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Abstract—A noncooperatve group of userssharing a channel
via ALOHA is considered. Dependingon their quality of ser
vice requirementsand willingnessto pay, the userswill selecta
desired throughput. The usersthen participate in a noncoop-
erative gamewherein they adjust their transmission-probability
parameters in an attempt to attain their desired throughputs.
The possibleequilibrium points reachedby sucha community of
usersare studied.

I. INTRODUCTION

In a multiserviceinternet equippedwith a corre-
spondingdifferentialbilling policy, userswill compete
for limited resourcesSuchuserdynamicsaretypically
studiedin thesettingof noncooperatiegamesin [10],
theauthorsconsidera Staclelbelg gamein whichusers
chooseroutesin a wired network after the leaderhas
choserroutesfor its own traffic; in choosingtheleader
controlsuserbehavior to optimize somenetwork util-
ity or to achieze someotherglobal goal. Their prob-
lem formulation admitsa closed-formexpressionfor
theequilibriumwhich canthenbesteeredy theleader
to a preordainedperatingpoint (incentive compatibil-
ity). In [3], [4], the games leaderwasitself a selfish
userof network. In [6], [13], the authorsformulate
CDMA power controlgamesof which the equilibrium
point is studied. In the framework of Kelly [8], [9],
TCPusersn awired Internetarestudiedin [12]. Rate-
basedlow controlis studiedin [1].

In this paperwe study the behaior of compet-
ing userssharinga single channelusingthe ALOHA
medium accessprotocol. Usersdesiremore or less
throughputdependingpn boththeir willingnessto pay
andtheirneed[7], [8]. We studythe existenceof equi-
librium points that could possibly be reachedby the
usersfor given userthroughputdemands.The users’
cornvergenceto equilibrium pointsis analyzedusinga
specifiedpotentialfunction that governstheir dynam-
ics.

Il. A GAME FOR SLOTTED ALOHA

In our incarnationof slottedALOHA, usersadwer-
tise their transmission-probabilitiésy, to otherusers
but keeptheir desiredthroughput(demandy,, private.
Typically, y,, dependson utility function and given
price[7], [8]. Let ¢° betheinitial N-vectorof users’
transmission-probabilitieshosenso that ¢% < 1 for
all n. For slottedALOHA, thent® usersthroughputt
thistimeis 8}, = gpz), wherez) =[], (1—qf") for
all m,n [11] (herewe have assumedhatevery users
transmissiorgueueis continuouslybacklogged).The
usersadjusttheir transmission-probabilities an at-
temptto attaintheir desiredthroughputsy,, .

Herewe choosehe dimensionpaclketspertime-slot
for parameteré andy. Thus,thesequantitiesarenatu-
rally boundedabove by onesincethereis obviously at
mostone(fixed-length)paclet pertime-slot.

At the m*" iterationof the game,the nt" userwill
choosea new transmission-probability

m—+1

n = 1)

and then announcethis choice to the other users.
All other users will likewise update their choice
of transmission-probabilityso that, given initial
transmission-probabilitieg® € [0,1)V, we get, af-
ter the first step of the game, the new vector of
transmission-probabilitieg' € [0,1]". Theusersad-
vertisetheir new transmission-probabilitieg! andthe
processepeatgesultingin thesequence

min{y,/z;’, 1},
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If this sequenceorverges sayto ¢* € [0, 1y, theng*
is a (Nash[7]) equilibrium point (or “fix ed point”) of

1The quantity1 — g, is calledthe bacloff parameteof the nth
user



themapping(1):

4 = 3)

[Tizn (1 — g). Clearly, atthis point the
averagethroughputfor then'™ useris 6% = ¢z}, for
aln=1,..,N.

min{y,/z;, 1} foralln,

wherez* =

n =

Theremayexist anequilibriumpointin which ¢}, =
1 for somen andg; = 0 foralli # n (= 6}, = 1 and
0r = 0 for all i # n). Also, acompletelydeadlocled
equilibriumpointmaybepossibleén whichg} = 1 and
gy, = 1for somen # k. Forexample,if N = 3,y; =
ya = 7/16,y3 = 1/16, andq’ = y,, for all n, thenwe
will arrive atdeadlockin two stepsj.e.,¢i = ¢3 = 1.
Clearly, both casesmay not be desirableand can be
avoidedby restrictingall transmission-probabilitieg,
to all belessthansomelarge@ < 1, say@ = 0.9, so
thatthe equilibriumpoint satisfieg4) insteadof (3).

¢, = min{y,/z,, Q} (4)

I1l. EQUILIBRIA OF THE ALOHA GAME

Thatan equilibrium point (3) or (4) existsis anim-
mediateconsequencef the Brouwersfixedpointthe-
orem[2]. We will now studythe equilibrium point for
the ALOHA gamedescribedabove.

Firstconsidetheunconstrainedynamicdeadingto
theequilibriumpoint

¢ = w/]J(1-q)) for1<i<N,
i

(®)

i.e.,we neitherrestrictthe transmissiorfprobabilities”
to be lessthanone (or ()) nor greaterthan zero. Let
y;/y; wherewe make the assumptionthat
y; > 0 for all j for the remainderof this section. In
the following, the superscript*” for the equilibrium
pointis dropped.

A =

Lemmal: If g solves(5) andif 0 < ¢; < 1 for some
i,then0 < ¢; < 1for all j # i.

Proof:

Fori # j, divide thei*® equation(5) (i.e.,with n =
i) by the j*M to getg; (1 — ¢;) = a;jq;(1 — ¢;). Thus,

(6)

a;iq;
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If wefix theindex ¢, the statemenof thelemmaimme-
diately follows from this expressiorfor g; in termsof
q;- O

Fixing againtheindex ¢ andsubstitutinginto (5) the
expressiortor g; in (6) for all j # 4, we getthe fol-
Iowi_n% polynomialequationin thecomponeny; of the
equilibriumpoint:

Gi(e) = e(1—q)" " —wi [[(1 + (aji — )@i) = 0.
i

@)

Thefollowing propositionis acorollaryof theprevious
lemma.

Propositionl: If, for somei, equation(7) admitsa
realsolutionin theinterval (0,1),then(5) hasasolution
in (0,1)V.

For example, two equilibria, (4/5, 1/3) and
(2/3, 1/5), exist wheny; = 8/15 andy, = 1/15.
Therefore,the mappingg™ — ¢™*! in (1) is not a
contractionmapping. B

It turnsout thatonly the no-overbookingcondition,
Zle yn < 1 (i.e., total desiredthroughputis less
thanthe channekapacity)is notsufiicientto guarantee
a solutionin the interval (0,1) for equation(7). For
example,if y; = 3/4 andy, = 1/5, the solutionsto
(7) with s = 1 arecomplex andtheonly fixedpoint (4)
is (@, Q). Thisis not surprisingin light of the well-
known throughputimitations of slottedALOHA.

Any solutionsto (7) thatmaylie in [0, 1] arereadily
found using Newton’s method. One can easily shov
that, in general,ary solutiong; of (7), Gi(¢;) = 0,
satisfiesy; > y;. NotethatG;(y;) < 0 andG;(1) < 0.
Therefore if G;(v) > 0 for somev € (0,1) then,by
theintermediatesaluetheoremthereis a solutiong; to
Gi(¢:) =0in (y;,v) andin (v, 1).

IV. LOCAL CONVERGENCE TO AN EQUILIBRIUM
POINT USING A MODIFIED GAME

Definethefunction f,,(¢*) astheright-hand-sideof

(4) anddefinethefunction F : [0, Q1N — [0,Q]" so
that F = (fi, ..., fa)T. So,the sequencd?) was
generatedby

®)
Considerthe following modificationof the game(8):
gm+1 — gm +€(F(gm) _gm) (9)

for afixedsmalle > 0; thisis simply theJacobiupdate
schemeseeequation(15) of [12]. For smalle, we can
approximate9) by the continuous-timegame

q(t) = F(qt)) —q(®). (10)



Now we will studythe corvergencepropertyof the
correspondinglacobiupdatescheme Note thatif £ =
1, (9) become$heorlg|nalgame Definethefollowing

"potential” functionon [0, Q]V:

Ag) =

ﬂ Z( . +10g1—qJ>Hyz

U= i#

We assumehatall y; > 0 in thefollowing. Since

oA(g) 3 1 N N '

VA(q) = 0in[0,Q)" if andonly if F(q) = ¢, i.e.,
q is anequilibriumpoint of interest. Furthernotethat,

underthe dynamics(10) andfor every ¢(t) € [0, Q)™
thatis notanequilibriumpoint,

oA(q(t))
ot -

< VA(g(t)), Q(t) >

i=1

N
j=1

Notethatthe component®f theHessianH of A are

82A(g)
0q;0qn -
At a stableequilibrium point g of (10) (i.e., g is alo-
cal minimum of A), we require positive definiteness
of HessianH (¢). Diagonaldominanceof H is a suf-
ficient conditionfor positive definitenesgseeSection
5.2 of [5]). TheHessianof A is diagonallydominant
atgif, forall j,1 > g¢; Zn#(l qn) . For the
exampleof the previous sectionin WhICh y1 = 8/15
andy, = 1/15, theHessianH of A attheequilibrium
point (2/3,1/5) is diagonally dominant(and, there-
fore, positive definite) but is not diagonallydominant
at(4/5,1/3).

Using A asaLyapuna functionlocally, in this sec-
tion we have shawvn the following proposition.

ifj#n
ifj=n

1q1

—q;) —2(fi(a) — ¢))

~=ema=qp Uizt
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Proposition2: If thereis anequilibriumpointg* €
[0,@Q)N with H(¢*) > 0 thenthereis a neighbor
hood B C [0,Q)" of ¢* suchthat: for ary initial
transmission-probabilitieg(0) € B, thefunctiong(t)
obeying the dynamics(10) will cornvergetog* € B as
t — oo.

For sufiiciently smalle, this propositioncanbe ad-
justedto make a statementaboutthe convergenceof
(9) aboutthe equilibrium point ¢*. We postulatethat
equilibriathat are stablefor (10) arealsostablewhen

¢ = 1, i.e., for the original iteration(1). Finally, note
thatthe vectorfield F'(q) — ¢ itself doesnot leadto a
potentialfunctionin general.

V. DISCUSSION

In [7], we studieda network pricing mechanismin
this contet; the user demandsy,, were determined
by the network’s price per transmittecpacket anduser
utility functionsthataccountedor userneedandwill-
ingnesdo pay. In analternatveapproacho throughput
negotiation,the network setsa priceandtheuserssim-
ply communicateo the network their throughputde-
mandsy,,; thenthe networksimply computesanequi-
librium pointfor theusersandstipulategbroadcastsy
transmission-probabilitparametefor eachuser
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