – not realistic
- Instead:
 - Correlation between distance and loss rate is weak; iso-loss-lines are not circular but irregular
 - Asymmetric links are relatively frequent (up to 15%)
 - Significant short-term PER variations even for stationary nodes

Conclusion

- Link layer combines traditional mechanisms
 - Framing, packet synchronization, flow control
 - with relatively specific issues
 - Careful choice of error control mechanisms tradeoffs between FEC & ARQ & transmission power & packet size …
 - Link estimation and characterization

Overview

• Principal options and difficulties

- Contention-based protocols
- Schedule-based protocols
- IEEE 802.15.4

Principal options and difficulties

- Medium access in wireless networks is difficult mainly because of
 - Impossible (or very difficult) to sender and receive at the same time
 - Interference situation at receiver is what counts for transmission success, but can be very different to what sender can observe
 - High error rates (for signaling packets) compound the issues
- Requirement
 - As usual: high throughput, low overhead, low error rates, ...
 - Additionally: energy-efficient, handle switched off devices!

Requirements for energy-efficient MAC protocols

- Recall
 - Transmissions are costly
 - Receiving about as expensive as transmitting
 - Idling can be cheaper but is still expensive
- Energy problems
 - Collisions wasted effort when two packets collide
 - Overhearing waste effort in receiving a packet destined for another node
 - Idle listening sitting idly and trying to receive when nobody is sending
 - Protocol overhead
- Always nice: Low complexity solution

Main options

Centralized medium access

- Idea: Have a central station control when a node may access the medium
 - Example: Polling, centralized computation of TDMA schedules
 - Advantage: Simple, quite efficient (e.g., no collisions), burdens the central station
- Not directly feasible for non-trivial wireless network sizes
- But: Can be quite useful when network is somehow divided into smaller groups
 - Clusters, in each cluster medium access can be controlled centrally compare Bluetooth piconets, for example

! Usually, distributed medium access is considered

Schedule- vs. contention-based MACs

• Schedule-based MAC

- A *schedule* exists, regulating which participant may use which resource at which time (TDMA component)
- Typical resource: frequency band in a given physical space (with a given code, CDMA)
- Schedule can be *fixed* or computed *on demand*
 - Usually: mixed difference fixed/on demand is one of time scales
- Usually, collisions, overhearing, idle listening no issues
- Needed: time synchronization!
- Contention-based protocols
 - Risk of colliding packets is deliberately taken
 - Hope: coordination overhead can be saved, resulting in overall improved efficiency
 - Mechanisms to handle/reduce probability/impact of collisions required
 - Usually, *randomization* used somehow

Overview

• Principal options and difficulties

Contention-based protocols

- MACA
- S-MAC,
- Preamble sampling, B-MAC
- PAMAS
- Schedule-based protocols
- IEEE 802.15.4

Main options to shut up senders

- Receiver informs potential interferers while a reception is on-going
 - By sending out a signal indicating just that
 - Problem: Cannot use same channel on which actual reception takes place
 - ! Use separate channel for signaling
 - Busy tone protocol
- Receiver informs potential interferers *before* a reception is on-going
 - Can use same channel
 - Receiver itself needs to be informed, by sender, about impending transmission
 - Potential interferers need to be aware of such information, need to store it

Receiver informs interferers before transmission – MACA

- Sender B asks receiver C whether C is able to receive a transmission
 Request to Send (RTS)
- Receiver C agrees, sends out a *Clear to Send* (*CTS*)
- Potential interferers overhead either RTS or CTS and know about impending transmission and for how long it will last
 - Store this information in a Network Allocation Vector
- B sends, C acks
- ! MACA protocol (used e.g. in IEEE 802.11)

MACA Problem: Idle listening

- Need to sense carrier for RTS or CTS packets
 - In some form shared by many CSMA variants; but e.g. not by busy tones
 - Simple sleeping will break the protocol
- IEEE 802.11 solution: ATIM windows & sleeping
 - Basic idea: Nodes that have data buffered for receivers send traffic indicators at pre-arranged points in time
 - Receivers need to wake up at these points, but can sleep otherwise
- Parameters to adjust in MACA
 - Random delays how long to wait between listen/transmission attempts?
 - Number of RTS/CTS/ACK re-trials?
 - ...

Sensor-MAC (S-MAC)

- MACA's idle listening is particularly unsuitable if average data rate is low
 - Most of the time, nothing happens
- Idea: Switch nodes off, ensure that neighboring nodes turn on simultaneously to allow packet exchange (rendez-vous)
 - Only in these *active periods*, packet exchanges happen
 - Need to also exchange wakeup schedule between neighbors
 - When awake, essentially perform RTS/CTS
- Use SYNCH, RTS, CTS phases

S-MAC synchronized islands

- Nodes try to pick up schedule synchronization from neighboring nodes
- If no neighbor found, nodes pick some schedule to start with
- If additional nodes join, some node might learn about two different schedules from different nodes
 - "Synchronized islands"
- To bridge this gap, it has to follow both schemes

Preamble Sampling

- So far: Periodic sleeping supported by some means to synchronize wake up of nodes to ensure rendez-vous between sender and receiver
- Alternative option: Don't try to explicitly synchronize nodes
 - Have receiver sleep and only periodically sample the channel
- Use *long preambles* to ensure that receiver stays awake to catch actual packet
 - Example: WiseMAC

B-MAC

- Combines several of the above discussed ideas
 - Takes care to provide practically relevant solutions
- Clear Channel Assessment
 - Adapts to noise floor by sampling channel when it is assumed to be free
 - For actual assessment when sending a packet, look at five channel samples – channel is free if even a single one of them is significantly below noise
 - Optional: random backoff if channel is found busy
- Optional: Immediate link layer acknowledgements for received packets

B-MAC II

- Low Power Listening (= preamble sampling)
 - Uses the clear channel assessment techniques to decide whether there is a packet arriving when node wakes up
 - Timeout puts node back to sleep if no packet arrived
- B-MAC does not have
 - Synchronization
 - RTS/CTS
 - Results in simpler, leaner implementation
 - Clean and simple interface
- Currently: Often considered as the *default WSN MAC* protocol

Power Aware Multiaccess with Signaling – PAMAS

- Idea: combine busy tone with RTS/CTS
 - Results in detailed overhearing avoidance, does not address idle listening
 - Uses separate *data* and *control channels*
- Procedure
 - Node A transmits RTS on control channel, does not sense channel
 - Node B receives RTS, sends CTS on control channel if it can receive and does not know about ongoing transmissions
 - B sends busy tone as it starts to receive data

PAMAS – Already ongoing transmission

- Suppose a node C in vicinity of A is already receiving a packet when A initiates RTS
- Procedure
 - A sends RTS to B

- C is sending busy tone (as it receives data)
- CTS and busy tone collide, A receives no CTS, does not send data

Similarly: Ongoing transmission near B destroys RTS by busy tone

Overview

- Principal options and difficulties
- Contention-based protocols
- Schedule-based protocols
 - LEACH
 - IEEE 802.15.4

Low-Energy Adaptive Clustering Hierarchy (LEACH)

- Given: dense network of nodes, reporting to a central sink, each node can reach sink directly
- Idea: Group nodes into "*clusters*", controlled by *clusterhead*
 - Setup phase; details: later
 - About 5% of nodes become clusterhead (depends on scenario)
 - Role of clusterhead is rotated to share the burden
 - Clusterheads advertise themselves, ordinary nodes join CH with strongest signal
 - Clusterheads organize
 - CDMA code for all member transmissions
 - TDMA schedule to be used within a cluster
- In steady state operation
 - CHs collect & aggregate data from all cluster members
 - Report aggregated data to sink using CDMA

LEACH rounds

Overview

- Principal options and difficulties
- Contention-based protocols
- Schedule-based protocols
- IEEE 802.15.4

IEEE 802.15.4

- IEEE standard for low-rate WPAN applications
- Goals: low-to-medium bit rates, moderate delays without too stringent guarantee requirements, low energy consumption
- Physical layer
 - 20 kbps over 1 channel @ 868-868.6 MHz
 - 40 kbps over 10 channels @ 905 928 MHz
 - 250 kbps over 16 channels @ 2.4 GHz
- MAC protocol
 - Single channel at any one time
 - Combines contention-based and schedule-based schemes
 - Asymmetric: nodes can assume different roles

IEEE 802.15.4 Basics

- 802.15.4 is a simple packet data protocol for lightweight wireless networks
 - Channel Access is via Carrier Sense Multiple Access with collision avoidance and optional time slotting
 - Message acknowledgement and an optional beacon structure
 - Multi-level security
 - Three bands, 27 channels specified
 - 2.4 GHz: 16 channels, 250 kbps
 - 868.3 MHz : 1 channel, 20 kbps
 - 902-928 MHz: 10 channels, 40 kbps
 - Works well for
 - Long battery life, selectable latency for controllers, sensors, remote monitoring and portable electronics
 - Configured for maximum battery life, has the potential to last as long as the shelf life of most batteries

IEEE 802.15.4 standard

- Includes layers up to and including Link Layer Control
 - LLC is standardized in 802.1
- Supports multiple network topologies including Star, Cluster Tree and Mesh
- Features of the MAC: Association/dissociation, ACK, frame delivery, channel access mechanism, frame validation, guaranteed time slot management, beacon management, channel scan
 - Low complexity: 26 primitives versus 131 primitives for 802.15.1 (Bluetooth)

IEEE 802.15.4 MAC Overview

- Employs 64-bit IEEE & 16-bit short addresses
 - Ultimate network size can reach 2⁶⁴ nodes (more than we'll probably need...)
 - Using local addressing, simple networks of more than 65,000 (2^16) nodes can be configured, with reduced address overhead
- Three devices specified
 - Network Coordinator
 - Full Function Device (FFD)
 - Reduced Function Device (RFD)
- Simple frame structure
- Reliable delivery of data
- Association/disassociation
- AES-128 security
- CSMA-CA channel access
- Optional superframe structure with beacons
- GTS mechanism

IEEE 802.15.4 MAC overview

- Star networks: *devices* are associated with *coordinators*
 - Forming a PAN, identified by a PAN identifier
- Coordinator
 - Bookkeeping of devices, address assignment, generate beacons

Coordinator

Beacon

- Talks to devices and peer coordinators
- Beacon-mode superframe structure
 - GTS assigned to devices upon request

Παν. Θεσσαλίας

Device

MAC Options

- Two channel access mechanisms
 - Non-beacon network
 - Standard ALOHA CSMA-CA communications
 - Positive acknowledgement for successfully received packets
 - Beacon-enabled network
 - Superframe structure
 - For dedicated bandwidth and low latency
 - Set up by network coordinator to transmit beacons at predetermined intervals
 - 15ms to 252sec (15.38ms*2n where $0 \le n \le 14$)
 - 16 equal-width time slots between beacons
 - Channel access in each time slot is contention free
 - Three security levels specified
 - None
 - Access control lists
 - Symmetric key employing AES-128

Data Frame format

- One of two most basic and important structures in 15.4
- Provides up to 104 byte data payload capacity
- Data sequence numbering to ensure that all packets are tracked
- Robust frame structure improves reception in difficult conditions
- Frame Check Sequence (FCS) ensures that packets received are without error

Acknowledgement Frame Format

			Octets:	2	1	2			
M A C sublayer				Frame Control	Data Sequence Number	FCS			
				MH	HR	MFR			
Octets:	4	1	1		5				
PHY layer	Preamble Sequence	Start of Frame Delimiter	Fram e Length	MPDU					
	SHR		PHR	PSDU					
	11								
	PPDU								

- The other most important structure for 15.4
- Provides active feedback from receiver to sender that packet was received without error
- Short packet that takes advantage of standards-specified "quiet time" immediately after data packet transmission

IEEE 802.15.4 Device Types

- Three device types
 - Network Coordinator
 - Maintains overall network knowledge; most sophisticated of the three types; most memory and computing power
 - Full Function Device
 - Carries full 802.15.4 functionality and all features specified by the standard
 - Additional memory, computing power make it ideal for a network router function
 - Could also be used in network edge devices (where the network touches the real world)
 - Reduced Function Device
 - Carriers limited (as specified by the standard) functionality to control cost and complexity
 - General usage will be in network edge devices
- All of these devices can be no more complicated than the transceiver, a simple 8-bit MCU and a pair of AAA batteries!

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters		
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbols/s)	Symbols
868/915	868-868.6	300	BPSK	20	20	Binary
	902-928	600	BPSK	40	40	Binary
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal

- The two PHY bands (UHF/Microwave) have different physical, protocolbased and geopolitical characteristics
 - Worldwide coverage available at 2.4GHz at 250kbps
 - 900MHz for Americas and some of the Pacific
 - 868MHz for European-specific markets

- Potential for interference exists in every ISM band, not just 2.4GHz
- IEEE 802.11 and 802.15.2 committees are addressing coexistence issues
- ZigBee/802.15.4 Protocol is very robust
 - Clear channel checking before transmission
 - Backoff and retry if no acknowledgement received
 - Duty cycle of a ZigBee-compliant device is usually extremely low
 - It's the "cockroach that survives the nuclear war"
 - Waits for an opening in otherwise busy RF spectrum
 - Waits for acknowledgements to verify packet reception at other end

802.11b, 802.15.x BER Comparison

Παν. Θεσσαλίας

Wakeup radio MAC protocols

- Simplest scheme: Send a wakeup "burst", waking up all neighbors ! Significant overhearing
 - Possible option: First send a short *filter packet* that includes the actual destination address to allow nodes to power off quickly
- Not quite so simple scheme: Send a wakeup burst including the receiver address
 - Wakeup radio needs to support this option
- Additionally: Send information about a (randomly chosen) data channel, CDAM code, ... in the wakeup burst
- Various variations on these schemes in the literature, various further problems
 - One problem: 2-hop neighborhood on wakeup channel might be different from 2-hop neighborhood on data channel
 - Not trivial to guarantee unique addresses on both channels

Further protocols

- MAC protocols for ad hoc/sensor networks is one the most active research fields
 - Tons of additional protocols in the literature
 - Examples: STEM, mediation device protocol, many CSMA variants with different timing optimizations, protocols for multi-hop reservations (QoS for MANET), protocols for multiple radio channels, ...
 - Additional problems, e.g., reliable multicast
- This chapter has barely scratched the surface...

Summary

- Many different ideas exist for medium access control in MANET/WSN
- Comparing their performance and suitability is difficult
- Especially: clearly identifying interdependencies between MAC protocol and other layers/applications is difficult
 - Which is the best MAC for which application?
- Nonetheless, certain "common use cases" exist
 - IEEE 802.11 DCF for MANET
 - IEEE 802.15.4 for some early "commerical" WSN variants
 - B-MAC for WSN research not focusing on MAC

