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Abstract— We address the problem of allocating a
divisible resource to buyers who value the quantity
they receive, but strategize to maximize their net payoff
(value minus payment). An allocation mechanism is used
to allocate the resource based on bids declared by the
buyers. The bids are equal to the payments, and the
buyers are assumed to be in Nash equilibrium. For
two buyers such an allocation mechanism is found that
guarantees that the aggregate value is always greater
than 7

8
of the maximum possible, and it is shown that no

other mechanism achieves a larger ratio. For a general
finite number of buyers an allocation mechanism is given
and an expression is given for its worst case efficiency.
For three buyers the expression evaluates to 0.8737,
for four buyers to 0.8735 and numerical computations
suggest that the numerical value does not decrease
when the number of buyers is increased beyond four.
A potential application of this work is the allocation of
communication bandwidth on a single link.

I. INTRODUCTION

Players in non-cooperative games try to maximize
their own payoff functions. If such a game has a
designer with preferences on the outcomes, it may be
possible for the designer to decide on strategy spaces
and the corresponding outcomes (i.e. the mechanism)
so that the players’ strategic behavior will not lead to
an outcome that is far from desirable.

Consider the game involving the allocation of a
single unit of a divisible resource to competing buyers
each of whom has to make a payment in compensa-
tion. Each buyer obtains a certain amount of value
from allocations of the resource made to it, but strate-
gizes to maximize his net payoff - the value minus
payment. An allocation of the resource that maximizes
the aggregate value (given the buyer value functions)
is said to be efficient, other allocations with lower
aggregate value are inefficient.

Nash equilibria are fundamental in the study of
games of this nature. That inefficient allocations may
occur at Nash equilibria is well known in the eco-
nomics literature [9]. The question addressed in this
paper is: how to design an allocation mechanism
that results in the worst-case inefficiency of a Nash
equilibrium being as low as possible ?

Recent research contains many examples of efforts
to quantify the inefficiency of Nash equilibria in
games related to resource allocation. Koutsoupias and
Papadimitriou [5] and Roughgarden and Tardos [4]
quantify worst-case inefficiencies of Nash equilibria
in routing games. Johari and Tsitsiklis [1] quantify
the inefficiency in allocating a divisible good with a
uniform price. All of these papers use the ratio of the
welfare at Nash equilibrium to the welfare at the social
optimum, thus evaluating fractional efficiency.

Auctions of divisible goods have also received much
attention. Besides [1] mentioned above, Maheswaran
and Başar [7] and Gopalkrishnan and Hajek [2] also
deal with allocation of a single divisible good. Kelly
[6] shows that if the buyers are not strategic but price-
taking, allocation of a divisible good can be made in a
socially optimum way. In the economics literature this
model appears in Back and Zender [8] who advocate
using discriminatory pricing for the sale of treasury
bonds.

For two buyers this paper finds the mechanism that
has the lowest worst-case fractional inefficiency for
allocating a divisible good when the bids that the
buyers place are the payments they will make. The
mechanism ensures that any Nash equilibrium (for
any set of buyer preferences) will be at least 7

8

th
as

efficient as the optimal allocation. The extension to n

buyers has not been completely evaluated, but numer-
ical computations suggest that the worst possible case
(with any number of buyers) has a fractional efficiency
of 0.8735. Other characteristics like uniqueness of
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Fig. 1. The allocation rule τ : buyer Bi pays wi and receives τi

equilibria are also investigated.

II. THE SETUP

Consider the situation where one unit of a divisible
good is to be split up among n buyers. Let w =
[w1, . . . , wn] be the (non-negative) payments that the
buyers make and let x = [x1, . . . , xn] be the quantities
they are allocated as a result. The allocation is made
according to a pre-specified allocation mechanism τ ,
so that given the payments w the allocation to buyer
i is given by xi = τi(w). This procedure is depicted
in Figure.

An allocation rule τ is said to be a valid allocation
mechanism if it has the following properties:

A1 It is an allocation: τi ≥ 0 and
∑

i τi(w) = 1
for all values of w such that

∑
i wi > 0. Also,

τi(0,w−i) = 0 for all w−i i.e. a zero bid wi = 0
will get zero allocation (even if all bids zero).

A2 It is smooth: τi(wi,w−i) is differentiable, in-
creasing and concave in wi for all w−i, except
in the case when w−i = 0. Also for each i,
τi(w) and ∂τi

∂wi

(w) are continuous in the vector
of payments w over the set R

n
+ − {0}.

A3 It is symmetric in the buyer indices: τi(w) =
τσ(i)(σ(w)) for all permutations σ of the indices
i = 1, . . . , n

A4 It is scale free: for all real γ > 0 and 0 ≤ i ≤ n,
τi(γw) = τi(w). 1

One example of a mechanism in the class above is the
proportional allocation (or uniform price mechanism)
that divides the good so that each buyer gets a quantity
proportional to the payment it made.

1Stated differently, the mechanism is independent of the units
in which the payments are made.

The buyers each have a value function Ui(xi) for
the amount of the good they are allocated. A value
function is said to be valid if it is differentiable,
concave and strictly increasing, with Ui(0) = 0. This
paper deals only with valid value functions.

The aggregate value (or social welfare) of an allo-
cation x is the sum of the individual values. For a set
of value functions, an allocation x

∗ is efficient if it has
the largest total value:

∑

i

Ui(x
∗
i ) ≥

∑

i

Ui(xi) ∀ x

Whether an allocation is efficient depends only on
the functions Ui and not on τ . The efficiency of any
allocation x is defined to be the fraction

∑
i Ui(xi)∑
i Ui(x∗

i )

By definition the efficiency lies between 0 and 1.

Given the payments w, the profit Pi of each buyer
is the value derived from the allocation minus the
payment made:

Pi(wi,w−i) = Ui(τi(w)) − wi

Note that Pi is concave in wi for every fixed value of
the other amounts w−i.

The buyers play a non-zero-sum non-cooperative
game with strategy variables wi and payoff (or reward)
functions Pi respectively. A vector of payments w̃ is
said to be a Nash equilibrium if individual deviations
(changes in payment made) cannot help a buyer:

Pi(w̃i, w̃−i) ≥ Pi(wi, w̃i) ∀ i, wi ≥ 0

For a vector w̃ to be an Nash equilibrium, i.e.
for w̃ ∈ N (τ, {Ui}) the necessary and sufficient
conditions are that w̃i > 0 for at least two buyers
i and

U ′
i(τi(w̃))

(
∂ τi

∂wi
(w̃)

)
− 1

{
= 0 if w̃i > 0

≤ 0 if w̃i = 0
(2)

for all i = 1, . . . , n.

It can be shown that Nash equilibria exist with the
assumptions stated. The way to do this is to consider,
for the given set of value functions Ui, the ε-game
where each of the buyers are forced to bid at least
ε. Also, the payments would never exceed the value
obtained from having the entire unit of the resource,
so we can assume that wi ≤ Ui(1). Then, by Theorem
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1 in Rosen [3] there exists an NEP w̃ε for the ε-
game. A sequence εn → 0 will have a sequence of
corresponding equilibria w̃εn

. Consider a convergent
subsequence in the sequence of equilibria, and let w̃

be its limit point. Then it can be shown that w̃ will
satisfy the necessary and sufficient conditions as stated
above. 2

Given a set of value functions {Ui} and valid
allocation mechanism τ , let N (τ, {Ui}) be the set of
Nash equilibria and let x

∗ be an efficient allocation.
Then, the worst case efficiency when the good is
allocated according to τ is given by

inf
{Ui}

inf
w̃∈N

∑
i Ui(τi(w̃))∑

i Ui(x∗
i )

The worst case is taken over a very broad set of
buyer preferences and numbers, and indeed many
allocation mechanisms are likely to have zero worst-
case efficiency. Stated in these terms, [1] proves that
the worst case efficiency of the proportional allocation
mechanism is 3

4 .

Our objective is to find the allocation mechanism
with the highest worst-case efficiency, in the class of
valid mechanisms (i.e. those that satisfy assumptions
A1-4). We also want to find the value of this best
possible worst case efficiency:

sup
τ

inf
{Ui}

inf
w̃∈N

∑
i Ui(τi(w̃))∑

i Ui(x∗
i )

(3)

III. REDUCTION TO LINEAR VALUE FUNCTIONS

Following [1], which considered only the propor-
tional allocation mechanism, it is shown in this section
that for the purposes of evaluating the worst case
performance of any valid allocation it is sufficient to
assume that the buyers have linear value functions.
This is crucial to the analysis that follows, for two
reasons: it simplifies the space over which the infimum
has to be taken, and the efficient allocation has the
simple form of giving all to the buyer with the highest
slope. Note that the results in this section do not use
the scale-free assumption A4 and have no restrictions
on the number of buyers except that it be finite.

Lemma 1 is reproduced from [1], where it appears
as Lemma 4. The reader is referred to the original
paper for a proof.

2If assumption A2 does not hold it is possible to construct
examples where there are no Nash equilibria.

Lemma 1 (Johari and Tsitsiklis [1]): For any value
functions {Ui} if an efficient allocation is x

∗ and x is
any other allocation, the following inequality holds:

∑
i Ui(xi)∑
i Ui(x∗

i )
≥
∑

i U
′
i(xi)xi

maxi U
′
i(xi)

As in [1], Lemma 1 implies that considering only
linear value functions for the buyers is sufficient.

Proposition 1: For every τ satisfying A1-3, valid
value functions {Ui} and w̃ ∈ N (τ, {Ui}) there
exist linear value functions Ûi(xi) = αixi such that

w̃ ∈ N (τ, {Ûi}) 4
= N (τ, α) and

∑
i Ui(τi(w̃))∑

i Ui(x∗
i )

≥
∑

i αiτi(w̃)

maxi αi
(4)

where x
∗ is an efficient allocation for {Ui}.

Proof: Since w̃ ∈ N (τ, {Ui}), the vector w̃ satisfies
the conditions (2). Consider linear value functions
defined by

Ûi(xi) = αixi = U ′
i(τi(w̃))xi

It is easy to see that w̃ ∈ N (τ, α) by checking that the
conditions (2) hold for the new linear value functions
αixi. Equation (4) is exactly the same as the statement
of Lemma 1 with xi = τi(w̃) and writing U ′

i(xi) = αi

in the RHS. �

Note that the LHS of (4) is the efficiency of a Nash
equilibrium for τ, {Ui} and the RHS is the efficiency
of the same Nash equilibrium for τ, α (since for linear
value functions an efficient allocation gives all of the
good to the buyer with the biggest slope). Thus Propo-
sition 1 says that the efficiency of a particular Nash
equilibrium pair is lowest when the corresponding
value functions are linear. Thus, for the infimum in
the objective function (3) it is sufficient to consider
linear value functions for both the users.

If αixi are the value functions of the buyers and
N (τ, α) is the set of Nash equilibria for these under
allocation mechanism τ then the objective function (3)
can be rewritten as

sup
τ

inf
α

inf
w̃∈N (τ,α)

∑
i αiτi(w̃)

maxi αi
(5)

The rest of the analysis in this paper deals with the
objective function given above.
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IV. TWO BUYERS

Consider first the case of there being only two
buyers. Since assumption A3 asks for invariance with
respect to permutation of indices, it is sufficient for the
two-buyer case to specify a mechanism by the amount
it allocates to the higher buyer (who makes the larger
payment) and to the lower buyer.

Let wl be the lower payment made and wh be the
higher payment, i.e. wl ≤ wh and let τ∗(wl, wh) be
the allocation mechanism given by

τ∗
l =

wl

2wh

and τ∗
h = 1 − wl

2wh

(6)

where τ∗
l is the allocation to the lower buyer and τ ∗

h

is to the higher buyer. In this section we will prove
that this is indeed the optimal valid mechanism: it has
the highest worst-case efficiency.

The price (payment made for unit quantity received)
each buyer pays is different, making this a discrimi-
natory price mechanism with the prices determined by
the willingness of each buyer to pay. The mechanism
has a “volume discount”: a higher buyer pays a lower
price, and so has an incentive to bid high and - as a
result - get a higher allocation. This discount partially
offsets the effect that a high buyer tends to bid up
the price and work against himself, causing a strategic
high buyer to buy less quantity than is efficient.

The following lemma is easily verified, and we omit
the proof.

Lemma 2: τ ∗ is a valid allocation mechanism.

The theorem that follows shows that this is the
optimal valid two-buyer mechanism. First though we
need a proposition:

Proposition 2: For any two-buyer valid allocation
mechanism τ there exists a function φ : [0, 1] → [0, 1]
such that

τl(wl, wh) = φ

(
wl

wh

)
and τh(wl, wh) = 1−φ

(
wl

wh

)

whenever wh > 0. We say that the allocation τ

is based on φ. The function φ further satisfies the
following properties:

B1 0 ≤ φ(v) ≤ 1 for all v ∈ [0, 1], with φ(0) = 0
and φ(1) = 1

2
B2 φ(v) is differentiable, increasing and concave in

v for all v ∈ [0, 1].

Proof: Given a valid allocation τ , define φ(v)
4
=

τl(v, 1), i.e. the allocation to the lower buyer when
the lower payment is v and the higher is 1. Then, it
is easy to see that when wh > 0,

τl(wl, wh) = τl

(
wl

wh

, 1

)
= φ

(
wl

wh

)

where the first equality follows from the scale-free
assumption A4 with γ = 1

wh

. This and A1 imme-
diately imply that τh(wl, wh) = 1 − φ( wl

wh

) and that
0 ≤ φ(v) ≤ 1. Also by A1, when the lower payment is
0 the lower allocation is 0, and this gives us φ(0) = 0.
When both payments are equal and non-zero, say
wl = wh = w > 0, the symmetry assumption A3
implies that τl(w, w) = 1

2 and hence φ(1) = 1
2 . Thus φ

satisfies B1. The assumption A2 that τl be increasing,
concave and differentiable in wl when wh > 0 implies
that B2 holds for φ. Thus the proposition is proved.
�

Notice that the converse does not hold: not all
functions φ satisfying B1, B2 correspond to valid
allocation mechanisms, since B1, B2 do not address
the issue of concavity and differentiability in one of
the payments w1 at the point of the other payment w2,
i.e. in the region where w1 < w2 becomes w1 > w2.
Maximizing the worst case efficiency over the space
of functions satisfying B1, B2 thus yields an upper
bound on the efficiency of valid allocations:

sup
τ

inf
α

inf
w̃∈N (τ,α)

∑
i αiτi(w̃)

maxi αi

≤ sup
φ

inf
α

inf
w̃∈N (φ,α)

∑
i αiφi(w̃)

maxi αi

where φi is the allocation to buyer i from an allocation
based on function φ. The following theorem evaluates
the right hand side for two users.

Theorem 1: When two buyers are present, the worst
case efficiency of τ ∗ is 7

8 , and no valid mechanism
can achieve a higher ratio.

Proof: We will first prove that 7
8 represents an upper

bound, and then show achievability.

By the reasoning in Section III, for the purposes
of worst case analysis it is sufficient to consider
linear value functions with slopes αl and αh for the
two users, both being strictly positive. In light of
Proposition 2 above we will consider functions φ

satisfying B1-2. If (w̃l, w̃h) ∈ N (φ, α), then the Nash
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equilibrium conditions of (2) give

1

w̃h

φ′

(
w̃l

w̃h

)
=

1

αl

and
w̃l

w̃2
h

φ′

(
w̃l

w̃h

)
=

1

αh

The above equations imply that for a given pair
of linear value functions there will be unique Nash
equilibrium (w̃l, w̃h) and combining the two equations
above gives αl

αh

= w̃l

w̃h

. The efficiency of the unique
Nash equilibrium for the given slopes is thus

Eα =
αlφ

(
w̃l

w̃h

)
+ αh

(
1 − φ

(
w̃l

w̃h

))

αh

Minimizing this over all α such that αl ≤ αh will give
the worst case performance of φ, and maximizing this
over all φ will give the upper bound. Denoting v = αl

αh

,
the upper bound is given by

sup
φ

min
0≤v≤1

vφ(v) + 1 − φ(v)

The function φ∗(v) = v
2 satisfies B1-2 and has φ(v) ≤

φ∗(v) for any other φ that also satisfies B1-2. Thus it
achieves the sup above, and the upper bound can be
evaluated:

min
0≤v≤1

v2

2
+ 1 − v

2
=

7

8
(7)

where the minimum is achieved at v = 1
2 . Thus 7

8 rep-
resents an upper bound on the worst case performance
of valid mechanisms.

For achievability, note that τ ∗ is the mechanism
based on φ∗(v) = v

2 (in the sense of Proposition 2),
and Lemma 2 guarantees that it is valid. All that is
needed now is a direct verification of the worst case
performance.

As before, if αl and αh are the slopes of the value
functions of the buyers, then there will be a unique
Nash equilibrium (w̃l, w̃h) and furthermore we have
that αl

αh

= w̃l

w̃h

. Thus the worst-case efficiency of a
Nash equilibrium for τ ∗ is given by

min
αl≤αh

αl

αh

(
αl

2αh

)
+ 1 − αl

2αh

Denoting v = αl

αh

makes this exactly the same as
the LHS of equation (7), and hence the worst case
efficiency is indeed 7

8 . �

This worst case occurs when the slope of the value
function of one buyer is half that of the other.

Unique Equilibria in τ ∗

While the existence of Nash equilibria is guaran-
teed, uniqueness is not: it is possible that more than
one Nash equilibria exist for a given set of value
functions of the buyers and an allocation mechanism.
There are many ways in which the notion of an
equilibrium in a game can be refined to “choose” one
of them. It would however still be of interest to see
if given an allocation mechanism τ there is always a
unique Nash equilibrium for any set of buyer value
functions.

The proof of Theorem 1 indicates that allocating
according to τ ∗ results in a unique Nash equilibrium
when the buyers have linear value functions. The
following theorem proves that this is the case for any
pair of buyer value functions.

Theorem 2: For the case when there are only two buy-
ers, the allocation mechanism τ ∗ results in a unique
Nash equilibrium for any pair of valid buyer value
functions U1, U2.

Proof: Let 1 and 2 be the two buyers, and
N (τ∗, U1, U2) be the set of Nash equilibria when
allocation is done according to τ ∗. Define two types
of Nash equilibria:

Type I: (w̃1, w̃2) ∈ N (τ∗, U1, U2) with w̃1 ≤ w̃2

Type II: (w̃1, w̃2) ∈ N (τ∗, U1, U2) with w̃1 ≥ w̃2

Note that an equilibrium will be of both types
iff w̃1 = w̃2. Any Nash equilibrium has to satisfy the
condition given by (2). For τ ∗ allocation and Type I
equilibria this can be rewritten as w̃1 > 0, w̃2 > 0
and

1

2
U ′

1

(
w̃1

2w̃2

)
=

w̃1

2w̃2
U ′

2

(
1 − w̃1

2w̃2

)
= w̃2

From U2(x) define Û2(x) as follows:

Û2(0) = 0 and Û ′
2(x) = U ′

2(x)(1 − x)

Note that Û2 is strictly concave for all valid U2. Also,
if we define x̃ = w̃1

2w̃2

then we have that

x̃ = arg max
0≤x≤1

U1(x)

2
+ Û2(1 − x)

The above function is strictly concave in x, hence
there exists a unique x̃ maximizing it. For there to
exist Type I equilibria the maximum above should be
achieved with x̃ ≤ 1

2 : if this is not the case there
will be no Type I equilibrium. This and the fact that
w̃2 = 1

2U ′
1

(
w̃1

2w̃2

)
means that there can be at most one
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Type I equilibrium. By similar reasoning there can be
at most one Type II equilibrium. Also, at least one
Nash equilibrium point exists. Thus all we need to
prove is that if there is an equilibrium of each type,
then these two equilibria are the same point.

To do this, define Û1 from U1 in the same way that
Û2 was defined using U2, and let

ỹ = arg max
0≤y≤1

Û1(1 − y) +
U2(y)

2

Suppose equilibria of both types exist. Then, from the
definitions of x̃ and ỹ we have that

U ′
1(x̃)

2
= x̃ U ′

2(1 − x̃) (8)

ỹ U ′
1(1 − ỹ) =

U ′
2(ỹ)

2
(9)

Also, we should have that x̃ ≤ 1
2 and ỹ ≤ 1

2 . This
gives us

ỹ U ′

1
(1 − ỹ) ≤ ỹ U ′

1

(
1

2

)
≤ 1

2
U ′

1

(
1

2

)
≤ U ′

1
(x̃)

2
(10)

x̃ U ′

2
(1 − x̃) ≤ x̃ U ′

2

(
1

2

)
≤ 1

2
U ′

2

(
1

2

)
≤ U ′

2
(ỹ)

2
(11)

Together (8)-(11) give us that x̃ = ỹ = 1
2 , which for

given Ui means that there is only one NEP given by

w̃1 = w̃2 =
1

2
U ′

1

(
1

2

)
=

1

2
U ′

2

(
1

2

)

Thus, there is a unique equilibrium for the two-player
game when allocation is done according to τ ∗. �

The above technique shows the uniqueness of Nash
equilibria by formulating an equivalent optimization
problem. Similar methodologies have been used before
in [2] and also in [1].

V. n BUYERS

The optimal valid mechanism for two buyers has
a natural extension to the case when there are n

buyers. Specifically, we saw that the optimal two-
buyer mechanism was the one that gave a higher buyer
a lower price as compared to a lower buyer, and these
prices were determined by the total amounts each
buyer was willing to pay.

In this section we will omit the proofs, since they
use essentially the same ideas as in the two-buyer case
but are more technical.

Given a payment vector w let wmax denote the
maximum payment, and consider the allocation mech-
anism τ∗ that allocates to each buyer i according to

τ∗
i =

wi

wmax

∫ 1

s=0

∏

j 6=i

(
1 − s

wj

wmax

)
ds

if wmax > 0 and τ∗
i = 0 for all i if wmax = 0. The

value of the empty product is taken to be 1.

Note that for n = 2 it simplifies to the two-buyer
τ∗ of the previous section. It is easy to see that
this allocation is symmetric and scale-free, i.e. that it
satisfies A3 and A4. Verifying A1 and A2 is technical
but straightforward, we do not include the proof here
but state the result below.

Lemma 3: The mechanism τ ∗ as defined above is
valid, i.e. it satisfies assumptions A1-4.

Following the method of Theorem 2 above, we can
derive an expression for the worst-case efficiency of
τ∗. Unfortunately we have not been able to evaluate
it analytically for general n:

Theorem 3: The worst case efficiency En of τ∗ is
given by

En = min
v∈[0,1]n−1

(
1 +

n−1∑

i=1

vi

)∫ 1

0

n−1∏

i=1

(1 − svi) ds

−
(

n−1∑

i=1

vi

)
n−1∏

i=1

(1 − vi) (13)

It can be shown analytically that for n = 2 the above
gives a value of 7

8 , and for n = 3 it gives 0.8737. This
compares favorably with the proportional allocation,
which was shown in [1] to have a worst case efficiency
of 2(

√
2 − 1) ≈ 0.8284 when there are two buyers.

The minimum for n ≥ 4 is still unsolved analyt-
ically, but numerical computations suggest (counter-
intuitively) that the worst case over all n occurs when
n = 4, i.e. there are only 4 users with non-zero
payments. The value then is 0.8735. We state this as
a conjecture:

Conjecture 1: With efficiency En as defined above,
the worst case efficiency occurs when n = 4:

inf
n≥2

En = E4 = 0.8735

If true, the above conjecture means that τ ∗ compares
quite favorably to the proportional allocation: not only
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is the worst case ratio for τ ∗ higher than the 3
4 for the

proportional allocation, there is also no degradation as
the number of buyers grows.

An interesting property of τ ∗ is that it is the unique
“linear in the lower bids” mechanism:

Lemma 4: If τ is an allocation mechanism satisfying
assumptions A1-3 and also has the following property

L Linearity: τi(w) is linear in wi in the region
0 ≤ wi ≤ maxj 6=i wj , when maxj 6=i wj > 0,

then τ = τ∗.

It is obvious from (12) that property L holds for
τ∗. Property L has an interesting feature when the
value functions of the lower buyers are linear: at Nash
equilibrium the payment of each lower buyers equals
the it obtains from the allocation.

VI. CONCLUSION AND EXTENSIONS

This paper proposes a mechanism for allocating a
good to buyers based only on the payments they make,
so that the loss in value created due to strategizing is
minimized. The mechanism gives the lowest price to
the highest buyer, thus giving an incentive for buyers
who value the good more to bid higher. This results
in an increase in efficiency.

It is however not yet a complete piece of work. The
most immediate task is of course to prove (or disprove)
the optimality of τ ∗ for n ≥ 3, and evaluate the worst
case value given by (13). A second task is to determine
whether Theorem 1 is still true if assumption A4 is
dropped. A third task is to see if the τ ∗ allocation
rule with n buyers has a unique Nash equilibrium for
general buyer value functions, possibly along the lines
of the techniques used for the two-buyer case.

Notice that τ ∗ is a discriminatory price auction in
which a buyer with a larger payment pays a strictly
lower price than one with a strictly lower payment.
This would suggest that the mechanism is immune
to strategic splitting, wherein one buyer enters the
game as multiple buyers who collaborate. The pricing
suggests that it would be in its best interests to avoid
splitting, as for the same amount of total payment
made it would receive the highest quantity of resource
if it made a single large payment. On the other hand
though, this reasoning suggests that buyers will stand

to gain by cooperating. These notions have to be
formalized.

Another interesting (and obvious) feature of the
general allocation τ ∗ with n buyers is its hierarchical
property: if m of the n buyers submit a payment of 0
(or are “phantom”), the resulting allocation would be
the same as it would have been if the n−m “serious”
buyers were allocated quantities according to the τ ∗

with n − m buyers.

Extending the above sort of analysis to multiple
inter-related goods (like e.g. capacities on links in
a network) is also of interest. Specifically, it would
be interesting to see if the worst case buyer value
functions turn out to be linear in that case as well.

Besides this, another question in the single-good
scenario is one of revenue maximization for the seller.
A similar fractional formulation for the problem of
either worst-case or best-case revenue loss due to
strategizing can also be made, and allocation mech-
anisms for minimizing this can be found. Again, it
would be of interest to see if the extremal value
functions in this scenario are linear.
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