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Abstract— Power control can significantly enhance the perfor-
mance of congestion control mechanisms, such as TCP, in wireless
networks. We present a distributed power control algorithm that
works together with the original TCP protocol to increase end-
to-end throughput and energy efficiency of multihop data trans-
missions in CDMA wireless ad hoc networks. We prove that the
resulted nonlinear coupled system converges to the global opti-
mality of network utility maximization with elastic link capacities.
This cross-layer algorithm can be interpreted as using link queu-
ing delays as shadow prices to coordinate bandwidth demand and
supply. Various simulations show desirable properties of the al-
gorithms, including robustness to channel variations and fading
estimation errors, and flexibility in the tradeoff between perfor-
mance optimality and algorithmic simplicity.

I. INTRODUCTION

In order to achieve in a power efficient manner high end-
to-end throughput in wireless ad hoc networks with multihop
transmissions, both congestion control and power control need
to be optimally designed and distributively implemented. Con-
gestion control mechanisms, such as those in TCP, regulate al-
lowed source rates so that total traffic load on any link does not
exceed the available capacity. At the same time, link capacities
depend on the signal to interference ratios, which in turn de-
pend on the power control policy. This paper derives, analyzes,
and simulates a distributed algorithm for joint congestion con-
trol and power control that can significantly increases end-to-
end throughput and energy efficiency in a wireless multihop
network. This performance enhancement is achieved without
having to modify the existing TCP protocol stack.

It has been shown in Kelly et. al. [4] that congestion control
mechanisms can be viewed as distributed algorithms solving
the following network utility maximization problem:

maximize
∑

s Us(xs)
subject to

∑
s∈L(s) xs ≤ cl, ∀l,

x � 0
(1)

where source rates x = {xs} are the optimization variables,
link capacities {cl} are the constant parameters, L(s) denotes
the set of links l traversed by the connection originating from
source s, and the utility Us for each source can be any increas-
ing, concave function.

In particular, versions of TCP have recently been modelled
and analyzed (e.g., [5], [6], [7], [8]) as primal-dual distributed
algorithms implicitly solving the above utility maximization

for different utility functions. As each source updates its al-
lowed rate (the primal variable) through a TCP algorithm, each
link updates a congestion indicator (the dual variable, which
can be interpreted as the ‘shadow price’ of using the link)
through a queue management algorithm, and implicitly feeds
it back to all the sources using this link.

However, in this standard formulation of network utility
maximization, link capacities {cl} are assumed to be fixed
constants. This is not true in wireless networks where power
control changes attainable data rates on the links. Intuitively,
a proper power control algorithm would allocate the right
amount of power at the right nodes to alleviate the bandwidth
bottlenecks by increasing capacity on the appropriate links,
which will then induce an increase in end-to-end TCP through-
put. What complicates this approach is that changing the trans-
mit power on one link also affects the data rates available on
other links, due to the interference in wireless networks.

In this paper, we make precise the above intuition in the
framework of the following utility maximization with elastic
link capacities:

maximize
∑

s Us(xs)
subject to

∑
s∈L(s) xs ≤ cl(P), ∀l,

Pl ≤ Pl,max, ∀l,
P,x � 0

(2)

where the optimization variables are both source rates x =
{xs} and transmit powers P = {Pl}. The key difference from
the standard utility maximization (1) is that link capacities {cl}
are now nonlinear and global functions of the transmit powers
P. We will show that in a wireless CDMA multihop network,
as power control changes bandwidth supply and congestion
control regulates bandwidth demand, they can be distributively
coordinated through ‘shadow prices’ to globally solve (2). The
advantage is a significant increase in TCP throughput and en-
ergy efficiency of multihop data transmissions.

There has been an extensive research literature on wireless
network power control for different objectives, such as mini-
mizing total power. This paper shows that if the objective is
to maximize network utility for traffic running on TCP, then
power control can be carried out simultaneously with con-
gestion control to increase end-to-end throughput using less
power. This can be viewed as an example of co-design across
physical layer and transport layer. The power control algo-
rithm proposed here can be used together with any congestion
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control algorithm, and we focus on TCP Vegas in this paper.
In section II, we briefly review the source algorithm and

queue algorithm that solve the utility maximization (1) for TCP
Vegas. In section III, utility maximization with elastic link ca-
pacities (2) is solved through a combination of a new power
control algorithm and the original TCP Vegas algorithms. The
algorithms can be distributively implemented on a multihop
network, despite the fact that link capacity on a wireless link
is a global function of all the interfering powers. Section III
also offers interpretations in terms of demand-supply coordi-
nation through shadow prices. In section IV, we prove that the
nonlinear coupled system formed by the proposed algorithms
will converge to the global optimality of utility maximization
with elastic link capacities, and illustrate through simulations
that end-to-end throughput and energy efficiency can be sig-
nificantly increased. Results on robustness and simplified ver-
sions of the algorithms are presented in section V.

II. BACKGROUND: TCP VEGAS ALGORITHMS

TCP Vegas [2] is a sliding window based transport proto-
col that regulates the allowed source rates in a mesh network.
Let ds be the propagation delay for the path originating from
source s, and Ds be the propagation plus queuing delay. When
there is no congestion along all the links used by source s, we
have ds = Ds. The window size ws is updated depending on
whether the difference between the expected rate ws

ds
and the

actual rate ws

Ds
is smaller than a parameter αs:

ws(t+1) =




ws(t) + 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) < αs

ws(t) − 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) > αs

ws(t) else.

(3)

The end-to-end throughputs are the allowed source rates
xs(t) = ws(t)

Ds(t) , which are the primal variables of the utility
maximization problem (1) where Us(xs) = αsds log xs [7].

The dual variables (or shadow prices) λl for TCP Vegas are
shown [7] to be the queuing delays along each link l, updated
as follows:

λl(t + 1) =


λl(t) +

γ

cl


 ∑

s:l∈L(s)

xs(t) − cl







+

(4)

where γ is a constant step size, and the term
1
cl

(
∑

s∈L(s) xs(t) − cl) represents the queuing delay as
the ratio between packet backlog and link capacity.

III. DISTRIBUTED POWER CONTROL ALGORITHM:
DERIVATION AND INTERPRETATION

Since throughput performance of TCP Vegas is determined
by the underlying utility maximization (1), we pose the fol-
lowing question: can end-to-end throughput over a wireless
ad hoc network be increased by solving the utility maximiza-
tion with elastic link capacities (2)? In the next two sections,
we show that the answer is positive, and that throughput, as

well as throughput per watt of power transmitted, can be in-
creased by augmenting congestion control with a distributed
power control, without modifying the existing TCP algorithms
(3,4).

We first specify the form of network utility problem with
elastic link capacities (2), using the attainable data rate of a
link as its practical ‘capacity’. For a wireless CDMA multihop
network with logical links indexed by l, the data rates attain-
able can be written for a large set of modulation techniques
as

cl =
1
T

log(1 + KSIRl)

where T is the symbol period, K is a constant depending on the
modulation and required bit error rate, and SIRl is the signal to
interference ratio for link l defined as SIRl = PlGll∑

k �=l
PkGlk+nl

for a given set of path losses Glk (from the transmitter on link
k to the receiver on link l) and a given set of noises nl (for the
receiver on link l). For high SIR, cl can be approximated as
1
T log(KSIRl).

Now associate a Lagrange multiplier λl for each of the con-
straints

∑
s∈L(s) xs ≤ cl(P) in (2). Using the KKT optimality

conditions from optimization theory [1], solving problem (2)
is equivalent to satisfying the complementary slackness con-
dition (which is satisfied here since the equilibrium queuing
delays must be zero if the total equilibrium ingress rates at a
router is strictly smaller than the egress link capacity) and find-
ing the stationary points of the Lagrangian Isystem(x,P,λ) =
(
∑

s Us(xs)−
∑

l λl

∑
s∈L(s) xs)+(

∑
l λlcl(P)). By the lin-

earity of the differentiation operator, this can be decomposed
into two separate maximizations:

maximizex�0

∑
s

Us(xs) −
∑

s

∑
l∈L(s)

λlxs,

maximizePmax�P�0 Ipower(P,λ) =
∑

l

λlcl(P).

The first maximization is already implicitly solved by the
congestion control mechanism [7]. But we still need to solve
the second maximization, and use the Lagrange multipliers λ
as the shadow prices to allocate exactly the right power to each
transmitter, thus increasing the link data rates and reducing
congestion at the bottlenecks of the overall network. For scal-
ability, this power control must also be implemented distribu-
tively, just like the congestion control part. Since the data rate
on each wireless link is a global function of all transmit powers
that may cause interference, the power control problem cannot
be nicely decoupled into local problems for each link as in the
case treated in [9]. However, we show that distributed solution
is still feasible, as long as message passing [3] is allowed where
an appropriate set of limited information is passed among the
nodes.

By taking the derivative of Ipower(P,λ) with respect to Pl,
we evaluate the lth component of the gradient ∇Ipower to be

λl(t)
Pl

−
∑
j �=l

λj(t)Gjl∑
k �=j GjkPk + nj

.
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Consequently, the gradient descent method [1] with a constant
step size κ to maximize Ipower(P, λ):

Pl(t + 1) = Pl(t) + κ∇Ipower

= Pl(t) + κ


λl(t)

Pl
−

∑
j �=l

λj(t)Gjl∑
k �=j GjkPk + nj




can be written (after some simplifications) as the following dis-
tributed power control algorithm:

Pl(t + 1) = Pl(t) +
κλl(t)
Pl(t)

− κ
∑
j �=l

Gljmj(t) (5)

where mj are messages passed from node j to the transmitter
on link l:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj
.

Therefore, taking in the current values of λj(t)SIRj(t)
Pj(t)Gjj

as the
messages, the transmitter on link l adjusts its power level in the
next time slot in two ways: first increases it directly propor-
tional to the current shadow price (i.e., queuing delay in TCP
Vegas) and inversely proportional to the current power level,
then decreases it by a weighted sum of the messages from all
neighbors, where the weights are the path losses. All powers
are capped by Pl,max during the iterations. Note that the values
of λj , SIRj and Pj can be directly measured by node j locally,
and the path loss Gjj usually estimated through periodic train-
ing sequences.

Intuitively, if the local queuing delay is high, transmit power
should increase, with more moderate increase when the current
power level is already high. If queuing delays on other links
are high, transmit power should decrease in order to reduce
interference on those links. The unmodified source algorithm
(3) and queue algorithm (4) of TCP Vegas, together with the
new power control algorithm (5), form a set of distributed, joint
congestion control and resource allocation for wireless ad hoc
networks.

Shadow Price

(Supply)(Demand)

  Shadow Price     Shadow Price

P

cx

x

Power Control
Transmit Node

TCP 
Source Node

Node Queue
Intermediate

Fig. 1. Coupled dynamics of joint congestion and power control.

We conclude this section by emphasizing that as transmit
powers change, SIR and thus data rate also change on each
link, which in turn change the congestion control dynamics. At
the same time, congestion control dynamics change the queu-
ing delays λ, which in turn change transmit powers. Figure
1 shows this nonlinear coupling of supply (regulated by power
control) and demand (regulated by congestion control) through
the shadow prices λ. As shown in (3) and (5) respectively, a
higher price λl induces an increase in supply (higher Pl) and a
decrease in demand (lower xs,∀s : l ∈ L(s)).

IV. PERFORMANCE AND SIMULATION

In general, distributed gradient descent with a constant step
size may not converge [1]. However, we prove that conver-
gence of the coupled nonlinear system as shown in Figure 1 is
guaranteed, as long as link data rates do not become arbitrarily
small and link queuing delays do not become arbitrarily large.
These are reasonable engineering assumptions under any nor-
mal network operations, since a link with arbitrarily small data
rate is essentially disconnected, and a queue with finite buffer
cannot support arbitrarily large queuing delay. We have

Theorem 1: Assuming that transmit powers Pl are within a
range between Pl,min and Pl,max for all links l, and link queu-
ing delays λl are upper bounded. For small enough step sizes γ
and κ, the distributed power control (5) coupled with TCP Ve-
gas algorithm (3,4) converge to the global optimality of joint
congestion control and power control (2).

In addition to convergence guarantee, total utility∑
s Us(xs) for the network with power control can never be

smaller than that without power control, simply because by
allowing power adaptation, we are optimizing over a larger
constraint set. Note that an increase in total utility is not
equivalent to a higher total throughput, since Us can be any
increasing, concave functions of xs. However, empirical
evidence from simulation shows that in many cases, both
throughput and energy efficiency (measured by the total
Source rate to total Power Ratio (SPR)) will indeed rise
significantly after power control (5) regulates bandwidth
supply and the dual variables λ balance supply with demand.

Using TCP Vegas (3,4) and the new power control (5), we
simulated the above joint power and congestion control for var-
ious wireless multihop networks with different topologies and
fading environments. The advantage of such a joint control can
be captured even in a small illustrative example, where the net-
work topology and routes for four multi-hop connections are
shown in Figure 2. The fading coefficients are determined by
the relative distances.

3

2

4
  1

Fig. 2. Network topology and routes for an illustrative simulation example.

Transmit powers, as regulated by the proposed distributed
power control, and source rates, as regulated through TCP Ve-
gas window udpate, are shown in Figure 3. The initial condi-
tions of the graphs are based on the equilibrium states of TCP
Vegas with fixed power levels. With power control, it can be
seen that transmit powers P distributively adapt so as to in-
duce a favorable capacity and queuing delay configurations on
the overall network, which in turn lead to increases in end-to-
end throughput as indicated by the rise in all the allowed source
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rates. Notice that some link capacities actually decrease while
the capacities on the bottleneck links rise to maximize the to-
tal utility. This is achieved through a distributive adaptation
of powers, which lowers the power levels that cause most in-
terference on the bottleneck links. Confirming our intuition, a
‘smart’ allocation of power tends to reduce the spread of queu-
ing delays, thus preventing any link from becoming the bot-
tleneck. As expected from distributed gradient methods, con-
vergence to equilibrium can be accelerated by using a larger
constant step size κ, at the expense of wider variances around
equilibrium. This is shown in the top right graph in Figure 4.

We indeed achieve what this co-design across physical and
transport layers is aiming at. The end-to-end throughput per
watt of power transmitted (i.e., SPR) is 82% higher with power
control. A series of simulations are conducted based on dif-
ferent fading environments and TCP Vegas parameter settings,
where we see that power control (5) increases TCP throughput
and SPR in all experiments, and in 78% of the instances, en-
ergy efficiency rises by 75% to 105%, compared to TCP with-
out power control. Power control and congestion control, each
running distributively and coordinated through the dual vari-
ables of queuing delay, work together to increase the energy
efficiency of multi-hop transmission across the entire network.
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Fig. 3. Performance of joint congestion control and power control.

V. ROBUSTNESS AND COMPLEXITY

In this section, we present results on three issues related to
the practical implementation of the joint congestion and power
control algorithms in a wireless multihop network:

1) Effect of wrong estimates of path losses at various nodes.
2) Effect of packet loss due to wireless channel outage dur-

ing deep fading.
3) Reduction of implementation complexity through partial

message passing.

First, it is assumed in our power control algorithm (5) that
the path losses Gij are perfectly estimated by the receiver, and

Gii are perfectly estimated by the sender and receiver. While
training sequence can help accurately estimate the Gii factors,
the assumption of perfect tracking of the Gij factors is stronger
than most practical systems can support. It is interesting to
know how much error in the estimation of Gij , or fluctuations
in Gij themselves, can be tolerated while maintaining the con-
vergence of joint power control and TCP congestion control.

Denoting the error in the estimation of Gij at time
t as ∆Gij(t), and suppressing the time index on
λ(t),P(t), SIR(t),∆Gij(t), we provide a sufficient con-
dition in the following

Corollary 1: Convergence to global optimality of (2)
through (3,4,5) is maintained if there exists a T such that for
all times t ≥ T , the following inequality holds:

∑
l

∑
j �=l

∑
k �=l

(GjlGkl − ∆Gjl∆Gkl)
λjλkSIRjSIRk

GjjGkkPjPk

> 2
∑

l

∑
j �=l

λlλjGjl

PlPjGjj
SIRj − λ2

l

P 2
l

.

While Corollary 1 gives a test of convergence under wrong
estimates of Gij for any network, empirical experiments can be
carried out in simulations where the Gij factors in (5) are per-
turbed randomly within a range. The result of one such exper-
iment is shown in the bottom left graph in Figure 4, where the
Gij factors are generated at random between +25% and −25%
of their true values. Compared to the baseline throughput re-
sults shown in the top left graph, we see that the algorithms
converge to the same global optimality after a longer and wider
transient period. A series of such experiments show that con-
vergence is maintained when the estimated Gij are within 30%
of their true values, which suggests that the algorithms are ro-
bust within reasonable bounds.

Another peculiar feature of wireless transmissions is that
during deep fading, SIR on a link may become too small for
correct decoding at the receiver. This channel outage induces
packet loss on the link. Consequently the queue buffer size
becomes smaller than it should have been. Since queuing de-
lay is implicitly used as the dual variable in TCP Vegas, such
channel variations lead to incorrect values of the dual variables.
Sources will mistake the decrease in a total queuing delay as
an indication of reduced congestion level, and increase their
source rates through TCP update accordingly. Having incor-
rect pricing on the wireless links may thus prevent the joint
system from converging to optimality.

Similar to Corollary 1, we have the following sufficient con-
dition for convergence, with outage induced packet loss on link
l denoted as ∆yl:

Corollary 2: Convergence to global optimality of (2)
through (3,4,5) is maintained if there exists a T such that for
all times t ≥ T , the following inequality holds:

∑
l

[
1

P 2
l

(
λ2

l −
(

∆yl

cl

)2
)

+
∑

j

(
GjlSIRj

GjjPj

)2
(

λj −
(

∆yj

cj

)2
)]

> 2
∑

l

∑
j �=l

(
λjλl − ∆yl∆yj

clcj

)
GjlSIRj

GjjPlPj
.
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Fig. 4. Robustness of joint power control and TCP Vegas. Top left case is the
baseline performance of the four end-to-end throughput. Top right case shows
that a larger step size in the algorithm accelerates convergence but also leads to
larger variance. Bottom left case shows that the algorithm is robust to wrong
estimates of fading coefficients. Bottom right case shows robustness against
packet losses on links with wireless channel outage.

Because the chance of having channel outage simultane-
ously at all links is small, it is reasonable to expect that only
few of ∆yl are nonzero at any time. We again empirically ex-
periment with channel outage induced packet loss at various
links, and a typical result is shown in the bottom right graph in
Figure 4, where the underlying outage probability is 20%. For
the topology in Figure 2, we find that the algorithms are ro-
bust up to 25% of outage probability, a level that most systems
rarely exceed.

Another issue concerning the practical implementation of
the joint power control and TCP congestion control is on
trading-off performance optimality with implementation sim-
plicity. The increases in TCP throughput and energy efficiency
has been achieved with a rise in the communication complex-
ity of message passing and the computational complexity of
power update. Although the shadow prices λ efficiently coor-
dinate bandwidth demand and supply, there can still be many
terms in the

∑
j �=l Gljmj sum in (5) as the number of nodes

increases. Fortunately, those transmitters far away from trans-
mitter j will be correspondingly multiplied by a smaller Glj .
Their messages mj will therefore be given smaller weights in
the power update.

This leads to a simplified power control algorithm, where
only messages from a set Jl of other transmitters are passed to
the transmitter on link l. Naturally, if there are M elements in
set Jl, they should correspond to nodes with the M largest Glj

toward node l. Power update equation now becomes:

Pl(t + 1) = Pl(t) +
κλl(t)
Pl(t)

− κ
∑
j∈Jl

Gljmj . (6)

The reduction in complexity is measured by the ratio

∆COM =
∑

l
|Jl|

N(N−1) where N is the total number of transmit-
ters in the network. Obviously, 0 ≤ ∆COM ≤ 1, and a smaller
∆COM represents a simpler and less optimal message passing
and power update. Similar to Corollary 1, the following suf-
ficient condition of convergence with the simplified algorithm
(6) can be shown:

Corollary 3: Convergence to global optimality of (2)
through (3,4,6) is maintained if there exists a T such that for
all times t ≥ T , the following inequality holds:

∑
l

∑
j∈Jl

(
GjlλjSIRj

GjjPj

)2

> 2
∑

l

∑
j �=l

λlλjGjl

PlPjGjj
SIRj − λ2

l

P 2
l

.

VI. CONCLUSIONS

We present a distributed power control algorithm that works
together with the original TCP algorithms to significantly in-
crease end-to-end throughput and energy efficiency of multi-
hop transmission in wireless ad hoc networks. No modifica-
tion to current TCP protocols is needed to achieve the opti-
mal balancing between bandwidth demand (regulated through
congestion control) and supply (regulated through power con-
trol). We prove that the coupled nonlinear system converges
to global optimality of the joint congestion control and power
control problem. The proposed algorithms are robust to wire-
less channel variations and errors in fading coefficient estima-
tions. Slightly suboptimal but much simplified versions of the
algorithms are also presented for scalable architectures. Fur-
ther study is being carried out to investigate the transient prop-
erties of the new algorithms, such as the rate of convergence.
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