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Chapter �

Introduction

This book is mainly about linear programming which is to minimize a linear function over
a set of linear equalities and inequalities� Hence� the book is about the problem

minimize cTx
subject to Ax � b�

�Ax � �b�
�����

Although this problem does not seem too general� because no nonlinearities in the fun	
ctions are allowed� then this type problem occurs frequently in practice�








Chapter �

Theory

��� The standard LP

An LP is de�ned as minimizing or maximizing a linear function subject to linear con	
straints� This is a general de�nition and for convenience we will mainly work with LPs in
standard form that is

�P � minimize cTx
subject to Ax � b�

x � �

where

x �

�
�����
x�
x�
���
xn

�
����� � c �

�
�����
c�
c�
���
cn

�
����� � b �

�
�����
b�
b�
���
bm

�
����� �

are vectors and

A �

�
���
a�� a�� � � � a�n
���

���
���

am� am� � � � amn

�
��� �

is a matrix� c� b� and A are given parameters and x is the decision variables� Hence�
there are n variables� n inequalities� and m equality constraints� In the next section we
shall demonstrate there is no loss in generality by only considering LPs on standard form�
because any LP can be stated on this form using some simple transformations�

����� De�nitions

The set of feasible solutions to �P � is denoted

X �� fx � Rn � Ax � b� x � g�

In the case that X nonempty we say that the problem �P � is feasible� Moreover� any
solution x � X is said to be a feasible solution� On the other hand if X is empty� then
�P � is said to be infeasible� because then the problem does not have any solution�

The de�nition of an optimal solution x� � X to �P � is

cTx� � cTx� �x � X � �����

�



Hence� the optimal solution is a feasible solution such that no other feasible has a lower
objective value cTx�

In the case the optimal objective value to �P � is unbounded� then we say �P � is
undounded� An example of an unbounded problem is

minimize x� � x� subject x� � �� x�� x� � �

����� Inequalities

In practice an LP does not consists of equalities only� but may contain several inequalities
such as

�aTx � �b� �����

where �a � Rn and �b � R� A less than equal inequality can be converted into an equality
by introducing an additional positive slack variable denoted �x � R as follows

�aTx� �x � �b�
�x � �

���
�

Let �x� �x� be a feasible solution to ���
�� then

�aTx � �b� �x � �b�

because �x is nonnegative� This implies a feasible solution to ���
� is a feasible solution to
the original inequality ������ Now if x is a feasible solution to ������ then

�x � �b� �aTx � �

Hence� for a suitable chosen �x� then x is a feasible solution to ���
��

In summary in terms of the x variables� then the constraints ����� and ���
� has the
same set of feasible solutions� which implies they are equivalent� Therefore� in general
all less than equal inequalities can be converted to equalities by introducing one slack
variable per inequality�

�x is called a slack variable� because �aTx may be interpreted as the requirement of a
given resource for a given x and �b is the available quantity of the resource� Using this
interpretation �x denotes the unused part of the available resource or in other words the
slack� If the slack is zero� then this is the same as the inequality is binding or the whole
resource is used�

A greater than equal inequality

�aTx � �b �����

can by converted into an equality by introducing an additional positive surplus variable
denoted �x as follows

�aTx� �x � �b�
�x � �

�����

Using the same analysis as for the less than equal inequality it is easy to verify that �����
and ����� are equivalent�



����� Maximization

The standard problem is stated as a minimization problem� but it could equally well have
been a maximization problem that is

maximize cTx
subject to Ax � b�

x � �
�����

However� maximizing cTx subject to some constraints is equivalent to minimizing �cTx
subject to the same constraints� These two problem must have the same set optimal
solutions� Therefore� ����� is equivalent to

�minimize �cTx
subject to Ax � b�

x � �
�����

����� Free variables

A more general form than �P � is

minimize cTx� �cT �x

subject to Ax� �A�x � b�
x � �

�����

where �x is a vector of free variables� The variables �x are denoted free variables� because
they can take any value from minus in�nity to plus in�nity� This problem can be converted
to standard form by using the transformation

�x � �x� � �x��
�x�� �x� � �

�����

where �x� and x� are two additional vector of variables� Clearly for any value of �x it is
possible to choose a value for �x� and �x� such that ����� holds� Therefore� the problem
����� is equivalent to

minimize cTx � �cT ��x� � �x��

subject to Ax � �A��x� � �x�� � b�
x� �x�� �x� � �

�����

This technique for handling free variables is called splitting� because the free variables
are split into their positive and negative part� In general the free variables should never
be split in practice� because this increases the problem size�

��� Duality

In practice an LP problem is solved using a computer program� However� such a program
only reports the optimal solution� but not the actual computations to �nd the optimal
solution� Therefore� how is optimality of the computed solution veri�ed� This
is main question we are going to study in this section�



One way of checking optimality of a computed solution x� is to check the condition

cTx� � cTx� �x � X �� fx � Rn � Ax � b� x � g�
However� this condition is very di�cult to check� because X may contain an in�nite
number of elements�

An alternative way of proving optimality is to generate a lower bound denoted z on
the objective value� By de�nition a valid lower bound z must satis�es the condition

cTx � z� �x � X �
Now clearly if a solution x� � X has been generated such that

cTx� � z�

then x� is an optimal solution due to the fact z is lower bound on the optimal objective
value� Note it is very easy to check whether a given feasible solution has the same objective
value as the lower bound�

Now the main question is how to generate lower bounds� Fortuantely� in the subsequent
section we will develop the so	called LP duality theory which give an method to generate
valid lower bounds�

����� The dual problem

The problem
�P � minimize cTx

subject to Ax � b�
x � �

is denoted the primal problem and corresponding to each primal there is a so	called dual
problem corresponding to �P � is

�D� maximize bTy
subject to ATy � s � c�

s � �

where y � Rm and s � Rn� y and s are called dual multipliers and dual slacks respectively�
It can be seen that the dual problem is constructed from the same data as the primal
problem� but uses di�erent variables� Note there is one dual multiplier yi associated with
each constraint and one dual slack sj for each variable xj in the primal problem�

The s variables in �D� are essentially slack variables and can be removed� Hence� an
alternative form of �D� is

maximize bTy
subject to ATy � c�

������

�y� s� is a dual feasible solution if it satis�es the constraints in �D�� Similarly y is dual
feasible if it satis�es the constraints of ������� A pair �x� y� s� is said to be primal and
dual feasible if x and �y� s� is primal and dual feasible respectively� Such a pair is called
a primal	dual feasible pair�

Any LP problem has a dual problem� because as demonstrated in the previous section�
then an arbitrary LP can be converted to the standard form LP� Using this principle we
study the dual corresponding to di�erent LPs�



The �rst problem is
minimize cTx
subject to Ax � b�

x � �
������

Introducing slack variables �x � Rn gives the problem

minimize �c� �T �x� �x�
subject to �A I��x� �x� � b�

x� �x � 
����
�

stated on matrix from� The dual of this problem is

maximize bTy
subject to ATy � c�

y � �
������

Similarly� it can be veri�ed that the dual of

minimize cTx
subject to Ax � b�

x � 
������

is
maximize bTy
subject to ATy � c�

y � �
������

Hence� if the primal problem contains inequalities� then it implies that the dual variables
y are not free� An � ��� inequality implies that the corresponding dual multiplier yi is
� ����

Next study the problem

minimize cTx� �cT �x

subject to Ax� �A�x � b�
x � �

������

where �x is a vector of free variables� Splitting the free variables leads to the problem

minimize cTx � �cT ��x� � �x��

subject to Ax � �A��x� � �x�� � b�
x� �x�� �x� � �

������

on standard form� The dual of this problem is

maximize bT y
subject to ATy � c�

�ATy � �c�

� �AT y � ��c�

������

Note that
�ATy � �c and � �ATy � ��c



implies �ATy � �c� Hence� the dual is equivalent to

maximize bTy
subject to ATy � c�

�ATy � �c�
�����

or alternatively
maximize bTy
subject to ATy � s � c�

�ATy � �s � �c�
s � � �s � �

������

In other words the dual slacks corresponding to the free variables should be zero�
Finally� let us investigate the dual problem corresponding to �D�� �D� is equivalent to

�minimize �bT y
subject to ATy � c�

������

and the dual corresponding to this problem is

�maximize cT �x
subject to A�x � �b�

�x � �
����
�

Using the transformation x � ��x we obtain

minimize cTx
subject to Ax � b�

x � �
������

The problem ������ is exactly the primal problem �P �� Hence� the dual of the dual is
equivalent to the primal problem� This symmetry between the primal and dual problem
is occasionally very useful�

����� Properties of the dual problem

The �rst fact we will prove is that there is a close relationship between the optimal
objective value of �P � and �D�� Indeed given a dual feasible solution y� then bT y provides
a lower bound on the optimal objective value to �P � as stated in the weak duality theorem
������

Theorem ����� �Weak duality� Let �x� y� s� be a primal�dual feasible pair� then

cTx � bT y�

Proof� From feasibility we have

Ax � b� x � �
ATy � s � c� s � �



Hence�
cTx� bTy � cTx� �Ax�T y

� �c� ATy�Tx
� sTx
� �

The last equality follows from xT s �
Pn

j�� xjsj and x� s � �

�

The di�erence
cTx� bTy

is denoted the duality gap and by Theorem ����� it is positive for any primal	dual feasible
pair� Moreover� it follows from the proof of Theorem ����� that the dual gap is identical
to the complementary gap xT s for any primal	dual feasible pair�

Now if a primal	dual feasible pair has zero duality gap� then x must be an optimal
solution� because cTx is identical to the lower bound bT y� Hence� it is impossible to �nd
another primal feasible solution x which has better objective value than bT y�

Corollary ����� If �x�� y�� s�� is a primal�dual feasible pair and cTx� � bT y�� then x� is
an optimal solution to �P ��

An obvious question to ask is if there always exists a a feasible primal	dual pair having
zero duality gap� because then optimality is automatically by computing a primal	dual
feasible pair having zero duality gap� The answer to question yes as we going to prove�

Now �rst study the problem

minimize Tx
subject to Ax � b�

x � �
������

This problem is special in the sense its objective function is zero� The dual corresponding
to ������ is

maximize bT y
subject to ATy � �

������

It can be observed that any feasible solution to ������ is optimal and the optimal objective
value is always zero� Moreover� ������ always has a feasible solution� because y �  is a
feasible solution�

Now suppose that
�y � AT y � � bTy � �

then ������ cannot be feasible� because this is a contradiction to the weak duality theorem
�Why��� Hence� we have proved one part of the following lemma�

Lemma ����� �Farkas lemma�� Either

�x � Ax � b� x � 

or
�y � ATy � � bT y � 

is true�



Note that the Lemma says that exactly one of the statements is true� However� we
have only proved that at most one of the them can be true� Unfortunately proving that
exactly one of the statements is true is somewhat di�cult and we will skip this part�

Farkas lemma is a very useful lemma� which we are going to use several times sub	
sequently�

A natural question to investigate is under which conditions �D� is infeasible�

Lemma ����� If �D� is infeasible� then �P � is either infeasible or unbounded�

Proof� If �D� is infeasible� then

� �y � ATy � c

does not have solution� Equivalently we have

� �y�� y� � AT �y� � y�� � s � c� y�� y�� s � �

Using Farkas lemma this implies

��x �

�
��

A
�A
I

�
�� �x � � cT �x � �

which is identical to
��x � A�x � � �x � � cT �x � �

Hence� we obtain
Adx �  and cTdx � �

where dx �� ��x � � If �P � is infeasible� then the lemma is trivially true� On the other
hand assume x� is a feasible solution to �P � then for all � su�ciently large we have that

A�x� � �dx� � b�
x� � �dx � �

showing x� � �dx is a primal feasible solution to �P �� Moreover�

lim
���

cT �x� � �dx� � ��

implying �P � is unbounded�

�

In summary if �P � has an optimal solution� then �P � is feasible and bounded� which
implies �D� is feasible� Correspondingly� if �P � is unbounded� then �D� must be infeasible�
The reason is the primal objective value can be decreased to minus in�nity and at the
same time the primal objective value is bounded below by bTy for any dual feasible y
leading to a contradiction� Similarly� we can prove if �D� is unbounded� then �P � is
infeasible� Hence� we have the lemma�

Lemma ����� i� If �P � is unbounded� then �D� is infeasible�

ii� If �D� is unbounded� then �P � is infeasible�



Suppose �P � has an optimal solution� which is equivalent to assuming �D� is feasible�
Then the hypothesis is that a primal	dual feasible pair having a zero duality gap does not
exists� Subsequently we prove this leads to contradiction� This hypothesis is equivalent
to assuming that the system

Ax � b� x � �
ATy � s � c� s � �

cTx� bTy � �
������

is infeasible� Adding the slack variable � to the inequality and splitting the free variables
y�� y� � y�� we obtain the equivalent system

Ax � b� x � �
AT �y� � y�� � s � c� s� y�� y� � �

cTx� bT �y� � y�� � � � � � � �
������

Clearly� this system is also infeasible� Therefore� using Farkas lemma we obtain

��� �� 	 �

�
�������

AT c
A �b
�A b
I

�

�
�������

�
�� �
�
	

�
�� � � bT�� cT� � � ������

From which it follows

A�� b	 �  and � A�� b	 � �

which implies A�� b	 � � This leads to the more compact system

AT�� c	 � �
A�� b	 � � �� 	 � �

bT�� cT� � �
���
�

In the following we will investigate this system� where two di�erent cases appear depending
on the value of 	 �

Case �� Assume 	 �  then we have

AT� � �
A� � � � � �

bT�� cT� � �
���
��

At least one of bT� or cT� must be strictly positive� Assume bT� �  and then from the
fact AT� �  and Farkas lemma� it follows �P � is infeasible� This is a contradiction to
the assumption that �P � has an optimal solution� Similarly� it can be veri�ed if cT� � �
then this implies �D� is infeasible� which is also a contradiction to the assumptions�

Case �� Suppose 	 � � then we have

AT�
	 � c � �
A�
	 � b � � �
	 � �

bT�
	 � cT�
	 � �
���
��



Note this system is equivalent to ���
�� where each side of the equations have been divided
by 	 � It is easy to verify that

�x� y� s� � ��
	���
	� c� AT�
	� ���

�

is a primal	dual feasible pair� From feasibility of the solution ���

� and the weak duality
theorem it follows

cTx� bT y � cT�
	 � bT�
	 � �

which is a contradiction to ���
��� Hence� we obtain a contradiction again�
In summary if �P � and �D� are feasible� then the system ������ has a solution that is

we have proved the following theorem�

Theorem ����� �Strong duality� If �P � has an optimal solution� then a primal�dual fea�
sible pair �x�� y�� s�� exists such that cTx� � bT y��

The strong duality theorem is a very important theorem in LP� because it gives a
method for checking optimality� Indeed if somebody claims �x�� y�� s�� is an optimal
primal	dual pair� then it is easy to check this claim by verifying the following three
conditions are satis�ed�

	 Primal feasibility�

Ax� � b� x� � �

	 Dual feasibility�

ATy� � s� � c� s� � �

	 Optimality�

cTx� � bTy� � �

These three conditions can easily be checked� because they essentially reduces to perfor	
ming some matrix with vector multiplications�

Virtually all algorithms for LP generates a dual solution either explicitly or implicitly�
Hence� in practice the optimality of a computed solution can always be veri�ed by checking
primal and dual feasibility and that the dual gap is zero�

��� The complementarity conditions

An alternative formulation of the optimality conditions exists� because a primal	dual pair
�x� y� s� satisfying

Ax � b� x � �
ATy � s � c� s � �

xjsj � � j � �� � � � � n�
���
��

is an optimal solution� These conditions contain three components� which is primal and
dual feasibility and the complementarity conditions

xjsj � � j � �� � � � � n�



Assume �x� y� s� satis�es ���
��� then the duality gap is given by

cTx� bT y � xT s
�

Pn
j�� xjsj

� �

Demonstrating any primal	dual pair satisfying ���
�� is an optimal primal	dual pair�
The complementarity conditions states that not both xj and sj can be nonzero at the

same time in an optimal solution� Hence� if for example xj � � then this implies the
corresponding dual slack is zero that is sj � � However� there may exists an optimal
primal	dual pair such both xj � sj � �

A feasible primal	dual pair �x� y� s� satisfying the conditions

xjsj �  and xj � sj � 

is said to be a strictly complementary solution� because either xj or sj is zero� but not
both� Perhaps slightly unexpected it is possible to prove that any LP has a strictly
complementary solution as stated in following theorem�

Theorem ����� Assume both �P � and �D� are feasible� then a strictly complementary
solution to �P � exists�

We will not prove this theorem� but refer the reader to �����

����� Interpretation of the dual variables

It should be clear by now that the dual problem is very important� because the optimal
dual solution makes it possible to check optimality of a proposed primal solution easily�

However� the dual solution is not only useful with respect to verifying optimality�
but it can be shown that the optimal dual variables conveys important information as
demonstrated below�

Assume that the ith component of bi denotes the available amount of a certain raw
material in a production planning model and the objective function denotes the total
production costs to be minimized� Moreover� assume that it is possible to buy more of
the raw material for given price and more of this raw material may lead to a more e�cient
production� However� it is only worthwhile to buy the raw material if the reduction in
the production cost is larger than the price that has to be paid for the raw material�
Therefore� information about how the optimal objective value changes with changes in bi
is highly valuable in this case�

Any optimal solution much satisfy the optimality conditions implying an optimal
primal	dual pair �x� y� s� must satisfy the feasibility conditions and

cTx� bTy � xT s� ���
��

This implies �using sloppy mathematics� that

�cTx

�bi
�

��bT y � xT s�

�bi
� yi�

Hence� if the ith component of bi is changed by �bi� then the optimal objective value is
changed by

�biyi�



In other words it is not worthwhile to buy more of the raw material unless it can bought
for a price less than �yi� It should be emphasized that this is only true for su�ciently
small values of �bi�

Once again using sloppy mathematics we have that

�cTx

�xj
�

��bT y � xT s�

�xj
� sj�

Hence� if the jth variable is changed by �xj� then the optimal objective value is changed
by

�xjsj�

In other words sj is the change in the optimal objective value per unit change in xj�
These observations helps motivating the complementarity conditions� because recall

that the complementarity conditions are

xjsj � � for j � �� � � � � n�

In addition to �x� y� s� should be primal and dual feasible� These conditions implies if
xj � � then sj �  must be true implying that the optimal objective value is not changed
by a marginal change in xj� Indeed if this was not the case� then either a small increase
�sj � � or decrease �sj � � in xj would lead to a decrease in the optimal objective value
and hence contradicting the fact x is an optimal solution� �Note that the jth variable
can be both increased or decreased without violating the positivity requirement� because
xj � ��

Now if xj � � then �xj �  is required to maintain feasibility� However� sj � 
implies nothing is gained by increasing xj and hence verifying the optimality of x�

To conlude if the complementarity conditions are not satis�ed� then it may be possible
to obtain a better primal solution in terms of the objective value� Therefore� an optimal
solution must satisfy the complementarity conditions�

Moreover� then yi �sj� can be interpretated as the change in the optimal objective
value per unit increase in bi �xj��

This last observation is quite useful� when the dual problem to an arbitrary primal
problem should be stated� Assume we are asked to state the dual problem to

maximize cTx�
subject to A�x � b��

A�x � b��
A�x � b��
x � �

���
��

and let yj for j � �� � � � 
 be dual multipliers for the three blocks of constraints respectively�
Now it may be di�cult to recall the sign restriction on yj i�e� should yj be positive or
negative�

However� if for example b�i is increased by �b�i � � then the set of feasible solutions
to ���
�� is expanded� This implies that the optimal objective value must decrease or
possible be unchanged �see excercise ��� Hence� if y�i denote the change in the optimal
objective value for an increase in b�i � then y�i � � Using an identical argument for all the
less than equal constraints we obtain y� � �� Moreover� using a similar argument we

�How would this statement change if the problem ������ was a maximization problem�



obtain y� � � Whereas if b� is changed nothing can be said about the direction of change
in the optimal objective value i�e� y� can be both negative and positive� Now let us state
the dual problem to ���
�� which is

minimize
P�

j���b
j�Tyj�

subjext to
P�

j��A
jyj � s � c�

y� � � y� � �
���
��

verifying that our intuitive argument for the sign restriction on yj is correct�

��� Exercises

�� De�ne the problem
minimize ��x� � �x�
subject to �x� � �x� � ��


x� � �x� � ���
x�� x� � �

���
��

�a� Find the optimal solution to ���
���

�b� State the dual problem to ���
���

�c� Find the optimal solution to the dual problem of ���
���

�d� Verify that the primal solution is optimal using the dual solution�

�� Let X ��X � 
 Rn and de�ne

zj � minimize cTx
subject to x � X j� j � �� ��

���
��

�a� Given X � � X � then prove that z� � z��

�b� De�ne X � �� fx � Rn � Ax � bg and X � �� fx � Rn � Ax � b � vg� where
v � � Prove that X � � X ��

�c� Let I� � f�� � � � � mg and I� � I� and de�ne X j �� fx � AIj �x � bIjg for
j � �� �� �AIj � is submatrix of A corresponding to rows indicies of Ij�� Prove
that X � � X ��

�d� Given X� � X�� then let xj � Xj and zj � cTxj for j � �� �� Moreover� it is
given z� � z� and x� is an optimal solution to ���
�� for j � �� then prove x�

is an optimal solution to ���
�� for j � ��





Chapter �

The simplex method

In the previous chapters the basic properties of LP have been studied� but of course LP is
not interesting if we cannot solve LPs� Therefore� in this section we are going to present
the primal simplex method for solution of an LP� This is the classical solution method
for LP and it has been around since G� B� Dantzig invented it in the late forties ��� ���
Indeed until approximately ���� all LP problems were solved by the simplex method�

��� Derivation of the primal simplex method

The presentation of the primal simplex method deviates from the conventional practice�
because the method is �rst presented from a general algebraic point view� This is followed
by a geometric interpretation of the algebra� Usually the presentation is the other way
around�

The problem of study is the primal LP problem

�P � maximize z � cTx
subject to Ax � b�

x � �

As in the previous chapter we assume there arem equalities and n variables� For simplicity
we maintain the assumptions that n � m and rank�A� � m�

The derivation of the simplex method is best started by introducing a partitioning
of the variables into m basic and n �m nonbasic variables which leads to the following
de�nition�

De�nition ����� �B�N � is a basic and nonbasic partition of the variables if

i� B � f�� � � � � ng� jBj � m�

ii� N � f�� � � � � ng n B�
iii� rank�B� � m�

Using the de�nition B �� A�B � �a�B� � � � � � a�Bm � and similarly N �� A�N �

The variables in B and N are called basic and nonbasic variables respectively� B is
denoted the basis and is by de�nition a nonsingular matrix� This is going to be important
subsequently� but does there always exists a basic and nonbasic partition of the variables�
As shown in the subsequent lemma a partition always exists if A is of full row rank�

��



Lemma ����� Given rank�A� � m then a basic and nonbasic partition of the variables
exists�

Proof� It is well	known that using Gaussian elimination� then m linearly independent
columns from A can be identi�ed� The variables corresponding to those columns are basis
variables�

�

Assume �B�N � is a basic and nonbasic partition of the variables� then �P � is equivalent
to

maximize z � cTBxB � cTNxN
subject to BxB �NxN � b�

xB� xN � �
�
���

The only di�erence between �P � and �
��� is that the variables have been partitioned
explicitly�

Using the equalities in �
��� and that B is nonsingular the basic variables may be
expressed as a function of the nonbasic variables that is

xB � B���b�NxN �� �
���

This implies that the nonbasic variables may be seen as independent variables� whereas
the basic variables are dependent variables�

A key fact proved in the following theorem is� if �P � is feasible then the problem also
has a feasible basic solution such that xN � � Hence� there exists a basis such that
B��b � �

Theorem ����� If �P � is feasible� then a basic and nonbasic partition of the variables
exists such that

�xB� xN � � �B��b� � � �

Proof� The theorem is proved by construction� Given the assumptions and Lemma

���� then a basic and nonbasic partition of the variables �B�N � exists� Furthermore� a
feasible solution x� exists� Therefore� by assumption we have that

Ax� � Bx� �Nx� � b� x� � 

which implies
xB � B���b�Nx�N � � x�B�

Now de�ne the set
�N �� fj � N � x�j � g�

which is called the set of superbasic variables� Clearly� if �N � �� then the theorem is
proved� Therefore� assume there is one or more superbasic variables and let j � �N � Now if
the jth variable is decreased to zero� then the number of superbasic variables is decreased
by one� but relation �
��� shows this implies the basic variables should be changed too�
Let us investigate this formally by introducing

x�N � x�N � �ej� �
�
�



x� denotes the new solution� � is a step size scalar� and ej is a special vector de�ned as
follows

A�j � Nej � N

�
�������������


���

�

���


�
�������������
� �
���

Hence� ej is identical to a zero vector except one component is identical to �� The position
of the one is chosen such that the relation �
��� is satis�ed� Therefore� when � in �
�
� is
decreased� then xj is decreased� It follows from relation �
��� and �
�
� that

x�B � B���b�Nx�N �
� B���b�N�x�N � �ej��
� B���b�Nx�N � � �B��Nej
� x�B � �B��Nej�

�
���

This relation shows the change in the basic �dependent� variables as a function � such
that Ax� � b� In summary we have

�
x�B
x�N

�
�

�
x�B
x�N

�
� �

� �B��Nej
ej

�
�

Now if � is decreased� then two cases may happen�

Case �� A basic variable hits its lower bound zero before the nonbasic variable j
becomes zero� In which case the binding basic variable are made nonbasic at level
zero and the nonbasic variable j is made basic�

Case �� xj becomes zero before one of the basic variables hits its lower bound zero�

In both cases the number of superbasic variables is reduced by one� Therefore� after
repeating this operation at most j �Nj times we obtain a basic solution such that xN � �

Note we have not proved in Case � that the new basis matrix B is nonsingular as is
required� However� this is proved later in connection with the derivation of the simplex
method�

�

In conclusion Theorem 
���� states that if an LP problem is feasible� then it has a
feasible basic solution such that all the nonbasic variables are zero� It is also possible to
prove that if �P � has an optimal solution� then an optimal solution exists such that it is a
basic solution� Therefore� the main idea of the simplex method is to start from a feasible
basic solution and then move to another feasible basic solution having a better �larger�
objective value� In the following we will develop the speci�cs of this idea�



First using �
��� the objective function in �
��� can be rewritten as follows

z � cTx
� cTBxB � cTNxN
� cTBB

���b�NxN � � cTNxN
� cTBB

��b� �cTn � cTBB
��N�xN

� yT bT � �cTN � yTN�TxN
� bT y � sTBxB � sTNxN
� bT y � sTx�

�
���

where we use the de�nitions�

y �� B�T cB �
���

and

s �� c� ATy� �
���

Note this de�nition implies

sB � cB �BTy � �

sj is referred to as reduced cost of the jth variable and it shows the change in the objective
function per unit change in the xj variable� Indeed di�erentiation gives

�z

�xj
�

bT y � xT s

�xj
� sj�

Hence� if for example s� � � and x� is increased by one unit� then the objective value
is increased by � units� This is a very important observation because it shows that
by increasing the value of a nonbasic variable having a positive reduced cost� then the
objective value is increased� Due to the fact that the reduced cost of the basic variables are
zero� then a change in those variables does not change the objective value� This implies
by increasing a nonbasic variable having a positive reduced cost the objective value is
increased� Even though the basic variables are changed to maintain feasibility�

Using these observations the principle of the simplex method can be stated as follows�
First select a nonbasic variable having a positive reduced cost that is sj � � Second
increase this nonbasic variable as much as possible� In general the variable cannot be
increased inde�nitely� because the basic variables must remain nonnegative� Indeed due
to �
���� then an increase in a nonbasic variable may imply that one or more basic variables
move towards their lower bounds� Third the value of the nonbasic variable is increased
until a basic variable becomes zero� Fourth this basic variable and the pro�table nonbasic
variable are exchanged implying a change in the basic and nonbasic partition of the
variables� Finally� these operations are repeated until all the reduced costs are nonpositive
in which case the current basic solution is optimal� because no further improvement is
possible�

Subsequently this idea is presented formally� First assume a feasible basic and nonbasic
partition �B�N � of the variables is known such that

x�B � B��b �  and x�N � �

�B�T �	 �BT ��� 	 �B���T �



In general a feasible basic solution is of course not known� but in Section 
�� it is shown
how this assumption can be handled� Moreover� assume for some j � N that sj � �
Hence� by increasing this variable the objective value z can be improved� Therefore� let

x�N � x�N � �ej�

then similar to the construction used in Theorem 
���� we obtain�
x�B
x�N

�
�

�
x�B
x�N

�
� �

� �B��Nej
ej

�
�

De�ne �
dxB
dxN

�
��

� �B��Nej
ej

�
�

then we may write compactly
x� � x� � �dx�

The interpretation is x� is the current solution and dx is a search direction in which we
look for a better solution� Clearly by moving in the direction dx then feasibility should be
maintained of the solution and the objective value should be improved� Let us investigate
whether this is the case� First� we have

Adx � BdxB �NdxN
� �BB��Nej �Nej
� �

which shows dx belongs to the null space of A� Therefore� we obtain

Ax� � A�x� � �dx�
� Ax� � �Adx
� b�

This shows the new point satis�es the equality constraints in �P � for all � and by choosing
� su�ciently small the new point satis�es the inequalities in �P ��

Furthermore� the new objective value is given by

z� � cTx�

� cT �x� � �dx�
� cTx� � �cTdx
� cTBx

�
B � cTNx

�
N � ��cTBB

��Nej � cTN ej�
� cTBB

��b � ��cTN � cTBB
��N�ej

� yT bT � ��cTN � yTN�T ej
� bTy � �sTNej
� bTy � �sj�

�
���

Therefore� if sj � � then the increase in the objective value is proportional to sj and ��
In summary we have veri�ed that the new point satis�es the equality constraints in

�P � and for a suitable � it also satis�es the inequalities� Moreover� it follows from �
���
that a large � implies a large increase in the objective value� This leads to choose �
maximal such that the new point satis�es the inequalities� which is the solution to the
following problem

maximize �
subject to x� � x� � �dx � �

�
���



The problem �
��� may not have a �nite solution� Indeed the problem �
��� is unbo	
unded if and only if dx � � If this is the case we can conclude that the problem �P � is
unbounded and dx is an extreme ray along which the objective value tends to plus in�nity�
Assume this is not the case� then it can be observed that

dxN � ej � �

Hence� �
��� is equivalent to

maximize �
subject to x�B � ��dxB� �
����

Let �� denotes the optimal solution to this problem� then it can be computed as follows

�� � min
i
f�xBi
dxBi � dxBi � g� �
����

The �nal step of the primal simplex method is to determine which one of the basic
variables that �rst hits its lower bound zero� Hence� for which Bi is

�� � �xBi
dxBi and dxBi � �

This basic variable is denoted the leaving variable� because it is leaving the basis� The
nonbasic variable that is introduced into basis is denoted the entering variable� Note
several basic variables may be binding in which case any of those variables can be removed
from the basis�

All the elements to state the simplex method has now been developed and therefore
in Algorithm 
���� the simplex method can be stated formally�

Algorithm �����

�� Choose a basic and nonbasic partition �B�N � such that �x�B� x
�
N � � �B��b� � � �

k �� �

�� yk �� B�T cB�

	� If
�jk � N � skjk � cjk � AT

�jky
k � �

then continue else exit because xk is an optimal solution�


� Let �
dxB
dxN

�
��

� �B��Nejk
ejk

�
�

�� If dxB � � then terminate because �P � is unbounded�

�� Let
�k �� min

i
f�xkBi
dxBi � dxBi � g

and choose an ik � fi � dxBi � � �k � �xkBi
dxBig�
� xk�� � xk � �kdx



�� B �� �B n fBikg�  fjkg� N �� �N n fjkg�  Bik �
�� k �� k���

��� Goto ��

Let us discuss each step of the primal simplex method in some detail� In step � an
initial feasible basic solution is chosen� This is discussed in detail in Section 
��� In step
� the vector y is computed� In step 
 the entering variable is chosen� Clearly� there is
a lot of freedom with respect to the choice of the entering variable� The inventor of the
simplex method G� B� Dantzig suggests the choice

jk � argmaxj�Nfsj � cj � AT
�jyg�

Hence� he proposes to choose the nonbasic variable� which has the largest reduced cost�
The motivation for this choice comes from �
���� which indicates a larger reduced cost
implies a larger increase in the objective value� Although it should be noted that the
actual increase in the objective value also depends on �� In step � the search direction is
computed and in step � it is checked� whether the problem is unbounded� If the problem
is not unbounded� then a �nite �k is computed in step � and the leaving basic variable
is determined� In step � and � the solution and the basic and nonbasic partition of the
variables is updated� Finally� the iteration counter k is incremented and the whole process
is repeated� Execution of the steps � to � of the primal simplex method is denoted one
iteration�

There are several unresolved issues related to the primal simplex algorithm� They are

	 Is the �nal solution optimal as claimed�

	 Does the basis remains nonsingular�

	 How is the method initialized�

	 How many iterations are required to converge�

In the following sections we deal with these issues as well as a few others�

����� Is the optimal solution really optimal

Clearly� the simplex method is not of much use if the optimal solution is not really optimal�
However� using LP duality it is easy to verify the optimality of the �nal solution� In the
case the simplex method terminates in step �� then a primal feasible basic solution is
known such that

�x�B� x
�
N � � �B��b� � �  and Ax� � b�

Moreover�
y� � B�T cB and �s�B� s

�
N � � �cB � BTy�� cN �NTy�� � 

and it follows trivially s�B � � This implies �y� s� � �y�� s�� is a feasible solution to the
dual problem coresponding to �P �� Moreover� the duality gap is given by

bT y� � cTx� � �x��T s� � �x�B�
T s�B � �x�N �

T �s�N � � 

proving x� is an optimal solution�



����� The update of the basis matrix

Next we will investigate whether the basis matrix remains nonsingular in all the iterations
of the primal simplex method�

We know that the initial basis matrix denoted B is nonsingular� Moreover� if B�

denotes the new basis matrix� then by construction

B� � B � �� � � � � � A�j � B�i� � � � � � �
� B � �A�j �B�i�e

T
i �

�
��
�

It is assumed that the ith basic variable leaves the basis and the jth variable enters the
basis� ei is the ith column of the identity matrix� Note �
��
� states the new basis is
equivalent to the old basis� but the ith column is replaced by the column of the jth
nonbasic variable�

�
��
� is equivalent to

B� � B�I � �� � � � � � B��A�j � B��B�i� � � � � � ��
� B�I � �� � � � � � B��A�j � ei� � � � � � ��

because B��B � I implies B��B�i � ei� Now de�ne

E �� �I � �� � � � � � B��A�j �B��B�i� � � � � � �
� �e�� � � � � ei��� B

��A�j� ei��� � � � � em�

� �e�� � � � � ei��� �A�j� ei��� � � � � em�

�

�
���������

� �A�j

� � �
���
�Aij

���
� � �

�Amj �

�
���������

where
�A�j �� B��A�j�

The matrix E clearly has a special structure because it is almost identical to the identity
matrix except the ith column has been replaced by another column �A�j� Assuming �Aij �� �
then

E�� �

�
e�� � � � � ei��� ei � �

�Aij

� �A�j � ei�� ei��� � � � � em

�
�

which is ver�ed by the computation

EE�� �

�
���������

� �A�j

� � �
���
�Aij

���
� � �

�Amj �

�
���������

�
���������

� � �A�j
 �Aij

� � �
���

�
 �Aij

���
� � �

� �Amj
 �Aij �

�
���������
� I�

We are now ready to prove the following lemma�

Lemma ����� B� is nonsingular�



Proof� It follows from the above arguments that

B� � BE� �
����

which implies
det�B�� � det�B� det�E��

B is nonsingular�� Now if E is nonsingular� then det�B�� ��  implying B� is nonsingular�
E�� exists if and only if �Aij �� � but

�Aij � eTi �A�j � eTi B
��Nej � eTi ��dxB� � �dxBi � �

The strict inequality follows from the choice of the leaving basis variable in the primal
simplex method� In conclusion both B and E are nonsingular and therefore B� is non	
singular�

�

As the simplex method is stated in Algorithm 
����� then the inverse of B must be
recomputed each iteration� However� from �
���� it follows that

�B���� � �BE��� � E��B���

The inverse of the new basis is given by

�B���� � E��B�� �

�
��������������

B���� �B��i�
�A�j
 �Aij

���

B���i��	� �B��i�
�A�i��	j
 �Aij

B��i� 
 �Aij

B���i��	� �B��i�
�A�i��	j
 �Aij

���

B��m� � B��i�
�Amj
 �Aij

�
��������������
� �
����

This result has a nice interpretation� First form the augmented matrix

�B�� �A�j� �

�
���������

B����
�A�j

���

B��i�
�Aij

���

B��m�
�Amj

�
���������
� �
����

The matrix �
���� is identical to the inverse of the old basis augmented with the column
�A�j� Now using the row operations known from Gaussian elimination on the augmented
matrix to transform the augmenting column to ei and we obtain�

��������������

B���� � B��i�
�A�j
 �Aij 

���
���

B���i��	� �B��i�
�A�i��	j
 �Aij 

B��i� 
 �Aij �

B���i��	� �B��i�
�A�i��	j
 �Aij 

���
���

B��m� � B��i�
�Amj
 �Aij 

�
��������������
� ��B���� ei��

�G is nonsingular
 if and only if det�G� �	 ��



It easy to see that after the row operations have been performed� then the inverse of the
new basis appears on the lefthand side in the augmented matrix� This demonstrates it is
not necessary to compute the inverse of the basis from scratch in every iteration� but it
can be updated cheaply from one iteration and to the next�

��� Initialization

����� The two�phase approach

The primal simplex method should be initiated with a feasible basic solution� In general
such a solution is not known and it may not be easy to �guess� such a solution� Therefore�
we need a systematic method for constructing an initial feasible basic solution�

The main idea of most methods for constructing an initial feasible basic solution is
to formulate an arti�cial problem� which has a known feasible basic solution� Moreover�
the optimal solution to the arti�cial problem is a feasible basic solution to �P �� In the
following one such method is suggested�

First de�ne the matrix �A � Rm�m given by

�Aij ��

	
�

�

�� i � j� bi � �
��� i � j� bi � �
� otherwise�

The matrix �A is clearly nonsingular because it is a square matrix having either � or 	� on
its main diagonal� Moreover� let

�x�i ��


bi� bi � �

�bi� bi � �

Then by construction
�A�x� � b and �x� � �

Therefore� an arti�cial LP problem

maximize �z � Tx� eT �x
subject Ax� �A�x � b�

x� �x � �
�
����

can be formulated� where e � ��� � � � � ��T � The problem �
���� is almost identical to �P �
except a new objective function and the arti�cial variables �x have been introduced�
The problem �
���� is an LP having a known feasible solution� because �x� �x� � �� �x��
is a feasible solution to �
����� There are m arti�cial variables and �A is nonsingular�
Therefore� B � f�xg and N � fxg is a feasible basic solution to �
����� because

B��b � �A��b � �Ab � �x� � �

The objective function in �
���� is identical to

eT �x �
mX
j��

�xj�



Hence� the purpose of �
���� is to maximize the negative sum of the arti�cial variables�
This is the same as minimizing the sum of the arti�cial variables� This sum is bounded
below by zero because all the arti�cial variables are nonnegative variables� This leads to
the conclusion that the purpose of the objective function in �
���� is to force the arti�cial
variables to zero� Let us make some further observations about �
�����

i� It must be true that
�z � 

for all feasible solutions to �
���� that is the objective value in �
���� is bounded
from above by zero�

ii� Assume �
���� has been solved to optimality using the simplex method and �x�� �x��
is the optimal solution� Moreover� assume the optimal objective value is zero that
is �z� � � Then we have

�z� � �
mX
j��

�x�j �  and x�j � �

which implies
�x�� � � � � � �x�m � �

Therefore� we have

b � Ax� � �A�x� � Ax� � �A � Ax� and x� � 

showing x� is a feasible solution to �P ��

iii� Assume �P � has a feasible solution that is

�x� � Ax� � b� x� � �

Now let �x� �x� � �x�� � then we obtain

Ax� �A�x � Ax� � �A � Ax� � b and �x� �x� � �

Moreover� we have
�z � eT �x � eT  � �

Therefore if �P � has a feasible solution� then there exists an optimal solution to
�
���� with a zero objective value ��z � �� It is known from i� that the objective
value to �
���� must be less than zero� Therefore� any feasible solution to �
����
having objective value zero is an optimal solution� because it is not possible to �nd a
solution with a better objective value� This leads to the conclusion that any feasible
solution �P � is an optimal solution to �
�����

We can now conclude given �P � has a feasible solution� then it follows from iii� that an
optimal solution to �
���� having zero objective value exists� Moreover� from ii� it follows
that any feasible solution to �
���� with zero objective value gives a feasible solution to
�P �� This implies if the problem �
���� is solved to optimality� then the optimal objective
value is zero if and only if �P � is feasible� Clearly� if �
���� is solved using the simplex
method� then the optimal solution is also a basic solution� Furthermore� if the optimal
objective value is zero� then the optimal basic solution is a feasible basic solution to the



original problem �P �� Hence� the optimal basic solution to the problem �
���� may be
used to initialize the simplex method�

This approach is called a two	phase method because in phase � we are searching for
a feasible solution by solving the problem �
����� If the problem �
���� has an optimal
objective value strictly less than zero� then we can conclude �P � is infeasible� If this is
not the case� then the optimal solution to �
���� may be used to initialize the simplex
method leading to a second optimization phase� The purpose of the second phase is to
search for an optimal solution to �P � starting from a feasible solution�

There are some loose ends of this two	phase approach� which we are now going to
discuss�

The purpose of phase � is to drive the value of the arti�cial variables to zero because
whenever all the arti�cial variables are zero� then a feasible solution to �P � is known�
Hence� whenever an arti�cial variables becomes zero� then it is bene�cial it remains zero�
Therefore� if an arti�cial variable becomes nonbasic� then it is by construction zero� More	
over� if a nonbasic arti�cial variable is dropped from the problem the basis remains non	
singular and feasible� Hence� it is bene�cial to drop arti�cial variables from the problem
whenever they become nonbasic�

Second� it is important to note that the optimal basis after phase � may contain
several arti�cial variables� These arti�cial variables is of course zero and should remain
zero� because otherwise the solution becomes infeasible� However� the problem with the
arti�cial variables in the initial basis does not cause any problems in phase � if the choice
of the leaving variable is slightly modi�ed� Recall the step size � is chosen maximal such
that

x� � �dx � �

However� in this case � should be chosen maximal satisfying the constraints

x� � �dx � �
�x� � �d
x � 

because the arti�cial variables should remain zero� This implies that whenever
���d
xj ��� � 

for an arti�cial variable �xj� then this variable is removed from the basis and � � � This
small change of the algorithm secures that the arti�cial variables remain zero�

Finally� it should be noted that arti�cial variables are appended to the x variables�
Hence� xn�j � �xj for j � �� � � � � m�

����� A Big�M method

The approach in the previous section is called a two	phase method� because it consists
of two separate phases� In the �rst phase a feasible basic solution is determined� Next
starting from this feasible basic solution an optimal basic solution is computed in the
second phase�

A disadvantage of the two phase approach is that the optimal solution to the phase
� problem may be far from the optimal solution to �P � because any feasible solution to
�P � is an optimal solution to �
����� Therefore� it seems to be more e�cient to combine
phase � and phase � such that a feasible and optimal solution is obtained simultaneously�



This goal can be achieved by solving

maximize z � cTx�MeT �x
subject Ax � �A�x � b�

x� �x � �
�
����

where M is a big positive constant� If M is chosen su�ciently large� then �x will be zero
in the optimal solution to �
���� as desired�

The main disadvantage of this approach is it is di�cult to choose the big M � because
a very big M may introduce numerical problems such as rounding errors� On the other
hand if M is chosen too small� then the arti�cial variables may not be forced to zero�
Hence� we do not recommend the Big	M approach� but suggest to use the two phase
approach presented in the previous section�

����� A numerical example

Before we head on to the remaining issues regarding the simplex method it is useful to
study a small numerical example�

We use the example

maximize z � �x� � 
x�
subject to �
�x� � �
�x� � ��

� �
�x� � ���


�x� � 

�x� � ���

x � �

First slack and surplus variables are introduced to convert the problem to standard form

maximize z � �x� � 
x�
subject to �
�x� � �
�x� � x� � ��

��
�x� � x� � ���


�x� � 

�x� � x� � ���

x � �

�
����

The �rst step of the simplex algorithm is to setup the phase � problem by introducing
arti�cial variables as follows

maximize �x � x� � x�
subject to �
�x� � �
�x� � x� � x � ��

��
�x� � x� � x� � ���


�x� � 

�x� � x� � x� � ���
x � �

�
���

x� x�� x� are the arti�cial variables�

Iteration 	� The standard approach is to let the initial basis consist of all arti�cial
variables� However� recall we can start from any feasible basis� One such basis is
B � f
� �� �g and N � f�� �� �g� Starting from this basis reduces the number of
iterations spend in phase �� However� we leave one arti�cial variable �x�� in basis to
illustrate how phase � works� Both x and x� are nonbasic arti�cial variables and
therefore they are dropped from the problem�



Please note in phase � we use the objective function c � �     � � � � � ��T

because we are solving the phase � problem �
����

In summary

B � f
� �� �g� N � f�� �� �g� x�B �

�
��
x��
x��
x��

�
�� �

�
��
�
�
��

�
�� � z� � ���

and

B �

�
��
�
��

�

�
�� � B�� � B�

First step is to compute

y� � B�T cB �

�
��
�

��
�

�
��
�
��


��


�
�� �

�
��

�


�
�� �

Next the reduced cost of the nonbasic variables are computed

s�N �

�
��
s��
s��
s��

�
�� � cN �NTy� �

�
��




�
���

�
��
�
� 

�
�
� ��
� 

�

��

�
��
�
��

�


�
�� �

�
��


�
�
�

�
�� �

The entering variable is chosen among the nonbasic variable having a positive re	
duced cost� Both the second and the third nonbasic variable have positive reduced
cost and they are therefore possible candidates to enter the basis� We choose the
variable x� to enter the basis because it has the largest positive reduced cost� Hence�
the entering variable is x�� This gives

dxB � �B��A�� �

�
��


��


�
�� � �� � minf����
������g � ��

The second basic variable is binding� Hence� the leaving variable is x�� Finally� the
solution

x�B � ��dxB �

�
�� �


��

�
�� � x�� � �� B � f
� �� �g� N � f�� �g�

is updated� Note the arti�cial variable x� now becomes nonbasic and can therefore
be discarded from the problem by not including the variable in N �

Iteration �� It can be seen that the phase � objective value is zero implying
that the value of the arti�cial variables have been driven to zero� Indeed all the
arti�cial variables are nonbasic� Therefore� we now have a feasible basic solution
to the original problem� Hence� we may terminate phase � and start phase ��
Phase � is identical to phase � except we now use the real c� Hence� we now use
c � �� 
   �T � Moreover� we do not want the arti�cial variables to become
nonzero again� which in turn implies that they are not allowed to enter the basis�



Therefore� the arti�cial variables are dropped from the problem from now on by not
including them in N �

In summary

B � f
� �� �g� N � f�� �g� x�B �

�
��
x��
x��
x��

�
�� �

�
��
�
�
��

�
�� � z� � �

and

B �

�
�� �

��
�

�
�� � B�� � B�

so

y� � B�T cB �

�
��




�
�� � s�N �

�
�



�
�

The �rst nonbasic variable is chosen as the entering variable because it has the
largest positive reduced cost� Entering variable� x�� Hence�

dxB �

�
�� ��
�
�

�

�
�� � �� � minf�
��
����� ��
�

��g � 
��

and the third basic variable are binding� Leaving variable� x�� Update

x�B � ��dxB �

�
�� �
�


�
�� � x�� � 
�� B � f
� �� �g� N � f�� �g�

Iteration ��

B � f
� �� �g� N � f�� �g� x�B �

�
�� x��
x��
x��

�
�� �

�
�� �

�

�

�
�� � z� � ���

and

B �

�
�� � �
�

��


�

�
�� � B�� �

�
�� � ��



��
�



�
�� �

so

y� � B�T cB �

�
��




���
�

�
�� � s�N �

�
�
���

�

�
�

Entering variable� x� �s� � �� Hence�

dxB �

�
��
�

�
��
�
��
�

�
�� � �� � minf�
�

��� �
��
��� 
�
��
��g� ��



Leaving variable� x�� So�

x�B � ��dxB �

�
��


�
��

�
�� � x�� � ��

Before we proceed to the next iteration we will update the inverse of the basis using
the method presented in Section 
���
��

�� � ��

 

�
�� �
�

�

 �
�

�
���

�
�� �

 ���

�
�

��

 �� �
�
��

 ��

�

�
�� �

Iteration ��

B � f
� �� �g� N � f�� �g� x�B �

�
��
x��
x��
x��

�
�� �

�
��
�
�
��

�
�� � z� � ���

and

B �

�
��

�
� �
�
��
� ��


� 

�

�
�� � B�� �

�
��

�

 ���
���

 �� �
�

��

 ��
�

�
�� �

So�

y� � B�T cB �

�
�� 

�

�


���

�

�
�� � s�N �

� �

�
�����
�

�
�

Now all the reduced costs are negative� so the current solution is optimal�

The optimal solution is presented in the following summary�

x �

�
�������

��
�

�


�
�������
� y �

�
�� 

�

�


���

�

�
�� � s �

�
�������




�

�
�


����

�

�
�������
� z � ���

Let us end this section by noting that solving LP problems by hand is one of the
less entertaining exercises� Indeed the process is prune to error and is time consuming�
Fortunately� in practice it is much more e�cient to solve LP problems using a computer�
However� when solving LP problems by hand it bene�cial to check the results carefully at
the end of each iteration� For example by checking if BxB � b� BB�� � I and so forth�
This helps spotting an error early in the solution process�

����� Geometric interpretation

The numerical example presented in the previous section is essentially in two variables�
Hence� it is possible to illustrate the path taking by the simplex method from the initial
solution and to the optimal solution in a two dimensional diagram�

Table 
�� presents the relevant information with respect to the two variables x� and
x� for each iteration� First the value of each variable at the beginning of each iteration is
shown� Second the value of the search direction for those two variables is shown�

In Figure 
�� the same information is presented graphically� It can be observed�



Iteration�k� xk� xk� dx� dx�
�    
�   � 

 
�  	� � �
� �� �  

Table 
��� Iteration information�

Figure 
��� The solution path�

	 The shaded region is the feasible region of the LP example�

	 All the solutions xk generated by the simplex method are corner point solutions�
This fact is in general true�

	 The search direction dx is an edge of the feasible region�

��� Convergence and complexity

An important question is how many iterations the simplex method requires to solve an
LP� This the main issue for this section�

If x� and x� is the current and new solution respectively� then if the step size � is
positive it follows from the previous sections that

z � cTx� � cTx� � z��

Hence� the objective value is strictly increased� Clearly� this implies that x� and x� are
two di�erent basic solutions� Now assume that �k is positive in all iterations then we
obtain

cTx� � cTx� � � � � � cTxk

and that none of iterates xk are identical to another iterate� Therefore� in the case the
step size is strictly positive in all iterations� then the simplex method generates a sequence
di�erent basic solutions� Hence� no basic solution are repeated� Furthermore� the number
of basic solutions is bounded by

Cn�m �

�
n
m

�
�

n!

m!�n�m�!
�
����



because corresponding to each basic solution is a basis� Note each basis consists of m
variables taken from the n variables� Hence� in the worst case Cn�m basic solutions exists�

Unfortunately the quantity Cn�m grows very fast as a function of n and for example
C����� � ��� which implies that the simplex method may require �� iterations to solve
an LP having � equality constraints and 
 variable� Fortunately� in practice the simplex
method requires signi�cantly fewer iterations� One reason is that whenever a basic solution
having a certain objective value is reached� then the simplex method never evaluates a
basic solution having a lower objective value because the objective value is nondecreasing
in each iteration� This implies after each iteration of the simplex method many basic
solution are e�ectively excluded from any further consideration�

In summary if the step size is positive in all the iterations� then the simplex method
is �nitely convergent� Although the number of iterations in the worst case may be very
large� Unfortunately the assumption about a strictly positive step size � may not be
satis�ed� because

�k � min
i
f�xkBi
dxBi � dxBi � g�

Therefore� if one or more of the basic variables are zero� then �k may be zero� A basic
solution� where one or more of the variables in xB is zero� is said to be degenerate� Hence�
if the current solution is degenerate� then it cannot be guaranteed that �k is positive and
the simplex method converge� Indeed it is possible to create an LP such that the simplex
method repeats a �nite sequence of basic solutions� In which case the simplex method is
said to be cycling� Cycling is a rare phenomen in practice� but most large scale problems
are degenerate to some degree�

It is possible to suggest rules for the choice of the entering and leaving variable such
that cycling is prevented�

��� Extensions

����� General bounds

In Section 
�� the simplex method is developed for problems on standard form� This
development is without loss of generality� because any problem can be put on standard
form using some simple transformations� However� in this section we modify the simplex
method to solve a slightly more general problem� The advantage of the modi�cation is a
potential large computational saving in the computational cost for some LP problems�

One particular special problem structure occuring frequently in practice is simple
upper bounds such as

xj � ��

Such a constraint can be handled by introducing an additional constraint in the LP
problem and hence leads to an increase in the row dimension of A by one�

Another type of variable is a free variable that is a variable without any bounds� For
example if a variable denotes the change in a certain quantity� then it can assume both
negative and positive values� Hence� it is free� Free variables can be handle using the
splitting free variable technique leading to the introduction of more variables�

In summary both upper bounded and free variables leads to an increase in the problem
dimension and hence to an increase in the computational cost of solving the problem� In



the following it is shown that this increase in the dimension can be avoided if the simplex
method is modi�ed to deal with a more general problem�

Therefore� we will study solution of the more general problem

maximize z � cTx
subject to Ax � b�

l � x � u�
�
����

where l� u � Rm are the vectors of lower and upper bounds respectively� The values
in l and u may assume any value including plus and minus in�nity i�e� lj � �� and
uj �� are valid assignments� However� for simplicity we will assume that l � u because
otherwise the problem is trivially infeasible�

First step of deriving the simplex method for LPs with general bounds is to parti	
tion the variables into basic and nonbasic variables �B�N � such that the basis matrix is
nonsingular� However� it is not assumed that the nonbasic variables have the value zero�
Indeed the only requirement is that they satis�es their bounds that is

lN � xN � uN �

In general it is advantageous to let the nonbasic variables be identical to one of their
bounds provided the bound is �nite� Otherwise for free variables zero is suitable value�

By construction we have
xB � B���b�NxN ��

and such a solution is feasible if
lB � xB � uB�

In the ordinary simplex method the reduced costs are used to deduce which of the nonbasic
variables should enter the basis� Therefore� let us compute the reduced cost

z � cTx
� cTBxB � cTNxN
� cTBB

���b�NxN � � cTNxN
� bT y � �cN � yTN�TxN
� bT y � sTNxN
� bT y � sTx�

�
��
�

where y and s are de�ned by �
��� and �
��� respectively�
The interpretation of �
��
� is that a reduced cost sj shows the change in the objective

value per unit change in a variable xj� This implies if a reduced cost is positive� then
the variable should be increased� On the other hand if a reduced cost of a variable is
negative� then the variable should be decreased� Therefore� if the jth nonbasic variable
has a positive reduced cost sj �  and xj � uj� then it is possible to increase this variable
leading to an increase in the objective value� Note if xj � uj� then it is not possible to
increase the variable and therefore even though the reduced cost is positive the variable is
not a candidate for entering the basis� Similarly� if the reduced cost is negative �sj � �
and xj � lj� then by decreasing this variable the objective value can be improved� This
gives the conditions for choosing the entering nonbasic variable�

Whenever an entering variable j has been chosen� then the search direction must be
computed by �

dxB
dxN

�
��

� �B��Nej
ej

�
�



Hence� the search direction is unchanged from previously� Next the new point is given by

x� � x� � �dx�

for a suitable chosen step size �� Clearly� the step size should be chosen such that the
new solution x� remains feasible i�e�

l � x� � u�

Therefore� if sj is positive �negative� � should be maximized �minimized� subject to
maintaining feasibility because this leads to the largest improvement in the objective
value� This implies the optimal step size � is given as the optimal solution to the problem

maximize sj�
subject to u � x� � �dx � l�

�
����

The optimal solution to �
���� may be unbounded in which case the problem �
���� is
unbounded� If this is not the case� then at least one variable must hit one of its bounds�
when � is changed� If the binding variable is a basic variable� then the entering nonbasic
variable and the binding basic variable are exchanged as usual� However� it can occur
that the binding variable is the nonbasic variable itself� Indeed if a variable both has a
�nite lower and upper bound and its current value is identical to the lower bound� then
it may happen that the constraint

x�j � �dxj � uj

is the binding constraint in �
����� This implies that the value of the nonbasic variable is
moved from its lower bound and to the upper bound� In this case the basic and nonbasic
partition of the variables is unchanged� Such an operation is called a move� The reverse
may of course also happen that is a variable moves from its upper bound and to its lower
bound�

An important observation is that if a variable is free that is �lj � uj � �� then the
constraint corresponding to this variable in �
���� can never be binding� The consequence
is if a free variable has entered the basis it will never leave the basis again�

Based on the previous discussion the primal simplex method is restated for the case
with general bounds in Algorithm 
�����

Algorithm ��
��

�� Choose a basic and nonbasic partition �B�N � such that x� satis�es u � x� � l and
Ax � b� k �� �

�� yk �� B�T cB� sk �� c� ATyk�

	� Choose jk such that
jk � fj � N � skj � � xkj � ujg

or
jk � fj � N � skj � � xkj � ljg

if possible� Otherwise terminate �optimal��




� Let �
dxB
dxN

�
��

� �B��Nejk
ejk

�
�

�� Let �k be the optimal solution to

maximize sjk�
subject to u � xk � �dx � l�

�� If
����k

��� ��� then terminate �unbounded��

� If sk
jk
�  then

L �� fj � lj � xkj � �kdxj � dxj � g  fj � uj � xkj � �kdxj � dxj � g

else

L �� fj � lj � xkj � �kdxj � dxj � g  fj � uj � xkj � �kdxj � dxj � g�

�� xk�� �� xk � �kdx

�� If jk �� L then

Choose Bik � L�
B �� �B n fBikg�  fjkg� N �� �N n fjkg�  fBikgg�

��� k �� k���

��� Goto ��

Next Algorithm 
���� is discussed in some detail�

In step � an initial feasible basic solution is chosen� In step 
 the entering nonbasic
variable is chosen or it is concluded that the current solution is optimal� In step � the
search direction is computed and this is followed by computing the optimal step size in
step �� In step � it is checked� whether the optimal step size is �nite and if not it is
concluded that �
���� is unbounded� In step � the set L is computed� which is the set
of binding variables� In step � the solution is updated and in step � the partition of the
variables is updated if necessary� Finally� the iteration counter is incremented and the
whole process is repeated�

Note that both upper bounded variables and free variables is handled by Algorithm

���� without introducing additional constraints or variables� Hence� the problem dimen	
sion is not increased� Moreover� in the case of free variables� then whenever a free variable
has entered the basis it will never leave it again� This is likely to lead to fewer iterations�
Note in particular that a free variable cannot be degenerate and hence many free variab	
les in the problem leads to less degeneracy� Therefore� it advantageous to formulate LP
problems with many free variables if the problem is solved using the simplex method�



��� Reoptimization and warm�start

In practice an LP problem is solved several times slightly modi�ed for example to evaluate
the optimal solutions sensitivity to to certain parameters� Clearly� one method for doing
the reoptimization is to solve the modi�ed problem from scratch each time� However� in
many cases it is possible to do better�

For example assume that the objective function c is changed� This implies that the
optimal basic solution to the previous problem is still feasible but not necessarily optimal�
Hence� starting from the previous optimal basis� then the phase � can be completely
avoided� Similarly� if a new variable is introduced into the problem� then the old optimal
basis is still a feasible basis� Hence� reoptimization from the old optimal basis is likely to
faster than starting from scratch�

However� in the case b is modi�ed� then the old basis is not necesarily feasible� Howe	
ver� if b is also slightly modi�ed� then it can be expected that the old optimal basis is
nearly feasible to the new problem� Therefore� it should be advantageous to start phase
� from the old optimal basis�

��� References

The presentation of the simplex method in this chapter is based on the ideas presented in
Nazareth ����� Nazareth also presents in great details the issues related to implementing
the simplex method on a computer�

Furthermore� for readers interested in further details about the simplex method� then
the book of Chv"atal ��� is recommended�



Chapter �

Sensitivity analysis

A basic assumption in LP is that the parameters of the problem is known and �xed� This
is clearly not always the case in practice� For example a cj may re#ect price� which is
likely to #uctuate over time� Therefore� it is important to investigate the sensitivity of
the optimal solution to changes in the parameters�

The kind of information which is useful is the optimal solutions sensitivity to changes
in the parameters� Indeed it might be that even a large change in a parameter only leads to
a small change in the optimal solution� The reverse might also be the case that is a small
change in a parameter leads to a large change in the optimal solution� Such a parameter
is said to be critical and more attention should be given to the critical parameters�

One way of studying changes in the optimal solution given a change in the data is
of course to modify the problem and then reoptimize� The di�erence in the optimal
solution to the modi�ed problem and the original problem is measure for the sensitivity
to changes in the data� Unfortunately such a sensitivity analyzes is computationally
expensive� because the problem has to be reoptimized for each set possible parameters�
Actually this is not neccesarily the case any more because large LPs can solved fast and
cheaply on todays fast PCs�

��� Sensitivity analyses based on an optimal basic

and nonbasic partition

The main question dealt with in this section is how much a component in c or b can
change before the optimal basic and nonbasic partition of the variables changes�

If �P � has been solved to optimality� then an optimal basic and nonbasic partition
�B�N � of the variables is known such that

x�B � B��b � � x�N � �
y� � B�T cB�
s�N � cN �NT y� � � s�B � �

�����

This follows from the termination criteria of the primal simplex method� Even though the
data is changed� then the optimal partition �B�N � does not necessarily change� Indeed
if a cj for one of the nonbasic variables is decreased� then this implies a decrease in sj�
Hence� the current basic and nonbasic partition remains optimal�

It should be observed that the solution �x� y� s� change� when the parameters are
modi�ed�

��



In the following we study how to compute ranges for each bi and cj such that as long
as they lie within these ranges� then the current optimal basic and nonbasic partition of
the variables remains optimal�

��� Analyzing modi	cations to b

The �rst question to be answered is how much bi can be decreased and increased such that
the current basic and nonbasic partition remains optimal� Therefore� de�ne the modi�ed
b� by

b� �� b � �ei�

where ei is the ith unit vector� It follows from ����� that only the basic variables are
a�ected by a change b� Indeed we have

x�B � B��b�

� B���b� �ei�
� x�B � �B��ei�

�����

whereas y� s� and xN remain unchanged� Note the vector

B��ei

is nothing but the ith column of the optimal basis inverse� Therefore� the interpretation
of ����� is that the new value of the basis variables is a function of the current optimal
value x�B� the ith column of the optimal basis inverse� and ��

It can be observed that if � is chosen such x�B � � then the current basic and nonbasic
partition remains optimal� Hence� we would like to compute the minimal and maximal �
for which x�B �  is satis�ed� This gives exactly the range we are looking for�

Therefore� de�ne the problems

�il �� minimize �
subject to x�B � �B��ei � 

���
�

and
�iu �� maximize �

subject to x�B � �B��ei � �
�����

In summary for all

b�i � �bi � �ilei� bi � �iuei�

then the current basic and nonbasic partition of the variables remains optimal�

The two problems ���
� and ����� are easy to solve� because computing the optimal
solution to the problems is equivalent to the problem of computing the maximal step size
� in the primal simplex method� It should observed that the optimal solution to one or
both of these problems can be unbounded�

Now assume a bi represents the available quantity of some resource and it might be
possible to buy more of the resource by paying a price p� Now if the objevtive value
increase by more than p for each unit bought of the resource� then it is worthwhile to



buy some units of the resource� Therefore� let us investigate the change in the optimal
objective value as a function of �� We have that

z� � cTBx
�
B

� cTBB
���b� �ei�

� �y��T �b� �ei�
� bT y� � �y�i

�����

which implies for each additional unit of bi then the objective value increases by y�i units�
�Actually if y�i is negative then it decreases�� Hence� if the price p is less than y�i � then it
is worthwhile to but more of the ith resource� In this case the value �iu is the maximum
amount we are willing to buy for a price less than y�i � After this threshold the basic
and nonbasic partition of the variables change and the price y�i is likely to change too�
Although this is not necessarily the case�

It should now clear that y�i shows the change in the objective value if bi is increased
slightly� Due this interpretation of y�i � then the ys are called shadow prices�

This form of sensitivity analysis is potentially very powerful� but the reader should be
aware of some pitfalls�

	 In general it is only possible to analyze a change in one bi at the time� Hence� the
intervals ��il � �

i
u� and ��jl � �

j
u� are not the correct intervals if both bi and bj are changed

simultaneously

	 The optimal basis is not neccesarily unique� Therefore� the computed intervals are
depended on the optimal basis reported by the simplex method� Moreover� the dual
prices y are not necessarily unique� Hence� the conclusions obtained from from the
sensitivity analysis may be somewhat arbitrary depended on the optimal basis�

The above assumes that only one component in b in changed� However� it might be that
to increase one component of b� then another component should be decreased� Therefore�
let us analyze this case brie#y� Assume the vector b � Rm denotes the direction of
change in b� Hence�

b� �� b � �b�

The minimal and maximal possible values of � such that

x�B � �B��b � 

gives the for interval for which the basic and nonbasic partition of the variables remains
optimal�

����� Analyzing modi�cations to c

Using the techniques used in previous section� then it is possible to analyze the e�ect of
changes in c easily�

Now let the modi�ed objective function be given by

c� �� c� �ej�

where ej is the jth unit vector and � � R� Hence� by varying � we modifying the jth
component of c�



First� assume that j � N that is the jth variable is a nonbasic variable then the
current basic and nonbasic partition remains optimal for all � such that

s�N � c�N �NT y�

� cN � �ej �NT y�

� s�N � �ej � �

Therefore� a cj corresponding to a nonbasic variable can be decreased inde�nitely� Whe	
reas � can only be increased until s�j becomes positive because then jth variable should
enter the basis� Hence� for all

c�j � ���� cj � s�j �

then the current optimal basic and nonbasic partition of the variables remains unchanged�
Next assume a cj for a j � B is changed� Let Bi � j and if ei is the ith unit vector�

then by de�nition
c�B �� cB � �ei

implying
y� � B�T c�B

� B�T �cB � �ei�
� y� � �B�T ei�

The relation
B�T ei � �eTi B

���T

shows that B�T ei is the ith row of the optimal basis inverse�
In this case a change in � implies a change in y� which in turn implies a change in the

dual slacks of the nonbasic variables i�e� in sN � However� the basic and nonbasic partition
remains optimal if s�N �  is satis�ed� Therefore� the partition remains optimal for all �
such that

s�N � cN �NTy�

� cN �NT �y� � �B�T ei�
� s�N � �NTB�T ei
� 

�����

is satis�ed� Similar to case with a change in bi it is now easy to compute the minimal and
maximal � such that ����� is satis�ed� Let ��jl � �

j
u� denote this interval and then for all

c�j � ��jl � cj� �
j
u � cj�

then the current optimal basic and nonbasic partition of the variables remains unchanged�
This gives the maximal changes in cj�

The new objective value is given by

z� � �c�B �
Tx�B

� �cB � �ei�
Tx�B

� z� � �x�Bi �

Hence� for each unit change in cj the objective value is changed by x�Bi units�



Chapter �

Interior�point methods

During the last � years there has been a rapid development in the interior	point methods
for linear programming �LP�� Indeed for large LP problems interior	point methods have
a superior performance compared to the simplex algorithm� Therefore� interior	point
methods are an important new tool in operations research�

In this chapter one of the most e�cient variants of the interior	point methods are
presented� This method is called the primal	dual infeasible	interior	point algorithm or
the primal	dual algorithm for short�

��� Introduction

The modern era of interior	point methods started with Karmarkar$s ���� paper ����� This
paper gained a lot of interest� because the interior	point method Karmarkar presented had
excellent �theoretical� convergence properties compared to the simplex method�

The name interior	point methods arises from the methods move trough the interior
of the feasible region towards the optimal solution� This is in contrast to the simplex
algorithm which follows a sequence of adjacent extreme points to the optimal solution�
Unfortunately this path of extreme points may contain an exponentially large number of
points� Therefore� by moving trough the interior� the problem with a large number of
extreme points is avoided�

Among the di�erent interior	point algorithms the primal	dual algorithm has gained
a reputation for being the must e�cient method for practical LP problems� Therefore�
this algorithm is presented in this chapter� Moreover� by exploiting the primal and dual
properties in linear programming� then the primal	dual algorithm can be stated in a simple
and elegant way�

��� Review

In this section we will review some relevant theory from nonlinear optimization� which
will be useful later� The section may be skipped by readers who is already familiar with
the optimization�

��



����� The �rst order optimality conditions

An equality constraint nonlinear optimization problem has the form

minimize c�x�
subject to g�x� � �

�����

where c � Rn � R and g � Rn � Rm are general smooth functions� The optimality
conditions to ����� can be formulated using the so	called Lagrange function

L�x� y� � c�x�� yTg�x�� �����

y are known as Lagrange multipliers� Now the �rst order optimality conditions to �����
are

rxL�x� y� � rc�x��rg�x�Ty � �
ryL�x� y� � �g�x� � �

���
�

The optimality conditions ���
� are in general only necessary for optimality� Hence� an
optimal solution to ����� must satisfy ���
�� but a solution to ���
� is not necessarily an
optimal solution to ������ However� we have the following important theorem�

Theorem ����� Assume f is a convex function and g is an a�ne function� then ���	�
is su�cient�

The theorem says if the objective function is convex and the constraints are linear� then
the �rst order optimality conditions ���
� are su�cient�

In summary it has been shown how a nonlinear programming problem can be reduced
to a set of nonlinear equations� Therefore� a solution method for the nonlinear program	
ming problem ����� is to compute a solution to the �rst order optimality conditions� In
general this solution is not necessarily an optimal solution� Although in some cases it is�
Hence� we needed a method for solution of nonlinear equations and this is the subject of
the next section�

����� Newton	s method

There exists several methods for solution of nonlinear equations� but in this section we
will restrict the attention to Newton$s method�

Assume f � Rn � Rn is a general smooth nonlinear function and a solution to the
system

f�x� �  �����

is required� It follows from Taylor$s theorem that

f�x� � dx� � f�x�� �rf�x��dx� �����

where x�� dx � Rn� If x� is an initial guess for the solution to ������ then we want to
compute dx such that f�x� � dx� � � In general this is impossible� but in view of �����
we may obtain an approximation from

f�x�� �rf�x��dx � � �����



The system ����� de�nes a set of linear equations in the variables dx� which can easily be
solved� Indeed if it is assumed that rf�x�� is nonsingular� then dx is given by

dx � �rf�x����f�x���
dx de�nes a search direction and a new point x� is obtained from

x� � x� � �dx�

where � is a step size scalar� The plain Newton method chooses � � �� Unfortunately
this does not secure convergence and therefore � has to be chosen in the interval �� ���
One possible choice of � is given by

�� � argmin�������
���f�x� � �dx�

��� �����

and � � ��� The advantage of this choice is that kf�x��k � kf�x��k and therefore the
new point �x�� in some sense is closer to the solution�

In summary the idea of Newton$s method is to linearize the function� Next the root
of the linearized function is computed and is used as a new guess for the root to the
real nonlinear problem� Clearly this leads to an iterative method for solution of a set of
nonlinear equations� which is terminated when kf�x�k � � In general Newton$s method
does not necessarily converge unless the initial guess is close to the solution� However� for
speci�c classes of functions convergence can be proved� On the other hand if the initial
guess is close to the solution� then Newton$s method is known to converge very rapidly�
Indeed Newton$s method is known to have excellent local convergence properties�

Obviously Newton$s method can be applied to the �rst order optimality conditions
���
�� Let �x�� y�� be an initial guess for the solution� Then the Newton search direction
to the �rst order optimality conditions is de�ned by

� r�c�x���Pm
i�� yir�gi�x

�� �rg�x��T
�rg�x�� 

� �
dx
dy

�
� �

� rc�x���rg�x��Ty�
�g�x��

�
� �����

Finally� the new point is given by
�
x�

y�

�
�

�
x�

y�

�
� �

�
dx
dy

�
�����

for a suitable chosen step size ��
This Newton based method for nonlinear programming inherits the good local con	

vergence properties of Newton$s method� Indeed if the initial guess is su�cient close to
the optimal solution� then this method converge rapidly� Therefore� Newton$s method
for nonlinear programming is considered very powerful� The main disadvantages of the
method are�

	 Solution of the linear equation system ����� might be computationally expensive�

	 Second order information is required� that is the Hessian of the involved functions
are required�

	 Newton$s method is not globally convergent� Hence� for some initial guesses �x�� y��
Newton$s method may not converge or at least converge very slowly�



��� Interior�point methods

If Newton$s method for nonlinear programming is powerful� then why not apply it to the
primal or dual LP problem� Unfortunately this is not possible� because both �P � and �D�
contain some inequalities� which cannot be handled by Newton$s method� Therefore�
the main topic in the following is a method for handling inequalities within Newton$s
method�

����� The primal approach

Assume we want to solve the problem �P � then we can get rid of the inequalities as follows

�PB� minimize cTx� �
Pn

j�� ln�xj�
subject to Ax � b�

x � �

where � is a positive parameter� Re	call

lim
xj��

ln�xj� � ��� �����

Therefore� the logarithmic term in the objective function acts as a barrier which pena	
lize nonpositive solutions� This implies any optimal solution to �PB� will satisfy the
inequalities x �  strictly� because we are minimizing� Using this observation� the x � 
inequalities in �PB� may be dropped and an equality constrained nonlinear optimization
problem is obtained�

An optimal solution to �PB� is not necessarily an optimal solution to �P �� but it
will be proved later that an optimal solution to �PB� for a su�ciently small � is a good
approximate solution to �P �� This can be proved from the optimality conditions to �PB��

First de�ne the Lagrange function

L�x� y� � cTx� �
nX

j��

ln�xj�� yT �Ax� b�� ������

where y � Rm are Lagrange multipliers corresponding to the equality constraints in �PB��
Now di�erentiation gives

�L

�xj
� cj � �x��j � AT

�jy and
�L

�yi
� bi � Ai�x�

In vector notation

rxL�x� y� � c� �X��e� AT y � �
ryL�x� y� � b� Ax � � x � �

������

Let us refresh the notation that A�j and Ai� is the jth column and the ith row of A
respectively� Moreover� e �� ��� � � � � ��T � A very important notation used subsequently is
if x is a vector� then capital X is a diagonal matrix with x on the diagonal that is

X �� diag�x� ��

�
�����
x�  � � � 
 x� � � � 
���

���
� � �

���
  � � � xn

�
����� � ����
�



Note if x � � then the inverse of X exists and

X��e �

�
�����
x���  � � � 
 x��� � � � 
���

���
� � �

���
  � � � x��n

�
�����

�
�����
�
�
���
�

�
����� �

�
�����
x���

x���
���

x��n

�
����� � ������

The �rst order optimality conditions ������ can be rewritten by introducing the vector
s � �X��e leading to

c� s� ATy � �
b� Ax � � x � �

s � �X��e�
������

If both sides of the last equality are multiplied by X and using a minor reordering we
obtain

ATy � s � c�
Ax � b� x � �
Xs � �e�

������

The conditions ������ have a very nice interpretation� Indeed the �rst set of equalities en	
forces dual feasibility �see �D�� and the second set of equalities enforces primal feasibility�
Finally� the last set of equalities are identical to

Xs �

�
�����
x�  � � � 
 x� � � � 
���

���
� � �

���
  � � � xn

�
�����

�
�����
s�
s�
���
sn

�
����� �

�
�����
x�s�
x�s�
���

xnsn

�
����� �

�
�����
�
�
���
�

�
����� � �e�

which is the complementarity conditions perturbed by �� In fact if � �  they are identical
to the complementarity conditions�

Let �x���� y���� s���� be a solution to ������ for some � � � Then x��� is primal
feasible� Furthermore�

AT y��� � s��� � c and s��� � �X�����e � �

which shows �y���� s���� is dual feasible� In other words �x���� y���� s���� is a primal	dual
feasible pair� Therefore� the duality gap can be computed as follows

cTx���� bTy��� � x���T s���
� eTX���s���
� eT ��e�
� �eT e
� �n�

In conclusion any solution �x���� y���� s���� which satis�es ������ and hence is an optimal
solution to �PB� de�nes a primal	dual feasible pair� Moreover� the duality gap is given
by n�� This veri�es that an optimal solution to �PB� for a su�ciently small � is an
approximate optimal solution to �P �� because using the duality theorem then

cTx���� cTx� � cTx���� bT y��� � n��

where x� is an optimal solution to �P ��



����� Convexity of the barrier function

An important question is whether the objective function in the problem �PB� is convex�
because in this case the optimality conditions are su�cient� Hence� any solution to the
�rst order optimality conditions is also a solution to �PB��

This question leads to study the barrier function

B��x� �� cTx� �
Pn

j�� ln�xj�
�

Pn
j���cjxj � � ln�xj���

The function ln�x� is concave� which implies �� ln�x� is convex� Therefore� the barrier
function is a positive sum of convex functions� which implies the barrier function is convex�

This fact can also be veri�ed from the facts

rB��x� � c� �X��e and r�B�x� � �X���

Now let v � Rn n fg� Then
vTr�B��x�v � �vTX��v

� �
Pn

j���vx
��
j ��

� 

for x �  and � � � This shows the Hessian of B��x� is positive de�nite which implies
B��x� is strictly convex�

����� A dual approach

In the previous section we applied the logarithmic barrier transformation to the primal
problem� but it could equally well has been applied to the dual problem� In this section
we investigate this possibility�

Introducing the barrier term into the dual problem gives

�DB� maximize bT y � �
Pn

j�� ln�sj�
subject to AT y � s � c�

s � �

Note the barrier term is added to the objective function� because the dual problem is a
maximization problem�

If we let x denote the Lagrange multipliers corresponding to the equalities in �DB��
then the Lagrange function is given by

L�x� y� s� � bT y � �
nX
j��

ln�sj�� xT �ATy � s� c�� ������

The optimality conditions are

rxL�x� y� s� � c� s� ATy � � s � �
ryL�x� y� s� � b� Ax � �
rsL�x� y� s� � �S��e� x � �

������

After some rearrangements it is seen that ������ is equivalent to

ATy � s � c� s � �
Ax � b�
Xs � �e�

������

Perhaps not surprisingly these conditions are essentially the same conditions as in the
primal case� Hence� they are the perturbed KKT conditions to �P ��



����� The primal�dual approach

We have now shown how to transform the primal and dual problem to remove the inequa	
lities� In both cases we obtain a set of �rst order optimality conditions to the barrier
problem� Combining these two set of optimality conditions gives

Ax � b� x � �
ATy � s � c� s � �
Xs � �e�

�����

These conditions are called the perturbed KKT conditions� because they are identical to
the KKT conditions to �P � except the complementarity conditions have been perturbed
by �� Therefore� a solution to ����� for a su�ciently small � is a good approximation to
the optimal solution to �P ��

Now the system ����� de�nes a set of nonlinear equations which can be solved using
Newton$s method� This is exactly the main idea of the so	called primal	dual algorithm�
which we are going to discuss�

First de�ne the nonlinear function

F��x� y� s� ��

�
�� Ax� b
ATy � s� c
Xs� ��e

�
�� �

where � �� xT s
n and � � � Note instead of letting � be a parameter to be chosen
we have introduced � and de�ned � to be the average complementary product� This
rede�nition is convenient in the subsequent development�

Assume ��x� �y� �s� is given such that �x �  and �s � � then one iteration of Newton$s
method applied to the system

F��x� y� s� � 

is identical to

rF���x� �y� �s�

�
��
dx
dy
ds

�
�� � �F���x� �y� �s��

Using the fact

rF���x� �y� �s� �

�
��
A  
 AT I
�S  �X

�
��

we obtain �
��
A  
 AT I
�S  �X

�
��
�
��
dx
dy
ds

�
�� �

�
��

�rP
�rD

� �X�s� ���e

�
�� � ������

where
�rP �� b� A�x� ������

and
�rD �� c� AT �y � �s� ����
�

������ and ����
� are denoted the primal and dual residuals respectively� If the residual
vectors are zero� then the current point ��x� �y� �s� is primal and dual feasible respectively�
because by construction ��x� �s� � �



The �rst step of the primal	dual algorithm consist of solving ������� and then a new
point �

��
x�

y�

s�

�
�� �

�
��

�x
�y
�s

�
�� � �

�
��
dx
dy
ds

�
�� �

is obtained for a suitable choice of �� Before discussing the choice of �� then let us study
some basic convergence properties�

The goal is to compute a solution such that the primal and dual residuals and the
complementary gap �xT s� all are zero� Therefore� let us investigate if the new point is
closer to this goal� The new primal residuals are given by

r�P � b� Ax�

� b� A��x � �dx�
� b� A�x� �Adx
� �rP � ��rP
� ��� ���rP �

������

where the fact Adx � �rP given by ������ is used� This shows that the new residuals are
identical to the old residuals multiplied by the factor �� � ��� Indeed if � � �� ��� then
the residuals are reduced� In particular if � � �� we have that r�P �  showing the new
point x� satis�es the primal equality constraints exactly�

In summary the primal residuals are reduced by a factor ����� and therefore a large
step size is bene�cial� Finally� it can be seen that �rP �  implies r�P � � Hence� if the
current solution is primal feasible� then the new solution is primal feasible too�

We will leave it as an exercise to the reader to verify the relation

r�D � ��� ���rD ������

showing the dual residuals are also reduced�
Next the new duality gap is identical to

�x��T s� � ��x � �dx�
T ��s� �ds�

� �xT �s� ���xTds � �sTdx� � ��dTxds
� �xT �s� �eT � �Xds � �Sdx� � ��dTxds
� �xT �s� �eT �� �X�s� ���e� � ��dTxds
� �xT �s� ���xT �s� ��xT �s� � ��dTxds
� ��� ���� ����xT �s � ��dTxds�

������

The fourth equality is obtained using ������� This implies

lim���
�x�	T s��
xT 
s

�
� lim���

������	
xT 
s���dTx ds
�

� ���� ���xT �s�
������

The interpretation of ������ is for � � �� �� and for a su�ciently small �� then the
complementary gap is reduced�

We have now shown that if the step size � is positive� then the primal and dual
residuals are reduced� Moreover� for a su�ciently small step size the complementary gap
is reduced too� In conclusion by an appropriate choice of the step size� then the algorithm
should converge�



Let us for a moment assume that the primal and dual solution are feasible that is
�rP �  and �rD � � Now using ������ this implies

Adx �  and ATdy � ds � 

leading to the conclusion
dTxds � �dTxATdy � �

In this case ������ simpli�es to

�x��T s� � ��� ���� ����xT �s

and it follows the new complementary gap decreases with an increase in �� Furthermore�
the smaller � the larger is the decrease in the gap� In particular if � � � then

�x��T s� � ��xT �s� ������

The important observations from the convergence analysis is� if the step size is strictly
positive� then the primal and dual residuals are reduced by a factor ������ Moreover� from
������ it can be seen that a small � leads to a large reduction rate in the complementary
gap� However� it should be noted that the search direction �dx� dy� ds� is a function of ��
Hence� implicitly the step size � is also a function of ��

����� Update of the variables

The choice of the step size � has not yet been speci�ed� However� from the previous
section it is known that a large step size implies a large reduction in the primal and dual
residuals� Also the reduction in the complementary gap tend to be proportional to the
step size� Unfortunately� the step size cannot be chosen arbitrarily large because the new
point must satisfy the conditions x� �  and s� � � Therefore� the step size has to be
strictly less than �max� where �max is de�ned by

�max �� argmax���

�
�x
�s

�
� �

�
dx
ds

�
� 

�
�

�max is the maximum possible step size until one of the primal or dual variables hits its
lower bound exactly� Therefore� a possible choice of � is

� � min��� ��max��

where � � �� ��� For example � � �� implies �% of the maximum possible step size to
the boundary is taken and this guarantees that x� �  and s� � � The step size is not
allowed to be larger than one� because ideally Newton$s method never take steps larger
than one�

This choice of the step size does not guarantee convergence� but it usually works well
in practice� In practice �max is computed as follows� First let

�max
P � min

j
f�xj
�dx�j � �dx�j � g

and
�max
D � min

j
f�sj
�ds�j � �ds�j � g�

then
�max � min��max

P � �max
D ��



��� Termination criteria

An important issue is of course when to terminate the primal	dual algorithm� Clearly the
algorithm should be terminated if the primal and dual residuals and the complementary
gap all are zero� In practice a relaxed version of this termination criteria is used� Hence�
the algorithm is terminated if

jjAx� bjj � �P �
jjATy � s� cjj � �D�

xT s � �G�

where �P � �D� and �G are small positive constants�
In practice an exact optimal solution cannot be obtained� because computations are

performed in �nite precision on a computer� Moreover� an exact optimal solution might
not be necessary� because the data �c� A� b� often only have limited accuracy� Therefore�
a highly accurate solution is not necessarily much better than a reasonable approximate
solution�

����� The algorithm

Finally� all the components of the primal	dual algorithm have been presented in Algorithm
������

Algorithm ��
��

�� Choose �x�� y�� s�� such that �x�� s�� �  and �P � �D� �C � �

�� k �� �

	� LOOP� Let
rkP �� b� Axk�
rkD �� c� AT yk � sk�
�k �� �xk�T sk
n�


� If

jjrkP jj � �P � jjrkDjj � �D� �xk�T sk � �G�

then terminate�

�� Pick � � �� �� and solve

�
��

A  
 AT I
Sk  Xk

�
��
�
��
dx
dy
ds

�
�� �

�
��

rkP
rkD

�Xksk � ��ke

�
�� �

�� Compute

�max � argmax���

�
xk

sk

�
� �

�
dx
ds

�
� 

�
�



� Let � �� min���max� �� for some � � �� �� and update

xk�� �� xk � �dx�
yk�� �� yk � �dy�
sk�� �� sk � �ds�

�� k � k � �

�� GOTO LOOP

In step � an initial point is chosen� The restrictions on the initial point are very
moderate and a possible choice is �x�� y�� s�� � �e� � e�� Also the termination tolerances
are selected�

Next the iteration counter is initialized� the residuals are computed� and the termi	
nation criteria is checked� This is followed by picking a value for �� Afterwards the
Newton equations system is solved� This system of linear equations can of course be
solved directly� but it is also possible to reduce it as follows� The system is equivalent to

Adx � rkP �
ATdy � ds � rkD�

Skdx �Xkds � �Xksk � ��ke�
������

The second equation in ������ gives

ds � rkD � ATdy�

Plugging this result into the third equation of ������ gives

Skdx �Xk�rkD � ATdy� � �Xksk � ��ke� ���
�

Now multiplying each side of ���
� by A�Sk��� gives

Adx � A�Sk���Xk�rkd � ATdy� � A�Sk�����Xksk � ��ke��

Finally� using Adx � rkP we obtain

�AXk�Sk���AT �dy � rkP � A��Sk����XkrkD � ��ke� � xk�
� b� Axk � A��Sk����XkrkD � ��ke� � xk�
� b� A�Sk����XkrkD � ��ke��

���
��

Let
M �� �AXk�Sk���AT � ���
��

and
r �� b � A�Sk����XkrkD � ��ke�� ���

�

Then
Mdy � r�

which shows dy is a solution to a linear equation system� When the system ���
�� has
been solved for dy� then ds and dx can be recovered from the relations

ds � rkD � ATdy�
dx � �xk � �Sk������ke�Xkds��

���
��

In step � and � the maximum step size to the boundary is computed� Afterwards the
new point is obtained by taking a �xed percentage ��� of the maximum possible step size�
For example let � � ��� Finally� the whole process is repeated�



��� Convergence analysis

An important issue is the convergence of the primal	dual algorithm that is will the primal	
dual algorithm ever reach the termination criteria� In this section we will discuss some
changes to the primal	dual algorithm� which guarantees it$s convergence�

Let �xk� yk� sk� be the kth iterate of the primal	dual algorithm� then we have

rk��
P � ��� ��rkP and rk��

D � ��� ��rkD�

It follows if the step size is strictly positive then the residuals are reduced� Moreover� we
have

�xk���T sk�� � ��� ���� ����xk�T sk � ��dTxds�

Clearly if the step size is zero� then the complementary gap is not reduced� On the other
hand if dTxds is large and positive� then only for a very small step size the complementary
gap is reduced� Therefore� the main idea in a convergence proof is to show that there
exists a strictly positive step size in every iteration such that the complementary gap is
reduced� Unfortunately this is not easy to prove� but nevertheless some of the ingredients
in the proof are discussed�

Let �xk� yk� sk� be the kth iterate in the primal	dual algorithm� then some key quan	
tities are ���Axk � b

���
kAx� � bk �

���ATyk � sk � c
���

kATy� � s� � ck � and
�xk�T sk

�x��T s�

which measure the rate of reduction in the primal residuals� the dual residuals� and the
complementary gap respectively� Next de�ne the neighborhood

N ��� � f�x� y� s� � �x� s� � �
kAx� bk �x��T s� � kAx� � bkxT s����ATy � s� c

��� �x��T s� � ���ATy� � s� � c
���xT s�

xjsj � �xT s
ng�

where � � �� ��� If it is assumed �xk� yk� sk� � N ���� then this implies the following�

	 The primal infeasibility has been reduced faster than the complementary gap� because

���Axk � b
���

kAx� � bk �
�xk�T sk

�x��T s�
�

	 The dual infeasibility has been reduced faster than the complementary gap�

	 The condition
xkj s

k
j � ��xk�T sk
n

implies each complementary product �xkj s
k
j � is greater than a fraction of the average

complementary product� Hence� a complementary product cannot be arbitrarily
small which also prevents prevents xj and sj from being arbitrarily small�

A key ingredient in a convergence proof is to keep all the iterates in this neighborhood
that is

�xk� yk� sk� � N ���� �k�



Therefore� primal and dual feasibility is obtained before complementarity� This is advan	
tageous� because assume �xk� yk� sk� is a nearly complementary solution ��xk�T sk �� ��
but is infeasible� Now from the de�nition of the search direction we obtain

xkj �ds�j � skj �dx�j � �xkj skj � ��k�

Furthermore assume xkj � �k �  and xkj s
k
j � � then this implies

�dx�j �
�xkj skj � ��k � xkj �ds�j

skj
� �

If the primal solution is infeasible� then to achieve feasibility it may be that xj has to be
large� Therefore� even for a large step size

xkj � ��dx�j

is far from the optimal value� Hence� the algorithm converges very slowly� Therefore�
feasibility should be achieved simultaneously or before complementarity� Otherwise� the
algorithm might end up with a complementary solution from which it is di�cult to move
to a feasible solution�

Furthermore� it can seen from the computation of the step size that if xkj or s
k
j is small�

then they might limit the step size signi�cantly� because only for small � the quantity

xkj � ��dx�j and skj � ��ds�j

is positive� Therefore� until the current iterate is close to the optimal solution it is
bene�cial to keep the two variables xj and sj away from zero� This is the main purpose
of the last condition

xkj s
k
j � ��xk�T sk
n�

which prevents xkj and skj from being small before the complementary gap is small�
Assuming �xk� yk� sk� � N ���� then it is possible to show there exists an � � �� such

that
�xk��� yk��� sk��� � N ��� and �xk���T sk�� � ��� ����� �����xk�T sk�

where ��� �� � �� �� are constants� Hence� the new point remains in the neighborhood and
the complementary gap is strictly reduced�

The proof requires the assumption
����xk� sk���� � M for all k and M is a large positive

constant� We refer the reader to ���� for details�
The important conclusion from this section is that feasibility must be achieved before

complementarity� Fortunately for the majority LP problems it not necessary to enforce
this condition explicitly� The reason is the feasibility conditions are linear equations and
the complementarity conditions are quadratic� Therefore� it is automatically easier for
Newton$s method to generate a feasible solution than a complementary solution� More	
over� it is important not to approach the boundary before the complementary gap is
small�

��� A numerical example

In this section we will perform one iteration of the primal	dual algorithm on a small
example�



Let
c � ��� � � �T � A � �� � ��� and b � ��

This problem is equivalent to

minimize ��x� � �x�
subject to x� � x� � ��

x�� x� � �
���
��

because x� is a slack variable�
First let �x�� y�� s�� � �e� � e� then

r�P �� b� Ax� � �� �� � � � �� � ���
r�D �� c� ATy� � s� � ��� � � �T � �� � ��T � ��� � 
 � ��T

�� � eT e

 � ��

Now letting � � ��� then by de�nition

A�X���S����ATdy � b� A�S�����X�r�D � ���e��

Therefore�

� � � ��

�
�� �  
 � 
  �

�
��
�
�� �
�
�

�
�� dy � � � �� � ������ � 
 � ��T � ���� � ��T ��

Therefore� dy � �� and this implies

dy � ������
ds � r�D � ATdy

� �� � � ��T � �� � ��T �������
� ����
 � ���
 ����T

dx � �x� � �S��������e�X�ds�
� ��� � ��T � ����� � ��T � ����
 � ���
 ����T

� ������ �


 � �����T

Next we compute �max by

�max
P �� min��
������� �
����� and �max

D �� min��
��
� �
���
����
Therefore� �max �� �
���� and � �� ���max� Finally� we obtain

x� � �� � ��T � ��
���������� � �


 � �����T � ���� ���� ���T

y� �  � ���
������������ � �����
s� � �� � ��T � ��
��������
 � ���
 ����T � ����� �

� �����T �

A good exercise is to continue the computations for a couple of more iterations� Nevert	
heless� in Table ��� we have shown the sequence of iterates generated by the primal	dual
algorithm until a fairly good approximation to the optimal solution is reached� From
Table ��� it can been seen that the primal	dual algorithm converges towards the optimal
solution� It requires � iterations to reach a highly accurate solution� but already in � ite	
rations a good approximation is reached� In this case the primal	dual algorithm is vastly



k xk� xk� �xk�Tsk

 ��e ��e 
�e
� ���e	� ����e ���e
� ���e	� ���
e ���e	�

 ���e	
 ���
e	� ���e	�
� ����e	
 ����e	� ���e	

� ����e	� ��e ���e	�
� ����e	� ��e ��
e	�
� ����e	� ��e ���e	�
� ����e	� ��e ��
e	�

Table ���� Iterations sequence to example ���
�� �

k xk� xk� �xk�T sk

 ��e ��e 
�e
� ��e ��e ��
e
� ���
e	� ���
e	� ���e	�

 ����e	� ����e	� ���e	�
� ����e	� ����e	� ���e	�
� ��e ��e ���e	

� ��e ��e ��e	�
� ��e ��e ��e	�
� ��e ��e ��e	�
� ��e ��e ��e	�

Table ���� Iterations sequence to example ���
�� �

ine�cient compared to the simplex algorithm� because the simplex algorithm solves the
example in � iteration�

Note that in the �nal iterations� then the duality gap is reduced by a factor ��� The
reason is we choose � � �� and the algorithm takes unit steps �� � ����

The example ���
�� has a unique optimal solution� Therefore� it is interesting to
investigate which solution the primal	dual algorithm generates in the case the problem
has multiple optimal solutions� Therefore� study the example

minimize ��x� � �x�
subject to x� � x� � ��

x�� x� � �
���
��

It can be observed that the problem has multiple optimal solutions� Indeed for all � � �� ��
then

x� � � and x� � �� �

is an optimal solution� In Table ��� is the iterates generated by the primal	dual algorithm
shown� It can be observed that in this case� then the primal	dual algorithm does not
converge towards one of the optimal vertex solutions �� �� or ��� �� Rather it converge
towards the �center� ��
�� �
�� of these two optimal solutions� In other words whenever
an LP has multiple optimal solutions� then the interior	point algorithm will generate a



sequence of xk converging towards an optimal solution x�� This particular optimal solution
x� will have as many components strictly positive as possible�

��
 Comparison with the simplex algorithm

It is interesting to compare the primal	dual algorithm to the well	known simplex algo	
rithm�

One disadvantage of the primal	dual algorithm is it cannot detect a possible infeasible
or unbounded status of the problem �P �� Therefore� in one sense the primal	dual algorithm
is not complete� Fortunately this problem can handled using a homogeneous model� see
���� ��� 
��

Another disadvantage of the primal	dual algorithm is each iteration is computationally
much more expensive than one iteration of the simplex algorithm� However� the total work
performed to solve an LP problem is a product of the number of iterations and the work
performed in each iteration�

It can be observed that the primal	dual algorithm does not has any problems with
degeneracies and the number iterations is not related to the number of vertices in the
feasible region� Therefore� in practice for large LP problems the interior	point methods
uses signi�cantly fewer iterations than the simplex algorithm� Most implementations of
interior	point methods usually solve an LP problem in less � iterations even though the
problem may contain millions of variables�

Finally� the optimal solution reported by the simplex algorithm is a basic solution�
In many practical applications this advantageous� For example the traditional sensitivity
analysis requires a basic solution� Unless the LP problem has a unique optimal solution
then the primal	dual algorithm does not produce an optimal solution which is also a basic
solution as demonstrated in the previous section� However� there exists a method for
purifying the interior	point solution into a basic solution� see ���� ���

��� The homogeneous and self�dual method

The primal	dual algorithm dicussed in the previous section has the major drawback that
it cannot detect whether the problem is primal and dual infeasible� To overcome this
problem it has been suggested to solve the homogeneous and self	dual model

minimize 
subject to Ax �b	 � �

�ATy �c	 � �
bTy �cTx � �

x � � 	 � 

���
��

instead of �P � using for example the primal	dual algorithm� Clearly� ���
�� is a homoge	
neous LP and is self	dual which essentially follows from constraints form a skew	symmetric
system� The interpretation of ���
�� is 	 is a homogenizing variable and the constraints
represent primal feasibility� dual feasibility� and reversed weak duality�

The homogeneous model ���
�� was �rst studied by Goldman and Tucker ��� in ����
and they proved ���
�� always has a nontrivial solution �x�� 	 �� statisfying

x�js
�
j � � x�j � s�j � � �j�

	 ��� � � 	 � � �� � �
���
��



where s� �� 	 �c � ATy� �  and �� �� bT y� � cTx� � � A solution to ���
�� satisfying
the condition ���
�� is said to be strictly complementary solution� Moreover� Goldman
and Tucker showed that if �x�� 	 �� y�� s�� ��� is any strictly complementary solution then
exactly one of the two following situations occur�

	 	 � �  if and only if �P � has an optimal solution� In this case �x�� y�� s��
	 � is an
optimal primal	dual solution to �P ��

	 �� �  if and only if �P � is primal or dual infeasible� In the case bT y� �  �cTx� � �
then �P � is primal �dual� infeasible�

The conclusion is that a strictly complementary solution to ���
�� provides all the infor	
mation required� because in the case 	 � �  then an optimal primal	dual solution to �P �
is trivially given by �x� y� s� � �x�� y�� s��
	 �� Otherwise� the problem is primal or dual
infeasible� Therefore� the main algorithmic idea is to compute a strictly complementary
solution to ���
�� instead of solving �P � directly�

Ye� Todd� and Mizuno ���� suggested to solve ���
�� by solving the problem

minimize n�z
subject to Ax �b	 ��bz � �

�AT y �c	 ��cz � �
bT y �cTx ��dz � �
�bT y ��cTx � �d	 � �n��

x � � 	 � �

���
��

where
�b �� Ax� � b	 ��
�c �� �c	 � � ATy� � s��
�d �� cTx� � bTy� � ���

n� �� �x��T s� � 	 ����

It can proved that the problem ���
�� always has an optimal solution� Moreover� the
optimal value is identical to zero and and it is easy to verify that if �x� 	� y� z� is an opti	
mal strictly complementary solution to ���
��� then �x� 	� y� is a strictly complementary
solution to ���
��� Hence� the problem ���
�� can solved using any method that generates
an optimal strictly complementary solution� because the problem always has a solution�
Note by construction then �x� 	� y� z� � �e� �� � �� is an interior feasible solution to ���
���
�e is a n dimensional vector of all ones�� This implies that the problem �P � can be solved
by most feasible	interior	point algorithms�

Xu� Hung� and Ye ���� suggest an alternative solution method which is also an interior	
point algorithm� but specially adapted to the problem ���
��� The algorithm can be stated
as follows�

Algorithm �����

�� Choose �x�� 	 �� y�� s�� ��� such that �x�� 	 �� s�� ��� � � Choose �f � �g �  and � �
�� �� and let � �� �� ��

�� k �� ��



	� Compute�
rkp �� b	k � Axk�
rkd �� c	k � ATyk � sk�
rkg �� �k � cTxk � bT yk�

�k �� �xk	T sk��k�k

n��
�


� If
jj�rkp � rkd � rkg�jj � �f and ��xk�T sk � 	k�k� � �g�

then terminate�

�� Solve the linear equations

Adx � bd� � �rkp �
ATdy � ds � cd� � �rkd �

�cTdx � bTdy � d� � �rkg �
Skdx �Xkds � �Xksk � ��ke�
�kd� � 	kd� � �	k�k � ��k

for �dx� d� � dy� ds� d���

�� For some � � �� �� let

�k �� maximize ��

subject to

�
����

xk

	k

sk

�k

�
����� �

�
����
dx
d�
ds
d�

�
���� � �

� � ����

�

�
�������

xk��

	k��

yk��

sk��

�k��

�
�������
��

�
�������

xk

	k

yk��

sk��

�k��

�
�������
� �k

�
�������

dx
d�
dy
ds
d�

�
�������
�

�� k � k � ��

�� goto 	

The following facts can be proved about the algorithm

rk��
p � ��� ��� ���k�rkP �
rk��
d � ��� ��� ���k�rkD�
rk��
g � ��� ��� ���k�rkG�

�����

and
��xk���T sk�� � 	k���k��� � ��� ��� ���k���xk�T sk � 	k�k� ������



which shows that the primal residuals �rp�� the dual residuals �rd�� the gap residual �rg��
and the complemantary gap �xT s� 	�� all are reduced strictly if �k �  and at the same
rate� This shows that �xk� 	k� yk� sk� �k� generated by the algorithm converges towards an
optimal solution to ���
�� �and the termination criteria in step � is ultimately reached��
In principle the initial point and the stepsize �k should be should be chosen such that

min
j
�xkj s

k
j � 	

k�k� � ��k� �k � � �� � � �

is satis�ed because this guarantues �xk� 	k� yk� sk� �k� converges towards a strictly comple	
mentary solution�

Further details about the homogeneous algorithm can be seen in ���� Issues related
to implementing the homogeneous algorithm are discussed in ��� ����

��� Notes

There exists a large literature on interior	point methods which it has not been possible to
cover in this Chapter� In this section we will give a few reference to additional literature�

First it should be noted that interior	point methods have been known for long time�
Indeed they were studied extensively in the sixties by Fiacco and McCormick ����

Some recent surveys papers about interior	point methods in general are ��� ���� The
book of Wright ���� presents the primal	dual algorithms and the related theory in great
detail� The primal	dual algorithm presented in this paper is the basis for almost all com	
mercially available interior	point based software� However� in practice a lot re�nements
are added to the algorithm� For further details on implementing the primal	dual algorithm
we refer to ��
� ��

��� Exercises

�� Solve the nonlinear equation

x� � ��

using Newton$s method� �Note you are essentially �nding
p
���� Show graphically

how Newton$s method works in this case�

�� De�ne the problem

�QP � minimize ��xTQx � cTx�
subject Ax � b�

������

�a� State the Lagrange function to �QP ��

�b� What is the �rst order optimality conditions to �QP �� �Hint let f�x� �
��xTQx� Then rf�x� � Qx��

�c� What is the Newton equation system to the �rst order optimality conditions
in this case�


� Prove �������



�� Plot
f�x� � �x� 
ln�x�

in a diagram� Is f�x� convex�

�� Assume x � �� � � ��T and dx � ��
� � �� � ����T then �nd the maximum �
such that x� � x � �dx � � Next verify x � ��dx �  for � � ����

�� Let
maximize �x� �x��
subject to �
�x� � �x� � �
�

�
�x� � �
�x� � ��
�x� � �

x� � ���
�
�x� � �
�x� � �
��
x�� x� � �

����
�

�a� Solve the problem ����
� graphically�

�b� Put the problem ����
� on standard form and convert it to a minimization
problem�

�c� Perform two iterations of the primal	dual method starting from �x�� y�� s�� �
�e� � e�� Let � � �� and � � ���

�� In Section ��
�� we developed the primal	dual algorithm� However� we could equally
well have developed a primal algorithm� The idea of this algorithm is to solve ������
using Newton$s method� In this exercise we will investigate this idea�

�a� Compute one step of Newton$s method to �������

�b� Obtain a closed form expression for dy and dx similar to ���
�� and ���
���

�c� How is the new point x� obtained�

�d� What assumptions must the initial guess x� satis�es�

�� Verify that the matrix M de�ned by ���
�� is a symmetric and positive	de�nite
matrix�
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